教案的編寫需要充分考慮學生的學習目標和特點。教案的編寫應(yīng)當注重知識的系統(tǒng)性和連貫性,使學生能夠全面、有序地掌握所學知識。以下是小編為大家整理的教案案例,供大家互相學習和借鑒。
高中數(shù)學基本不等式教學教案篇一
教法與學法:
1.教學理念:“人人學有用的數(shù)學”
2.教學方法:觀察法、引導發(fā)現(xiàn)法、討論法.。
3.教學手段:多媒體應(yīng)用教學。
4.學法指導:嘗試,猜想,歸納,總結(jié)。
根據(jù)《數(shù)學課程標準》的要求,教材和學生的特點,我制定了以下四個教學環(huán)節(jié)。
下面我將具體的教學過程闡述一下:
一、創(chuàng)設(shè)情境,導入新課。
上課伊始,我將用一個公園買門票如何才劃算的例子導入課題。
(此處學生是很容易得出買30張門票需要4x30=120(元),買27張門票需要5x27=135(元),由于120〈135,所以買30張門票比買27張還要劃算。由此建立了一個數(shù)與數(shù)之間的不等關(guān)系式)。
緊接著進一步提問:若人數(shù)是x時,又當如何買票劃算?
二、探求新知,講授新課。
引例列出了數(shù)與數(shù)之間的不等關(guān)系和含有未知量1205x的不等關(guān)系。那么在不等式概念提出之前,先讓學生回顧等式的概念,“類比”等式的概念,嘗試著去總結(jié)歸納出不等式的概念。使學生從一個低起點,通過獲得成功的體驗和克服困難的經(jīng)歷,增進應(yīng)用數(shù)學的自信心,為下面的學習調(diào)動了積極。
接下來我用一組例題來鞏固一下對不等式概念的認知,把表示不等量關(guān)系的常用關(guān)鍵詞提出。
(1)a是負數(shù);
(2)a是非負數(shù);
(3)a與b的和小于5;
(4)x與2的差大于-1;
(5)x的4倍不大于7;
(6)的一半不小于3。
關(guān)鍵詞:非負數(shù),非正數(shù),不大于,不小于,不超過,至少。
難點突破:通過上面三組算式,學生已經(jīng)嘗試著歸納出不等式的三條基本性質(zhì)了。不等式性質(zhì)3是本節(jié)的難點。在不等式性質(zhì)3用數(shù)探討出以后,換一個角度讓學生想一想,是否能在數(shù)軸上任取兩個點,用相反數(shù)的相關(guān)知識挖掘一下,乘以或除以一個負數(shù)時,任意兩個數(shù)比較是否性質(zhì)3都成立。通過“數(shù)形結(jié)合”的思想,使數(shù)的取值從特殊化到一般化,從對具體數(shù)的感知完成到字母代替數(shù)的升華。讓學生用實例對一些數(shù)學猜想作出檢驗,從而增加猜想的可信程度。同時,讓學生嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
反饋練習:用一個小練習鞏固三條性質(zhì)。
如果ab,那么。
(1)a-3b-3(2)2a2b(3)-3a-3b。
提出疑問,我們討論性質(zhì)2,3是好象遺忘了一個數(shù)0。
引出讓學生歸納,等式與不等式的區(qū)別與聯(lián)系。
三、拓展訓練。
根據(jù)不等式基本性質(zhì),將下列不等式化為“”或“”的形式。
再次回到開頭的門票問題,讓學生解出相應(yīng)的x的取值范圍。
四、小結(jié)。
1.新知識。
2.與舊知識的聯(lián)系。
五、作業(yè)的布置。
以上是我對這節(jié)課的教學的看法,希望各位專家指正。謝謝!
“讓學生主動參與數(shù)學教學的全過程,真正成為學習的主人”
高中數(shù)學基本不等式教學教案篇二
學習一門知識,究其核心,主要是學其思想和方法,這是學習的精髓。學數(shù)學亦如此,分學數(shù)學思想和數(shù)學方法。
2數(shù)形結(jié)合思想。
數(shù)形結(jié)合思想在高考中占有非常重要的地位,其“數(shù)”與“形”結(jié)合,相互滲透,把代數(shù)式的精確刻劃與幾何圖形的直觀描述相結(jié)合,使代數(shù)問題、幾何問題相互轉(zhuǎn)化,使抽象思維和形象思維有機結(jié)合.應(yīng)用數(shù)形結(jié)合思想,就是充分考查數(shù)學問題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)意義又揭示其幾何意義,將數(shù)量關(guān)系和空間形式巧妙結(jié)合,來尋找解題思路,使問題得到解決.運用這一數(shù)學思想,要熟練掌握一些概念和運算的幾何意義及常見曲線的代數(shù)特征.
