優(yōu)秀高等數(shù)學(xué)的體會(案例17篇)

格式:DOC 上傳日期:2023-11-02 05:06:06
優(yōu)秀高等數(shù)學(xué)的體會(案例17篇)
時間:2023-11-02 05:06:06     小編:夢幻泡

眼下,我們正處于一個信息爆炸的時代,總結(jié)成為了必不可少的一種能力。鍛煉語感,是寫好作文的前提條件。總結(jié)范文中流露出作者的真情實感和對過去的回味與祝福。

高等數(shù)學(xué)的體會篇一

所謂把基本概念搞懂,我想是不是應(yīng)該從以下幾個方面來理解和把握。第一個是這個概念產(chǎn)生的實際背景是什么。然后,定義這個概念所運(yùn)用到的數(shù)學(xué)思想和方法是什么。接下來這個概念的定義式,它的數(shù)學(xué)含義,幾何意義和物理意義以及在這個概念上的拓展和延伸等等。對于每個概念我們都要盡可能的從這幾個方面來理解把握。把概念學(xué)懂了,這是學(xué)懂?dāng)?shù)學(xué)的至關(guān)重要的一步。

二、基本理論搞透。

這包含三個方面的內(nèi)容。第一所謂理論性的內(nèi)容,定理、性質(zhì)、推論,你首先要清楚它的條件是什么,結(jié)論是什么,這是最起碼的要求。然后這些定理、性質(zhì)、條件它的性質(zhì)和條件要搞清楚,比如說是充分必要的還是充分必要的。我結(jié)合07年的考題給大家說。07年數(shù)學(xué)二第7個選擇題,同學(xué)可以回去對照題目看。它是考察二元函數(shù)在某一點處可微的一個充分條件。你在學(xué)習(xí)的時候,你剛開始學(xué)高等數(shù)學(xué)的時候,老師都講,二元函數(shù)在某一點處可微的充分條件是一階偏導(dǎo)連續(xù)。

再比如數(shù)學(xué)一三四考的第十道選擇題,是寫邊緣概率密度是哪個。告訴你一個二維正態(tài)分布。我們在輔導(dǎo)的時候告訴同學(xué),我還總結(jié)了一條文登語錄,你見到了這個,你第一要想到二維正態(tài)分布的邊緣分布是正態(tài)分布,第二個是邊緣現(xiàn)象的任意組合仍然是正態(tài)分布,第三個是兩個隨機(jī)變量的不相關(guān)和獨立是充分必要的,也就是等價的。在這樣的情況下,你知道了這些就可以做出正確的選擇,所以說基本的理論要搞透,首先搞清楚它的條件和結(jié)論,這個條件是充分必要的還是充分的,必須要搞清楚。

基本理論的第二個方面就是要盡可能的從幾何和數(shù)值的角度來理解這些抽象的理論。反映到今年的考題上,比如說一二三四都用到的一個選擇題,基本象限函數(shù)這道題,f3、f負(fù)2、f2哪個選項正確的問題,如果你的基本的理論搞清楚了,只需要算一個f2就可以了。

基本理論搞透的第三個方面是要注意搞清楚相關(guān)理論間的有機(jī)聯(lián)系。這一點,在線性代數(shù)這門課中更加的突出。在今年的考題中問你兩個矩陣的關(guān)系是合同還是相似,我們對這些理論和概念,你如果比較熟練和清楚的話,你就知道找什么東西。我們在講課的時候說,相似有四等,你一看這兩個不相等,肯定不相似,必要條件有一個不滿足,肯定是不相似的。合同,你需要找兩個矩陣的特征值的,正的特征值和負(fù)的特征值的個數(shù),這是要搞清楚基本理論第三個方面,相關(guān)理論的有機(jī)聯(lián)系。

高等數(shù)學(xué)的體會篇二

作為一門數(shù)學(xué)專業(yè)的必修課程,高等數(shù)學(xué)對學(xué)生來說并不易于掌握,需要在學(xué)習(xí)中不斷地消化吸收。而吳昊,則是一位對高等數(shù)學(xué)有深入研究,并且在教學(xué)中取得了較好成績的老師。因此,我們會特別關(guān)注吳昊的高等數(shù)學(xué)心得體會,從中汲取經(jīng)驗,提高學(xué)習(xí)效率。

第二段:心得體會一:高等數(shù)學(xué)需要系統(tǒng)性學(xué)習(xí)

吳昊表示,高等數(shù)學(xué)知識體系龐雜,而且知識之間的聯(lián)系非常緊密。因此,學(xué)生需要先從系統(tǒng)性入手,掌握高等數(shù)學(xué)的整體框架和學(xué)習(xí)路線。在學(xué)習(xí)中要注意先后順序,不能掉以輕心,否則就會遇到迷失方向的情況。

第三段:心得體會二:掌握基礎(chǔ)知識是關(guān)鍵

高等數(shù)學(xué)中的每一個概念,都是建立在基礎(chǔ)之上的。如果基礎(chǔ)學(xué)習(xí)不扎實,那么后期的學(xué)習(xí)也無從談起。因此,吳昊建議學(xué)生在學(xué)習(xí)高等數(shù)學(xué)之前,先重視基礎(chǔ)概念的學(xué)習(xí),鞏固數(shù)學(xué)的基礎(chǔ)知識,才能更好地理解和掌握高等數(shù)學(xué)。

第四段:心得體會三:靈活運(yùn)用解題思路

高等數(shù)學(xué)中的問題并不單一,其解題方法也需要靈活變通。吳昊提醒學(xué)生,在學(xué)習(xí)高等數(shù)學(xué)時,不能僅僅停留在概念和公式的記憶,而應(yīng)該注重解決具體問題的能力。在解題過程中,應(yīng)該運(yùn)用多種思路,靈活變換解題方法,從而提高解題的效率和準(zhǔn)確性。

第五段:結(jié)尾及總結(jié)

高等數(shù)學(xué)在數(shù)學(xué)專業(yè)中占據(jù)著重要的地位,不僅有助于理論的研究,還能為工程應(yīng)用提供數(shù)學(xué)依據(jù)。吳昊的高等數(shù)學(xué)心得體會不僅是學(xué)生能夠?qū)W好高等數(shù)學(xué)的經(jīng)驗之談,也能幫助教師對高等數(shù)學(xué)教學(xué)的優(yōu)化。通過吳昊的經(jīng)驗與體會,我們可以更加準(zhǔn)確地把握高等數(shù)學(xué)的學(xué)習(xí)方向,提高學(xué)習(xí)效率,做好學(xué)科的拓展與深化。

高等數(shù)學(xué)的體會篇三

1.極限思想:是一種漸進(jìn)變化的數(shù)學(xué)思想。利用有限描述無限,由近似到精確的一種過程。極限思想是高等數(shù)學(xué)必不可少的一種重要方法,是高等數(shù)學(xué)與初等數(shù)學(xué)的本質(zhì)區(qū)別。利用極限思想方法解決了許多初等數(shù)學(xué)無法解決的問題,例如,求瞬時速度、曲線弧長、曲邊形面積、曲面體體積等問題。

2.函數(shù)思想:是通過構(gòu)造函數(shù),利用函數(shù)的概念、圖象和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題的思想方法。中學(xué)數(shù)學(xué)和大學(xué)數(shù)學(xué)中都有用到函數(shù)思想,而大學(xué)中是將函數(shù)進(jìn)一步深化,更復(fù)雜一些,例如,函數(shù)的極限、連續(xù)性、極值等。

3.化歸思想:化歸思想的中心是轉(zhuǎn)化。原則是陌生問題熟悉化,復(fù)雜問題簡單化,抽象問題具體化,命題形式的轉(zhuǎn)化,引入輔助元素等。

4.數(shù)形結(jié)合思想:數(shù)學(xué)是以數(shù)和形為主干,劃分為代數(shù)和幾何兩個方向,而數(shù)和形又常常結(jié)合在一起,內(nèi)容上相互聯(lián)系,方法上相互滲透,并在一定條件下相互轉(zhuǎn)化。例如,平面向量的數(shù)量關(guān)系、解析幾何中曲線與方程的關(guān)系等。

5.邏輯思想:邏輯思想依賴于嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)推理。推理是多樣的,其中歸納和類比是兩種應(yīng)用極廣的推理。

a.歸納推理的過程:“發(fā)現(xiàn)問題”-“觀察問題”-“歸納問題”-“推廣問題”-“猜想”-“證明猜想”,例如,在某些證明中所使用的數(shù)學(xué)歸納法等。

b.類比:是根據(jù)兩個或兩類對象有部分屬性相同,推出它們的其它屬性也相同。類比方法有不同的類型:概念間的類比、形式間的類比、有限與無限間的類比等。

高等數(shù)學(xué)的體會篇四

高等數(shù)學(xué)是大學(xué)數(shù)學(xué)教學(xué)中的一門重要課程,它深入探討了微積分、常微分方程、多元函數(shù)等數(shù)學(xué)領(lǐng)域的理論與應(yīng)用。作為一名學(xué)習(xí)高等數(shù)學(xué)的學(xué)生,通過學(xué)習(xí)本學(xué)期下冊的高等數(shù)學(xué)課程,我有了一些心得體會。在這篇文章中,我將分享我對于高等數(shù)學(xué)下冊的認(rèn)識和體悟,以及它對于我的學(xué)習(xí)和思維方式的影響。

