無論是身處學校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。大家想知道怎么樣才能寫一篇比較優(yōu)質的范文嗎?以下是小編為大家收集的優(yōu)秀范文,歡迎大家分享閱讀。
分數除法的教學反思 六年級篇一
首先,從整體上來說,這堂課還不夠完整。一堂課應該由問題引入——新課探索——鞏固練小結——布置作業(yè)所構成。但是我的這堂課在小結后就匆匆結束了,并且小結進行的也是相當的倉促。顯然,在整體布局和時間的分配方面仍需要加強。
其次,在這堂課中,或許是學生的緊張,或許是學生的確掌握的不夠,導致出現(xiàn)了很多沒有預料到的問題。而對于這些問題,我的應變的能力就顯的很薄弱,有些問題我不明白該如何的處理,因此只能草草的讓其他學生報了正確的答案后囫圇帶過而已。而這個問題恰恰是需要自己去著力解決的。學生產生了問題本是展現(xiàn)老師水平的時候,針對錯誤的答案,可以讓學生們討論“錯誤的原因”,“正確的該是什么”等等;在措詞上也應該盡量避免“對嗎?”,“正確嗎?”等等看似“疑問”實則否定的話,而應采取“還有其它答案嗎?”之類的語句,讓其它學生去思考。因此,對于這個問題需要更加詳細的備課,更加鞏固的考慮
再者,在概念的引出之前事實上我只采用了一個例子。但事實上,一個例子,是不具代表性,相反,應采用更多的例子,正例,反例等等,必要時,教師還可以創(chuàng)造一些錯誤的題目來讓學生判斷。而其最終的目的是為了讓學生更清晰,更透徹的理解這個概念,方便學生最后自己概括出概念。因此,張波老師也建議將概念后面的鞏固練習提上來,放在概念形成之前,作為辨析進行。
另外,在課堂上,學生應該是主體,教師只是作為引導。我們需要把更多的時間交給學生,讓他們去思考,去討論,讓學生通過老師設計好的有層次的階梯一步一步自己發(fā)現(xiàn),自己解決問題,讓學生真正的“做數學”。而不是老師灌輸學生接受。
這是一堂非常具有教育意義的課,課堂上暴露了相當多的問題,其他老師也給我指出了各種有效的改進方法。相信通過這次機會我會得到很大的進步。
分數除法的教學反思 六年級篇二
(看了小雒老師的這篇文章,變亦喜亦憂。喜的是,雒老師很用心,解答分數乘除法問題的規(guī)律是梳理的一清二楚,頭頭是道;憂的是,這樣教學直奔了目的地,沿途的風光可曾讓學生領略?二十年前,我初踏上崗位,熟記的就是文中的所說這個簡便易行的口訣。今天,我們教師心中仍然要有這個,但是提醒大家:只讓學生記住這個口訣行嗎?我們要培養(yǎng)的不是解題的機器。我們應該仔細想一想:這部分教學的過程性目標是什么?學生能從中受益嗎?解題過程中學生的思維能不能得到提高?讓我們共同討論~于華靜)
最近一段時間,從分數的乘法到分數的除法,對于單純的計算方法孩子們臉上似乎沒有露出愁色。但是對于一直相伴至今的分數應用題,孩子們理解與區(qū)別起來似乎確實比較吃力,各種數量關系確實比較難分析、判斷。怎樣選擇一個合適的解答方法,是孩子們掌握這類應用題的關鍵,對此,我總結以下幾點體會:
分數應用題的基礎題型是簡單的分數乘法應用題,要抓住的就是分數乘法的意義:單位“1”×分率=對應量,包括分數除法應用題,仍然使用的是分數乘法的意義來進行分析解答,所以要把這個關系式吃透,同時還要讓學生理解什么是分率,什么是對應的量,從中總結出:“一找:找單位“1”;二看:單位“1”是已知還是未知;三:判斷已知用乘法,未知用除法。在簡單的分數乘法除法應用題中,反復使用這個解答步驟以達到熟練程度,對后面的較復雜分數應用題教學將有相當大的幫助。