應(yīng)用數(shù)形結(jié)合的思想,應(yīng)注意以下數(shù)與形的轉(zhuǎn)化:(1)集合的運算及韋恩圖;(2)函數(shù)及其圖象;(3)數(shù)列通項及求和公式的函數(shù)特征及函數(shù)圖象;(4)方程(多指二元方程)及方程的曲線.以形助數(shù)常用的有:借助數(shù)軸;借助函數(shù)圖象;借助單位圓;借助數(shù)式的結(jié)構(gòu)特征;借助于解析幾何方法.以數(shù)助形常用的有:借助于幾何軌跡所遵循的數(shù)量關(guān)系;借助于運算結(jié)果與幾何定理的結(jié)合.
3轉(zhuǎn)化與化歸思想。
化歸與轉(zhuǎn)化的思想,就是在研究和解決數(shù)學問題時采用某種方式,借助某種函數(shù)性質(zhì)、圖象、公式或已知條件將,問題通過變換加以轉(zhuǎn)化,進而達到解決問題的思想.轉(zhuǎn)化是將數(shù)學命題由一種形式向另一種形式的變換過程,化歸是把待解決的問題通過某種轉(zhuǎn)化過程歸結(jié)為一類已經(jīng)解決或比較容易解決的問題.轉(zhuǎn)化與化歸思想是中學數(shù)學最基本的思想方法,堪稱數(shù)學思想的精髓,它滲透到了數(shù)學教學內(nèi)容的各個領(lǐng)域和解題過程的各個環(huán)節(jié)中.轉(zhuǎn)化有等價轉(zhuǎn)化與不等價轉(zhuǎn)化.等價轉(zhuǎn)化后的新問題與原問題實質(zhì)是一樣的.不等價轉(zhuǎn)化則部分地改變了原對象的實質(zhì),需對所得結(jié)論進行必要的修正.
4分類與整合思想。
由數(shù)學運算引起的討論,如不等式兩邊同乘一個正數(shù)還是負數(shù)的問題;由性質(zhì)、定理、公式的限制條件引起的討論,如一元二次方程求根公式的應(yīng)用引起的討論;由圖形位置的不確定性引起的討論,如直角、銳角、鈍角三角形中的相關(guān)問題引起的討論。由某些字母系數(shù)對方程的影響造成的分類討論,如二次函數(shù)中字母系數(shù)對圖象的影響,二次項系數(shù)對圖象開口方向的影響,一次項系數(shù)對頂點坐標的影響,常數(shù)項對截距的影響等。
5函數(shù)方程思想。
大體可分為下面兩個步驟:(1)根據(jù)題意建立變量之間的函數(shù)關(guān)系式,把問題轉(zhuǎn)化為相應(yīng)的函數(shù)問題;(2)根據(jù)需要構(gòu)造函數(shù),利用函數(shù)的相關(guān)知識解決問題;(3)方程思想:在某變化過程中,往往需要根據(jù)一些要求,確定某些變量的值,這時常常列出這些變量的方程或(方程組),通過解方程(或方程組)求出它們,這就是方程思想;函數(shù)與方程是兩個有著密切聯(lián)系的數(shù)學概念,它們之間相互滲透,很多方程的問題需要用函數(shù)的知識和方法解決,很多函數(shù)的問題也需要用方程的方法的支援,函數(shù)與方程之間的辯證關(guān)系,形成了函數(shù)方程思想。
高中數(shù)學基本不等式教學教案篇三
(3)能夠利用基本不等式求簡單的最值。
2、過程與方法目標。
(1)經(jīng)歷由幾何圖形抽象出基本不等式的過程;。
(2)體驗數(shù)形結(jié)合思想。
3、情感、態(tài)度和價值觀目標。
(1)感悟數(shù)學的發(fā)展過程,學會用數(shù)學的眼光觀察、分析事物;。
(2)體會多角度探索、解決問題。
高中數(shù)學基本不等式教學教案篇四
解法多樣化:以其他學科比較,“一題多解”的現(xiàn)象在數(shù)學中表現(xiàn)突出,尤其是數(shù)學選擇題由于它有備選項,給試題的解答提供了豐富的有用信息,有相當大的提示性,為解題活動展現(xiàn)了廣闊的天地,大大地增加了解答的途徑和方法。常常潛藏著極其巧妙的解法,有利于對考生思維深度的考查。
形數(shù)兼?zhèn)洌簲?shù)學的研究對象不僅是數(shù),還有圖形,而且對數(shù)和圖形的討論與研究,不是孤立開來分割進行,而是有分有合,將它們辯證統(tǒng)一起來。這個特色在高中數(shù)學中已經(jīng)得到充分的顯露。因此,在高考的數(shù)學選擇題中,便反映出形數(shù)兼?zhèn)溥@一特點,其表現(xiàn)是幾何選擇題中常常隱藏著代數(shù)問題,而代數(shù)選擇題中往往又寓有幾何圖形的問題。因此,數(shù)形結(jié)合與形數(shù)分離的解題方法是高考數(shù)學選擇題的一種重要且有效的思想方法與解題方法。
高中數(shù)學基本不等式教學教案篇五
填空:
教師追問:第三題()里可以填多少個數(shù)?第4題呢?