第一段:高等數(shù)學(xué)下冊的知識體系

高等數(shù)學(xué)下冊是高等數(shù)學(xué)課程的延續(xù),它包含了微分方程、重積分、無窮級數(shù)和場論等內(nèi)容。與上冊相比,下冊的內(nèi)容更加深入和細(xì)致。通過學(xué)習(xí)下冊的課程,我對高等數(shù)學(xué)的整體框架有了更加清晰的認(rèn)識,同時也加深了對微積分的理解。微分方程是高等數(shù)學(xué)下冊的重點之一,它在科學(xué)研究和工程應(yīng)用中具有重要意義。通過學(xué)習(xí)微分方程,我對于它在實際問題中的應(yīng)用有了更深刻的認(rèn)識,從而增強(qiáng)了我的問題解決能力。

第二段:高等數(shù)學(xué)下冊的邏輯思維

高等數(shù)學(xué)下冊的學(xué)習(xí)過程強(qiáng)調(diào)了邏輯思維的培養(yǎng)。在解題過程中,我學(xué)會了運(yùn)用嚴(yán)密的邏輯推理和抽象思維來分析問題,從而解決復(fù)雜的數(shù)學(xué)問題。在學(xué)習(xí)重積分和無窮級數(shù)時,尤其需要運(yùn)用邏輯思維進(jìn)行推導(dǎo)和證明。通過這些習(xí)題的解答,我逐漸培養(yǎng)出了邏輯思維的能力,提高了自己的數(shù)學(xué)素養(yǎng)。我相信,邏輯思維的培養(yǎng)不僅對于學(xué)習(xí)數(shù)學(xué)有著重要意義,也對于我們?nèi)粘I詈吐殬I(yè)發(fā)展具有積極影響。

第三段:高等數(shù)學(xué)下冊的實踐能力

學(xué)習(xí)高等數(shù)學(xué)下冊的過程中,我發(fā)現(xiàn)課本中的理論和知識需要通過實踐來加深理解。例如,在學(xué)習(xí)微分方程時,我們需要通過實際問題的建模和求解,來驗證所學(xué)知識的正確性和適用性。通過課堂上的實例和作業(yè)的練習(xí),我提高了自己的實踐能力。而這種實踐能力也是在工程和科技領(lǐng)域中所必須具備的。通過實踐能力的培養(yǎng),我相信自己在未來的學(xué)習(xí)和工作中能夠更好地應(yīng)對各種挑戰(zhàn)。

第四段:高等數(shù)學(xué)下冊的學(xué)習(xí)方法

面對高等數(shù)學(xué)下冊的內(nèi)容,我深刻體會到了合理的學(xué)習(xí)方法的重要性。在解決數(shù)學(xué)問題時,我逐漸掌握了一些學(xué)習(xí)技巧。例如,在學(xué)習(xí)微分方程和重積分時,我會先了解和理解基本概念,然后通過刻意練習(xí)來掌握解題方法,并在課后復(fù)習(xí)中加深對知識的理解。這些學(xué)習(xí)方法的應(yīng)用使我在高等數(shù)學(xué)下冊的學(xué)習(xí)中事半功倍。我認(rèn)為,學(xué)習(xí)方法的培養(yǎng)是學(xué)習(xí)高等數(shù)學(xué)下冊的必要過程,也是提高學(xué)習(xí)效率的關(guān)鍵。

第五段:高等數(shù)學(xué)下冊的啟示和反思

通過學(xué)習(xí)高等數(shù)學(xué)下冊,我認(rèn)識到高等數(shù)學(xué)不僅僅是一門課程,更是培養(yǎng)學(xué)生綜合素質(zhì)的重要途徑。通過學(xué)習(xí)高等數(shù)學(xué),我不僅僅掌握了數(shù)學(xué)知識,更學(xué)會了思考問題、理解問題和解決問題的方法。高等數(shù)學(xué)下冊的學(xué)習(xí),培養(yǎng)了我對于數(shù)學(xué)的興趣和學(xué)術(shù)追求。同時,我也反思了自己在學(xué)習(xí)中存在的不足,例如在理解概念和應(yīng)用推導(dǎo)方面有待提高。在今后的學(xué)業(yè)中,我會更加注重培養(yǎng)自己的邏輯思維和實踐能力,提高學(xué)習(xí)方法的靈活應(yīng)用,以達(dá)到更好的學(xué)習(xí)效果。

總結(jié)起來,通過對高等數(shù)學(xué)下冊的學(xué)習(xí),我對于高等數(shù)學(xué)的知識體系、邏輯思維、實踐能力和學(xué)習(xí)方法有了更深入的理解和認(rèn)識。同時,我也發(fā)現(xiàn)高等數(shù)學(xué)不僅僅是一門學(xué)科,更是培養(yǎng)學(xué)生思維能力和解決問題能力的過程。通過學(xué)習(xí)高等數(shù)學(xué)下冊,我不僅提高了自己的數(shù)學(xué)水平,也增強(qiáng)了自信和對學(xué)習(xí)的熱愛。我相信,在今后的學(xué)習(xí)和人生中,我會繼續(xù)努力,追求更高的數(shù)學(xué)境界和學(xué)術(shù)成就。

高等數(shù)學(xué)的體會篇五

高等數(shù)學(xué)是大學(xué)必修課程之一,是數(shù)學(xué)學(xué)科的重要組成部分。在我小學(xué)和初中的數(shù)學(xué)課上,我一直都是數(shù)學(xué)的優(yōu)等生,但是對于高等數(shù)學(xué),我卻感到了困惑和挑戰(zhàn)。在大學(xué)一年級的時候,我開始接觸高等數(shù)學(xué)課程,剛開始覺得不太適應(yīng),因此在此期間感覺相當(dāng)壓抑。隨著時間的推移,我開始更深入地研究這門學(xué)科,并嘗試各種不同的學(xué)習(xí)方法,以便提高自己的成績。最終,在經(jīng)過無數(shù)次的努力后,我克服了困難,考出了令人滿意的高等數(shù)學(xué)成績。

第二段:回顧高等數(shù)學(xué)的考試經(jīng)驗

在學(xué)習(xí)高等數(shù)學(xué)的過程中,我不僅學(xué)到了許多知識和技能,也經(jīng)歷了很多考試。這些考試無疑是對我學(xué)習(xí)成果的檢驗,也讓我有機(jī)會去發(fā)現(xiàn)自己的弱點,找到不足之處,并嘗試改進(jìn)和克服它們。另外,這些考試還讓我體會到了競爭的壓力和緊張氣氛,這些因素都激發(fā)了我更深入地學(xué)習(xí)高等數(shù)學(xué)的熱情。

第三段:總結(jié)高等數(shù)學(xué)的重要性

高等數(shù)學(xué)的學(xué)習(xí)不僅僅關(guān)乎學(xué)習(xí)數(shù)學(xué)知識,更重要的是培養(yǎng)了我學(xué)習(xí)的能力。在學(xué)習(xí)過程中,我不斷努力,練習(xí)思考和分析的能力,提高了自己的邏輯推理和解決問題的能力。這些都是遠(yuǎn)遠(yuǎn)超出課程范圍的技能,對我的職業(yè)生涯和個人發(fā)展有著深遠(yuǎn)的影響。此外,學(xué)習(xí)高等數(shù)學(xué)還讓我感受到了知識的博大精深和對未知事物探索的熱情,這些元素也能夠?qū)ξ椅磥淼陌l(fā)展起到重要的支持作用。

第四段:點評吳昊的體會和經(jīng)驗

吳昊是我身邊一個優(yōu)秀的同學(xué),在高等數(shù)學(xué)的學(xué)習(xí)中他取得了出色的成績。他的學(xué)習(xí)經(jīng)驗和體會也對我啟發(fā)和影響很大。從吳昊的學(xué)習(xí)經(jīng)驗中,我們可以看到他在學(xué)習(xí)過程中非常注重理論知識的掌握和實踐能力的培養(yǎng)。而且,吳昊非常善于把理論知識和實踐技能有機(jī)結(jié)合起來,不斷地總結(jié)和反思,從而實現(xiàn)了對高等數(shù)學(xué)的深入理解。這些學(xué)習(xí)方法和態(tài)度對我指引良多,讓我對高等數(shù)學(xué)的學(xué)習(xí)也有了更多的信心和動力。

第五段:思考未來發(fā)展方向

在未來的學(xué)習(xí)過程中,我還需要不斷地探索和尋求新的機(jī)遇和挑戰(zhàn),以提高自己的學(xué)習(xí)能力和職業(yè)素養(yǎng)。高等數(shù)學(xué)作為一門必修課程,是培養(yǎng)我學(xué)習(xí)能力和解決問題能力的重要途徑。在今后的學(xué)習(xí)和生活中,我將會更加努力和專注于高等數(shù)學(xué)的學(xué)習(xí),以完成自己的職業(yè)規(guī)劃和個人發(fā)展目標(biāo)。