教到復雜的分數應用題時,要抓住例題中最具有代表性的也是最難的兩種題型加強訓練,就是“已知對應量、對應分率、求單位‘1’”和“比一個數多(少)幾分之幾”這兩種題型,對待前者要充分利用線段圖的優(yōu)勢,讓學生從意義上明白單位“1”×對應分數=對應量,所以單位“1”=對應量÷對應分數。在訓練中牢固掌握這種解題方式,會熟練尋找題中一個已知量也就是“對應量”的對應分數。對于后者,要加強轉化訓練,要熟練轉化“甲比乙多(少)幾分之幾”變成“甲是乙的1+(或-)幾分之幾”,對這種轉化加強訓練后學生就能輕松地從“多(少)幾分之幾”的關鍵句中得出“是幾分之幾”的關鍵句,從而把較復雜應用題轉變成前面所學過的簡單應用題。
(1)畫線段圖進行分析。對于一些簡單的分數應用題,教師要教會學生畫線段圖,然后引導學生觀察線段圖,畫線段圖是強調量在下,率在上。如果單位“1”對應的數量是已知的,就用乘法,找未知數量對應的分率;如果單位“1”對應的數量是未知的,就用方程或除法,找已知數量對應的分率。
(2)找數量關系進行分析。有許多的分數應用題,題目中都有一句關鍵分率句,教師要引導學生把這一句話翻譯成一個等量關系,然后根據這一個數量關系,即可求出題目中的問題,找到解決問題的方向。這一點必須教會給學生。
(3)用按比例分配的方法進行分析。有部分分數應用題,可以把兩個數量之間的關系轉化為比,然后利用按比例分配的方法進行解答。當然還要鼓勵學生學會用多種方法解答。
總之,分數應用題的學習的確有難度,但并非難以理解和接受,我將其以上三點用了六句話進行總結了一下,做分數應用題時,“先找單位1,再看知不知,已知用乘法,未知用除法,比1多
加,比1少則減”.所以只要充分了解教材,了解知識結構中前后知識點的關系,這部分的教學會變得比較輕松。
分數除法的教學反思 六年級篇三
《分數與除法》是在學生學習了分數的意義基礎上進行教學的,通過這節(jié)課的教學,目的是讓學生在理解了分數的意義基礎上,從除法的角度去理解分數的意義,掌握分數與除法的關系,會用分數表示兩個數相除的商。
在講這節(jié)課之前,本來以為是很簡單的一節(jié)課,學生在理解分數與除法的關系時也一定會很容易,唯一的難點是用除法的意義理解分數的意義,我想只要借助實物圓形紙片給學生演示一下,學生就會理解了,但當我講完這節(jié)課后,才發(fā)現(xiàn)我的想法太簡單了,我把學生想象成理想化的學生了,這部分知識雖然有一部分學生理解了,但仍有一部分學生在用除法的意義理解分數還很困難。在這節(jié)課的教學中,我覺得有以下幾方面值得我去思考:
一,在學生用除法的意義理解分數的意義時, 能夠借助直觀形象的實物圖,通過動手操作、演示說明等方法,讓學生理解分數的'意義,這對于小學生來說,理解起來比較容易。但由于我在教學時,疏忽了個別理解能力較差的學生,在演示說明的時候,叫的學生少,如果能多叫幾名同學演示說明,再加上教師的及時點撥,我想這部分學生在理解這一難點時,就會比較容易了。
二、學生不是理想化的學生,不要指望他們什么都會,因為學生之間畢竟存在著很大的差異。在教學“把3張餅平均分給4個同學,每個同學應分多少張餅?”時,我讓學生借助圓形紙片在小組內合作進行分割,在學生動手操作時,我才發(fā)現(xiàn)有的同學竟然不知道該怎么分,圓紙片拿在手上束手無策,只是眼巴巴地看著其他的同學分;小組的同學分完后,演示匯報時,有很多同學都知道怎么分,但說的不是很明白。在以后的備課過程中,要充分考慮學生的已有知識水平和心理認知特點。
三、小組的全員參與不夠。在小組合作進行把3張餅平均分給4個人時,有的小組合作的效果較好,但有的小組有個別同學孤立,不能很好的與人合作,我想,學生在動手操作之前,教師如果能讓小組長布置好明確的任務分工,讓每個人都有事可做,小組合作的效果就會更好了。
