編寫教案可以使教師更加有條理地指導(dǎo)學(xué)生的學(xué)習(xí)。教案的編寫要注意語言的準確性和簡練性,使教案更易讀、易懂、易操作。下面是一些精選的教案范文,可以幫助教師更好地掌握教學(xué)設(shè)計的方法和技巧。
勾股定理應(yīng)用教案篇一
勾股定理:如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2.
即直角三角形兩直角的平方和等于斜邊的平方.
因此,在運用勾股定理計算三角形的邊長時,要注意如下三點:
(2)注意分清斜邊和直角邊,避免盲目代入公式致錯;
2.學(xué)會用拼圖法驗證勾股定理
如,利用四個如圖1所示的直角三角形三角形,拼出如圖2所示的三個圖形.
請讀者證明.
請同學(xué)們自己證明圖(2)、(3).
3.在數(shù)軸上表示無理數(shù)
二、典例精析
解:由勾股定理,得
132-52=144,所以另一條直角邊的長為12.
所以這個直角三角形的面積是×12×5=30(cm2).
例2如圖3(1),一只螞蟻沿棱長為a的正方體表面從頂點a爬到
頂點b,則它走過的最短路程為
a.b.c.3ad.分析:本題顯然與例2屬同種類型,思路相同.但正方體的
各棱長相等,因此只有一種展開圖.
解:將正方體側(cè)面展開
勾股定理應(yīng)用教案篇二
本節(jié)課探究體驗貫穿始終,展示交流貫穿始終,習(xí)慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。
采用“七巧板”代替教材中“畢達哥拉斯地板磚”利用我國傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國數(shù)學(xué)文化為主線這一設(shè)計理念,展現(xiàn)了我國古代數(shù)學(xué)璀璨的歷史,激發(fā)學(xué)生再創(chuàng)數(shù)學(xué)輝煌的愿望。
勾股定理應(yīng)用教案篇三
1、知識目標:
(1)理解并會證明勾股定理的逆定理;
(2)會應(yīng)用勾股定理的逆定理判定一個三角形是否為直角三角形;
(3)知道什么叫勾股數(shù),記住一些覺見的勾股數(shù).
2、能力目標:
(1)通過勾股定理與其逆定理的比較,提高學(xué)生的辨析能力;
(2)通過勾股定理及以前的知識聯(lián)合起來綜合運用,提高綜合運用知識的能力.
3、情感目標:
(1)通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受;
(2)通過知識的縱橫遷移感受數(shù)學(xué)的辯證特征.
教學(xué)重點:勾股定理的逆定理及其應(yīng)用
教學(xué)難點:勾股定理的逆定理及其應(yīng)用
教學(xué)用具:直尺,微機
教學(xué)方法:以學(xué)生為主體的討論探索法
勾股定理應(yīng)用教案篇四
教學(xué)目標1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.
2.會綜合運用平行四邊形的判定方法和性質(zhì)來解決問題
教學(xué)重點:平行四邊形的判定方法及應(yīng)用
教學(xué)難點:平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用
引
二.探
閱讀教材p44至p45
利用手中的學(xué)具——硬紙板條,通過觀察、測量、猜想、驗證、探索構(gòu)成平行四邊形的條件,思考并探討:
(1)你能適當選擇手中的硬紙板條搭建一個平行四邊形嗎?
(2)你怎樣驗證你搭建的四邊形一定是平行四邊形?
(3)你能說出你的做法及其道理嗎?
(4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語言表述出來嗎?
(5)你還能找出其他方法嗎?
從探究中得到:
平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
平行四邊形判定方法2對角線互相平分的四邊形是平行四邊形。
證一證
平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
證明:(畫出圖形)
平行四邊形判定方法2一組對邊平行且相等的四邊形是平行四邊形。
證明:(畫出圖形)
三.結(jié)
兩組對邊分別相等的四邊形是平行四邊形。
對角線互相平分的四邊形是平行四邊形。
四.用
勾股定理應(yīng)用教案篇五
1、知識與技能目標:探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,通過探究能夠發(fā)現(xiàn)直角三角形中兩個直角邊的平方和等于斜邊的平方和。
2、過程與方法目標:經(jīng)歷用測量和數(shù)格子的辦法探索勾股定理的過程,進一步發(fā)展學(xué)生的合情推理能力。
3、情感態(tài)度與價值觀目標:通過本節(jié)課的學(xué)習(xí),培養(yǎng)主動探究的習(xí)慣,并進一步體會數(shù)學(xué)與現(xiàn)實生活的緊密聯(lián)系。
勾股定理應(yīng)用教案篇六
1、通過拼圖,用面積的方法說明勾股定理的正確性.
