幾何原本心得體會(專業(yè)21篇)

格式:DOC 上傳日期:2023-11-20 03:46:18
幾何原本心得體會(專業(yè)21篇)
時間:2023-11-20 03:46:18     小編:影墨

心得體會不僅是記錄過去的經(jīng)歷,更是對未來的規(guī)劃和展望,有助于我們提高自身的發(fā)展效益。在撰寫心得體會時,我們應(yīng)該注重事實描述,結(jié)合具體案例和實例,使總結(jié)更加具體、生動。在下面為大家精選了一些心得體會范文,希望對大家的寫作有所幫助。

幾何原本心得體會篇一

幾何學科作為數(shù)學中的重要分支,是從研究空間和形狀的角度出發(fā),推演出了一系列嚴密的理論和定理。幾何學不僅僅是幫助我們理解和描述幾何圖形的工具,更為重要的是,它為我們理解自然界的很多現(xiàn)象提供了有效的途徑,例如:天體運動、光學現(xiàn)象等。在現(xiàn)代科學和工程中,幾何學又被廣泛應(yīng)用于計算機圖形學、計算機輔助設(shè)計、計算機輔助制造等領(lǐng)域。因此,在學習幾何學時需要認真對待,主動提高自己的學習效率和能力。

第二段:幾何學習過程中經(jīng)常遇到的問題和解決方法。

在學習幾何學的過程中,很多人會遇到一些常見的問題。例如:不清楚基本概念的定義、不理解定理證明的方法、不知道如何解題等。這些問題不僅會影響到我們的成績,而且會對我們以后的學習產(chǎn)生負面影響。為了解決這些問題,我們需要在課上認真聽講、積極思考,課下多加練習、整理筆記??梢酝ㄟ^自學、請教老師、和同學討論等方式來解決這些問題,相信只要你認真去解決,總會有辦法找到。

第三段:幾何學習中的體驗和感悟。

在我個人的學習經(jīng)驗中,幾何學是相對難度較大的數(shù)學學科之一。在初中時,我曾經(jīng)為了解幾何學的題目而愁眉不展,感到十分的迷茫和無助。但是在不斷的學習和努力下,我意識到幾何學習中最重要的是掌握基礎(chǔ)知識和理解原理,而不是單純的解決題目。只有掌握了正確的思考方式和方法,才能更好的解決問題,并取得更好的學習成效。在此,我深刻感受到在學習幾何學這門學科時,需要只爭朝夕,不斷努力,才能取得更好的成果。

第四段:幾何學習中需要注意的問題和建議。

在學習幾何學時,需要注意以下幾點:

首先,理清基礎(chǔ)概念,掌握常用記號和符號,明確各種定理和公式的表達和意義。

其次,進行分類整理將所學內(nèi)容加以總結(jié)歸納,形成系統(tǒng)的知識結(jié)構(gòu)。

最后,大量練習和實踐,積累經(jīng)驗和技巧。每當我們?nèi)ソ鉀Q一個新問題時,都需要有足夠的耐心和恒心去探索和實踐,不斷錘煉自己的技能和思維能力。

第五段:總結(jié)與展望。

幾何學是數(shù)學學科中重要的一門,學習幾何學不僅可以幫助我們了解和掌握空間形狀和變化,更能開拓我們的思維方式和理念,提高我們的綜合素質(zhì)和學習能力。在今后的學習和工作中,幾何學所教授的基礎(chǔ)理論和應(yīng)用技巧必將會對我們有很大的幫助。因此,我們需要不斷地加強自己的幾何學習和實踐,并利用幾何學的知識和技巧去解決現(xiàn)實生活中的各種問題。

幾何原本心得體會篇二

幾何,作為數(shù)學的一個重要分支,主要研究空間和圖形的形狀、大小、位置以及它們之間的關(guān)系。學習幾何不僅能夠培養(yǎng)孩子的空間想象力和邏輯思維能力,還能夠幫助他們更好地理解和應(yīng)用數(shù)學知識。以下是我在學習幾何過程中的一些心得體會。

首先,幾何讓我體驗到了數(shù)學的美妙之處。幾何中的形狀和關(guān)系,以及推理和證明過程都充滿了藝術(shù)性和美感。例如,歐幾里得幾何中的尺規(guī)作圖,簡潔而又優(yōu)美,宛如一幅畫作,令人賞心悅目。通過學習幾何,我不僅能夠欣賞到這種美感,還能夠感受到數(shù)學中那種嚴密和精確的思維方式。

其次,幾何學習讓我培養(yǎng)了空間想象力。幾何中的圖形是由線段、角、面等幾何元素構(gòu)成的,在解題過程中,同學們需要準確地理解和操作這些幾何概念。通過大量的練習和思考,我的空間想象力得到了極大的鍛煉和提升。我學會了將二維的圖形在腦海中轉(zhuǎn)化為三維的空間形象,能夠準確地描繪出一個物體在空間中的位置和形狀,這為我理解和應(yīng)用幾何知識提供了很大的幫助。

再次,幾何學習促進了我的邏輯思維能力。幾何中的推理和證明是我們學習的重點,需要我們善于發(fā)現(xiàn)、總結(jié)和運用幾何性質(zhì)和定理,進行推理和證明。這對我們的邏輯思維能力提出了很高的要求。通過學習幾何,我逐漸培養(yǎng)了邏輯思維和推理的能力,能夠善于發(fā)現(xiàn)問題中的規(guī)律,運用幾何定理進行推導和證明。這對我不僅在數(shù)學上有很大的幫助,而且對其他科學領(lǐng)域的學習也起到了積極的促進作用。

此外,幾何學習不僅加深了我對數(shù)學知識的理解,還幫助我提高了解決問題的能力。幾何中的問題往往是生活中實際問題的抽象和模擬,通過學習幾何問題,我能夠?qū)⒊橄蟮臄?shù)學知識應(yīng)用到具體的實際問題中,幫助我更好地理解并解決實際生活中的問題。幾何不僅鍛煉了我的計算和分析能力,同時也提高了我對抽象思維的理解和應(yīng)用能力,使我能夠更好地應(yīng)對復(fù)雜的問題和挑戰(zhàn)。

最后,幾何學習讓我體會到了探究的樂趣。幾何學習強調(diào)的是探究和發(fā)現(xiàn),通過自己的思考和實踐,去探索和發(fā)現(xiàn)幾何原理和定理。在這個過程中,我們不僅能夠理解幾何定理的內(nèi)涵和外延,也能夠感受到思考和探索的快樂。幾何學習培養(yǎng)了我獨立思考和自主學習的能力,使我樂于探求數(shù)學的奧秘,不斷追求數(shù)學的精深。

總之,學幾何不僅能夠培養(yǎng)我們的空間想象力和邏輯思維能力,還能夠幫助我們更好地理解和應(yīng)用數(shù)學知識。通過幾何學習,我不僅能夠體驗到數(shù)學的美妙之處,還能夠培養(yǎng)自己的思考和解決問題的能力,更加深刻地體會到了學習的樂趣。希望將來可以進一步探索和發(fā)展幾何學習,不斷提升自己的數(shù)學素養(yǎng)。

幾何原本心得體會篇三

幾何原本是一本具有歷史性和文化性的經(jīng)典數(shù)學著作,它是歐幾里得在約公元前300年編寫的。作為數(shù)學基礎(chǔ)中的重要部分,幾何學對整個數(shù)學發(fā)展有著深遠的影響。在我接觸幾何學的過程中,我深深感受到幾何原本的教導對于我的幫助非常大,它不僅僅傳授給我一個具體的知識點,更是教會了我一種思考方式,在這里,我的一些心得體會想分享給大家。

首先,幾何原本的敘事方式很具有啟示性。歐幾里得通過引理和命題的結(jié)構(gòu),將論證過程分成了一步步推導的過程,使讀者能夠一步一步地理解?!暗贸鼋Y(jié)果”的方法,實在是一種非常好的解構(gòu)過程,讓我理解了對于問題要怎么定位、解決的過程。這就像我們?nèi)ヂ糜我粯樱覀儾荒芡耆蛔鲇媱?,如果我們先了解一些目的地,我們就能夠更加明確如何出發(fā),如何把每個目的地串聯(lián)起來,如何安排行程。