四、在教學設計環(huán)節(jié)上,學生動手操作的內容過多,使整堂課顯得很羅嗦,練習的時間就相對縮短了。在操作這一環(huán)節(jié)上,我設計了兩次動手操作,都是分餅問題,分餅的目的是讓學生用除法的意義理解分數的意義,學生分了兩次,但還是有的同學理解的不是很透徹,如果只讓學生分一次,把這一次的操作活動時間延長一些,匯報演示時讓每個類型的學生都有參與展示的機會,我想這樣教師就會有充足的時間在學生匯報展示的時候給予指導,使學生真正理解分數的意義。
分數除法的教學反思 六年級篇四
教學分數與除法的關系時學生很是配合,仿佛早已掌握了所有知識點,對于我的提問對答如流,甚至當我給出例題3÷4時,全班不假思索不屑一顧的脫口而出四分之三,而當我問出為什么時,他們甚至不愿意去思考,仿佛我問的這個"為什么"簡直就是廢話中的廢話。整個班級躁動不安,是清明假期來臨的緣故吧??粗磳l(fā)怒的老師,孩子們安靜下來一張張稚氣的臉望著我,眼神中帶有一絲絲驚恐。我突然想笑,這不就是兒時的自己嗎?我沉住氣笑著說:明天放假了,看來大家很是興奮吧!孩子們長舒一口氣掩面而笑。我接著說:站好最后一班崗的戰(zhàn)士才是真正的好戰(zhàn)士。同學們心領會神的坐得端端正正。"授人以魚,不如授人以漁。"我接著說,"大家都知道3除以4得四分之三,那3除以4為什么等于四分之三呢?四分之三就相當于魚。而老師想讓你得到的是漁,你覺得呢?"果然還是聰明的孩子,輕輕一撥,大部分開始思考了,我和孩子們開始了我鋪好的探究之旅。
我叫學生拿出課前準備好的三個圓,讓學生在小組內用自己喜歡的方式來驗證對3除以4這一結果的猜想。孩子們或靜下心來仔細思考;或把自己手里的圓形折一折、剪一剪;或在本子上畫一畫、寫一寫;或同桌小聲交流自己的想法。我把想法不同的孩子叫上講臺,在黑板上畫出自己的思考過程。并讓他們一一介紹。通過學生的操作,得出兩種分法,方法
(一):把三個圓一個一個分,每次得四分之一,分3次,就得3個四分之一,就是四分之三張餅。方法
(二):把三個圓疊起來,平均分成4份,得到3張餅的四分之一,也是3個四分之一,相當于一張餅的四分之三。不管怎樣分,都可以驗證3÷4用分數四分之三來表示結果。還有學生想出了方法
(三):3除以4得0.75,0.75化成分數也是四分之三。通過學生自主操作讓其充分理解其中的算理。
在學生初步感知分數與除法的關系時,我有意識地把例題改了一下,把3塊餅平均分給5個人,把4塊餅平均分給7個人,讓學生通過畫圖或說理,快速的算出它們的商。讓學生親身體會到計算兩個整數相除,除不盡或商里面有小數時就用分數表示他們的商,這樣既簡便又快捷,而且不容易出錯。
通過學生自主生成的三道算式,讓學生去發(fā)現(xiàn)除法與分數之間到底有怎樣的關系?并把自己的想法和同桌互相交流。最終學生小結出:除法中的被除數相當于分數的分子,除數相當于分數的分母,除號相當于分數線。并明確:除法是一種運算,而分數是一種數。
出示:
把三塊餅平均分給7個小朋友,每人分得這些餅的幾分之幾。
把三塊餅平均分給7個小朋友,每人分得幾分之幾塊。
讓學生觀察這兩道題目的區(qū)別,一道帶單位,一道不帶單位。第一道是根據分數的意義把單位"1"平均分成幾份,每份就是單位"1"的幾分之一,是份數與單位"1"的關系,在數學中我們稱為分率,分率不帶單位。第二題帶單位則表示的是一個具體的數量,則用總數量除以平均分的份數得到每份的具體數量,得數的單位跟被除數的單位一致。明確:分數有兩種含義,一種表示與單位1 的關系即分率(不帶單位),一種則表示具體的數量(要帶單位),為以后學習分數和百分數應用題做好鋪墊。
在教學過程中,讓學生在自主參與,動手操作、觀察比較、交流匯報的基礎上去推理和概括,能達到事半功倍的效果。我一直崇尚讓學生自己去發(fā)現(xiàn),自己去總結,讓學生能學習探究問題的方法,而不是單純的教授一些解題技巧,因為我知道授生以"漁"永遠比授生以"魚"來的重要的多!