2、通過實例應(yīng)用勾股定理,培養(yǎng)學(xué)生的知識應(yīng)用技能.
1.用面積的方法說明勾股定理的正確.
2.勾股定理的應(yīng)用.
勾股定理的應(yīng)用.
一、學(xué)前準備:
1、閱讀課本第46頁到第47頁,完成下列問題:
2、剪四個完全相同的直角三角形,然后將它們拼成如圖所示的'圖形。大正方形的面積可以表示為_________________________,又可以表示為__________________________.對比兩種表示方法,看看能不能得到勾股定理的結(jié)論。用上面得到的完全相同的四個直角三角形,還可以拼成如下圖所示的圖形,與上面的方法類似,也能說明勾股定理是正確的方法(請逐一說明)
二、合作探究:
(一)自學(xué)、相信自己:
(二)思索、交流:
(三)應(yīng)用、探究:
(四)鞏固練習(xí):
1、如圖,64、400分別為所在正方形的面積,則圖中字
母a所代表的正方形面積是_________。
三.學(xué)習(xí)體會:
本節(jié)課我們進一步認識了勾股定理,并用兩種方法證明了這個定理,在應(yīng)用此定理解決問題時,應(yīng)注意只有直角三角形的三邊才有這樣的關(guān)系,如果不是直角三角形應(yīng)該構(gòu)造直角三角形來解決。
2②圖
四.自我測試:
五.自我提高:
勾股定理應(yīng)用教案篇七
本節(jié)將利用勾股定理及其逆定理解決一些具體的實際問題,其中需要學(xué)生了解空間圖形、對一些空間圖形進行展開、折疊等活動.學(xué)生在學(xué)習(xí)七年級上第一章時對生活中的立體圖形已經(jīng)有了一定的認識,并從事過相應(yīng)的實踐活動,因而學(xué)生已經(jīng)具備解決本課問題所需的知識基礎(chǔ)和活動經(jīng)驗基礎(chǔ).
二、教學(xué)任務(wù)分析
本節(jié)是義務(wù)教育課程標準北師大版實驗教科書八年級(上)第一章《勾股定理》第3節(jié).具體內(nèi)容是運用勾股定理及其逆定理解決簡單的實際問題.當然,在這些具體問題的解決過程中,需要經(jīng)歷幾何圖形的抽象過程,需要借助觀察、操作等實踐活動,這些都有助于發(fā)展學(xué)生的分析問題、解決問題能力和應(yīng)用意識;一些探究活動具體一定的難度,需要學(xué)生相互間的合作交流,有助于發(fā)展學(xué)生合作交流的能力.
本節(jié)課的教學(xué)目標是:
1.通過觀察圖形,探索圖形間的關(guān)系,發(fā)展學(xué)生的空間觀念.
2.在將實際問題抽象成數(shù)學(xué)問題的過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想.
3.在利用勾股定理解決實際問題的過程中,體驗數(shù)學(xué)學(xué)習(xí)的實用性.
利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實際問題是本節(jié)課的重點也是難點.
四、教法學(xué)法
1.教學(xué)方法
引導(dǎo)—探究—歸納
本節(jié)課的教學(xué)對象是初二學(xué)生,他們的參與意識教強,思維活躍,為了實現(xiàn)本節(jié)課的教學(xué)目標,我力求以下三個方面對學(xué)生進行引導(dǎo):
(1)從創(chuàng)設(shè)問題情景入手,通過知識再現(xiàn),孕育教學(xué)過程;
(2)從學(xué)生活動出發(fā),順勢教學(xué)過程;
(3)利用探索研究手段,通過思維深入,領(lǐng)悟教學(xué)過程.