為什么3、4題()里可以填無數(shù)個數(shù)?
()里填任何數(shù)都行嗎?哪個數(shù)不行?(板書:零除外)。
這里為什么必須“零除外”?
(板書課題:分數(shù)基本性質(zhì))。
4.深入理解分數(shù)基本性質(zhì).。
教師提問:分數(shù)的基本性質(zhì)里哪幾個詞比較重要?
為什么“都”和“相同”很重要?
為什么“分數(shù)大小不變”也很重要?
為什么“零除外”也很重要?
三、課堂練習.。
1.用直線把相等的分數(shù)連接起來.。
2.把下列分數(shù)按要求分類.。
和相等的分數(shù):
和相等的分數(shù):
3.判斷下列各題的對錯,并說明理由.。
4.填空并說出理由.。
5.集體練習.。
四、照應(yīng)課前談話.。
問:現(xiàn)在誰知道哥哥、姐姐、弟弟三個人,誰吃的西瓜多呢?
板書:
五、課堂小結(jié).。
這節(jié)課你有什么收獲?
六、布置作業(yè).。
1.指出下面每組中的兩個分數(shù)是相等的還是不相等的.。
2.在下面的括號里填上適當?shù)臄?shù).。
將本文的word文檔下載到電腦,方便收藏和打印。
高中數(shù)學基本不等式教學教案篇六
《不等式的基本性質(zhì)》它是北師大版八年級下冊第二章第二節(jié)的內(nèi)容。今天我將從教材分析,教學目標,教學重難點,教法學法,教學過程這五個方面談?wù)勎覍@節(jié)課處理的一些不成熟的看法:
本節(jié)內(nèi)容不等式的基本性質(zhì),它是刻畫現(xiàn)實世界中量與量之間關(guān)系的有效數(shù)學模型,在現(xiàn)實生活中有著廣泛的應(yīng)用,所以對不等式的學習有著重要的實際意義。同時,不等式的基本性質(zhì)也為學生以后順利學習解一元一次不等式和解一元一次不等式組的有關(guān)內(nèi)容的理論基礎(chǔ),起到重要的奠基作用。
根據(jù)《新課程標準》的要求,教材的內(nèi)容兼顧我班學生的特點,我制定了如下教學目標:
知識與技能:
1.感受生活中存在的不等關(guān)系,了解不等式的意義。
過程與方法:經(jīng)歷不等式的基本性質(zhì)的探索過程,初步體會不等式與等式的異同。
情感態(tài)度與價值觀:經(jīng)歷由具體實例建立不等式模型的過程,進一步符號感與數(shù)學化的能力。
教學重難點:
高中數(shù)學基本不等式教學教案篇七
1.使學生掌握的概念,圖象和性質(zhì).
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域.
(2)能在基本性質(zhì)的指導下,用列表描點法畫出的圖象,能從數(shù)形兩方面認識的性質(zhì).
(3)能利用的性質(zhì)比較某些冪形數(shù)的大小,會利用的圖象畫出形如的圖象.
2.通過對的概念圖象性質(zhì)的學習,培養(yǎng)學生觀察,分析歸納的能力,進一步體會數(shù)形結(jié)合的思想方法.
3.通過對的研究,讓學生認識到數(shù)學的應(yīng)用價值,激發(fā)學生學習數(shù)學的興趣.使學生善于從現(xiàn)實生活中數(shù)學的發(fā)現(xiàn)問題,解決問題.