作者簡介
劉璐,中國共產黨黨員,大學本科學歷,艷梅名師工作室研修員。20xx年參加工作至今,一直擔任小學數學教學工作。多次參加教學比武,分獲市特等獎,縣特等獎,縣一等獎。數次被評為鄉(xiāng)優(yōu)秀教師,獲縣嘉獎。20xx年一師一優(yōu)課獲部級優(yōu)課。堅持用"愛"和"知識"去呵護每一位學生,期待每個課堂都能充滿"童真".
分數除法的教學反思 六年級篇五
:分數與除法,教材第65、66頁例1和例2
:1.使學生理解兩個整數相除的商可以用分數來表示。
2.使學生掌握分數與除法的關系。
:1.理解、歸納分數與除法的關系。
2.用除法的意義理解分數的意義。
:圓片、多媒體課件。
:
(一)復習
把6塊餅平均分給2個同學,每人幾塊?板書:6÷2=3(塊)
(二)導入
(2)把1塊餅平均分給2個同學,每人幾塊?板書:1÷2=0.5(塊)
(三)教學實施
1.學習教材第65 頁的例1 。
(1)如果把1塊餅平均分給3個同學,每人又該得到幾塊呢?1÷3=0.3(塊)
(2)1除以3除不盡,結果除了用循環(huán)小數,還可以用什么表示?
通過練習,激活了學生原有的知識經驗,(即兩個數相除的商有可能是整數)也有可能是小數。進而提出當1÷3得不到一個有限的小數時,又該如何表示?這一問題激發(fā)了學生探索的積極性,創(chuàng)設解決問題的情境,研究分數與除法的關系。
( 3)指名讓學生把思路告訴大家。
就是把1塊餅看成單位“1”,把單位“1”平均分成三份,表示這樣一份的數,可以用分數來表示,這一份就是塊。
老師根據學生回答。(板書:1 ÷ 3 =塊)
(4)如果取了其中的兩份,就是拿了多少塊?(塊)怎樣看出來的?
通過這樣的練習,為下面的操作打下基礎。
2.觀察上面三道算式結果得出:兩數相除,結果不僅可以用整數、小數來表示,還可以用分數來表示。引出課題:分數與除法
3.學習例2 。
( 1 )如果把3 塊餅平均分給4個同學,每人分得多少塊?(板書:3 ÷ 4)( 2 )3 ÷ 4 的計算結果用分數表示是多少?請同學們用圓片分一分。
老師:根據題意,我們可以把什么看作單位“1 " ? (把3 塊餅看作單位“1”。)把它平均分成4 份,每份是多少,你想怎樣分?請同學到投影前演示分的過程。
通過演示發(fā)現(xiàn)學生有兩種分法。
方法一:可以1個1個地分,先把1 塊餅平均分成4 份,得到4 個,3 個餅共得到12個, 平均分給4 個學生。每個學生分得3個,合在一起是塊餅。
方法二:可以把3 塊餅疊在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到塊餅,所以每人分得塊。
討論這兩種分法哪種比較簡單?(相比較而言,方法二比較簡單。)
兩種分法都強調分得了多少塊餅,讓學生初步體會了分數的另一種含義,即表示具體的數量。借助學具,深化研究。
( 3 )加深理解。(課件演示)
老師:塊餅表示什么意思:
①把3塊餅一塊一塊的分,每人每次分得塊,分了3次,共分得了3個塊,就是塊。
②把3塊餅疊在一塊分,分了一次,每人分得3塊,就是塊。
現(xiàn)在不看單位名稱,再來說說表示什么意思?( 表示把單位“1 “平均分成4 份,表示這樣3 份的數;還可以表示把3 平均分成4份,表示這樣一份的數。)
( 4 )鞏固理解
① 如果把2塊餅平均分給3個人,每人應該分得多少塊? 2÷3=(塊)
②剛才大家都是拿學具親自操作的,如果不借助學具,你能想像出5塊餅平均分給8個人,每人分多少塊嗎?(生說數理)
③從剛才的研究分析,你能直接計算7÷9的結果嗎?()
借助學具分餅、想象分的過程、拋開情境給出除法算式三個環(huán)節(jié)的呈現(xiàn)層次清楚,邏輯性強,為學生概括分數與除法的關系提供了足夠的操作經驗。
4.歸納分數與除法的關系。
( l )觀察討論。
請學生觀察1÷3 = (塊)3÷4 =(塊)討論除法和分數有怎樣的關系?