2.課前準備
教具:教材、電腦、多媒體課件.
學(xué)具:用矩形紙片做成的圓柱、剪刀、教材、筆記本、課堂練習(xí)本、文具.
五、教學(xué)過程分析
本節(jié)課設(shè)計了七個環(huán) 節(jié).第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):做一做;第四環(huán)節(jié):小試牛刀;第五環(huán)節(jié):舉一反三;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè).
勾股定理應(yīng)用教案篇八
1、知識與技能目標
學(xué)會觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念。
2、過程與方法
(1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力。
(2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想。
3、情感態(tài)度與價值觀
(1)通過有趣的問題提高學(xué)習(xí)數(shù)學(xué)的興趣。
(2)在解決實際問題的過程中,體驗數(shù)學(xué)學(xué)習(xí)的實用性。
教學(xué)重點:
探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題。
教學(xué)難點:
利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實際問題。
教學(xué)準備:
多媒體
教學(xué)過程:
第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學(xué)生觀察、猜想)
情景:
第二環(huán)節(jié):合作探究(15分鐘,學(xué)生分組合作探究)
學(xué)生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導(dǎo)學(xué)生體會利用數(shù)學(xué)解決實際問題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計算。
第三環(huán)節(jié):做一做(7分鐘,學(xué)生合作探究)
教材23頁
李叔叔想要檢測雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺。
(1)你能替他想辦法完成任務(wù)嗎?
第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生獨立完成)
2.如圖,臺階a處的螞蟻要爬到b處搬運食物,它怎么走最近?并求出最近距離。
第五環(huán)節(jié)課堂小結(jié)(3分鐘,師生問答)
內(nèi)容:如何利用勾股定理及逆定理解決最短路程問題?
第六環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)
作業(yè):1.課本習(xí)題1.5第1,2,3題.
要求:a組(學(xué)優(yōu)生):1、2、3
b組(中等生):1、2
c組(后三分之一生):1
勾股定理應(yīng)用教案篇九
隨著社會的發(fā)展,新課程改革的不斷深入,數(shù)學(xué)課已不僅是一些數(shù)學(xué)知識的學(xué)習(xí),更重要的是體現(xiàn)知識的認知發(fā)展過程。教育的目的是培養(yǎng)具有獨立思考能力、具有實踐精神和創(chuàng)新能力的人。一堂好課應(yīng)該是學(xué)生最大限度參與的課?!稊?shù)學(xué)課程標準》中指出學(xué)生的數(shù)學(xué)學(xué)習(xí)應(yīng)當是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的,內(nèi)容要有利與學(xué)生主動進行觀察、實驗、猜想、驗證、推理與交流。內(nèi)容的呈現(xiàn)應(yīng)采取不同的表達方式,以滿足多樣化的學(xué)習(xí)需求。數(shù)學(xué)活動不能單純的依賴模仿與記憶,動手實踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。
八年級數(shù)學(xué)勾股定理教案(教材、學(xué)情分析與處理)
本節(jié)知識是在學(xué)生掌握了直角三角形的三個性質(zhì):直角三角形兩銳角互余和30°所對的直角邊等于斜邊的一半以及在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對的角為30°的基礎(chǔ)上展開的。勾股定理是直角三角形的一個非常重要的性質(zhì),它揭示了一個直角三角形三邊的數(shù)量關(guān)系,可解決直角三角形的許多有關(guān)的計算,是初三解直角三角形的主要依據(jù)之一,中考中的四邊形和圓等綜合題中也經(jīng)常出現(xiàn)。貫穿了整個幾何學(xué)習(xí),更是數(shù)形結(jié)合的重要典范。更重要的是學(xué)生在探索定理的過程中,無論是課前準備和課上交流以及課下活動都讓學(xué)生充分感受到學(xué)習(xí)、思考的重要性,與人合作的重要性以及數(shù)學(xué)在實際生活中的重要作用,是進行愛國教育的重要題材!