其次,幾何原本的另一個教導是它能夠調(diào)動我的思維方式。歐幾里得用一種較為宏觀的角度去展示幾何學的結(jié)論、證明和應(yīng)用。這種維度的變化對我的思維方式開拓了新的角度,讓我可以從不同的角度去看待事物。當我們碰到一個問題時,我們可以用不同維度的思維方式去思考,讓我們更加深刻理解問題,更好地掌握解決方案。實際上,在思維方式上走得更遠可能是超過學習的內(nèi)容的,如果能夠把思維方式的升級當成目標,那么會給自己的發(fā)展方向帶來加分。

第三,幾何原本給我的啟示是在學習方法上,歐幾里得的證明方法非常嚴謹。幾何學為了表述準確,記號非常繁瑣,我在學習幾何學的過程中,也能夠更加關(guān)注每個證明的細節(jié)。它教會了我思考的深度和規(guī)范,無論是在學習還是工作生活中,經(jīng)常會碰到一些復(fù)雜的問題,我們需要一種規(guī)范化的方法去解決這些問題。我們需要有目標清晰的拆分工作,我們需要把工作內(nèi)部的步驟明確,我們需要準確記錄每一步的進度,這些都是歐幾里得通過幾何學教給我的非常寶貴的學習經(jīng)驗。

第四,幾何原本還教會了我要有耐心的等待。幾何學的證明通常需要經(jīng)過一個漫長的推導過程,這個過程需要非常耐心的等待。這時候,我們需要放慢腳步,用相當?shù)哪托娜ソ鉀Q難題。在學習和工作中,我們也時常需要耗費大量時間去解決問題,這時候我們不要越挫越勇,著急思考,我們需要沉下心來,想一想,仔細思考,那么所有問題自然會迎刃而解。

最后,歐幾里得在幾何原本中展現(xiàn)了許多人文思想。這些思想不僅僅局限于數(shù)學領(lǐng)域,它還可以在我們生活的方方面面起到啟示作用。例如,歐幾里得在幾何原本中強調(diào)了“數(shù)學是理性主義的一部分”,正是因為這一觀點,我才知道在解決問題時,要用理性去思考,而不是一味的靠直覺。這像是我們生活中遇到一些復(fù)雜的問題也需要這樣去解決。

總之,幾何原本教給了我更多的是受益終身的技巧和心得,不僅僅局限于數(shù)學領(lǐng)域,而是可以指導和啟示我在生活和工作中的方方面面。因此,我深信歐幾里得的幾何原本將是所有時代的人類經(jīng)典的指導書,亦是一部閃耀著智慧光芒的人類瑰寶。

幾何原本心得體會篇四

《幾何原本》是古希臘數(shù)學家歐幾里得的一部不朽之作,大約成書于公元前3左右,是一部劃時代的著作,是最早用公理法建立起演繹數(shù)學體系的典范。它從少數(shù)幾個原始假定出發(fā),通過嚴密的邏輯推理,得到一系列的命題,從而保證了結(jié)論的準確可靠?!稁缀卧尽返脑?3卷,共包含有23個定義、5個公設(shè)、5個公理、286個命題。是當時整個希臘數(shù)學成果、方法、思想和精神的結(jié)晶,其內(nèi)容和形式對幾何學本身和數(shù)學邏輯的發(fā)展有著巨大的影響。自它問世之日起,在長達二千多年的時間里一直盛行不衰。它歷經(jīng)多次翻譯和修訂,自1482年第一個印刷本出版后,至今已有一千多種不同的版本。除了《圣經(jīng)》之外,沒有任何其他著作,其研究、使用和傳播之廣泛,能夠與《幾何原本》相比。但《幾何原本》超越民族、種族、宗教信仰、文化意識方面的影響,卻是《圣經(jīng)》所無法比擬的。

《幾何原本》的希臘原始抄本已經(jīng)流失了,它的所有現(xiàn)代版本都是以希臘評注家泰奧恩(theon,約比歐幾里得晚七百年)編寫的修訂本為依據(jù)的。

《幾何原本》的泰奧恩修訂本分13卷,總共有465個命題,其內(nèi)容是闡述平面幾何、立體幾何及算術(shù)理論的系統(tǒng)化知識。第一卷首先給出了一些必要的基本定義、解釋、公設(shè)和公理,還包括一些關(guān)于全等形、平行線和直線形的熟知的定理。該卷的最后兩個命題是畢達哥拉斯定理及其逆定理。這里我們想到了關(guān)于英國哲學家t.霍布斯的一個小故事:有一天,霍布斯在偶然翻閱歐幾里得的《幾何原本》,看到畢達哥拉斯定理,感到十分驚訝,他說:“上帝啊!這是不可能的?!彼珊笙蚯白屑氶喿x第一章的每個命題的證明,直到公理和公設(shè),他終于完全信服了。第二卷篇幅不大,主要討論畢達哥拉斯學派的幾何代數(shù)學。

第三卷包括圓、弦、割線、切線以及圓心角和圓周角的一些熟知的定理。這些定理大多都能在現(xiàn)在的中學數(shù)學課本中找到。第四卷則討論了給定圓的某些內(nèi)接和外切正多邊形的尺規(guī)作圖問題。第五卷對歐多克斯的比例理論作了精彩的解釋,被認為是最重要的數(shù)學杰作之一。據(jù)說,捷克斯洛伐克的一位并不出名的數(shù)學家和牧師波爾查諾(bolzano,1781-1848),在布拉格度假時,恰好生病,為了分散注意力,他拿起《幾何原本》閱讀了第五卷的內(nèi)容。他說,這種高明的方法使他興奮無比,以致于從病痛中完全解脫出來。此后,每當他朋友生病時,他總是把這作為一劑靈丹妙藥問病人推薦。第七、八、九卷討論的是初等數(shù)論,給出了求兩個或多個整數(shù)的最大公因子的“歐幾里得算法”,討論了比例、幾何級數(shù),還給出了許多關(guān)于數(shù)論的重要定理。第十卷討論無理量,即不可公度的線段,是很難讀懂的一卷。最后三卷,即第十一、十二和十三卷,論述立體幾何。目前中學幾何課本中的內(nèi)容,絕大多數(shù)都可以在《幾何原本》中找到。

《幾何原本》按照公理化結(jié)構(gòu),運用了亞里士多德的邏輯方法,建立了第一個完整的關(guān)于幾何學的演繹知識體系。所謂公理化結(jié)構(gòu)就是:選取少量的原始概念和不需證明的命題,作為定義、公設(shè)和公理,使它們成為整個體系的出發(fā)點和邏輯依據(jù),然后運用邏輯推理證明其他命題?!稁缀卧尽烦蔀榱藘汕Ф嗄陙磉\用公理化方法的一個絕好典范。

誠然,正如一些現(xiàn)代數(shù)學家所指出的那樣,《幾何原本》存在著一些結(jié)構(gòu)上的缺陷,但這絲毫無損于這部著作的崇高價值。它的影響之深遠.使得“歐幾里得”與“幾何學”幾乎成了同義語。它集中體現(xiàn)了希臘數(shù)學所奠定的數(shù)學思想、數(shù)學精神,是人類文化遺產(chǎn)中的一塊瑰寶。

幾何原本心得體會篇五

第一段:引言(200字)。

幾何原本,是一門古老而又深奧的學科,它探究了空間形狀和大小、圖形的性質(zhì)以及它們之間的關(guān)系。在學習幾何原本的過程中,我體會到了幾何的美妙和邏輯的嚴謹性。通過學習幾何,我不僅拓寬了知識面,還培養(yǎng)了邏輯思維和空間想象能力,這些都對我今后的學習和生活有著積極的影響。

第二段:幾何的美妙(200字)。

幾何的美妙體現(xiàn)在它的形式和內(nèi)涵上。幾何形狀具有清晰明了的輪廓和和諧的比例關(guān)系,在這些形狀中,我們可以感受到它們的美感。同時,幾何中數(shù)學的嚴謹性也是它美妙的一部分。在幾何中,我們不僅需要準確地描述形狀的特征,還需要通過嚴密的推理來證明結(jié)論。這種極致的嚴謹性和自洽性也是幾何學中的一大魅力。