高中數(shù)學基本不等式教學教案篇八
在課堂上,無論是新教師還是老教師,通常會把自己當做課堂上的主人而過多的會忽略學生的主體地位;或者學生會因為長時間的習慣于聽老師來講解而忘記自己是課堂的主人。
在這節(jié)課中,我設(shè)計了多個讓學生討論的環(huán)節(jié),但是當我說了同學們可以和自己的同桌討論一下自己獲得的結(jié)論之后教室里還是會很安靜。這樣的課堂活動經(jīng)過了一分鐘后,我不得不自己來講解我設(shè)計好的問題。此時我感覺到這節(jié)已經(jīng)失敗了,因為我占據(jù)了本該屬于學生的時間。
在教學中應(yīng)合理設(shè)計教學中所要用的問題,我設(shè)計的學生互動環(huán)節(jié)為什么沒有成功呢?我想很大的原因是我沒有設(shè)計好問題,在提問題時沒有明確我要求他們要給我什么樣的結(jié)果。在這節(jié)課中,我大部分的問題都是這樣問的:請同學們自己首先來做一下這道題目,然后跟自己的同桌討論一下自己的結(jié)果是否正確。當學生聽到這樣的問題時,他們首先會自己一個人去完成題目,而不會跟自己的伙伴合作完成。而且在數(shù)學教學中對問題的梯度設(shè)計很重要,因為新課程很強調(diào)概念的形成過程,而概念的產(chǎn)生是一個抽象的過程,所以在教學時要非常好的展示給學生概念是怎么產(chǎn)生的,而這個教學環(huán)節(jié)就要求教師能夠設(shè)計好問題的梯度。
在本節(jié)課的教學中,我問的最多的問題就是:同學們明白了沒有啊,或者對不對啊,是不是這樣的啊這些膚淺的問題。而從課堂效果看,這些問題并沒有調(diào)動學生的學習積極性,學生也只是機械的回答一下:是或者不是,對或者不對。使學生跟老師之間的溝通成了一種機械的問答過程。所以在以后的教學中我應(yīng)該更加重視對問題深度的要求。
以上就是我對本節(jié)課的。
:多發(fā)揮學生的主體性地位,設(shè)計好教學問題并且要學會提有深度的教學問題。
根據(jù)新課標的要求,本節(jié)的重點是應(yīng)用數(shù)形結(jié)合的思想理解基本不等式,并從不同角度探索基本不等式的證明過程,難點是用基本不等式求最值。本節(jié)課是基本不等式的第一課時。
在新課講解方面,我仔細研讀教材,發(fā)現(xiàn)本節(jié)課主要是讓學生明白如何用基本不等式求最值。如何用好基本不等式,需要學生理解六字方針:一正二定三等。這是比較抽象的內(nèi)容。尤其是“定”的相關(guān)變化比較靈活,不可能在一節(jié)課解決。因為我把這部分內(nèi)容放到第二節(jié)課。本節(jié)課主要讓學生掌握“正”“等”的意義。
我設(shè)計從例一入手,第一小題就能說明“積定和最小”,第二小題說明“和定積最大”。通過這道例題的講解,讓學生理解“一正二定三等”。然后再利用這六字方針就最值。這是再講解例二,讓學生熟悉用基本不等式解題的步驟。然后讓學生自己解題。
鞏固練習中設(shè)計了判斷題,讓學生理解六字方針的內(nèi)涵。還從“和定”、“積定”兩方面設(shè)計了相關(guān)練習,讓學生逐步熟悉基本不等式求最值的方法。
課堂實施的過程中以學生為主體。包括課前預(yù)習,例題放手讓學生做,還有練習讓學生上臺板書等環(huán)節(jié),都讓學生主動思考,并在發(fā)現(xiàn)問題的過程中展示典型錯誤,及時糾錯,達到良好的效果。
不足之處是:復(fù)習引入的例子過難,有點不太符合文科學生的實際。且復(fù)習時花的時間太多,重復(fù)問題過多,講解瑣碎;例題分析時不夠深入,由于擔心時間不夠,有些問題總是欲言又止。練習題講解時間匆促,沒有解釋透徹。
高中數(shù)學基本不等式教學教案篇九
明確排列與組合的聯(lián)系與區(qū)別,能判斷一個問題是排列問題還是組合問題;能運用所學的排列組合知識,正確地解決的實際問題。
學習過程。
一、學前準備。
復(fù)習:
1.(課本p28a13)填空:
(1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數(shù)是;。
(2)要從5件不同的禮物中選出3件分送3為同學,不同方法的種數(shù)是;。
(3)5名工人要在3天中各自選擇1天休息,不同方法的種數(shù)是;。
二、新課導學。
探究新知(復(fù)習教材p14~p25,找出疑惑之處)。
問題1:判斷下列問題哪個是排列問題,哪個是組合問題:
(1)從4個風景點中選出2個安排游覽,有多少種不同的方法?