本節(jié)課的教育對象是初二下的學(xué)生,共性是思維活躍,參與意識較強。而且一般家庭都有電腦,對教師布置的網(wǎng)上作業(yè)也頗感興趣,并能制作簡單課件。形成了一定的數(shù)學(xué)學(xué)習(xí)習(xí)慣。
勾股定理應(yīng)用教案篇十
【知識與技能】
理解并掌握勾股定理的逆定理,會應(yīng)用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。
【過程與方法】
經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。
【情感、態(tài)度與價值觀】
體會事物之間的聯(lián)系,感受幾何的魅力。
【重點】勾股定理的逆定理及其證明。
【難點】勾股定理的逆定理的證明。
(一)導(dǎo)入新課
復(fù)習(xí)勾股定理,分清其題設(shè)和結(jié)論。
提問學(xué)生畫直角三角形的方法(可用尺類工具),然后要求不能用繩子以外的工具。
出示古埃及人利用等長的3、4、5個繩結(jié)間距畫直角三角形的方法,以其中蘊含何道理為切入點引出課題。
(二)講解新知
請學(xué)生思考3,4,5之間的關(guān)系,結(jié)合勾股定理的學(xué)習(xí)經(jīng)驗明確
出示數(shù)據(jù)2.5cm,6cm,6.5cm,請學(xué)生計算驗證數(shù)據(jù)滿足上述平方和關(guān)系,并畫出相應(yīng)邊長的三角形檢驗是否為直角三角形。
學(xué)生活動:同桌兩人一組,將三邊換成其他滿足上述平方和關(guān)系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應(yīng)邊長的三角形檢驗是否為直角三角形。
勾股定理應(yīng)用教案篇十一
答案
解:總差為17+10=27(塊);
分配之差為7-4=3(塊);
所以有少先隊員27÷3=9(人)
共有磚:4×9+17=53(塊).
答:這個班少先隊有9個人,要搬的磚共有53塊。
考點:盈虧問題,一盈一虧
解:第一次盈22人,第二次多出一個房間則是虧3+5=8(人);
總差為22+8=30(人);
兩次分配之差為5人,
所以宿舍有30÷5=6(間),
新生共有3×6+22=40(人).
答:宿舍有6間,新生有40人。
考點:盈虧問題
注意點:空出一個房間,則是少了8人入住,則是虧8人
解:其中兩人分4個,其余每人分2個,則多出4個“轉(zhuǎn)化為”全家每人都分2個,
多出4+2×(4-2)=8個;
一人分6個,其余每人分4個,則缺少12個“轉(zhuǎn)化為”全家每人都分4個,
缺少12-(6-4)=10個;
由盈虧問題基本公式可知:全家的人數(shù)有(8+10)÷(4-2)=9(人)
買來橘子2×9+8=26(個)
勾股定理應(yīng)用教案篇十二
勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進一步刻畫了直角三角形的特點。學(xué)習(xí)勾股定理極其逆定理是進一步認識和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運算和代數(shù)學(xué)習(xí)的必然基礎(chǔ)。《新版數(shù)學(xué)課程標準》對勾股定理教學(xué)內(nèi)容的要求是:
1、在研究圖形性質(zhì)和運動等過程中,進一步發(fā)展空間觀念;
2、在多種形式的數(shù)學(xué)活動中,發(fā)展合情推理能力;
3、經(jīng)歷從不同角度分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性;
4、探索勾股定理及其逆定理,并能運用它們解決一些簡單的實際問題。
本節(jié)課的教學(xué)目標是:
1、能正確運用勾股定理及其逆定理解決簡單的實際問題。
教學(xué)重點和難點:
應(yīng)用勾股定理及其逆定理解決實際問題是重點。
把實際問題化歸成數(shù)學(xué)模型是難點。
根據(jù)新課標提出的“要從學(xué)生已有的生活經(jīng)驗出發(fā),讓學(xué)生親身經(jīng)歷將實際問題抽象成數(shù)學(xué)模型并進行解釋和運用的同時,在思維能力情感態(tài)度和價值觀等方面得到進步和發(fā)展”的理念,我想盡量給學(xué)生創(chuàng)設(shè)豐富的實際問題情境 ,使教學(xué)活動充滿趣味性和吸引力,讓他們在自主探究,合作交流中分析問題,建立數(shù)學(xué)模型,利用勾股定理及其逆定理解決問題。在教學(xué)過程中,采用一題多變的形式拓寬學(xué)生視野,訓(xùn)練學(xué)生思維的靈活性,滲透化歸的思想以及分類討論思想,方程思想等,使學(xué)生在獲得知識的同時提高能力。
在教學(xué)設(shè)計中,盡量考慮到不同學(xué)習(xí)水平的學(xué)生,注意知識由易到難的層次性,在課堂上,要照顧到接受較慢的學(xué)生。使不同學(xué)生有不同的收獲和發(fā)展。
本節(jié)課設(shè)計了七個環(huán) 《勾股定理的應(yīng)用》教學(xué)設(shè)計節(jié)、第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):變式訓(xùn)練;第四環(huán)節(jié):議一議;第五環(huán)節(jié):做一做;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):情境引入
情景1:復(fù)習(xí)提 問:勾股定理的語言表述以及幾何語言表達?