高等數(shù)學(xué)的體會篇六

原本以為憑借小學(xué)到高中這十余年所總結(jié)出的數(shù)學(xué)學(xué)習(xí)方法,就能輕松應(yīng)對大學(xué)高等數(shù)學(xué)的學(xué)習(xí)。

然而,經(jīng)過一個多學(xué)期的學(xué)習(xí),我真正體會到高等數(shù)學(xué)的學(xué)習(xí)特點與以往所學(xué)習(xí)的數(shù)學(xué)大相徑庭。因此,我必須在學(xué)習(xí)過程中找到高等數(shù)學(xué)的獨特之處,總結(jié)出一套新的有效的方法,才能在高等數(shù)學(xué)的學(xué)習(xí)中做到游刃有余。

就我個人而言,我認(rèn)為高等數(shù)學(xué)有以下幾個顯著特點:

(1)識記的知識相對減少,理解的知識點相對增加;

(2)不僅要求會運(yùn)用所學(xué)的知識解題,還要明白其來龍去脈;

(3)系實際多,對專業(yè)學(xué)習(xí)幫助大;

(4)教師授課速度快,課下復(fù)習(xí)與預(yù)習(xí)必不可少。

以前上數(shù)學(xué)課,老師在黑板上寫滿各種公式和結(jié)論,我便一邊在書上勾畫,一邊在筆記本上記錄。

然后像背單詞一樣,把一堆公式與結(jié)論死記硬背下來。

哪種類型的題目用哪個公式、哪條結(jié)論,老師都已一一總結(jié)出來,我只需要將其對號入座,便可將問題解答出來。

而現(xiàn)在,我不再有那么多需要識記的結(jié)論。

唯一需要記住的只是數(shù)目不多的一些定義、定理和推論。

老師也不會給出固定的解題套路。因為高等數(shù)學(xué)與中學(xué)數(shù)學(xué)不同,它更要求理解。只要充分理解了各個知識點,遇到題目可以自己分析出正確的解題思路。

所以,學(xué)習(xí)高等數(shù)學(xué),記憶的負(fù)擔(dān)輕了,但對思維的要求卻提高了。

每一次高數(shù)課,都是一次大腦的思維訓(xùn)練,都是一次提升理解力的好機(jī)會。

高等數(shù)學(xué)的學(xué)習(xí)目的不是為了應(yīng)付考試,因此,我們的學(xué)習(xí)不能停留在以解出答案為目標(biāo)。

我們必須知道解題過程中每一步的依據(jù)。正如我前面所提到的,中學(xué)時期學(xué)過的許多定理并不特別要求我們理解其結(jié)論的推導(dǎo)過程。

而高等數(shù)學(xué)課本中的每一個定理都有詳細(xì)的證明。

最初,我以為只要把定理內(nèi)容記住,能做題就行了。

然而,漸漸地,我發(fā)現(xiàn)如果沒有真正明白每個定理的來龍去脈,就不能真正掌握它,更談不上什么運(yùn)用自如了。

于是,我開始認(rèn)真地學(xué)習(xí)每一個定理的推導(dǎo)。有時候,某些地方很難理解,我便反復(fù)思考,或請教老師、同學(xué)。盡管這個過程并不輕松,但我卻認(rèn)為非常值得。

因為只有通過自己去探索的知識,才是掌握得最好的。

總而言之,高等數(shù)學(xué)的以上幾個特點,使我的數(shù)學(xué)學(xué)習(xí)歷程充滿了挑戰(zhàn),同時也給了我難得的鍛煉機(jī)會,讓我收獲多多。

進(jìn)入大學(xué)之前,我們都是學(xué)習(xí)基礎(chǔ)的數(shù)學(xué)知識,聯(lián)系實際的東西并不多。在大學(xué)卻不同了。

不同專業(yè)的學(xué)生學(xué)習(xí)的數(shù)學(xué)是不同的。

正是因為如此,高等數(shù)學(xué)的課本上有了更多與實際內(nèi)容相關(guān)的`內(nèi)容,這對專業(yè)學(xué)習(xí)的幫助是不可低估的。

比如“常用簡單經(jīng)濟(jì)函數(shù)介紹”中所列舉的需求函數(shù),供給函數(shù),生產(chǎn)函數(shù)等等在西方經(jīng)濟(jì)學(xué)的學(xué)習(xí)中都有用到。

而“極值原理在經(jīng)濟(jì)管理和經(jīng)濟(jì)分析中的應(yīng)用”這一節(jié)與經(jīng)濟(jì)學(xué)中的“邊際問題”密切相關(guān)。如果沒有這些知識作為基礎(chǔ),經(jīng)濟(jì)學(xué)中的許多問題都無法解決。

當(dāng)我親身學(xué)習(xí)了高等數(shù)學(xué),并試圖把它運(yùn)用到經(jīng)濟(jì)問題的分析中時,才真正體會到了數(shù)學(xué)方法是經(jīng)濟(jì)學(xué)中最重要的方法之一,是經(jīng)濟(jì)理論取得突破性發(fā)展的重要工具。這也堅定了我努力學(xué)好高等數(shù)學(xué)的決心。希望未來自己可以憑借扎實的數(shù)理基礎(chǔ),在經(jīng)濟(jì)領(lǐng)域里大展鴻圖。

高等數(shù)學(xué)作為大學(xué)的一門課程,自然與其它課程有著共同之處,那就是講課速度快。

剛開始,我非常不適應(yīng)。上一題還沒有消化,老師已經(jīng)講完下一題了。帶著幾分焦慮,我向?qū)W長請教學(xué)習(xí)經(jīng)驗,才明白大學(xué)學(xué)習(xí)的重點不僅僅是課堂,課下的預(yù)習(xí)與復(fù)習(xí)是學(xué)好高數(shù)的必要條件。

于是,每節(jié)課前我都認(rèn)真預(yù)習(xí),把不懂的地方作上記號。課堂上有選擇、有計劃地聽講。

課后及時復(fù)習(xí),歸納總結(jié)。逐漸地,我便感到高數(shù)課變得輕松有趣。只要肯努力,高等數(shù)學(xué)并不會太難。

高等數(shù)學(xué)有其獨特之處,但它畢竟是數(shù)學(xué),那么一定量的習(xí)題自然必不可少。

通過練習(xí),才能更深入地理解,運(yùn)用。

以上便是本人一個多學(xué)期以來,學(xué)習(xí)高等數(shù)學(xué)的一些體會。

希望自己能在以后的學(xué)習(xí)中更上一層樓!

高等數(shù)學(xué)的體會篇七

數(shù)學(xué)教研室緊緊圍繞以提高教學(xué)質(zhì)量,抓好內(nèi)涵建設(shè)為中心,以優(yōu)化教師業(yè)務(wù)素質(zhì),不斷提高教師的教學(xué)、教研水平和提高學(xué)生運(yùn)用數(shù)學(xué)解決實際問題的能力為基本點;始終以應(yīng)用為目的,以為專業(yè)服務(wù)為教學(xué)重點,充分發(fā)揮數(shù)學(xué)課程在高職教育特色中的基礎(chǔ)作用。

二、本學(xué)期開展的工作。

1.組織好數(shù)學(xué)補(bǔ)考以及試卷的批改和成績上報工作;。

2.配合基礎(chǔ)部作好正常的教學(xué)及管理工作;。

3.按學(xué)院和教務(wù)處教學(xué)要求完成正常的教學(xué),如聽課、公開課聽課評課任務(wù),集體備課等活動.

(1)深入開展各專業(yè)對高等數(shù)學(xué)知識點需求的研討會,真正做到數(shù)學(xué)為專業(yè)課服務(wù);。

(3)為充分調(diào)動學(xué)生學(xué)習(xí)《高等數(shù)學(xué)》課程的積極性,組織一次全院數(shù)學(xué)調(diào)研。

5.定期召開教研室會議,堅持高職高專教育理論的'學(xué)習(xí)與研究,吸收先進(jìn)的教學(xué)理念與教學(xué)經(jīng)驗,改進(jìn)自己的教學(xué)方法、教學(xué)思想。要求撰寫一篇教學(xué)或教研論文。

6.搞好院級研究課題;。

7.進(jìn)一步完善《高等數(shù)學(xué)》校本教材、教學(xué)課件等工作;。

8.做好教研室本學(xué)期的總結(jié)、下學(xué)期計劃等工作;。

9.配合基礎(chǔ)部做好一些臨時性工作。

三、工作具體時間安排見下表:

第一學(xué)期數(shù)學(xué)教研室具體工作安排。

周次。

時間。

教學(xué)活動內(nèi)容。

8月28至9月30日。

做好教學(xué)前準(zhǔn)備工作(如教學(xué)計劃、教案的撰寫),要求教師上好每一堂課,確保教育教學(xué)質(zhì)量,并要求沒課的教師隨機(jī)聽取有課老師的課。做好學(xué)生的補(bǔ)考工作。