第三段:幾何對邏輯思維的培養(yǎng)(250字)。

學習幾何,要求學生具備清晰的邏輯思維能力。在證明定理的過程中,我們需要運用一系列的推理和推導,嚴密地論證每一步。這種邏輯的思考方式培養(yǎng)了我抽象思維和邏輯思考的能力。通過解幾何題,我開始學會思考一個問題的邏輯結(jié)構(gòu),熟悉了構(gòu)造證明的方式和方法。這些培養(yǎng)對我的數(shù)學學習和其他學科的思維方法都有著積極的影響。

第四段:幾何對空間想象能力的培養(yǎng)(250字)。

幾何還要求學生具備良好的空間想象能力。在解決空間圖形的問題時,必須能夠準確地想象出形狀的樣子和位置。通過幾何原本的學習,我對空間的理解力得到了提高,我能夠更加靈活地運用空間想象來解決問題。這種能力不僅對幾何學科本身有益,也對其他科學和日常生活中的問題解決有著不可忽視的作用。

第五段:幾何在學習和生活中的應(yīng)用(300字)。

幾何雖然是一門抽象的學科,但它對我們的學習和生活有著廣泛的應(yīng)用價值。在現(xiàn)實中,我們會經(jīng)常遇到與幾何相關(guān)的問題。比如,在建筑設(shè)計、地圖制作和機器結(jié)構(gòu)等領(lǐng)域都需要用到幾何的知識。幾何的學習讓我更加熟悉這些應(yīng)用場景,并且能夠找到其中的規(guī)律和方法。同時,幾何還能鍛煉我的分析和解決問題的能力,提高我的綜合素質(zhì)。

結(jié)尾(50字)。

通過學習幾何,我深刻體會到幾何的美妙和邏輯的嚴謹性。在以后的學習和生活中,我會繼續(xù)努力學習幾何的知識,不斷運用幾何的思維方式來解決各種問題。幾何的學習將成為我成長道路上的重要一環(huán)。

幾何原本心得體會篇六

學幾何是數(shù)學中的一個重要分支,對于培養(yǎng)學生的邏輯思維和空間想象力有著重要的作用。在學習幾何的過程中,我深刻感受到幾何的魅力和價值。下面我將分享一些在學習幾何過程中的心得體會。

第二段:幾何的基本概念與推理。

幾何是一門讓我感到困惑卻又樂在其中的學科。在初次接觸幾何的時候,我發(fā)現(xiàn)幾何有著許多復(fù)雜的定理和推理,如勾股定理、平行線與角的性質(zhì)等等。但是,通過不斷重復(fù)和實踐,我逐漸掌握了幾何的基本概念與推理方法。我發(fā)現(xiàn)幾何中的定理都是有嚴謹?shù)倪壿嬐评磉^程,只要理解了問題的條件和結(jié)論,就能夠通過推理來得到答案。這種嚴謹?shù)乃季S方式讓我深感幾何的學習不僅僅是解題,更是一種思維和邏輯的訓練。

第三段:幾何的圖形與空間想象力。

幾何的另一個特點就是涉及到圖形和空間的想象力。通過畫圖,幾何能夠?qū)⒊橄蟮膯栴}具象化,讓我們更好地理解幾何的本質(zhì)。我發(fā)現(xiàn)在畫圖的過程中,需要具備良好的空間想象力和準確的手繪技巧。通過不斷練習,我的空間想象力得到了提高,能夠更加準確地描述和構(gòu)建各種幾何圖形。除此之外,作圖還能夠幫助我直觀地理解幾何定理的證明過程。有時候,一個簡單的圖形能夠帶來意想不到的突破,讓我對幾何問題有了更深刻的認識。

第四段:幾何在生活中的應(yīng)用。

幾何不僅僅是一門學科,它還有著廣泛的應(yīng)用。從建筑設(shè)計到機器制造,幾何都扮演著重要的角色。我記得在學習幾何的過程中,老師經(jīng)常給我們一些形狀的問題,這些問題看似簡單,卻能夠進一步培養(yǎng)我們的幾何思維。我通過這類問題,認識到了幾何在生活中的實際應(yīng)用價值。例如,通過幾何知識,我們能夠更好地理解螺旋線的形狀與性質(zhì),從而在機械制造中更好地設(shè)計和運用螺旋線。幾何的應(yīng)用不僅僅局限于學科內(nèi)部,它滲透到了我們的日常生活中,不斷地給我們帶來便利和啟發(fā)。

第五段:總結(jié)。

學幾何是一項需要耐心和堅持的過程,但是它也是一項讓人愉悅和充實的學習經(jīng)歷。通過學習幾何,我體會到了幾何的邏輯推理和空間想象力的重要性。幾何的應(yīng)用也讓我深感幾何學習的實際價值。我相信通過不斷地學習和實踐,我能夠繼續(xù)提高自己的幾何水平,在更多的領(lǐng)域中發(fā)揮幾何的作用,成為一個具有幾何思維能力的人。

幾何原本心得體會篇七

幾何學是一門集合數(shù)學、圖形學、物理學和邏輯學于一體的學科,研究空間和形狀的性質(zhì)。在我的學習過程中,我體會到了幾何學的重要性和魅力,并且逐漸發(fā)現(xiàn)了它與我們?nèi)粘I畹穆?lián)系。幾何原本課程不僅豐富了我的知識儲備,還培養(yǎng)了我的邏輯思維能力和創(chuàng)造力。

首先,幾何學讓我意識到數(shù)學的美妙之處。曾經(jīng),我對數(shù)學只是一堆公式和計算,但是通過學習幾何學,我發(fā)現(xiàn)數(shù)學背后存在著無限的美麗和精巧。幾何學通過圖形的形狀和結(jié)構(gòu)來揭示數(shù)學的規(guī)律和性質(zhì),讓我重新認識到數(shù)學的深度和廣度。我開始意識到,數(shù)學不僅僅是為了解決實際問題,更是一種抽象思維的體現(xiàn),是一門關(guān)于邏輯和推理的思維工具。

其次,幾何學的學習給予了我良好的空間想象力和幾何直覺。從一開始,幾何學就要求我們以圖形和空間為切入點,通過觀察圖形的形狀、方向和位移來推斷和證明結(jié)論。這讓我培養(yǎng)了空間想象力和幾何直覺的能力,能夠更好地預(yù)測和理解空間問題。在日常生活中,無論是布置房間,還是規(guī)劃路線,幾何學都為我提供了一個解決問題的框架,使我能夠更加高效和準確地完成任務(wù)。

此外,幾何學的學習也讓我更加懂得了證明的重要性和方法。在幾何學中,證明是至關(guān)重要的一環(huán)。通過推導和邏輯推理,我們可以從已知事實出發(fā),得出未知事實。這鍛煉了我邏輯思維的能力,教會了我如何用證明說服他人,如何從多個角度分析和解決問題。這種證明的思維方式不僅適用于數(shù)學領(lǐng)域,還對其他領(lǐng)域的問題分析和解決有著普適性的指導作用。

最后,幾何學的學習激發(fā)了我的創(chuàng)造力和想象力。幾何學不僅僅是為了理解和應(yīng)用已有的知識,更是為了創(chuàng)造新的知識和圖形。通過解決幾何難題和設(shè)計幾何圖形,我開始嘗試用不同的思維方式探索和解決問題。這種創(chuàng)造性的思維過程讓我思維更加開闊,想象力更加豐富。我開始認識到,數(shù)學并不是死的,它是一個等待我們?nèi)ヌ剿骱桶l(fā)現(xiàn)的無限宇宙。

綜上所述,幾何學學習讓我認識到數(shù)學的美妙之處、培養(yǎng)了空間想象力和幾何直覺、加強了證明的能力和方法、以及激發(fā)了我的創(chuàng)造力和想象力。幾何學是我認識數(shù)學和思維方式的媒介,它讓我獲得了遠超于知識本身的寶貴財富。無論將來我走向何方,幾何學的學習足夠讓我受益終生。