設(shè)計意圖:溫習(xí)舊知識,規(guī)范語言及數(shù)學(xué)表達,體現(xiàn)
設(shè)計意圖:既靈活考察學(xué)生對勾股定理的理解,又增加了趣味性,還能考察學(xué)生三角形三邊關(guān)系。
第二環(huán)節(jié):合作探究(圓柱體表面路程最短問題)
情景3:課本引例(螞蟻怎樣走最近)
第三環(huán)節(jié):變式訓(xùn)練(由圓柱體表面路程最短問題逐步變?yōu)殚L方體表面的距離最短問題)
設(shè)計意圖:將問題的條件稍做改變,讓學(xué)生嘗試獨立解決,拓展學(xué)生視野,又加深他們對知識的理解和鞏固。再將圓柱問題變?yōu)檎襟w長方體問題,學(xué)生有了之前的經(jīng)驗,自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長方體問題中學(xué)生會有不同的做法,正好透分類討論思想。
第四環(huán)節(jié):議一議
內(nèi)容:李叔叔想要檢測雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺:
(1)你能替他想辦法完成任務(wù)嗎?
設(shè)計意圖:
第五環(huán)節(jié):方程與勾股定理
在我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問題,這個問題的意思是:有一個水池,水面是一個邊長為10尺的正方形,在水池的中央有一根新生的蘆葦,它高出水面1尺,如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達岸邊的水面,請問這個水池的深度和這根蘆葦?shù)拈L度各是多 少尺?《意圖:學(xué)生可以進一步了解勾股定理的悠久歷史和廣泛應(yīng)用,了解我國古代人民的聰明才智;學(xué)會運用方程的思想借助勾股定理解決實際問題。
第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):
1、解決實際問題的方法是建立數(shù)學(xué)模型求解、
2、在尋求最短路徑時,往往把空間問題平面化,利用勾股定理及其逆定理解決實際問題、
3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。
第七環(huán)作業(yè)設(shè)計:
第一道題難度較小,大部分學(xué)生可以獨立完成,第二道題有較大難度,可以交流討論完成。
勾股定理應(yīng)用教案篇十三
星期三上午第一節(jié)講了《勾股定理逆定理》第一課時,課后效果和我預(yù)想的一樣,由于探究內(nèi)容偏多,課堂容量大,后半部分感覺倉促,留給學(xué)生的思考時間顯得不足。
回頭反思,這節(jié)課的設(shè)計思路比較合理:定理來源于生活,服務(wù)于生活。我由勾股定理引出一道生活實際問題,引起學(xué)生的求知欲,然后和學(xué)生分三種方法探究,得出“勾股定理逆定理”,經(jīng)過課堂練習(xí)夯實基礎(chǔ),最后利用新知解決開課時提出的生活實際問題,首尾呼應(yīng),學(xué)以致用。
對互逆命題,原命題,逆命題,互逆定理,逆定理等概念的講解可隨題點化,而詳細講解、隨堂練習(xí)可做為第二課時的重點,讓出更多時間來做勾股定理逆定理的相應(yīng)練習(xí),特別是應(yīng)加大有靈活度和難度生活習(xí)題的練習(xí),拓寬學(xué)生知識面,提高學(xué)生的發(fā)散思維能力。
總之,課堂設(shè)計要做到一個“狠”字,該刪除的就刪,教學(xué)目標不可貪多。我們圍繞授課重點做相應(yīng)探究,練習(xí),次重點可放在下個課時重點講解,探究時間要預(yù)留充足,相應(yīng)練習(xí)寧精勿多,注重雙基才是根本。
勾股定理應(yīng)用教案篇十四
了解勾股定理的一些證明方法,會簡單應(yīng)用勾股定理解決問題
在充分觀察、歸納、猜想的基礎(chǔ)上,探究勾股定理,在探究的過程中,發(fā)展合情推理,體會數(shù)形結(jié)合、從特殊到一般等數(shù)學(xué)思想。
通過對我國古代研究勾股定理的成就介紹,培養(yǎng)學(xué)生的民族自豪感。