學生充分討論后,老師引導學生歸納出:可以用分數表示整數除法的商,用除數作分母,被除數作分子,除號相當于分數中的分數線。(課件出示表格)
用文字表示是:被除數÷除數=
老師講述:分數是一種數,除法是一種運算,所以確切地說,分數的分子相當于除法的被除數,分數的分母相當于除法的除數。
( 2 )思考。
在被除數÷除數=這個算式中,要注意什么問題?(除數不能是零,分數的分母也不能是零。)
( 3 )用字母表示分數與除法的關系。
老師:如果用字母a 、b 分別表示被除數和除數,那么除數與分數之間的關系怎樣表示呢?
老師依據學生的總結板書:a÷b = (b≠0)
明確:兩個整數相除,商可以用分數表示,反過來,分數能不能看作兩個整數相除?(可以,分數的分子相當于除法中的被除法,分母相當于除數。)
5.鞏固練習:
(1)口答:
①7÷13= =( )÷( ) ( )÷24= 9÷9= 0.5÷3= n÷m=(m≠0)
②1米的等于3米的( )
③把2米的繩子平均分3段,每段占全長的 ( ),每段長( )米。
解釋0.5÷3= 是可以用分數形式表示出來的,但這種分數形式平時并不常見,隨著今后的學習,大家就能把它轉化成常見的分數。
(2)明辨是非
①一堆蘋果分成10份,每份是這堆蘋果的 ( )
②1米的與3米的一樣長。( )
③一根木料平均鋸成3段,平均每鋸一次的時間是所用的總時間的。( )
④把45個作業(yè)本平均分給15個同學,每個同學分得45本的 。()(3)動腦筋想一想
①把一個4平方米的圓形花壇分成大小相同的5塊,每一塊是多少平方米?
(用分數表示)
②小明用45分鐘走了3千米,平均每分鐘走了多少千米?每千米需要多少時間?