幾何原本心得體會篇八

幾何原本是一本古代的數(shù)學著作,被譽為數(shù)學之王,對于幾何學發(fā)展的推動和數(shù)學教育的重要性不言而喻。而個人在課堂數(shù)學老師的指導下,深入閱讀了這本經(jīng)典之作,從中感悟到了許多道理和思考方式,也在這個過程中得到了些許收獲和體會。

一、幾何原本對幾何學的發(fā)展起到了重要的推動作用。數(shù)學在古代就已經(jīng)有了發(fā)展,從最早的計算,到出現(xiàn)基本的幾何學思想,幾何原本就是在這樣的背景下應(yīng)運而生。在幾何原本中,作者以歐幾里得為代表提出了公理化證明,在這個基礎(chǔ)之上推導出了許多定理,使得幾何學逐漸成為了一個有機的體系,并且這種公理化證明方法一直延續(xù)至今,成為了現(xiàn)代數(shù)學證明的重要方法之一。

二、幾何原本對數(shù)學教育的重要性也不言而喻。在我們的學習過程中,幾何學一直是數(shù)學一個重要的組成部分。而幾何原本的結(jié)構(gòu)和證明方式跟現(xiàn)代數(shù)學教育相似,對于我們的數(shù)學學習的幫助也是非常大的。同時幾何原本的學習也能讓我們具體理解這門知識的來源和發(fā)展過程,充分挖掘其思想內(nèi)涵,為我們學習到更深入的內(nèi)容打下基礎(chǔ)。

三、幾何原本中關(guān)于直線的幾何公理引出了許多深刻的思考。幾何原本中的直線公理,即兩點之間可以唯一地作一條直線,這一公理恰好是我們在中小學數(shù)學學習中講到的直線定義,而這一定義在幾何原本的證明過程中是在其他公理的基礎(chǔ)上進行的,而它本身并不能自證自明,這就引出了我們對于公理本身的思考,也讓我們意識到了“人人皆知卻不能說明”的哲學問題。

四、幾何原本中所涉及的問題和方法對我們的思維方式也起到了一定的影響。在我們學習幾何學的過程中,往往需要進行圖形變形、轉(zhuǎn)化等操作,這就需要我們具備一定的想象力和幾何感。而在幾何原本中,作者通過證明定理的過程,展示了自己對于各種圖形的構(gòu)造和運用,同時通過解決問題的方法,表現(xiàn)了自己的表達能力和推理技巧。這些方法和思維方式的學習,也為我們拓寬了思維和學習的視野。

五、通過幾何原本的學習,我們也意識到了數(shù)學和現(xiàn)實之間的聯(lián)系。幾何原本中的許多概念和證明,往往直接涉及到我們?nèi)粘I钪械膯栴},如平行線、測角等問題,同時通過這些問題的解決和證明,我們也可以對于這些現(xiàn)象有更深入的認識和了解。這樣的聯(lián)系和理解,也讓我們在學習過程中更加深刻地理解數(shù)學在現(xiàn)實中的應(yīng)用價值。

綜上所述,幾何原本是數(shù)學中學術(shù)通古今,精義不變的經(jīng)典之作。通過對幾何原本的認識和學習,我們能夠?qū)τ趲缀螌W的發(fā)展和演化有更深入的了解和認識,同時也激發(fā)了我們對于數(shù)學學科的興趣和熱愛。

幾何原本心得體會篇九

第一段:引入幾何原本的重要性和學習幾何的目的(200字)。

幾何學作為數(shù)學的一個重要分支,探索了空間、形狀和大小等方面的數(shù)學性質(zhì)。它不僅在幾何學本身中扮演著重要角色,還在應(yīng)用數(shù)學中發(fā)揮著關(guān)鍵作用。幾何原本則是學習幾何的基礎(chǔ),是學習幾何的起點。通過學習幾何原本,我們可以對幾何學的基本知識有更深入的理解,并能夠應(yīng)用幾何的思維方法解決實際問題。本文將分享我在學習幾何原本過程中的體會和收獲。

第二段:幾何原本對培養(yǎng)邏輯思維的重要作用(250字)。

幾何原本對于培養(yǎng)邏輯思維能力至關(guān)重要。在解決幾何問題時,我們需要遵循一定的邏輯關(guān)系和推理規(guī)則,通過觀察和推導來得出結(jié)論。通過多次練習,我逐漸掌握了運用邏輯思維解決幾何問題的方法。同時,幾何原本還能培養(yǎng)我們的空間想象能力和創(chuàng)造力。在進行幾何原本推導的過程中,我們需要通過圖像和符號來描述和表示問題,這鍛煉了我們的空間思維能力和創(chuàng)造力,提升了我們的整體思維水平。

第三段:幾何原本對實際生活的應(yīng)用(250字)。

幾何原本雖然在形式上似乎只是純粹的學科,但它的應(yīng)用卻遍及我們的日常生活。幾何原本能夠幫助我們解決很多實際問題,如計算面積、測量距離和角度以及設(shè)計建筑等等。通過學習幾何原本,我了解到幾何學在建筑設(shè)計、城市規(guī)劃和工程建設(shè)中的重要性。幾何原本提供了多種計算方法和評估標準,幫助我們更加科學地進行各類工程設(shè)計和規(guī)劃。因此,幾何原本對我們的工作和生活都具有十分實際的意義。

第四段:面對幾何原本的挑戰(zhàn)及克服方法(250字)。

學習幾何原本雖然重要,但也存在一定的難度。幾何原本中的定理和證明往往較為抽象和復(fù)雜,需要我們具備一定的數(shù)學基礎(chǔ)和邏輯思維能力。為了克服這些困難,我采取了一些有效的學習方法。首先,我嘗試了多種教材和參考書,找到適合自己的學習材料。其次,我注重理論的學習和實踐的結(jié)合,通過解題和舉一反三的方法幫助自己更好地理解幾何原本的知識。此外,我還積極參與討論和互動,在和同學一起學習中相互促進,取得進步。

第五段:幾何原本對我的成長和啟示(250字)。

綜上所述,學習幾何原本不僅增加了我的數(shù)學知識,還培養(yǎng)了我的邏輯思維能力和空間想象能力。通過幾何原本的學習,我學會了觀察和思考,從不同的角度思考問題,找到解決問題的方法。這些能力不僅在解決幾何問題時發(fā)揮了作用,也在我日常生活和學習的方方面面中起到了積極的促進作用。幾何原本的學習讓我體會到數(shù)學的美妙和思維的樂趣,激發(fā)了我追求知識和探索世界的熱忱。

總結(jié):

通過幾何原本的學習,我深刻體會到幾何學的重要性和應(yīng)用價值。幾何原本不僅培養(yǎng)了我的邏輯思維能力和空間想象能力,還在實際生活中發(fā)揮了積極作用。我相信幾何原本的學習對我未來的職業(yè)發(fā)展和學習進一步深入幾何學都有重要意義。所以,我會繼續(xù)努力學習幾何原本,并繼續(xù)探索更深入的幾何學知識。

幾何原本心得體會篇十

作為一門數(shù)學課程,幾何在學生們的學習中占據(jù)著重要的位置。在幾何學習中,我們不僅需要掌握基本概念和定理,更重要的是要掌握運用方法,發(fā)揚自己的思維和創(chuàng)造能力。以下從我個人對幾何課的學習體驗出發(fā),談?wù)剬缀蔚男牡皿w會。

第一段:幾何的學習過程。

幾何的學習過程是一個不斷摸索的過程。從最初的基礎(chǔ)知識和應(yīng)用到幾何基本思想的理解,我們不斷地學習、實踐、總結(jié)。幾何的基本思想有很多,比如點、線、面等等,我們可以通過理解這些基本思想和定理,來掌握更高層次的幾何知識。同時,我們也要有正確的思維習慣和方法,比如分析、推理、比較、綜合等等,從而更好地解決問題和研究幾何知識。