1、創(chuàng)設(shè)情境
師生活動:教師引導(dǎo)學(xué)生尋找圖形中的直角三角形和正方形等,并引導(dǎo)學(xué)生發(fā)現(xiàn)直角三角形的全等關(guān)系,指出通過今天的學(xué)習(xí),就能理解會徽圖案的含義。
設(shè)計意圖:本節(jié)課是本章的起始課,重視引言教學(xué),從國際數(shù)學(xué)家大會的會徽說起,設(shè)置懸念,引入課題。
2、探究勾股定理
觀看洋蔥數(shù)學(xué)中關(guān)于勾股定理引入的視頻,讓我們一起走進神奇的數(shù)學(xué)世界
追問:由這三個正方形的邊長構(gòu)成的等腰直角三角形三條邊長之間又有怎么樣的關(guān)系?
師生活動:教師引導(dǎo)學(xué)生發(fā)現(xiàn)正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。
設(shè)計意圖:從最特殊的等腰直角三角形入手,便于學(xué)生觀察得到結(jié)論
問題3:數(shù)學(xué)研究遵循從特殊到一般的數(shù)學(xué)思想,既然我們得到了等腰直角三角形三邊的這種特殊的數(shù)量關(guān)系,那我們不妨大膽猜測在一般的直角三角形(在下圖的方格紙中,每個方格的面積是1)中,這種特殊的數(shù)量關(guān)系也同樣成立。
師生活動:學(xué)生獨立思考后小組討論,難點是如何證明求以斜邊為邊長的正方形的面積,可由師生共同總結(jié)得出可以通過割、補兩種方法,求出其面積。
勾股定理應(yīng)用教案篇十五
勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際操作,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進行正確的應(yīng)用。
本節(jié)教科書從畢達哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學(xué)生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數(shù)學(xué)問題中的應(yīng)用,使學(xué)生對勾股定理的作用有一定的認識。
一、知識與技能
1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。
2、應(yīng)用勾股定理解決簡單的實際問題
3學(xué)會簡單的合情推理與數(shù)學(xué)說理
二、過程與方法
引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進一步發(fā)展合作交流能力和數(shù)學(xué)表達能力,并感受勾股定理的應(yīng)用知識。
三、情感與態(tài)度目標
通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動中,學(xué)生親自動手對勾股定理進行探索與驗證,培養(yǎng)學(xué)生的合作交流意識和探索精神,以及自主學(xué)習(xí)的能力。
四、重點與難點
1、探索和證明勾股定理
2、熟練運用勾股定理
一、創(chuàng)設(shè)情景,揭示課題
1、教師展示圖片并介紹第一情景
以中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請教數(shù)學(xué)知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。
周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也?!?/p>
2、教師展示圖片并介紹第二情景
畢達哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
二、師生協(xié)作,探究問題
1、現(xiàn)在請你也動手數(shù)一下格子,你能有什么發(fā)現(xiàn)嗎?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?
3、你能得到什么結(jié)論嗎?