(2)從4個風景點中選出2個,并確定這2個風景點的游覽順序,有多少種不同的方法?
應(yīng)用示例。
例2.7位同學站成一排,分別求出符合下列要求的不同排法的種數(shù)。
(1)甲站在中間;
(2)甲、乙必須相鄰;
(3)甲在乙的左邊(但不一定相鄰);。
(4)甲、乙必須相鄰,且丙不能站在排頭和排尾;
(5)甲、乙、丙相鄰;
(6)甲、乙不相鄰;
(7)甲、乙、丙兩兩不相鄰。
高中數(shù)學基本不等式教學教案篇十
1.知識目標:
(1)概述男性和女性生殖系統(tǒng)的結(jié)構(gòu),說出它們的功能。
(2)描述受精過程和胚胎發(fā)育過程。
2.能力目標:
(1)通過小組活動培養(yǎng)合作能力;。
(2)通過觀察圖片、看錄象提高觀察能力及處理問題的能力。
3.情感態(tài)度價值觀目標:
(1)自主學習,嘗試學習獲得新知識的成功和喜悅。
(2)認同母親生育了“我”,不容易,父母把“我”養(yǎng)育成人更不容易。
二、教學重難點。
1、教學重點:
(1)男女生殖系統(tǒng)的結(jié)構(gòu)和功能;。
(2)受精過程和胚胎發(fā)育。
2、教學難點:
受精過程和胚胎的發(fā)育。
三、學生分析。
七年級學生已開始了青春期發(fā)育,隨著他們身體上性器官、性機能的變化,逐漸產(chǎn)生了性意識。學生對人的生殖有一定是神秘感,渴望了解這方面的知識,另一方面往往又懷有害羞的心情。教師應(yīng)在理解學生心理的基礎(chǔ)上,加強學生性結(jié)構(gòu)知識教育,樹立正確的性觀念意識。
四、教學內(nèi)容分析。
“人的生殖”是在學習了作為物種的人的由來之后的第二節(jié),介紹的是人的個體形成,與人類的生存和延續(xù)密切相關(guān)。伴隨著學生青春期發(fā)育的進行,讓學生及時了解自己的生殖結(jié)構(gòu)及身體變化的原因,教材安排這一節(jié)是非常必要及時的。既有助于學生的生理健康,更有利于學生的心理健康。本節(jié)的中心內(nèi)容有兩個:(1)生殖系統(tǒng)的結(jié)構(gòu)和功能(2)受精和胚胎發(fā)育過程。
五、教學媒體與資源的選擇與應(yīng)用。
1、由于學生對人體及自身有很多感性認識,但沒有形成體系,更沒有把人放在生物圈中去分析問題。因此,本節(jié)課將從學生的感性認識入手,利用多媒體的視聽效果,運用啟發(fā)式談話法,啟迪學生思維,激發(fā)學習熱情,遵循從感性認識到理性認識的認知規(guī)律。
2、“受精過程和胚胎發(fā)育的過程”是本節(jié)課的教學難點,為了讓學生深入理解,運用了多種動畫,讓學生感知受精和胚胎發(fā)育是一個動態(tài)的過程,采取層層深入的方法,引導學生分析、理解問題并及時鞏固所學知識。
3、利用多媒體等現(xiàn)代教學手段,以豐富的圖片、動畫和視頻資料等引導學生觀察、思考、分析、綜合等一系列認知活動,逐漸認識到生殖過程。
4、學生一方面通過對音樂的感受,對圖片、動畫、視頻等資料的分析、討論去發(fā)現(xiàn)并歸納知識;另一方面通過探究活動,培養(yǎng)學生收集和處理信息的能力,體驗知識獲得的過程,體會同學間合作的魅力,嘗到探究性學習的樂趣,通過交流演示,培養(yǎng)學生的語言表達能力。
六、教學實施過程。
教學環(huán)節(jié)媒體選擇問題與情境師生行為設(shè)計意圖。
[問題1]出生的秘密。
創(chuàng)設(shè)情景。
激活思維多媒體播放動畫《大耳朵圖圖·出生的秘密》1.討論那種說法是正確的?