6

10月1日至10月7日。

國慶放假,假期間認(rèn)真?zhèn)湔n,撰寫論文。

7

10月8日至10月14日。

確定教師舉行公開課、組織安排數(shù)學(xué)教研室教師參加聽課、評課活動。檢查教案、教學(xué)計劃的撰寫情況。

8

10月17日至10月21日。

組織數(shù)學(xué)教師召開專題會議:針對學(xué)生數(shù)學(xué)基礎(chǔ)差,如何上好高等數(shù)學(xué)課,如何體現(xiàn)為專業(yè)課服務(wù)。

9

10月24日至10月28日。

高等數(shù)學(xué)院級精品課程以及校本教材的進(jìn)一步完善,公開課按計劃開展。教師集體備課。

10。

10月31日至11月4日。

要求每位教師撰寫一篇教學(xué)或教研論文。作業(yè)抽查、公開課、觀摩課等活動的監(jiān)督與實施。

11。

11月7日至11月11日。

期中教學(xué)檢查,教案檢查、作業(yè)批改情況抽查,做好數(shù)學(xué)教研室期中工作小結(jié)。

12。

11月14日至11月18日。

組織安排數(shù)學(xué)調(diào)研。

13。

11月21日至。

11月25日。

組織教師集體備課。

14。

11月28日。

至12月2日。

繼續(xù)開展公開課、觀摩課等活動,并召開專題會議:如何提高學(xué)生學(xué)習(xí)高等數(shù)學(xué)的興趣;如何提高教學(xué)教研質(zhì)量。

15。

12月5日至。

教案、作業(yè)隨機(jī)抽查,教學(xué)進(jìn)度、教學(xué)效果的反饋,做好總結(jié)工作.

16。

12月12日至。

12月16日。

根據(jù)高數(shù)為專業(yè)課服務(wù)的原則,進(jìn)一步做好高等數(shù)學(xué)課程教學(xué)改革,上好數(shù)學(xué)實驗課。

17。

12月19日。

至12月23日。

討論、交流教學(xué)心得,總結(jié)成功與不足。

18。

12月26日至。

12月30日。

開展教學(xué)、教研交流活動;檢查實踐教學(xué)的落實。

19。

公開課、觀摩課等教研活動總結(jié)。院級課題落實情況的檢查與反饋。有關(guān)實驗、實踐教學(xué)落實情況的總結(jié)。安排期末考試試卷的編制、保密、閱卷注意事項等事宜;本學(xué)期教學(xué)工作總結(jié)。

20。

元月9日至元月13日。

做好數(shù)學(xué)考試試卷分析與總結(jié);做好本學(xué)期教研室工作總結(jié)以及下學(xué)期教研室工作計劃。試卷裝訂情況檢查,并做好有關(guān)資料的收集與整理并歸檔。

高等數(shù)學(xué)的體會篇八

第一段:引言(120字)

高等數(shù)學(xué)作為大學(xué)數(shù)學(xué)課程中的一門重要學(xué)科,不僅是理工科學(xué)生的必修課,更是培養(yǎng)學(xué)生分析解決問題能力的重要途徑。在學(xué)習(xí)高等數(shù)學(xué)的過程中,我感受到了數(shù)學(xué)的美妙與魅力,同時也深刻體會到了數(shù)學(xué)學(xué)習(xí)的重要性。通過這門課程的學(xué)習(xí),我不僅提高了自己的數(shù)學(xué)水平,更具備了解決實際問題的能力,下面將分為邏輯推理能力的提升、問題解決能力的培養(yǎng)、批判性思維的養(yǎng)成、嚴(yán)密的思維訓(xùn)練以及團(tuán)隊合作精神的培養(yǎng)五個方面,詳細(xì)論述我在高等數(shù)學(xué)學(xué)習(xí)中的心得體會。

第二段:邏輯推理能力的提升(250字)

高等數(shù)學(xué)學(xué)習(xí)需要運(yùn)用各種公式定理,進(jìn)行推導(dǎo)證明。在這個過程中,我不斷鍛煉了自己的邏輯推理能力。老師引導(dǎo)我們學(xué)會分析問題,從多個角度去思考,利用數(shù)學(xué)方法解決問題。通過數(shù)學(xué)定理的證明,我更加深入地理解了邏輯推理的重要性以及問題求解的思路。此外,在高等數(shù)學(xué)的學(xué)習(xí)過程中,我還學(xué)會了如何將復(fù)雜問題分解為簡單子問題,逐步推導(dǎo)出一個完整的解決方案。這一過程的鍛煉不僅提高了我的數(shù)學(xué)素養(yǎng),還培養(yǎng)了我的邏輯思維能力,使我能夠更好地應(yīng)對其他學(xué)科的學(xué)習(xí)和實際問題的解決。

第三段:問題解決能力的培養(yǎng)(250字)

高等數(shù)學(xué)學(xué)習(xí)強(qiáng)調(diào)實際問題的建模與求解,培養(yǎng)學(xué)生解決實際問題的能力。在課堂上,我親身體驗了數(shù)學(xué)在解決實際問題中的作用。通過案例分析和問題解決討論,我學(xué)會了將抽象概念和公式與實際問題相結(jié)合,找到問題的關(guān)鍵點,提出有效的解決方案。此外,高等數(shù)學(xué)課程還讓我了解了數(shù)學(xué)與其他學(xué)科的交叉點,從而拓寬了視野,幫助我更好地理解和解決其他學(xué)科的實際問題。

第四段:批判性思維的養(yǎng)成(250字)

高等數(shù)學(xué)學(xué)習(xí)強(qiáng)調(diào)學(xué)生的批判性思維能力的培養(yǎng)。在學(xué)習(xí)過程中,我發(fā)現(xiàn)數(shù)學(xué)不僅有固定答案,還有多種解決路徑和解釋方法。通過解析問題的不同方面,從不同的角度思考,我逐漸養(yǎng)成了批判性思維的習(xí)慣。我開始質(zhì)疑問題是否被正確解決,是否有更好的方法,這種思維方式不僅在高等數(shù)學(xué)學(xué)習(xí)中幫助我更好地理解概念和定理,還在其他學(xué)科和實際生活中使我更加理性和客觀。

第五段:嚴(yán)密的思維訓(xùn)練與團(tuán)隊合作精神的培養(yǎng)(320字)

高等數(shù)學(xué)中的復(fù)雜定理和抽象概念要求學(xué)生掌握嚴(yán)密的思維能力。在解題過程中,我不得不重復(fù)思考,審查每一個環(huán)節(jié),確保每個推導(dǎo)步驟的準(zhǔn)確性和嚴(yán)密性。這過程雖然艱辛,但成功地提升了我的思維嚴(yán)密性和細(xì)心程度。另外,高等數(shù)學(xué)學(xué)習(xí)中的小組討論和團(tuán)隊合作也給了我很大的啟示。通過與同學(xué)合作,每個人可以帶來不同的思路和見解,我們可以互相學(xué)習(xí)、互相鼓勵,并共同解決問題。這種團(tuán)隊合作精神不僅在高等數(shù)學(xué)中得到培養(yǎng),還可以應(yīng)用到其他學(xué)科和實際工作中。

結(jié)尾:總結(jié)(90字)

總的來說,高等數(shù)學(xué)的學(xué)習(xí)不僅提高了我的數(shù)學(xué)水平,更重要的是培養(yǎng)了我解決問題的能力、批判性思維以及團(tuán)隊合作精神。這些能力將在我的未來學(xué)習(xí)和工作中發(fā)揮重要作用。通過高等數(shù)學(xué)的學(xué)習(xí),我明白了數(shù)學(xué)不僅僅是一種學(xué)科,更是一種思維方式和處理問題的工具。

高等數(shù)學(xué)的體會篇九

本學(xué)期我擔(dān)任??茖哟嗡幹?3-1、藥分13-1、藥營13-1、生制13-1、中藥13-1五個班的《高等數(shù)學(xué)》教學(xué)工作,周課時20,按15個教學(xué)周,計300課時,另外還開設(shè)《太極拳》選修課30課時,共計330課時。

二、工作態(tài)度與方法。

工作態(tài)度方面,我每每中午去食堂是最后,甚至教工食堂收工,我得去學(xué)生食堂,只因我從不提前下課。我按時下課,但有時同學(xué)問問題,會弄遲些。在備課的時候,我會為一個問題的表述反復(fù)思考,看怎么能讓同學(xué)們更容易接受,總之,為了提高同學(xué)們的學(xué)習(xí)效率,自己是不計成本的。

鑒于高校老師不坐班,上完課就走人,師生交流僅限于課堂,我感覺這不利于學(xué)生發(fā)展。為此,我在課堂教學(xué)之余,采取多種方式--或當(dāng)面引導(dǎo),高屋建瓴,一語中的;或充分利用現(xiàn)代網(wǎng)絡(luò)媒體,與同學(xué)們在線交流。有時是解答他們在學(xué)習(xí)上的某一具體問題,有時是就人生成長過程中的困惑進(jìn)行分析探討,為其答疑解惑,做其良師益友。

當(dāng)然,更多的交流還是課堂教學(xué),這里我稍微總結(jié)一下《高等數(shù)學(xué)》課程教學(xué)中的三個細(xì)節(jié):