第二段:幾何的復(fù)雜性。

幾何的復(fù)雜性是學生們學習過程中需要面對的一大挑戰(zhàn)。在學習過程中,我們常常遇到復(fù)雜的幾何問題和定理,需要精細地分析和思考。要想在幾何學科中有所成就,我們需要不斷充實自己的知識,全面掌握各種幾何原理和技巧,深入研究幾何知識。同時,我們也需要注重實踐,通過數(shù)學建模和實驗探究,推動幾何知識的不斷更新和升級。

第三段:幾何的應(yīng)用價值。

幾何在現(xiàn)實生活中的應(yīng)用價值很大。比如在測繪、航空運輸、建筑設(shè)計、機器人技術(shù)和3D打印技術(shù)中都有廣泛應(yīng)用。通過掌握幾何的基礎(chǔ)知識和原理,可以提高我們的空間思維能力,培養(yǎng)創(chuàng)新意識,增強協(xié)作能力。此外,幾何的應(yīng)用也可以幫助我們更好地理解其他學科的知識,比如物理、化學等學科。

第四段:幾何的學習方法。

要想有效地掌握幾何知識,我們需要找到適合自己的學習方法。首先,我們需要認真聽課,做好筆記和記錄,掌握教材中的知識點和難點。其次,我們需要注重練習,通過大量的練習和做題來鞏固自己的知識。最后,我們需要多方面地了解幾何知識,比如參加數(shù)學比賽、研究專業(yè)文獻、討論學習經(jīng)驗等等。只有通過持之以恒的努力,我們才能更好地掌握幾何知識。

第五段:總結(jié)。

幾何是一門十分重要的數(shù)學課程,是我們提高自己數(shù)學素養(yǎng)和應(yīng)用能力的重要途徑。要想在幾何學科中有所成就,我們需要充分發(fā)揚自己的思維和創(chuàng)造能力,深入理解幾何知識和思想,掌握正確的學習方法和技巧,才能在幾何學科中獲得更好的成績和成就。

幾何原本心得體會篇十一

幾何學是高中數(shù)學中的重要內(nèi)容,通過學習幾何學,我不僅僅掌握了一些基本的定理和公式,還深刻體會到了幾何學對于培養(yǎng)邏輯思維和創(chuàng)造力的重要作用。在這段時間的學習中,我積累了一些關(guān)于幾何的心得和體會,讓我對這門學科有了更深刻的認識和理解。

首先,幾何學不僅僅是一門純粹的理論學科,更是一門實踐性較強的學科。在幾何學的學習過程中,我們經(jīng)常要進行實際問題的建模和求解。例如,在解決平面幾何題目時,我們需要將圖形抽象出來,運用幾何定理和公式進行分析和計算。這個過程就是數(shù)學知識與實際問題相結(jié)合的最好例證。通過實際問題的解決,我深刻體會到了幾何學的實用性,也為今后的工作和生活積累了經(jīng)驗。

其次,幾何學的學習需要具備一定的想象力和創(chuàng)造力。在解決幾何問題時,我們需要根據(jù)題目的描述,通過思考和分析,形成一種立體的想象。只有通過想象,我們才能更好地理解題目,找到解題的思路。我曾經(jīng)遇到過這樣一個題目:已知一個直角三角形的斜邊和一個直角邊的長,求另一個直角邊的長。在經(jīng)過一番思考后,我想到了使用勾股定理去求解。通過想象,我將這個問題與一個根據(jù)勾股定理可以解決的問題聯(lián)系起來,最終得到了正確的答案。幾何學的學習過程培養(yǎng)了我的想象力和創(chuàng)造力,使我更加具備了解決問題的能力。

再次,幾何學的學習常常需要耐心和堅持。幾何學是一個理論體系龐大的學科,其中的定理和公式繁多,我們需要反復(fù)閱讀和推敲才能理解。有時候,我們會遇到一些難題,需要多方面思考和嘗試才能解決。在這個過程中,耐心和堅持是必不可少的品質(zhì)。曾經(jīng)有一道難題讓我束手無策,但是我沒有放棄,反復(fù)思考,查閱資料,最終找到了解決問題的方法。這種堅持和毅力不僅在幾何學中有用,也在其他學科和生活中同樣適用。

最后,幾何學的學習幫助我培養(yǎng)了邏輯思維和分析問題的能力。幾何學是嚴密性較強的學科,我們在學習和運用定理和公式的過程中,必須要有清晰的邏輯思維和良好的分析問題的能力。通過幾何學的學習,我逐漸養(yǎng)成了一種習慣,即在解決問題時要先明確問題的要求,然后分析給定條件和所需計算的關(guān)系,最后有條不紊地進行運算。這種思維方式不僅使得我的計算準確無誤,也在其他學科和生活中帶給我很大的幫助。

綜上所述,通過幾何學的學習,我不僅僅掌握了一些基本的定理和公式,還在實踐中體會到了幾何學的實用性,培養(yǎng)了想象力和創(chuàng)造力,鍛煉了耐心和堅持的品質(zhì),同時也提升了我的邏輯思維和分析問題的能力。幾何學對于我的成長和發(fā)展有著重要的影響,我相信在今后的學習和工作中,這些體會將繼續(xù)發(fā)揮作用。

幾何原本心得體會篇十二

《幾何原本》是古希臘數(shù)學家歐幾里得的一部不朽之作,大約成書于公元前300年左右,是一部劃時代的著作,是最早用公理法建立起演繹數(shù)學體系的典范。它從少數(shù)幾個原始假定出發(fā),通過嚴密的邏輯推理,得到一系列的命題,從而保證了結(jié)論的準確可靠?!稁缀卧尽返脑?3卷,共包含有23個定義、5個公設(shè)、5個公理、286個命題。是當時整個希臘數(shù)學成果、方法、思想和精神的結(jié)晶,其內(nèi)容和形式對幾何學本身和數(shù)學邏輯的發(fā)展有著巨大的影響。自它問世之日起,在長達二千多年的時間里一直盛行不衰。它歷經(jīng)多次翻譯和修訂,自1482年第一個印刷本出版后,至今已有一千多種不同的版本。除了《圣經(jīng)》之外,沒有任何其他著作,其研究、使用和傳播之廣泛,能夠與《幾何原本》相比。但《幾何原本》超越民族、種族、宗教信仰、文化意識方面的影響,卻是《圣經(jīng)》所無法比擬的。

《幾何原本》的希臘原始抄本已經(jīng)流失了,它的所有現(xiàn)代版本都是以希臘評注家泰奧恩(theon,約比歐幾里得晚七百年)編寫的修訂本為依據(jù)的。

《幾何原本》的泰奧恩修訂本分13卷,總共有465個命題,其內(nèi)容是闡述平面幾何、立體幾何及算術(shù)理論的系統(tǒng)化知識。第一卷首先給出了一些必要的基本定義、解釋、公設(shè)和公理,還包括一些關(guān)于全等形、平行線和直線形的熟知的定理。該卷的最后兩個命題是畢達哥拉斯定理及其逆定理。這里我們想到了關(guān)于英國哲學家t.霍布斯的一個小故事:有一天,霍布斯在偶然翻閱歐幾里得的《幾何原本》,看到畢達哥拉斯定理,感到十分驚訝,他說:“上帝?。∵@是不可能的。”他由后向前仔細閱讀第一章的每個命題的證明,直到公理和公設(shè),他終于完全信服了。第二卷篇幅不大,主要討論畢達哥拉斯學派的幾何代數(shù)學。

第三卷包括圓、弦、割線、切線以及圓心角和圓周角的一些熟知的定理。這些定理大多都能在現(xiàn)在的中學數(shù)學課本中找到。第四卷則討論了給定圓的某些內(nèi)接和外切正多邊形的尺規(guī)作圖問題。第五卷對歐多克斯的比例理論作了精彩的解釋,被認為是最重要的數(shù)學杰作之一。據(jù)說,捷克斯洛伐克的一位并不出名的數(shù)學家和牧師波爾查諾(bolzano,1781-1848),在布拉格度假時,恰好生病,為了分散注意力,他拿起《幾何原本》閱讀了第五卷的內(nèi)容。他說,這種高明的方法使他興奮無比,以致于從病痛中完全解脫出來。此后,每當他朋友生病時,他總是把這作為一劑靈丹妙藥問病人推薦。第七、八、九卷討論的是初等數(shù)論,給出了求兩個或多個整數(shù)的最大公因子的“歐幾里得算法”,討論了比例、幾何級數(shù),還給出了許多關(guān)于數(shù)論的重要定理。第十卷討論無理量,即不可公度的線段,是很難讀懂的一卷。最后三卷,即第十一、十二和十三卷,論述立體幾何。目前中學幾何課本中的內(nèi)容,絕大多數(shù)都可以在《幾何原本》中找到。