明確目標。
有的放矢多媒體展示課題(字體顯目)較強的視覺沖擊。
層層深入。
導學達標[問題2]生殖系統(tǒng)的結(jié)構(gòu)與功能。
1、多媒體展示男、女性生殖系統(tǒng)側(cè)面圖。
1、男女生殖系統(tǒng)中,產(chǎn)生和輸送生殖細胞的器官分別是什么?
2、描述精子和卵細胞產(chǎn)生、排出的過程?學生在識圖基礎(chǔ)上通過自學和小組討論獲取知識,教師根據(jù)學情及時點撥層層深入,引導啟發(fā),形成概念,培養(yǎng)學生收集和處理信息的能力和合作探究的精神。
[問題3]受精和胚胎發(fā)育過程。
1、多媒體展示精子、卵細胞產(chǎn)生排出過程動畫。
2、多媒體展示受精、胚胎發(fā)育過程動畫1、有了精子和卵細胞,生命是不是就開始了?
2、精子與卵細胞如何才能相遇形成受精卵?
3、什么是受精、懷孕?
4、受精、懷孕的場所分別在哪里?
[問題4]胚胎發(fā)育過程中如何獲取營養(yǎng)物質(zhì)?
2、胚胎是如何拍出體內(nèi)產(chǎn)生的廢物?
3、胚胎的生存在什么樣環(huán)境中?學生在觀看動畫基礎(chǔ)討論完成。
[問題5]胎兒和胎盤是如何產(chǎn)出的?
1、多媒體展示分娩過程動畫1、分娩時產(chǎn)出的結(jié)構(gòu)有哪些?
[問題6]懷孕對女性生活的影響。
1、多媒體展示女人懷孕生理、心理的變化動畫。
2、我們應(yīng)該怎樣對待父母?怎樣報答父母的生育和養(yǎng)育之恩?
3、你認為婦女在懷孕期間應(yīng)該注意些什么?學生根據(jù)動畫和自己認識完成,教師補充完善體會母親孕育自己的艱辛,培養(yǎng)學生熱愛母親,體諒母親的情感。
[問題8]。
總結(jié)提升。
畫龍點睛1、多媒體展示胚胎發(fā)育過程圖歸納胚胎發(fā)育的過程及胚胎獲取營養(yǎng)物質(zhì)過程。
學生根據(jù)所學知識歸納總結(jié),并提出自己的疑問;教師對學生總結(jié)點評。
高中數(shù)學基本不等式教學教案篇十一
3、數(shù)學思想:培養(yǎng)學生分類討論,函數(shù)的數(shù)學思想。
重點:等比數(shù)列的概念及其通項公式,如何通過類比利用等差數(shù)列學習等比數(shù)列;
難點:等比數(shù)列的性質(zhì)的探索過程。
教學過程:
1、問題引入:
前面我們已經(jīng)研究了一類特殊的數(shù)列——等差數(shù)列。
問題1:滿足什么條件的數(shù)列是等差數(shù)列?如何確定一個等差數(shù)列?
(學生口述,并投影):如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。
要想確定一個等差數(shù)列,只要知道它的首項a1和公差d。
已知等差數(shù)列的首項a1和d,那么等差數(shù)列的通項公式為:(板書)an=a1+(n-1)d。
師:事實上,等差數(shù)列的關(guān)鍵是一個“差”字,即如果一個數(shù)列,從第2項起,每一項與它前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。
(第一次類比)類似的,我們提出這樣一個問題。
問題2:如果一個數(shù)列,從第2項起,每一項與它的前一項的……等于同一個常數(shù),那么這個數(shù)列叫做……數(shù)列。
(這里以填空的形式引導學生發(fā)揮自己的想法,對于“和”與“積”的情況,可以利用具體的例子予以說明:如果一個數(shù)列,從第2項起,每一項與它的前一項的“和”(或“積”)等于同一個常數(shù)的話,這個數(shù)列是一個各項重復(fù)出現(xiàn)的“周期數(shù)列”,而與等差數(shù)列最相似的是“比”為同一個常數(shù)的情況。而這個數(shù)列就是我們今天要研究的等比數(shù)列了。)。
2、新課:
1)等比數(shù)列的定義:如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),那么這個數(shù)列就叫做等比數(shù)列。這個常數(shù)叫做公比。
師生共同簡要回顧等差數(shù)列的通項公式推導的方法:累加法和迭代法。
公式的推導:(師生共同完成)。
若設(shè)等比數(shù)列的公比為q和首項為a1,則有:
方法一:(累乘法)。
3)等比數(shù)列的性質(zhì):
下面我們一起來研究一下等比數(shù)列的性質(zhì)。
通過上面的研究,我們發(fā)現(xiàn)等比數(shù)列和等差數(shù)列之間似乎有著相似的地方,這為我們研究等比數(shù)列的性質(zhì)提供了一條思路:我們可以利用等差數(shù)列的性質(zhì),通過類比得到等比數(shù)列的性質(zhì)。
問題4:如果{an}是一個等差數(shù)列,它有哪些性質(zhì)?