三是積分部分,不定積分我強(qiáng)調(diào)練習(xí),求積分(1)(2)(3)(4),練習(xí)得比較充分,定積分我強(qiáng)調(diào)理論,微積分基本公式的詳細(xì)推導(dǎo)雖不是考點,但我還是耐心引導(dǎo)、仔細(xì)講解……我這樣做一方面對想繼續(xù)深造的同學(xué)有利,另一方面,我是想讓自己嚴(yán)謹(jǐn)求實的工作作風(fēng)給學(xué)生一些正面影響。

在評價考核方面,我十分注重過程性、形成性。我發(fā)現(xiàn),某個階段,如果學(xué)生草稿本“銷量”大增,其數(shù)學(xué)功力就有所提升,草稿本打得多與少,很大程度反映出一個人的數(shù)學(xué)學(xué)習(xí)狀態(tài)。因此第一堂課我就強(qiáng)調(diào),草稿本不要扔棄,寫完了送給我,我“記工分”(畫正字)。為防止有人為了工分而工分,12月底我就將這項活動截止。從效果上看,一方面督促大家你追我趕,多做多練;另一方面,也較真實地反映出大家平時的數(shù)學(xué)學(xué)習(xí)狀況,為學(xué)期末平時成績的評定提供了重要參考依據(jù)。一學(xué)期下來,草稿紙作為廢品賣掉,收入頗豐,相當(dāng)于同學(xué)們請我吃了早茶,謝謝謝謝!

最后階段,我為了同學(xué)們更好地復(fù)習(xí)鞏固,考前給出《考試說明》,提示哪些知識點務(wù)必掌握,并鼓勵同學(xué)們根據(jù)考點提示成立“猜題委員會”,當(dāng)然,您也可以美其名曰“高等數(shù)學(xué)互助學(xué)習(xí)志愿者協(xié)會”,說是猜題押題,實則是在引導(dǎo)更多的同學(xué)成為學(xué)霸,并請熱心的超級學(xué)霸將自己精美的《好題本》與大家分享,驅(qū)散學(xué)困生備考陰霾。

三、工作體會與感悟。

對于工作量,我想教師任課班級過多、班級人數(shù)過多、周課時過密,對教師、對學(xué)生都是不利的。說實在的,盡管同學(xué)們看見我都很有禮貌地叫:“老師好!”,但大部分同學(xué)的名字我是叫不出的。教書育人,兩者不可偏頗,很大程度上后者可能更重要些。

對于多媒體教學(xué),我是積極參與并可謂“先行者”之一,但我愈來愈發(fā)現(xiàn)對于數(shù)學(xué)等課程,教師的板演是不可替代的,你可以制作多媒體動畫模擬板演,但還是不能替代教師站在黑板前一步步分析展開。當(dāng)然,如果投影屏幕掛在黑板兩側(cè)再靠邊一點,提綱性的要領(lǐng)或大信息量的展示用一下,而黑板的粉塵能杜絕,彈指間就能局部擦除或全部清空,那就更方便了??傊瑫r尚科技與經(jīng)典傳統(tǒng)要有機(jī)融合、揚(yáng)長補(bǔ)短。

學(xué)包括高等數(shù)學(xué)是可以聽懂的,無論原來基礎(chǔ)好壞,只要認(rèn)真聽,而要讓學(xué)生認(rèn)真聽,得有趣、得活潑、得幽默。

對于教育事業(yè),我認(rèn)為老師除了教書,更重要的是育人。因此,自己首先得是位真正的道德高尚之君,以自身灼熱的人格正氣讓每位接觸過的學(xué)生于無形中獲得一種人格的滋養(yǎng)與人性的清明。崇高的人格是一股強(qiáng)大的教育力量,崇高的人格是一座珍貴的教育寶藏。

我時常反思,自己有無教育教學(xué)誤區(qū)?比如師生關(guān)系,把握住“尊重”,這是教師工作的出發(fā)點,在學(xué)生之間不能主觀地圈定優(yōu)等生,去偏愛這些優(yōu)等生,教師偏愛少數(shù)“好學(xué)生”就是不尊重大多數(shù)學(xué)生。教師應(yīng)該一視同仁,善待每一個學(xué)生,及時發(fā)現(xiàn)他們身上的優(yōu)點,幫助他們克服缺點,努力挖掘?qū)W生的潛在能力,給所有的學(xué)生創(chuàng)造表現(xiàn)才能的機(jī)會,尊重每一個學(xué)生。這里,對于我這門課平時成績較低的同學(xué),我真誠地說聲:“對不起!”。我相信,您的`成績(自我評價,他人評價)會在后續(xù)的課程、未來的人生中節(jié)節(jié)攀升、漸入佳境。

高等職業(yè)教育的職業(yè)性、技術(shù)性、就業(yè)導(dǎo)向性以及巨大的就業(yè)壓力,迫使高職院校公共基礎(chǔ)課教學(xué)必須把高職學(xué)生普遍關(guān)注的就業(yè)能力問題作為基礎(chǔ)課教學(xué)改革的立足點與出發(fā)點,在提高學(xué)生就業(yè)創(chuàng)業(yè)能力,引導(dǎo)學(xué)生更快更好地提升職業(yè)能力、職業(yè)素養(yǎng)方面發(fā)揮重要作用。這對公共基礎(chǔ)課教師的教學(xué)觀念與教學(xué)能力是一大挑戰(zhàn)。我有一個想法,就是系統(tǒng)地學(xué)習(xí)臨床、藥學(xué)、護(hù)理等所任專業(yè)的所有課程,看看學(xué)生到底需要哪些數(shù)學(xué)知識?需要什么數(shù)學(xué)技能?思維品質(zhì)培養(yǎng)的關(guān)鍵在何處?做到心中有數(shù),以便打破公共基礎(chǔ)課和專業(yè)課之間的壁壘,將原先的公共基礎(chǔ)課融合穿插到各個學(xué)習(xí)領(lǐng)域的學(xué)習(xí)情境中去教學(xué)。

當(dāng)然,公共基礎(chǔ)課不僅僅具有為專業(yè)課程服務(wù)的工具性功能,更具有“潤物細(xì)無聲”的人文教化功能。在今后的教學(xué)上,我爭取突破教學(xué)常規(guī),更高效更機(jī)智地處理問題,彰顯出更多的的課堂教學(xué)機(jī)智,妥帖恰當(dāng)?shù)靥幚斫虒W(xué)突發(fā)事件,順勢而為地引導(dǎo)學(xué)生積極探索與思考,巧妙有效地幫助學(xué)生對重點、難點進(jìn)行深入理解,自然流暢地啟發(fā)學(xué)生展開思維的翅膀,生動愉悅地引導(dǎo)學(xué)生步入人生智慧的魅力境界,同時,形成自己較高水平的教學(xué)智慧。

夏宜凡。

高等數(shù)學(xué)的體會篇十

相對于現(xiàn)階段高等職業(yè)教育發(fā)展的綜合性和終身性趨勢來說,高等數(shù)學(xué)不僅僅是學(xué)生掌握數(shù)學(xué)工具學(xué)習(xí)其他相關(guān)專業(yè)課程的基礎(chǔ),更是培養(yǎng)學(xué)生邏輯思維嚴(yán)謹(jǐn)性的重要載體,高等數(shù)學(xué)的重要性是不言而喻的。因此高等數(shù)學(xué)的有效學(xué)習(xí)成了高數(shù)教師和同學(xué)們共同關(guān)注的一個重要問題。

通過平時與學(xué)生的交流和上課,學(xué)生的學(xué)習(xí)困難一般集中在認(rèn)為教學(xué)內(nèi)容太抽象聽不懂、不會做題,數(shù)學(xué)概念太抽象,不易理解(如極限、無窮小等)。學(xué)生對于接受高等數(shù)學(xué)的思想、原理、方法非常不適應(yīng),對于如何學(xué)好高等數(shù)學(xué),如何理解它的思想、方法茫然無知。下面我們大家一起討論一下高數(shù)學(xué)不好的原因。

首先,對大多數(shù)高中生而言,考取大學(xué)是最具誘惑力的行為歸因,但進(jìn)人大學(xué)后,這一因素就不復(fù)存在了,大一新生基本上處于如釋重負(fù)的解脫狀態(tài),缺乏主動進(jìn)取的精神,學(xué)習(xí)目標(biāo)不明確,學(xué)習(xí)動機(jī)不強(qiáng)烈。有些同學(xué)則認(rèn)為學(xué)高等數(shù)學(xué)對將來的工作也沒有多大用處,有些同學(xué)本來數(shù)學(xué)的基礎(chǔ)就不好,進(jìn)人大學(xué)后一接觸高等數(shù)學(xué),發(fā)現(xiàn)難以與中學(xué)數(shù)學(xué)知識直接銜接,學(xué)習(xí)高等數(shù)學(xué)的興趣蕩然無存,對高等數(shù)學(xué)的學(xué)習(xí)消極應(yīng)付。