《幾何原本》按照公理化結(jié)構(gòu),運用了亞里士多德的邏輯方法,建立了第一個完整的關(guān)于幾何學的演繹知識體系。所謂公理化結(jié)構(gòu)就是:選取少量的原始概念和不需證明的命題,作為定義、公設(shè)和公理,使它們成為整個體系的出發(fā)點和邏輯依據(jù),然后運用邏輯推理證明其他命題?!稁缀卧尽烦蔀榱藘汕Ф嗄陙磉\用公理化方法的一個絕好典范。

誠然,正如一些現(xiàn)代數(shù)學家所指出的那樣,《幾何原本》存在著一些結(jié)構(gòu)上的缺陷,但這絲毫無損于這部著作的崇高價值。它的影響之深遠.使得“歐幾里得”與“幾何學”幾乎成了同義語。它集中體現(xiàn)了希臘數(shù)學所奠定的數(shù)學思想、數(shù)學精神,是人類文化遺產(chǎn)中的一塊瑰寶。

幾何原本心得體會篇十三

數(shù)學是一門學科,而幾何則是其中一部分。相對于代數(shù)和算數(shù),幾何可能更具于視覺性和直觀性,更加講究邏輯推理和理解。但與其他學科相同,幾何同樣需要我們付出努力去學習和理解。在學習了一段時間的幾何后,我發(fā)現(xiàn)自己有了一些新的心得和體會。

第二段:要求細致觀察。

在幾何中,每一個問題都需要細致的觀察。常常是一些細微的差別會導致答案完全不同。通過不斷練習和思考,我們逐漸培養(yǎng)出了觀察能力和細致的心態(tài)。

第三段:邏輯推理的能力。

幾何作為一門學科,注重的是邏輯和推理,這需要我們具有高超的思維能力。無論是證明還是題目的解題過程,都需要我們進行精細思考,掌握正確邏輯思維,這對我們的思考能力提高是很有益處的。

第四段:需要注意角度。

在幾何中,角度是重要的概念,但相對于長度和面積而言,對于角度的理解、確定和掌握常常需要更多時間和精力。因此,我們需要在學習過程中注意,全面掌握角度的各種概念和運算方法。

第五段:總結(jié)。

幾何是一門加強邏輯思考、數(shù)學能力和思維能力的學科。無論讀幾何還是其他學科,只要我們付出足夠的努力并且不斷總結(jié)經(jīng)驗,一定能夠收獲寶貴的經(jīng)驗和知識。同時,學習幾何也能增加我們的創(chuàng)造力和研究能力,為我們未來的發(fā)展奠定良好的基礎(chǔ)。

幾何原本心得體會篇十四

望月懷古,登樓問心。古往今來,多少文人墨客,登樓憑欄眺,眼所見,心就到;眼未見,心也到。

謝朓樓,宣城名樓,李白在秋高氣爽的日子里登上此樓,順口吟出:。

江城如畫里,山晚望晴空。

兩水夾明鏡,雙橋落彩虹。

人煙寒橘柚,秋色老梧桐。

誰念北樓上,臨風懷謝公。

此時,眼中是滿滿的秋色。首聯(lián)大處落筆,概述眼中所見景色之美。接著,頷聯(lián)和頸聯(lián)就“如畫里”“望晴空”進行了具體的描繪。如此美景,詩人懷念起了建成這個登覽圣地的謝朓公。如果,此刻,他也在此,一同作詩唱和,這秋色則會更加不同。

這首詩語言清淺,音韻流暢,朗讀時畫面呈現(xiàn)在眼前,美得簡單澄澈,無豪情無幽怨,閑適輕松。

同樣是登樓遠眺,人人可見之景,卻因心境的不同,表現(xiàn)形式不同,意味則大不相同。被稱為詞中千中數(shù)一的《菩薩蠻(平林漠漠煙如織)》和剛才李白的《秋登宣城謝脁北樓》便是截然不同。這首詞據(jù)傳也是李白所作,但是浦江清先生考證認為非李白所作。全詞如下:。

平林漠漠煙如織,寒山一帶傷心碧。暝色入高樓,有人樓上愁。玉梯空佇立,宿鳥歸飛急。何處是歸程,長亭連短亭。

在這首詞里,登的是什么樓已經(jīng)不重要了。詞的中心放到了詞人自己的身上。詞人登樓,看到整齊的一排排樹林,看到升起的霧靄,直至夜色浸入高樓。詞人的愁緒也隨著夜色布滿,然后嘆息自問:“何處是歸程?”

上闕提到“有人樓上愁”,下闕點明原因,更重要的看不到的歸程被詞人借用庾信《哀江南賦》:“十里五里,長亭短亭”表達出來,心里的感受更重于眼里的感受,那么漫長的歸家路在哪里?在這同時,打開了讀者的思緒,增添讀者的想象,使這首詞詞變得余味無窮。

前者《秋登宣城謝脁北樓》更多描述眼中之景,巧妙的比喻足見詩人刻畫的功力。落點在景,但無余味。后者重在講求煉字刻畫,沉浸于“我”之中。落點在人,尋求共鳴。此為我見二者異矣。

幾何原本心得體會篇十五

幾何學是數(shù)學中的一個重要分支,它研究空間中的形狀、大小和相互關(guān)系。在學習幾何學的過程中,我積累了很多心得體會。首先,幾何學要注重觀察和思考,其次,幾何學注重實際應(yīng)用,再次,幾何學的學習需要耐心和堅持,最后,幾何學能夠培養(yǎng)思維能力和創(chuàng)造力。通過這篇文章,我將詳細介紹我的幾何學心得體會。

首先,幾何學需要注重觀察和思考。在幾何學中,觀察是很重要的,我們需要仔細觀察圖形的形狀、邊長、角度等特征,并進行思考。只有通過觀察和思考,我們才能理解幾何學的基本概念和定理,并能靈活運用到解題中。在我的學習過程中,我發(fā)現(xiàn)通過多次觀察和思考同一道題目,會有不同的領(lǐng)悟和解題思路。因此,觀察和思考對于幾何學的學習是至關(guān)重要的。

其次,幾何學注重實際應(yīng)用。幾何學不僅僅是一門理論學科,更是能夠應(yīng)用到實際生活和問題中的學科。例如,在日常生活中,我們需要測量房間的面積、計算材料的用量等等,這些都需要運用到幾何學的知識。幾何學通過教授我們圖形的性質(zhì)和定理,提供了解決實際問題的方法和思路。在我的學習中,我發(fā)現(xiàn)了幾何學的實際應(yīng)用的重要性,也更加重視將幾何學的知識與實際問題相結(jié)合。

再次,幾何學的學習需要耐心和堅持。幾何學的學習過程中,有時候會遇到一些復(fù)雜的定理和推論,需要進行詳細的證明和推導,這需要耐心和堅持。有時候,我會面臨困難和挫折,但我相信只要我堅持下去,解決困難的辦法和答案總會出現(xiàn)。同時,幾何學的學習也需要多加練習和實踐,只有不斷地進行練習,才能熟練掌握幾何學的知識和方法。

最后,幾何學能夠培養(yǎng)思維能力和創(chuàng)造力。幾何學強調(diào)思辨和推理,要求學生運用邏輯和推理能力。在幾何學的學習中,我需要不斷地思考和推理,尋找解題的方法和思路。這樣的訓練不僅能夠培養(yǎng)我的思維能力,還能夠激發(fā)我的創(chuàng)造力。在解決幾何學問題的過程中,我常常需要發(fā)揮創(chuàng)造力,靈活運用定理和性質(zhì),找到最佳解法。幾何學的學習過程中,我發(fā)現(xiàn)我的思維能力和創(chuàng)造力得到了很大的提升。