(根據(jù)學生實際情況,可引導學生通過具體例子,尋找規(guī)律,如:
3、例題鞏固:
例1、一個等比數(shù)列的第二項是2,第三項與第四項的和是12,求它的第八項的值。
答案:1458或128。
例2、正項等比數(shù)列{an}中,a6·a15+a9·a12=30,則log15a1a2a3…a20=_10____.
(本題為開放題,沒有唯一的答案,如對于{cn}:2,4,8,16,……,2n,……,則ck=2k=2×2k-1,所以{cn}中的第k項是等差數(shù)列中的第2k-1項。關(guān)鍵是對通項公式的理解)。
1、小結(jié):
今天我們主要學習了有關(guān)等比數(shù)列的概念、通項公式、以及它的性質(zhì),通過今天的學習。
我們不僅學到了關(guān)于等比數(shù)列的有關(guān)知識,更重要的是我們學會了由類比——猜想——證明的科學思維的過程。
2、作業(yè):
p129:1,2,3。
教學設(shè)計說明:
1、教學目標和重難點:首先作為等比數(shù)列的第一節(jié)課,對于等比數(shù)列的概念、通項公式及其性質(zhì)是學生接下來學習等比數(shù)列的基礎(chǔ),是必須要落實的;其次,數(shù)學教學除了要傳授知識,更重要的是傳授科學的研究方法,等比數(shù)列是在等差數(shù)列之后學習的因此對等比數(shù)列的學習必然要和等差數(shù)列結(jié)合起來,通過等比數(shù)列和等差數(shù)列的類比學習,對培養(yǎng)學生類比——猜想——證明的科學研究方法是有利的。這也就成了本節(jié)課的重點。
2、教學設(shè)計過程:本節(jié)課主要從以下幾個方面展開:
1)通過復(fù)習等差數(shù)列的定義,類比得出等比數(shù)列的定義;
2)等比數(shù)列的通項公式的推導;
3)等比數(shù)列的性質(zhì);
有意識的引導學生復(fù)習等差數(shù)列的定義及其通項公式的探求思路,一方面使學生回顧舊。
知識,另一方面使學生通過聯(lián)想,為類比地探索等比數(shù)列的定義、通項公式奠定基礎(chǔ)。
在類比得到等比數(shù)列的定義之后,再對幾個具體的數(shù)列進行鑒別,旨在遵循“特殊——一般——特殊”的認識規(guī)律,使學生體會觀察、類比、歸納等合情推理方法的應(yīng)用。培養(yǎng)學生應(yīng)用知識的能力。
在得到等比數(shù)列的定義之后,探索等比數(shù)列的通項公式又是一個重點。這里通過問題3的設(shè)計,使學生產(chǎn)生不得不考慮通項公式的心理傾向,造成學生認知上的沖突,從而使學生主動完成對知識的接受。
通過等差數(shù)列和等比數(shù)列的通項公式的比較使學生初步體會到等差和等比的相似性,為下面類比學習等比數(shù)列的性質(zhì),做好鋪墊。
等比性質(zhì)的研究是本節(jié)課的高潮,通過類比。
關(guān)于例題設(shè)計:重知識的應(yīng)用,具有開放性,為使學生更好的掌握本節(jié)課的內(nèi)容。
高中數(shù)學基本不等式教學教案篇十二
數(shù)學思想方法不僅會對數(shù)學思維活動起著指導作用,而且會對個體的世界觀、方法論產(chǎn)生深刻影響,形成數(shù)學學習效果的廣泛遷移,甚至包括從數(shù)學領(lǐng)域向非數(shù)學領(lǐng)域的遷移,實現(xiàn)思維能力和思想素質(zhì)的'飛躍.