再次,學(xué)生在高中階段已形成一定的思維方式及學(xué)習(xí)習(xí)慣,解數(shù)學(xué)題基本上采取模式辨認(rèn)、方法回憶的思維方式,對解題方法和技巧模仿、記憶、套用,對知識不求甚解,并未真正理解和內(nèi)化,沒有進(jìn)行數(shù)學(xué)思考的意識,也沒有掌握數(shù)學(xué)思考的方法。大學(xué)課堂上,對高等數(shù)學(xué)各部分內(nèi)容的理解支離破碎,自學(xué)能力差,缺乏獨立思考的意識,沒有反思學(xué)習(xí)過程的習(xí)慣,更沒有總結(jié)、歸納知識和思想方法的習(xí)慣,對教師有較強(qiáng)的依賴心理,學(xué)生已形成的思維方式及學(xué)習(xí)習(xí)慣直接影響學(xué)生接受高等數(shù)學(xué)。

最后,大學(xué)與高中的教學(xué)都以講授法為主,但受高考的影響和制約,高中教師對知識的講授詳細(xì),題型、方法歸納完整,較多的精力用于通過大題量的訓(xùn)練來培養(yǎng)學(xué)生的技能技巧,并及時進(jìn)行輔導(dǎo)和鞏固;而大學(xué)的教學(xué)由于知識點較多,課時有限,課容量大,教師更注重思想方法的深刻理解,和數(shù)學(xué)思想的培養(yǎng)。

對于上述幾個原因建議大家從以下幾方面入手:

第一、調(diào)整好自己的心態(tài),盡快適應(yīng)大學(xué)生活,對自己有一個準(zhǔn)確的定位。

學(xué)的學(xué)習(xí),根據(jù)高數(shù)課的特點和自己的學(xué)習(xí)習(xí)慣,盡快總結(jié)出適合自己的學(xué)習(xí)方法。

第三、高數(shù)的學(xué)習(xí)是一個日積月累的過程,不是幾天或一段時間的突擊成績就可以上來的。只要你把平時的多努力,那么你的付出一定會有所得。

高等數(shù)學(xué)的體會篇十一

在我的意識里,但凡數(shù)學(xué)成績好的同學(xué),一定都是天資聰穎;而對數(shù)學(xué)一往情深的同學(xué),都絕非等閑之輩。自從上了高中,數(shù)學(xué)對我來說就成了軟肋,硬傷,成了讓我神傷的科目,突然間變得對數(shù)學(xué)一竅不通,才猛然間發(fā)覺自己的思維不知道被什么所禁錮,變得呆板而僵硬,做題猶如啃磚頭。

大一的時候,意外地發(fā)現(xiàn)我們必須學(xué)習(xí)高數(shù)課,我雖然很敬佩我們的高數(shù)老師,他和藹可親,對我們關(guān)愛有加,把高數(shù)講得清楚易懂,還告訴我們?nèi)绾螌W(xué)好高數(shù)以便更好地發(fā)展中醫(yī)。盡管如此,結(jié)局還是悲涼的,我終日以淚洗面,甚至產(chǎn)生了輕生的念頭,大一對我來說是不堪重負(fù),不忍回首的一年,期末了,還一道題都不會做,考完了,才發(fā)現(xiàn)自己是班上的墊底。高數(shù),讓我開始懷疑自己的智商,懷疑我以后能否自食其力。每一次上課,我都像個呆子,鉆進(jìn)耳朵的那些專業(yè)術(shù)語不知道該怎么去消化,而周圍的同學(xué)也都還是能回答問題,自信滿滿,這種強(qiáng)烈的對比讓我受挫,我開始重新審視自己。高數(shù),帶給我改變的動力,我感謝高數(shù),但僅僅因為它是高“樹”,而我被掛在了上面。

在后來的學(xué)習(xí)中,我再也不敢對專業(yè)課掉以輕心,我開始覺得期末考試的內(nèi)容其實也沒有那么難,那么高數(shù)呢?究竟是它太難還是我從心里對它產(chǎn)生畏懼,以至我沒有勇氣相信自己可以認(rèn)識它?我怕,怕有朝一日終會再次遇到它,因為陌生,所以恐懼。

經(jīng)歷了一年多的成長,我發(fā)現(xiàn)其實很多事情都沒有想象中那么難,也沒有想象中那么簡單,關(guān)鍵在于你如何對待它。我想起我可以為了自己做一個筆袋而一動不動坐一下午,并且為了解決出現(xiàn)的不足而把數(shù)據(jù)計算一遍又一遍,一遍遍拆,一遍遍改,在探索中前進(jìn),樂此不疲。而學(xué)習(xí)高數(shù)呢,一開始我怕,遇到不懂了,我更怕,最后呢,我只能逃課,不去聽,不去想,以為這樣就能躲過一切,我才發(fā)現(xiàn),我是個徹徹底底的懦夫,我只會做逃兵,我并沒有盡最大的努力。

在選課的時候,我發(fā)現(xiàn)還能選修高數(shù),這次,我不想再錯過。我想起了《追風(fēng)箏的人》的一句話:“那里,有再一次成為好人的路。”是的,我選擇重新認(rèn)識高數(shù),我要為自己過去的罪行贖罪。

再次接觸高數(shù),捧著2年前讓我頭疼的課本,我發(fā)現(xiàn)其實真的可以懂,老師講的比較簡單,思路也很清晰。重新認(rèn)識了牛頓萊布尼茲的微積分,驚嘆他們天才般的才智,運(yùn)用無限的模糊理論,可以解決許多醫(yī)學(xué)上的問題,我才覺得高數(shù)真的是充滿了魅力和魔力,它能讓我們把簡單的問題先給復(fù)雜化最后再簡單化,培養(yǎng)我們的思維,更智慧巧妙地解決生活中的問題。學(xué)好了高數(shù),就像給你增添了一雙隱形的翅膀,你擁有了更開闊縝密的思維,許多問題突然變得迎刃而解了。

當(dāng)然,學(xué)好高數(shù)并非那么簡單,但探索其中的奧秘確實非常有價值,我想,如果能把自己學(xué)到的高數(shù)知識運(yùn)用到自己的生活,學(xué)習(xí),工作上,才算是真正學(xué)好了高數(shù),感謝高數(shù),這次不僅僅因為它是高“樹”,而是我明白,攀登上這棵高樹,我看見了前所未有的迷人風(fēng)景。

高等數(shù)學(xué)的體會篇十二

第一段:引言(150字)

在大學(xué)學(xué)習(xí)期間,高等數(shù)學(xué)是我們無法回避的一門課程。對于許多學(xué)生來說,高等數(shù)學(xué)可能是他們第一次接觸到抽象的數(shù)學(xué)概念和復(fù)雜的數(shù)學(xué)運(yùn)算。然而,通過數(shù)學(xué)家和教育家的不斷努力,高等數(shù)學(xué)正在變得越來越有趣和易于理解。在我個人的學(xué)習(xí)過程中,我逐漸領(lǐng)悟到高等數(shù)學(xué)的重要性和應(yīng)用場景,并從中獲得了許多寶貴的經(jīng)驗和體會。

第二段:興趣驅(qū)動學(xué)習(xí)(250字)

我發(fā)現(xiàn),對于高等數(shù)學(xué)的學(xué)習(xí)來說,培養(yǎng)興趣是至關(guān)重要的。在開始學(xué)習(xí)高等數(shù)學(xué)之前,我對這門課程沒有太多的期待。然而,通過與教師的互動和進(jìn)一步的研究,我開始意識到高等數(shù)學(xué)是一門實際應(yīng)用廣泛且充滿挑戰(zhàn)的學(xué)科。我發(fā)現(xiàn)高等數(shù)學(xué)在物理、經(jīng)濟(jì)學(xué)甚至金融學(xué)中都起著重要的作用,并且具有許多實用性的應(yīng)用。為了更好地理解和應(yīng)用高等數(shù)學(xué)的知識,我主動參加數(shù)學(xué)建模和實驗課程,并且積極加入數(shù)學(xué)學(xué)術(shù)團(tuán)隊。通過這些課程和團(tuán)隊活動,我發(fā)現(xiàn)高等數(shù)學(xué)能夠幫助我們解決實際問題,并且在現(xiàn)實生活中起到重要的作用。

第三段:實踐驅(qū)動理論(250字)

在高等數(shù)學(xué)的學(xué)習(xí)過程中,我體會到實踐是鞏固理論知識的重要手段。通過解決一系列的習(xí)題和實際問題,我逐漸運(yùn)用所學(xué)的數(shù)學(xué)方法來解決復(fù)雜的問題。并在此過程中體會到從紙上計算到實際應(yīng)用的轉(zhuǎn)換。在學(xué)習(xí)微積分時,我除了翻閱課本上的例題和習(xí)題外,還多次利用數(shù)學(xué)軟件進(jìn)行計算和模擬,并嘗試將所學(xué)的理論用于解決實際問題。通過這樣的實踐過程,我不僅加深了對高等數(shù)學(xué)理論的理解,還培養(yǎng)了解決實際問題的能力。

第四段:提升邏輯思維(250字)