綜上所述,通過學習幾何學,我得到了很多寶貴的心得體會。幾何學需要注重觀察和思考,注重實際應(yīng)用,需要耐心和堅持,能夠培養(yǎng)思維能力和創(chuàng)造力。我相信,幾何學的學習不僅能夠幫助我提高數(shù)學成績,更能夠為我今后的學習和生活打下堅實的基礎(chǔ)。我將繼續(xù)努力學習幾何學,不斷完善自己的幾何學知識,更好地運用到實際問題中。

幾何原本心得體會篇十六

《幾何原本》作為數(shù)學的圣經(jīng),第一部系統(tǒng)的數(shù)學著作,牛頓,愛因斯坦,就是以這種形式寫的《自然哲學的數(shù)學原理》和《相對論》,斯賓諾莎寫出哲學著作《倫理學》,倫理學可以作為哲學與社會科學以及心理學的接口,都是推理性很強。

幾何原本總共13卷,研究前六卷就可以了,因為后邊的都是應(yīng)用前邊的理論,應(yīng)用到具體的領(lǐng)域,無理數(shù),立體幾何等領(lǐng)域,幾何原本我認為最精髓的就是合理的假設(shè),對點線面的抽象,這樣才得以使得后面的定理成立,其中第五個公設(shè)后來還被推翻了,以點線面作為基礎(chǔ),以歐幾里得工具作為工具,進行了各種幾何現(xiàn)象的嚴密推理,我認為這些定理成立的條件必須是在,對幾條哲學原則默許了之后,才能成立。主要是最簡單的幾何形狀,從怎么畫出來,畫出來也是有根據(jù)的,再就是各種形狀的性質(zhì),以及各種形狀之間關(guān)系的定理,都是一步一步推理出來的。

在幾何原本后續(xù)的有阿波羅尼奧斯的《圓錐截線論》,牛頓的《自然哲學的數(shù)學原理》,算是比較系統(tǒng)的數(shù)學著作,也都是用歐幾里得工具進行證明的,后來的微積分工具的出現(xiàn),我認為是圓周率的求解過程,無限接近的思想,才使得微積分工具產(chǎn)生,現(xiàn)代數(shù)學看似陣容豪華,可是并沒有新的工具的出現(xiàn),只是對微積分工具在各個形狀上進行應(yīng)用,數(shù)學主要是在空間上做文章,現(xiàn)在數(shù)學能干的活看似挺多,但是也要得益于物理學的發(fā)展,數(shù)學一方面往一般性方面發(fā)展,都忘了,細想數(shù)學思想是比較沒什么,只是腦力勞作比較大,特別是只是純數(shù)學研究,不做思想的人,很累也做不出有意義的工作。

看完二十世紀數(shù)學史,發(fā)現(xiàn)里面的人的著作,我一本也不想看,太虛。

幾何原本心得體會篇十七

徐光啟(公元1562—1633年)字子先,號玄扈,吳淞(今屬上海)人。他從萬歷末年起,經(jīng)過天啟、崇禎各朝,曾作到文淵閣大學士的官職(相當于宰相)。他精通天文歷法,是明末改歷的主要主持人。他對農(nóng)學也頗有研究,曾根據(jù)前人所著各種農(nóng)書,附以自己的見解,編寫了著名的《農(nóng)政全書》,全書有六十余卷,共六十多萬字。明朝末年,滿族的統(tǒng)治階級從東北關(guān)外屢次發(fā)動戰(zhàn)爭,徐光啟曾屢次上書論軍事,并在通州練新兵,主張采用西方火炮。他是一位熱愛祖國的科學家。

他沒有入京做官之前,曾在上海、廣東、廣西等地教書。在此期間,他曾博覽群書,在廣東還接觸到一些傳教士,對他們傳入的西方文化開始有所接觸。公元1600年,他在南京和利瑪竇相識,以后兩人又長期同住在北京,經(jīng)常來往。他和利瑪竇兩人共同譯《幾何原本》一書,1607年譯完前六卷。當時徐光啟很想全部譯完,利瑪竇卻不愿這樣做。直到晚清時代,《幾何原本》后九卷的翻譯工作才由李善蘭(公元1811—1882年)完成。

《幾何原本》是我國最早第一部自拉丁文譯來的數(shù)學著作。在翻譯時絕無對照的`詞表可循,許多譯名都從無到有,當時創(chuàng)造的。毫無疑問,這是需要精細研究煞費苦心的。這個譯本中的許多譯名都十分恰當,不但在我國一直沿用至今,并且還影響了日本、朝鮮各國。如點、線、直線、曲線、平行線、角、直角、銳角、鈍角、三角形、四邊形……這許多名詞都是由這個譯本首先定下來的。其中只有極少的幾個經(jīng)后人改定,如“等邊三角形”,徐光啟當時記作“平邊三角形”;“比”,當時譯為“比例”;而“比例”則譯為“有理的比例”等等。

《幾何原本》有嚴整的邏輯體系,其敘述方式和中國傳統(tǒng)的《九章算術(shù)》完全不同。徐光啟對《幾何原本》區(qū)別于中國傳統(tǒng)數(shù)學的這種特點,有著比較清楚的認識。他還充分認識到幾何學的重要意義,他說“竊百年之后,必人人習之”。

清康熙帝時,編輯數(shù)學百科全書《數(shù)理精蘊》(公元1723年),其中收有《幾何原本》一書,但這是根據(jù)公元十八世紀法國幾何學教科書翻譯的,和歐幾里得的《幾何原本》差別很大。

到清朝末年廢科舉、興學堂之后,幾何學方成為學校中必修科目之一。到這時才出現(xiàn)了徐光啟所預(yù)料的“必人人而習之”的情況。

幾何原本心得體會篇十八

在文藝復(fù)興以后的歐洲,代數(shù)學由于受到阿拉伯的影響而迅速發(fā)展。另一方面,17世紀以后,數(shù)學分析的發(fā)展非常顯著。因此,幾何學也擺脫了和代數(shù)學相隔離的狀態(tài)。正如在其名著《幾何學》中所說的一樣,數(shù)與圖形之間存在著密切的關(guān)系,在空間設(shè)立坐標,而且以數(shù)與數(shù)之間關(guān)系來表示圖形;反過來,可把圖形表示成為數(shù)與數(shù)之間的關(guān)系。這樣,按照坐標把圖形改成數(shù)與數(shù)之間的關(guān)系問題而對之進行處理,這個方法稱為解析幾何。恩格斯在其《自然辯證法》中高度評價了笛卡兒的工作,他指出:“數(shù)學中的轉(zhuǎn)折點是笛卡兒的變數(shù),有了變數(shù),運動進入了數(shù)學,有了變數(shù),辯證法進入了數(shù)學,有了變數(shù),微分和積分也就成為必要的。了……”

事實上,笛卡兒的思想為17世紀數(shù)學分析的發(fā)展提供了有力的基礎(chǔ)。到了18世紀,解析幾何由于l。歐拉等人的開拓得到迅速的發(fā)展,連希臘時代的阿波羅尼奧斯(約公元前262~約前190)等人探討過的圓錐曲線論,也重新被看成為二次曲線論而加以代數(shù)地整理。另外,18世紀中發(fā)展起來的數(shù)學分析反過來又被應(yīng)用到幾何學中去,在該世紀末期,g。蒙日首創(chuàng)了數(shù)學分析對于幾何的應(yīng)用,而成為微分幾何的先驅(qū)者。如上所述,用解析幾何的`方法可以討論許多幾何問題。但是不能說,這對于所有問題都是最適用的。同解析幾何方法相對立的,有綜合幾何或純粹幾何方法,它是不用坐標而直接考察圖形的方法,數(shù)學家歐幾里得幾何本來就是如此。射影幾何是在這思想方法指導下的產(chǎn)物。