作者:牟彩娥作者單位:浙江省臺州市黃巖區(qū)靈石中學,浙江,臺州,318020刊名:素質(zhì)教育論壇英文刊名:suzhijiaoyuluntan年,卷(期):“”(4)分類號:g63關(guān)鍵詞:
高中數(shù)學基本不等式教學教案篇十三
1.知識目標。
1)。
2)掌握等比數(shù)列的定義理解等比數(shù)列的通項公式及其推導。
2.能力目標。
1)學會通過實例歸納概念。
2)通過學習等比數(shù)列的通項公式及其推導學會歸納假設(shè)。
3)提高數(shù)學建模的能力。
3、情感目標:
1)充分感受數(shù)列是反映現(xiàn)實生活的模型。
2)體會數(shù)學是來源于現(xiàn)實生活并應(yīng)用于現(xiàn)實生活。
3)數(shù)學是豐富多彩的而不是枯燥無味的。
三、教學對象及學習需要分析。
1、教學對象分析:
1)高中生已經(jīng)有一定的學習能力,對各方面的知識有一定的基礎(chǔ),理解能力較強。并掌握了函數(shù)及個別特殊函數(shù)的性質(zhì)及圖像,如指數(shù)函數(shù)。之前也剛學習了等差數(shù)列,在學習這一章節(jié)時可聯(lián)系以前所學的進行引導教學。
2)對歸納假設(shè)較弱,應(yīng)加強這方面教學。
2、學習需要分析:
四。教學策略選擇與設(shè)計。
1.課前復(fù)習。
1)復(fù)習等差數(shù)列的概念及通向公式。
2)復(fù)習指數(shù)函數(shù)及其圖像和性質(zhì)。
2.情景導入。
高中數(shù)學基本不等式教學教案篇十四
教學目標:
通過實例,理解冪函數(shù)的概念;能區(qū)分指數(shù)函數(shù)與冪函數(shù);會用待定系數(shù)法求冪函數(shù)的解析式。
教學重難點:
重點從五個具體冪函數(shù)中認識冪函數(shù)的一些特征。
難點指數(shù)函數(shù)與冪函數(shù)的區(qū)別和冪函數(shù)解析式的求解。
教學方法與手段:
1、采用師生互動的方式,在教師的引導下,學生通過思考、交流、討論,理解冪函數(shù)的定義,體驗自主探索、合作交流的學習方式,充分發(fā)揮學生的積極性與主動性。
2、利用投影儀及計算機輔助教學。
教學過程:
函數(shù)的完美追求:對于式子,
如果一定,n隨的變化而變化,我們建立了指數(shù)函數(shù);
如果一定,隨n的變化而變化,我們建立了對數(shù)函數(shù)。
設(shè)想:如果一定,n隨的變化而變化,是不是也應(yīng)該確定一個函數(shù)呢?
創(chuàng)設(shè)情境。
請大家看以下問題:
思考:以上問題中的函數(shù)有什么共同特征?
引導學生分析歸納概括得出:(1)都是以自變量x為底數(shù);(2)指數(shù)為常數(shù);(3)自變量x前的系數(shù)為1;(4)只有一項。上述問題中涉及的函數(shù),都是形如的函數(shù)。
探究新知。
一、冪函數(shù)的定義。
一般地,形如的函數(shù)稱為冪函數(shù),其中是自變量,是常數(shù)。
中前面的系數(shù)是1,后面沒有其它項。
小試牛刀。
(1),
思考:冪函數(shù)與指數(shù)函數(shù)有什么區(qū)別?
高中數(shù)學基本不等式教學教案篇十五
(1)通過實物操作,增強學生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
(4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。
2.過程與方法。
(1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。
(2)讓學生觀察、討論、歸納、概括所學的知識。
3.情感態(tài)度與價值觀。
(1)使學生感受空間幾何體存在于現(xiàn)實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。
(2)培養(yǎng)學生的空間想象能力和抽象括能力。
二、教學重點、難點。
重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。
難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
三、教學用具。
(1)學法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀。
四、教學思路。
(一)創(chuàng)設(shè)情景,揭示課題。
1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。
2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標準對這些空間物體進行分類嗎?這是我們所要學習的內(nèi)容。
(二)、研探新知。
1.引導學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
3.組織學生分組討論,每小組選出一名同學發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
(1)有兩個面互相平行;。
(2)其余各面都是平行四邊形;。
(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4.教師與學生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
6.以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
7.讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關(guān)的概念及圓柱的表示。
8.引導學生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導學生思考、討論、概括。
9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學生思考。
1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱。
2.棱柱的何兩個平面都可以作為棱柱的底面嗎?
3.課本p8,習題1.1a組第1題。
5.棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
四、鞏固深化。
練習:課本p7練習1、2(1)(2)。
課本p8習題1.1第2、3、4題。
五、歸納整理。
由學生整理學習了哪些內(nèi)容。
六、布置作業(yè)。
【本文地址:http://www.mlvmservice.com/zuowen/14588570.html】