高等數(shù)學(xué)的學(xué)習(xí)讓我逐漸鍛煉了邏輯思維能力。通過學(xué)習(xí)證明方法、推理規(guī)則以及數(shù)學(xué)定理等知識,我逐漸培養(yǎng)了嚴(yán)密的邏輯思維和分析問題的能力。高等數(shù)學(xué)課程中的證明過程迫使我們思考每一個步驟的合理性和正確性,并提出自己的證明思路。這種思考方式使我從中受益匪淺,不僅在數(shù)學(xué)領(lǐng)域受益,還在其他學(xué)科中應(yīng)用中受益。

第五段:結(jié)語(300字)

通過高等數(shù)學(xué)的學(xué)習(xí),我逐漸發(fā)現(xiàn)抽象的數(shù)學(xué)世界與現(xiàn)實生活是息息相關(guān)的。高等數(shù)學(xué)的學(xué)習(xí)讓我在思維、邏輯、實踐等多個方面得到了全面的提升。通過在數(shù)學(xué)領(lǐng)域中的探索與研究,我重新定義了對于高等數(shù)學(xué)這門課程的認(rèn)知,并且樹立起全新的目標(biāo)和動力。高等數(shù)學(xué)不僅僅是為了通過考試,更是培養(yǎng)我們終身學(xué)習(xí)的能力和思維方式的橋梁。在未來的學(xué)習(xí)和工作中,我相信高等數(shù)學(xué)所賦予的知識和能力會繼續(xù)對我產(chǎn)生重大影響。因此,我會繼續(xù)努力學(xué)習(xí)高等數(shù)學(xué),并將所學(xué)應(yīng)用于實際生活中,為現(xiàn)實問題的解決提供更多有益的思考和方法。

高等數(shù)學(xué)的體會篇十三

我們必須意識到高等數(shù)學(xué)不可能像中學(xué)數(shù)學(xué)那樣通過大量的練習(xí)來學(xué)習(xí),甚至是模仿。一方面是它沒有多種相關(guān)的資料,另一方面是高等數(shù)學(xué)與中學(xué)數(shù)學(xué)的思維方式有很大的差別。所以我們要想學(xué)好高等數(shù)學(xué),就要做到讀懂參考書,要反復(fù)的看,要從你看似熟悉的'參考書中不斷的探索出新的東西,把它總結(jié)出來納入自己的知識結(jié)構(gòu)當(dāng)中去(華考范文)。古人云:“溫故而知新”,跟我們這里的新的學(xué)習(xí)思路大概異曲同工吧。

高等數(shù)學(xué)的體會篇十四

隨著科技日新月異的發(fā)展和電腦無孔不入的應(yīng)用。高等數(shù)學(xué)課程作為一種數(shù)學(xué)工具的功能正在逐步縮減。但作為一種思維方法的載體的功能(例如訓(xùn)練學(xué)生辯證思維、邏輯推理、發(fā)現(xiàn)同題及分析同題的能力)卻愈顯風(fēng)采。一個多元線性方程組如何去解?我們可以交給電腦去完成,只要會正確使用數(shù)學(xué)軟件。但一個實際問題如何通過數(shù)學(xué)建模轉(zhuǎn)化為一個數(shù)學(xué)同題,除了必須具備許多綜合的知識,還需要具備一定的分析推理能力,這種素質(zhì)自然可以通過生活來積累,但如果能夠通過象高等數(shù)學(xué)這樣的課程作為載體來進(jìn)行系統(tǒng)訓(xùn)練,將是事半功倍的。

以往對工科學(xué)生來講,高等數(shù)學(xué)的教學(xué)比較偏重于計算方法的訓(xùn)練,例如,如何計算極限,計算導(dǎo)數(shù),計算積分,通過熟練掌握計算方法來加深對概念的理解,這是學(xué)習(xí)高等數(shù)學(xué)的一條捷便之徑。但是從二十一世紀(jì)更加需要創(chuàng)新人才的觀點看,從高等數(shù)學(xué)的概念中直接去提煉一種分析推理能力及實際應(yīng)用能力,將是更加重要的。(當(dāng)然,在改革的力度還未到位時,由于教學(xué)要求及教材等原因。學(xué)習(xí)高等數(shù)學(xué)并不能僅偏重于概念,對基本的計算方法必須熟練地掌握。如今就如何學(xué)好高等數(shù)學(xué)的基本概念。提出一些拙見供同學(xué)參考。

我們觀察一個物體,如果僅僅通過平視去進(jìn)行,那么對這個物體的認(rèn)識往往是局部的,甚至是扭曲的,只有從正視、俯視、側(cè)視的多角度去觀察與綜合,方能得到物體正確的空間定位。觀察事物尚且如此,要理解一個抽象的概念,如果只有單向的思維方法,肯定只能淺嘗輒止。只有從正反兩個方向去透視概念,才能較深地抓住概念中一些本質(zhì)的東西。這里所說的正方向思維應(yīng)該包含幾層意思:一是概念的定義是如何敘述的,二是概念所尉帶的條件是必要的。還是充分的'?三是概念產(chǎn)生的實際背景是什么?這里所說的反方向思維又應(yīng)該包含兩層意思:一是對一個概念的否定是怎樣表達(dá)的?二是如果錯誤的理解了概念中的一些條件會導(dǎo)致什么樣的錯誤結(jié)果。

發(fā)現(xiàn)問題呢?首先要提倡自學(xué),在自己預(yù)習(xí)教材(也鍛煉了一種自學(xué)能力)的過程中很容易發(fā)現(xiàn)不懂的同題,帶著同題再去聽課就會有的放矢。其次是聽課之后做習(xí)題之前要認(rèn)真復(fù)習(xí)消化課上的內(nèi)容,只要積極地開動腦筋,從中是會發(fā)現(xiàn)很多問題的,在這個較深層次上發(fā)現(xiàn)問題又去解決問題(可以通過同學(xué)與老師的幫助),那么分析問題的能力就會有一個質(zhì)的提高。

學(xué)習(xí)數(shù)學(xué),不做習(xí)題是絕對不行的。因為耐概念究竟理解與否檢驗的最后關(guān)口是習(xí)題。一道習(xí)題不會做或者做錯了,肯定是某些概念投有消化好,帶著習(xí)題再來復(fù)習(xí)理解概念,拄往會摩擦出新的思想火花。學(xué)習(xí)高等數(shù)學(xué)的過程中,我們不主張采用中學(xué)的題海戰(zhàn),但對每道習(xí)題不但要弄懂正確的解法,而且盡量要考慮能否有多種解法。這還不夠,進(jìn)一步的思考是一些似是而非的錯誤解法究竟錯在哪里?必定是對概念理解的偏差才導(dǎo)致的錯誤結(jié)果。經(jīng)過又一次正反兩個層面的開掘。思考深入了,學(xué)習(xí)的興趣也會逐步培育起來。

高等數(shù)學(xué)的體會篇十五

隨著科技日新月異的發(fā)展和電腦無孔不入的應(yīng)用.高等數(shù)學(xué)課程作為一種數(shù)學(xué)工具的功能正在逐步縮減.但作為一種思維方法的載體的功能(例如訓(xùn)練學(xué)生辯證思維、邏輯推理、發(fā)現(xiàn)同題及分析同題的能力)卻愈顯風(fēng)采。一個多元線性方程組如何去解?我們可以交給電腦去完成,只要會正確使用數(shù)學(xué)軟件。但一個實際問題如何通過數(shù)學(xué)建模轉(zhuǎn)化為一個數(shù)學(xué)同題,除了必須具備許多綜合的知識,還需要具備一定的分析推理能力,這種素質(zhì)自然可以通過生活來積累,但如果能夠通過象高等數(shù)學(xué)這樣的課程作為載體來進(jìn)行系統(tǒng)訓(xùn)練,將是事半功倍的。

以往對工科學(xué)生來講,高等數(shù)學(xué)的教學(xué)比較偏重于計算方法的訓(xùn)練,例如,如何計算極限,計算導(dǎo)數(shù),計算積分,通過熟練掌握計算方法來加深對概念的理解,這是學(xué)習(xí)高等數(shù)學(xué)的一條捷便之徑。但是從二十一世紀(jì)更加需要創(chuàng)新人才的觀點看,從高等數(shù)學(xué)的概念中直接去提煉一種分析推理能力及實際應(yīng)用能力,將是更加重要的。(當(dāng)然,在改革的力度還未到位時,由于教學(xué)要求及教材等原因.學(xué)習(xí)高等數(shù)學(xué)并不能僅偏重于概念,對基本的計算方法必須熟練地掌握。如今就如何學(xué)好高等數(shù)學(xué)的基本概念。提出一些拙見供同學(xué)參考。

1)從正反兩個層面理解概念

我們觀察一個物體,如果僅僅通過平視去進(jìn)行,那么對這個物體的認(rèn)識往往是局部的,甚至是扭曲的,只有從正視、俯視、側(cè)視的多角度去觀察與綜合,方能得到物體正確的空間定位。觀察事物尚且如此,要理解一個抽象的概念,如果只有單向的思維方法,肯定只能淺嘗輒止.只有從正反兩個方向去透視概念,才能較深地抓住概念中一些本質(zhì)的東西。這里所說的正方向思維應(yīng)該包含幾層意思:一是概念的定義是如何敘述的,二是概念所尉帶的條件是必要的.還是充分的?三是概念產(chǎn)生的實際背景是什么?這里所說的反方向思維又應(yīng)該包含兩層意思:一是對一個概念的否定是怎樣表達(dá)的?二是如果錯誤的理解了概念中的一些條件會導(dǎo)致什么樣的錯誤結(jié)果。