早在文藝復(fù)興時期的意大利盛行而且發(fā)展了造型美術(shù),與它隨伴而來的有所謂透視圖法的研究,當時有過許多人包括達·芬奇在內(nèi)把這個透視圖法作為實用幾何進行了研究。從17世紀起,g。德扎格、b。帕斯卡把這個透視圖法加以推廣和發(fā)展,從而奠定了射影幾何。分別以他們命名的兩個定理,成了射影幾何的基礎(chǔ)。其一是德扎格定理:如果平面上兩個三角形的對應(yīng)頂點的連線相會于一點,那么它們的對應(yīng)邊的交點在一直線上;而且反過來也成立。其二是帕斯卡定理:如果一個六角形的頂點在同一圓錐曲線上,那么它的三對對邊的交點在同一直線上;而且反過來也成立。18世紀以后,j。—v。彭賽列、z。n。m。嘉諾、j。施泰納等完成了這門幾何學。

幾何原本心得體會篇十九

讀幾何是每個學生從小到大都要學習的一門學科。對于許多人來說,學習幾何是個痛苦的過程。然而,在我的學習中,我發(fā)現(xiàn)了幾何背后的美妙之處。在這篇文章中,我將分享我在讀幾何時的心得和體驗。

第二段:幾何的具體內(nèi)容。

幾何一般包括平面幾何和立體幾何兩個方面。平面幾何主要研究二維圖形(如三角形、矩形、正方形、圓形等),而立體幾何則主要研究三維物體(如立方體、球體、圓柱體等)。學習幾何需要一定的數(shù)學知識,包括代數(shù)、三角學、向量等。

第三段:我的學習經(jīng)歷。

在我的學習中,我發(fā)現(xiàn)幾何是一門需要理解和掌握的學科。我不僅需要記憶幾何定理和公式,而且需要了解它們的意義和應(yīng)用。通過實踐和練習,我逐漸掌握了如何證明幾何定理和求解幾何問題。

第四段:幾何的美妙之處。

幾何是一門非常美妙的學科。通過幾何,我們可以了解周圍世界的形狀和結(jié)構(gòu),并學習如何應(yīng)用數(shù)學知識來解決真實世界的問題。幾何也是一門非常直觀和有趣的學科,它可以啟發(fā)我們的創(chuàng)造力和想象力。

第五段:結(jié)論。

總之,學習幾何是一件非常有意義和有趣的事情。通過幾何,我們可以學習到很多有用的數(shù)學知識,同時也可以培養(yǎng)我們的思維能力和想象力。希望我的經(jīng)歷可以給那些正在學習幾何的人一些啟示和幫助。

幾何原本心得體會篇二十

《幾何原本》這本數(shù)學著作,以幾個顯而易見、眾所周知的定義、公設(shè)和公理,互相搭橋,展開了一系列的命題:由簡單到復(fù)雜,相輔而成。其邏輯的嚴密,不能不令我們佩服。

就我目前拜訪的幾個命題來看,數(shù)學家歐幾里得證明關(guān)于線段“一樣長”的題,最常用、也是最基本的,便是畫圓:因為,一個圓的所有半徑都相等。一般的數(shù)學思想,都是很復(fù)雜的,這邊剛講一點,就又跑到那邊去了;而《幾何原本》非常容易就被我接受,其原因大概就在于數(shù)學家歐幾里得反復(fù)運用一種思想、使讀者不斷接受的緣故吧。

不過,我要著重講的,是他的哲學。

書中有這樣幾個命題:如,“等腰三角形的兩底角相等,將腰延長,與底邊形成的兩個補角亦相等”,再如,“如果在一個三角形里,有兩個角相等,那么也有兩條邊相等”,這些命題,我在讀時,內(nèi)心一直承受著幾何外的.震撼。

我們七年級已經(jīng)學了幾何。想想那時做這類證明題,需要證明一個三角形中的兩個角相等的時候,我們總是會這么寫:“因為它是一個等腰三角形,所以兩底角相等”——我們總是習慣性的認為,等腰三角形的兩個底角就是相等的;而看《幾何原本》,他思考的是“等腰三角形的兩個底角為什么相等”。想想看吧,一個思想習以為常,一個思想在思考為什么,這難道還不夠說明現(xiàn)代人的問題嗎?大多數(shù)現(xiàn)代人,好奇心似乎已經(jīng)泯滅了。這里所說的好奇心不單單是指那種對新奇的事物感興趣,同樣指對平常的事物感興趣。比如說,許多人會問“宇航員在空中為什么會飄起來”,但也許不會問“我們?yōu)槭裁茨軌蛘驹诘厣隙粫h起來”;許多人會問“吃什么東西能減肥”,但也許不會問“羊為什么吃草而不吃肉”。

我們對身邊的事物太習以為常了,以致不會對許多“平?!钡氖挛锔信d趣,進而去琢磨透它。牛頓為什么會發(fā)現(xiàn)萬有引力?很大一部分原因,就在于他有好奇心。

如果僅把《幾何原本》當做數(shù)學書看,那可就大錯特錯了:因為古希臘的數(shù)學滲透著哲學,學數(shù)學,就是學哲學。

哲學第一課:人要建立好奇心,不僅探索新奇的事物,更要探索身邊的平常事,這就是我讀《幾何原本》意外的收獲吧!

幾何原本心得體會篇二十一

古希臘大數(shù)學家歐幾里德是和他的巨著——《幾何原本》一起名垂千古的。這本書是世界上最著名、最完整而且流傳最廣的數(shù)學著作,也是歐幾里德最有價值的一部著作。在《原本》里,歐幾里德系統(tǒng)地總結(jié)了古代勞動人民和學者們在實踐和思考中獲得的幾何知識,歐幾里德把人們公認的一些事實列成定義和公理,以形式邏輯的方法,用這些定義和公理來研究各種幾何圖形的性質(zhì),從而建立了一套從公理、定義出發(fā),論證命題得到定理得幾何學論證方法,形成了一個嚴密的邏輯體系——幾何學。而這本書,也就成了歐式幾何的奠基之作。

兩千多年來,《幾何原本》一直是學習幾何的主要教材。哥白尼、伽利略、笛卡爾、牛頓等許多偉大的學者都曾學習過《幾何原本》,從中吸取了豐富的營養(yǎng),從而作出了許多偉大的成就。

從歐幾里得發(fā)表《幾何原本》到現(xiàn)在,已經(jīng)過去了兩千多年,盡管科學技術(shù)日新月異,由于歐氏幾何具有鮮明的直觀性和有著嚴密的邏輯演繹方法相結(jié)合的特點,在長期的實踐中表明,它巳成為培養(yǎng)、提高青少年邏輯思維能力的好教材。歷史上不知有多少科學家從學習幾何中得到益處,從而作出了偉大的貢獻。

少年時代的牛頓在劍橋大學附近的夜店里買了一本《幾何原本》,開始他認為這本書的內(nèi)容沒有超出常識范圍,因而并沒有認真地去讀它,而對笛卡兒的“坐標幾何”很感興趣而專心攻讀。后來,牛頓于1664年4月在參加特列臺獎學金考試的時候遭到落選,當時的考官巴羅博士對他說:“因為你的幾何基礎(chǔ)知識太貧乏,無論怎樣用功也是不行的?!?/p>

這席談話對牛頓的`震動很大。于是,牛頓又重新把《幾何原本》從頭到尾地反復(fù)進行了深入鉆研,為以后的科學工作打下了堅實的數(shù)學基礎(chǔ)。

但是,在人類認識的長河中,無論怎樣高明的前輩和名家,都不可能把問題全部解決。由于歷史條件的限制,歐幾里得在《幾何原本》中提出幾何學的“根據(jù)”問題并沒有得到徹底的解決,他的理論體系并不是完美無缺的。比如,對直線的定義實際上是用一個未知的定義來解釋另一個未知的定義,這樣的定義不可能在邏輯推理中起什么作用。又如,歐幾里得在邏輯推理中使用了“連續(xù)”的概念,但是在《幾何原本》中從未提到過這個概念。

【本文地址:http://www.mlvmservice.com/zuowen/13487558.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