三、得出命題
勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋:由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
四、勾股定理的證明
第一種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、,斜邊為 的直角三角形圍在外面形成的。因為邊長為 的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡得 。
第二種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、,斜邊為 的
角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為 的正方形“小洞”。
因為邊長為 的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡得 。
這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學(xué)家趙爽高超的證題思想和對數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。
五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。
勾股定理的靈活運用勾股定理在實際的生產(chǎn)生活當中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。
六、歸納總結(jié)
2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現(xiàn)。
七、討論交流
讓學(xué)生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機會,通過提示性的引導(dǎo),讓學(xué)生對勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。
我們班的同學(xué)很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。
勾股定理應(yīng)用教案篇十六
教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個直角的"形"的特點,轉(zhuǎn)化為三邊之間的"數(shù)"的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計算問題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點之一。本節(jié)課的重點是發(fā)現(xiàn)勾股定理,難點是說明勾股定理的正確性。
學(xué)生分析:
1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細研究過三角尺的同學(xué)并不多,通過這樣的情景設(shè)計,能非常簡單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。
2、以與勾股定理有關(guān)的人文歷史知識為背景展開對直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。
設(shè)計理念:本教案以學(xué)生手中舞動的三角尺為知識背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學(xué)生對勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗勾股定理的探索和運用過程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過向?qū)W生介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。
教學(xué)目標:
1、經(jīng)歷用面積割、補法探索勾股定理的過程,培養(yǎng)學(xué)生主動探究意識,發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。
2、經(jīng)歷用多種割、補圖形的方法驗證勾股定理的過程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實世界和有條理地思考能力以及語言表達能力等,感受勾股定理的文化價值。
3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛國熱情。
4、欣賞設(shè)計圖形美。
教學(xué)準備階段:
學(xué)生準備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
老師準備:畢達哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。
(一)引入
同學(xué)們,當你每天手握三角尺繪制自己的宏偉藍圖時,你是否想過:他們的邊有什么關(guān)系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關(guān)系)
(二)實驗探究
設(shè)網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b ,斜邊為c ,觀察并計算每個正方形的面積,以四人小組為單位填寫下表:
(討論難點:以斜邊為邊的正方形的面積找法)
交流后得出一般結(jié)論: (用關(guān)于a、b、c的式子表示)
(三)探索所得結(jié)論的正確性
當直角三角形的直角邊分別為a 、b,斜邊為c時, 是否一定成立?
1、指導(dǎo)學(xué)生運用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計合理分割(或補全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進行)
在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補圖,展示出來交流講解,并引導(dǎo)學(xué)生進行說理:
如圖2(用補的方法說明)