2)學(xué)與問

發(fā)現(xiàn)問題呢?首先要提倡自學(xué),在自己預(yù)習(xí)教材(也鍛煉了一種自學(xué)能力)的過程中很容易發(fā)現(xiàn)不懂的同題,帶著同題再去聽課就會有的放矢。其次是聽課之后做習(xí)題之前要認(rèn)真復(fù)習(xí)消化課上的內(nèi)容,只要積極地開動腦筋,從中是會發(fā)現(xiàn)很多問題的,在這個較深層次上發(fā)現(xiàn)問題又去解決問題(可以通過同學(xué)與老師的幫助),那么分析問題的能力就會有一個質(zhì)的提高。

3)做習(xí)題與想習(xí)題

學(xué)習(xí)數(shù)學(xué),不做習(xí)題是絕對不行的.因為耐概念究竟理解與否檢驗的最后關(guān)口是習(xí)題。一道習(xí)題不會做或者做錯了,肯定是某些概念投有消化好,帶著習(xí)題再來復(fù)習(xí)理解概念,拄往會摩擦出新的思想火花。學(xué)習(xí)高等數(shù)學(xué)的過程中,我們不主張采用中學(xué)的題海戰(zhàn),但對每道習(xí)題不但要弄懂正確的解法,而且盡量要考慮能否有多種解法。這還不夠,進(jìn)一步的思考是一些似是而非的錯誤解法究竟錯在哪里?必定是對概念理解的偏差才導(dǎo)致的錯誤結(jié)果.經(jīng)過又一次正反兩個層面的開掘.思考深入了,學(xué)習(xí)的興趣也會逐步培育起來。

高等數(shù)學(xué)的體會篇十六

數(shù)學(xué)最需要強(qiáng)調(diào)的是基礎(chǔ)而不是技巧。很多同學(xué)不重視基礎(chǔ)的學(xué)習(xí),反而只是忙著做題,做難題,就想通過題海戰(zhàn)術(shù)取勝,這是不行的,選擇輔導(dǎo)班一定不要選擇一味追求技巧的,可以上有命題組老師的輔導(dǎo)班,從而能夠準(zhǔn)確把握命題思路,不至于走偏了方向。

善于歸納,學(xué)會總結(jié),使知識條理化系統(tǒng)化。

善于總結(jié)也是我要十分強(qiáng)調(diào)的一點。因為很多同學(xué)做題的過程就到對過答案或是糾正過錯誤就簡單的結(jié)束了,一套題的價值也就到此為止了。大家在糾正完錯誤之后,再把這套試題從頭看一遍,總結(jié)一下自己都在哪些方面出錯了,原因是什么,這套題中有沒有出現(xiàn)我不知道的新的方法、思路,新推導(dǎo)出的定理、公式等,并把這些有用的知識全都寫到你的筆記本上,以便隨時查看和重點記憶。對于大題的解題方法,要仔細(xì)想一想,都涉及到哪些科目和章節(jié)了,這些知識點之間有哪些聯(lián)系等,從而使自己所掌握的知識系統(tǒng)化,以達(dá)到融會貫通。只有這樣,才能使你做過的題目實現(xiàn)其的價值,也才算是你真正做懂了一套題。如果你能夠這樣做了,那么做過的題在以后的復(fù)習(xí)中如果沒有時間了,就不用再拿出來重新看了,因為你已經(jīng)把要掌握的精華總結(jié)好了,只需看你的筆記本就行了。解數(shù)學(xué)題一定要從思路,原理的角度入手。

要勤于思考,多動腦子。

很多同學(xué)學(xué)數(shù)學(xué)就喜歡看例題,看別人做好的題目,分析別人總結(jié)好的解題方法、步驟。只這樣是遠(yuǎn)遠(yuǎn)不夠的。只是一味的被動的接受別人的東西,就永遠(yuǎn)也變不成自己的東西。第一遍復(fù)習(xí)可以只看題,但以后就必須自己試著做了,先不看答案,完全通過自己的能力做著試試,不管能做到什么程度,起碼你自己先思考了,只有啟動自己的大腦,才會使知識更深入的得到理解和掌握,才能真正成為自己的知識,也才會具有獨立的解題能力。在做題時不要太輕易的選擇放棄,想一會兒沒有思路就去看答案,一定要仔細(xì)開動腦筋想過之后,實在不行再求助于外力。

高等數(shù)學(xué)的體會篇十七

第一段:學(xué)習(xí)動機(jī)與目標(biāo)(引言)

高等數(shù)學(xué)是一門對于大部分大學(xué)生來說充滿挑戰(zhàn)的學(xué)科。作為一名大學(xué)生,我對高等數(shù)學(xué)學(xué)習(xí)非常重視,因為它是我專業(yè)學(xué)習(xí)的基礎(chǔ)課程之一。在學(xué)習(xí)高等數(shù)學(xué)的過程中,我經(jīng)歷了許多辛苦和困惑,但也從中收獲了很多。在這篇文章中,我將與大家分享我的高等數(shù)學(xué)學(xué)習(xí)心得體會。

第二段:規(guī)劃和時間管理(學(xué)習(xí)方法和技巧)

在面對高等數(shù)學(xué)這門課程時,我意識到規(guī)劃和時間管理是非常重要的。高等數(shù)學(xué)包含了大量的知識點和公式,因此我制定了一個學(xué)習(xí)計劃,將每個知識點分配到不同的時間段,并給自己留出足夠的時間進(jìn)行復(fù)習(xí)和鞏固。我還學(xué)會了合理安排每天的學(xué)習(xí)時間,將重點放在疑難問題上,以便更好地掌握知識。

第三段:找到適合自己的學(xué)習(xí)方式(學(xué)習(xí)方法和技巧)

在高等數(shù)學(xué)學(xué)習(xí)的過程中,我發(fā)現(xiàn)找到適合自己的學(xué)習(xí)方式能夠提高學(xué)習(xí)效果。有些人更適合通過聽講座和課堂上的互動來學(xué)習(xí),而我更喜歡通過自學(xué)和解題來掌握知識。我經(jīng)常和同學(xué)們一起組隊討論問題,通過交流和互幫互助來解決難題。這種學(xué)習(xí)方式不僅鞏固了我的知識,還提高了我的解題能力和思維靈活性。

第四段:克服困難與堅持學(xué)習(xí)(學(xué)習(xí)態(tài)度與人生觀)

高等數(shù)學(xué)是一門需要耐心和恒心的學(xué)科。在學(xué)習(xí)過程中,我遇到了許多困難和挫折,但我相信只要堅持下去,就一定能夠克服這些困難并取得好成績。我時常重復(fù)著“努力就會有回報”的信念,堅持每天都學(xué)習(xí)一段時間高等數(shù)學(xué),無論是通過自學(xué)、參加輔導(dǎo)班或向老師請教,我都不放棄任何機(jī)會來提高自己的數(shù)學(xué)水平。

第五段:從高等數(shù)學(xué)中的應(yīng)用反思(學(xué)科價值與人生思考)

通過學(xué)習(xí)高等數(shù)學(xué),我不僅掌握了數(shù)學(xué)知識,更培養(yǎng)了自己的邏輯思維和問題解決能力。高等數(shù)學(xué)課程中的許多概念和方法在實際生活中都有廣泛的應(yīng)用。數(shù)學(xué)是一門實用的學(xué)科,它不僅幫助我們理解世界的運(yùn)作方式,還能培養(yǎng)我們的邏輯思維和抽象思維能力。通過高等數(shù)學(xué)的學(xué)習(xí),我深深體會到數(shù)學(xué)不僅僅是個工具,更是一門能夠引導(dǎo)我們思考和解決問題的科學(xué)。

總結(jié):

通過高等數(shù)學(xué)的學(xué)習(xí),我不僅掌握了基本概念和方法,也培養(yǎng)了自己的學(xué)習(xí)方法和態(tài)度。我發(fā)現(xiàn)規(guī)劃和時間管理對于高等數(shù)學(xué)學(xué)習(xí)非常重要,找到適合自己的學(xué)習(xí)方式能夠提高學(xué)習(xí)效果。在困難和挫折面前要堅持學(xué)習(xí),相信努力會有回報。最重要的是,高等數(shù)學(xué)的學(xué)習(xí)不僅可以提高我們的數(shù)學(xué)水平,還能幫助我們培養(yǎng)邏輯思維和解決問題的能力。通過高等數(shù)學(xué)的學(xué)習(xí),我對數(shù)學(xué)這門學(xué)科有了更深入的理解,也對自己的學(xué)習(xí)和未來充滿了信心。

【本文地址:http://www.mlvmservice.com/zuowen/6575352.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