師介紹:(出示圖片)畢達哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發(fā)現(xiàn)進行了探究證明……,終獲成功。后來西方人們?yōu)榱思o念他的這一發(fā)現(xiàn),將這一定理命名為"畢達哥拉斯定理"。1952年,希臘政府為了紀念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計的這種圖形為主圖發(fā)行了一枚紀念郵票。(見課本52頁彩圖2—1,欣賞圖片)
如圖3(用割的方法去探索)
師介紹: (出示圖片) 中國古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運用這個結(jié)論。早在公元前2000年左右,大禹治水時期,就曾經(jīng)用過此方法測量土地的`等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用"勾三、股四、弦五"測量土地,他們對這一結(jié)論的運用至少比古希臘人早500多年。公元200年左右,三國時期吳國數(shù)學(xué)家趙爽曾構(gòu)造此圖驗證了這一結(jié)論的正確性。他的這個證明,可謂別具匠心,極富創(chuàng)新意識,他用幾何圖形的割、來證明代數(shù)式之間的相等關(guān)系,既嚴密,又直觀,為中國古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨特風(fēng)格樹立了一個典范。他是我國有記載以來第一個證明這一結(jié)論的數(shù)學(xué)家。我國數(shù)學(xué)家們?yōu)榱思o念我國在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為"勾股定理"。(點題)
20xx年,世界數(shù)學(xué)家大會在中國北京召開,當時選用這個圖案作為會場主圖,它標志著我國古代數(shù)學(xué)的輝煌成就。(見課本50頁彩圖,欣賞圖片)
如圖4(構(gòu)造新圖形的方法去探索)
本節(jié)課學(xué)習(xí)的勾股定理用語言敘說為:
1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問題并交流。
2、探索勾股定理的運用。
勾股定理應(yīng)用教案篇十七
本節(jié)課的數(shù)學(xué)設(shè)計主要是從面對全體學(xué)生,針對學(xué)生知識水平、生活環(huán)境、思維特點、認知風(fēng)格的差異等方面進行編寫講學(xué)稿的;它的主要目的是讓學(xué)生應(yīng)用所學(xué)的勾定理解決現(xiàn)實生活中的實際問題。由于學(xué)生才剛剛掌握勾股定理,根據(jù)教材,單刀直入,要求學(xué)生運用其定理解決生活中的實際問題,對部分學(xué)生來說還存在著一定的困難。故我們初二級組全體數(shù)學(xué)老師,對教材知識內(nèi)容進行了有效的整合,從中提煉教學(xué)資源,把本章的教學(xué)內(nèi)容進行了重建組合,使之符合我們的學(xué)生的認知特點,心理特點級學(xué)習(xí)特點,讓學(xué)生學(xué)起來輕松,運用起來靈活。本節(jié)課主要是圍繞“設(shè)置問題情境――建立教學(xué)模型――解釋――應(yīng)用及拓展”這一主線展開教學(xué)工作的。其閃光點主要有:
一、創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生積極思考,激發(fā)其探究欲望。
激發(fā)學(xué)生探究問題、解決問題,首先要激發(fā)其探究的興趣,欲想要學(xué)生感興趣,首先教師必須先創(chuàng)設(shè)與學(xué)習(xí)內(nèi)容緊密相關(guān)的'問題情境,能引導(dǎo)學(xué)生進行“數(shù)學(xué)思考”。本節(jié)課一開始,教師拿來一塊木板表演從一間小小的門框穿過,橫著進不了,豎著也過不了,問學(xué)生怎么辦?瞬間,木板過門框問題成了大家討論的焦點;同時引導(dǎo)學(xué)生,建立數(shù)學(xué)模型,突破將形轉(zhuǎn)化為數(shù)這一思想轉(zhuǎn)變難點。
二、能調(diào)動全體學(xué)生參與教學(xué)活動。
課堂教學(xué)活動形式多樣化,有個人思考,有小組活動,有全班交流,讓學(xué)生進行分析歸納,教師鼓勵學(xué)生盡量用自己的語言表達自己的發(fā)現(xiàn)。感悟“圖形”與“數(shù)量”之間的相互關(guān)系,將教學(xué)內(nèi)容生活化,動態(tài)化,使學(xué)生更真切地感受到勾股定理的使用性,整節(jié)課師生之間均處與主動狀態(tài)。
三、講學(xué)稿的設(shè)計,不拘泥于教材,吃透教材,敢于創(chuàng)新。
講學(xué)稿中所設(shè)計的例題或習(xí)題,富于生活氣息。例、木板過門框、折斷的樹,電視機的大少等,都與現(xiàn)實生活有關(guān)。其實是告訴學(xué)生數(shù)學(xué)是為生活服務(wù)的,同時,數(shù)學(xué)也是來自于生活。
四、教學(xué)目標明確,能突破教學(xué)重點、難點,教學(xué)程序有條不紊,思路清晰,或活而不亂。教師具有一定的調(diào)控能力,能輕松駕御課堂,應(yīng)付自如。學(xué)生在課堂內(nèi)能正確完成預(yù)設(shè)的練習(xí)。
五、注重知識的前后連貫性,練習(xí)具有一定的層次性,使全體學(xué)生學(xué)有所用,課后拓展題,拓寬了學(xué)生的思路,培養(yǎng)了學(xué)生的審題能力,挖掘?qū)W生的潛能。
上完一節(jié)課下來,總感到有點遺憾。不足之處說出來與大家共同探討。例題的解答板書教師應(yīng)在黑板上一步一步示范,盡量少用多媒體示范,因為幻燈片一會兒就換了,不利于學(xué)困生學(xué)習(xí);講學(xué)稿的編設(shè)內(nèi)容過于簡單基礎(chǔ)化,不適合優(yōu)生的培養(yǎng),課堂中集體回答問題較多,學(xué)生單獨思考、答題、獨立完成作業(yè)的機會不多;課后作業(yè)與堂上練習(xí)拓展不夠深,有待改善。但愿我們能互相學(xué)習(xí),取長補短,共同進取。
【本文地址:http://www.mlvmservice.com/zuowen/5356134.html】