:本節(jié)課是在學生學習了分數的產生和意義的基礎上教學的,教學分數的產生時,平均分的過程往往不能得到整數的結果,要用分數來表示,已初步涉及到分數與除法的關系;教學分數的意義時,把一個物體或一個整體平均分成若干份,也蘊涵著分數與除法的關系,但是都沒有明確提出來,在學生理解了分數的意義之后,教學分數與除法的關系,使學生初步知道兩個整數相除,不論被除數小于、等于、大于除數,都可以用分數來表示商。這樣可以加深和擴展學生對分數意義的理解,同時也為講假分數與分數的基本性質打下基礎。
1.直觀演示是學生理解分數與除法的關系的前提:由于學生在學習分數的意義時已經對把一個物體平均分比較熟悉,所以本節(jié)課教學把一張餅平均分給3個人時并沒有讓學生操作,而是計算機演示分的過程,讓學生理解1張餅的就是張。3張餅平均分給4個人,每人分多少張餅,是本節(jié)課教學的重點,也是難點。教師提供學具讓學生充分操作,體驗兩種分法的含義,重點在如何理解3張餅的就是張。把2張餅平均分給3個人,每人應該分得多少張?繼續(xù)讓學生操作,豐富對2張餅的就是張餅的理解。學生操作經驗的積累有效地突破了本節(jié)課的難點。
2.培養(yǎng)學生提出問題的意識與能力是培養(yǎng)學生創(chuàng)新精神:本節(jié)課圍繞兩種分法精心設計了具有思考性的、合乎邏輯的問題串,“逼”學生進行有序的思考,從而進一步提出有價值的問題。
3.注重了知識的系統(tǒng)性:數學知識不是孤立的,而是密切聯(lián)系的,只有把知識放在一個完整的系統(tǒng)中,學生的研究才是有意義的。比如學生在應用分數與除法的關系練習時對0.5÷3=,部分學生會覺著的=表示方法是不行的,教師解釋:這種分數形式平時并不常見,隨著今后的學習,大家就能把它轉化成常見的分數形式。
分數除法的教學反思 六年級篇六
按照教材安排,用分數乘法解決數學問題是在第二單元,用分數除法解決數學問題是在第三單元。如果分開來進行教學,學生由于受定式影響,學分數乘法應用題時,都用乘法;學分數除法時又都用除法,看似掌握很好,一旦混合一部分理解能力較差的學生就會混淆,看來還沒有掌握“求一個數的幾分之幾是多少?”和“已知一個數的幾分之幾是多少,求這個數”這類題的分析方法。因此,我們就把兩類應用題放在一節(jié)課進行對比教學。
啟動體驗階段。我通過提出“我們?yōu)槭裁匆獙W習數學?”來引導學生明確學習的目的性,從而調動學生學好本課知識的積極性。
體親歷時階段。首先是自主體驗,通過學生自己的獨立思考,列式計算;初步獲得解決問題的方法;接著是小組體驗,通過小組討論,逐步形成共識;最后是班級交流,呈現(xiàn)學生的不同解題策略,分享他人的成果。
總結內化階段。引導學生比較兩道例題,找出兩道例題的異同,感悟到解決問題的一般方法。
應用提升階段。這個環(huán)節(jié)分成2步,(1)基本練習,通過比較,進一步鞏固解決此類問題的一般方法。
(2)拓展練習,通過讓學生解決較難的此類問題,進一步培養(yǎng)學生分析問題、解決問題的能力。
這節(jié)課,我不僅關心學生是否會解答問題,更關注解決問題是采用了什么方法。首先通過讓學生獨立做、小組討論、全班交流等方法得出解決這類數學問題的一般方法:先劃出題中的關鍵句、圈出單位“1”,再寫出關系式,然后代入數據,最后列式解答。
在練習時,大部分學生能用所學的方法來解決問題,但仍有個別學生用自己的方法來解決問題。對這少部分學生,教師既要肯定他們的方法是正確的,但要引導他們最好采用所學的一般方法, 這樣便于學習“稍難的分數、百分數的解決問題”。
總之,數學教學注重的是培養(yǎng)學生的邏輯思維。所以不管在什么類型的應用題教學中,分析數量關系應該是教學的重中之重,我們應該潛移默化的給學生滲透一些分析問題的方法,提高學生分析問題的能力。
分數除法的教學反思 六年級篇七
德國教育家第斯多惠說過這樣一段話:如果使學生習慣于簡單地接受和被動地工作,任何方法都是壞的;如果能激發(fā)學生的主動性,任何方法都是好的。反思整個教學過程,我認為這節(jié)課教學的成功之處有以下幾方面:
《國家數學課程標準》指出:“數學教學應該是,從學生的生活經驗和已有的知識背景出發(fā),向他們提供充分的從事數學活動和交流的機會。”縱觀整節(jié)課的教學,從引入、新課、鞏固等環(huán)節(jié)的取材都是來自于學生的生活實際,使學生感到數學就在自己的身邊。
《數學課程標準》中,將“在解決問題的過程中發(fā)展探索與創(chuàng)新精神,體驗解決問題策略的多樣性”列為發(fā)展性領域目標。而這一目標的實現(xiàn)除了依靠學生自身的生理條件和原有的認知水平以外,還需要相應的外部環(huán)境。這節(jié)課上學生一共提出了5種解題方法,其中有3種是我們平時不常用的,第5種是我也沒有想到的。我從學生的需要出發(fā)及時調整了教案,讓每一個想發(fā)言的學生都能表達自己的想法,盡管他們有些數學語言的運用還不太準確,但我還是給與了肯定與鼓勵。在這種寬松的氛圍下,原本素不相識的師生在短短40分鐘的時間里就產生了情感上的交融。學生有了運用知識解決簡單問題的成功體驗,增強了學好數學的信心,并產生進一步學好數學的愿望。雖然后面還有兩個練習沒有來得及做,但我認為對一個問題的深入研究比盲目地做十道題收獲更大,這種收獲不單單體現(xiàn)在知識上,更體現(xiàn)在情感、態(tài)度與價值觀方面。
數學教學改革,決不僅僅是教材教法的改革,同時也包括師生關系的變革。在課堂教學當中,要努力實現(xiàn)師生關系的民主與平等,改變單純的教師講、學生聽的“注入式”教學模式,教師應成為學生學習數學的引導者、組織者和合作者,學生成為學習的主人??v觀整個教學過程,教師所說的話并不多,除了“你是怎么想的?”“還有其他的方法嗎?”“說說看”等激勵和引導以外,教師沒有任何過多的講解,有學生講不清楚,教師也是用商量的口吻說:“誰愿意幫他講清楚?”當一次講不明白,需要再講一遍時,教師也只是用肢體語言(用手勢指導學生看圖)引導學生在自己觀察與思考的基礎上明白了算理。學生能思考的,教師決不暗示;學生能說出的,教師決不講解;學生能解決的,教師決不插手。由于教師在課堂上適時的“隱”與“引”,為學生提供了施展才華的舞臺,使他們真正成為科學知識的探索者與發(fā)現(xiàn)者,而不是簡單的被動的接受知識的容器。
(1)形式能否再開放一些
(2)優(yōu)生“吃好”了,能否讓差生也“吃飽”
分數除法的教學反思 六年級篇八
在分數除法這一單元中,主要展示的是分數除以整數、整數除以分數、分數除以分數這三種類型的計算方法,其中,在分數除以整數的教學過程中,學生接受得比較快,學習效果也很好,但是在教學整數除以分數后,通過學生的練習反饋,發(fā)現(xiàn)學生在計算中出錯比較多,主要表現(xiàn)在一下幾方面:
1.在除號與除數的同步變化中,學生忘記將除號變成乘號。
2.在除數變成其倒數的時候,學生誤將被除數也變成了倒數。
3.計算時約分的沒有及時約分,導致答案不準確。
為什么會形成這些錯誤現(xiàn)象,通過對比分析,可能有一下原因:
1.教學方法上:例題講解分量不夠;教學語速較快;學困生板演機會不夠多;講得多、板書方面寫得少。
2.學生學法上:受分數除以整數的教學影響,形成了思維定勢,以為每次都是分數要變成倒數,整數不變,從而導致同步變化出現(xiàn)錯誤;其次,學生聽課過程中不善于抓重點,在分數除法中,被除數是不能變的,同步變化指的是除號和除數的變化;最后,學生的學習態(tài)度和學習習慣也直接影響了本科的教學效果。
1.增加學生板演的機會,
2.課堂上,對于關鍵性的詞語,要求學生齊讀,用以加深印象。
3.輔差工作要求學生以同位為單位,進行個別輔導。
分數除法的教學反思 六年級篇九
“數學教學要從學生的生活經驗和已有的知識背景出發(fā),使學生感到數學就在自已的身邊,在生活中學數學。使學生認識學習數學的重要性,提高學習數學的興趣”.分數與除法,對于小學生來說,是一個比較抽象的內容。而在小學階段數學知識之所以能被學生理解和掌握,絕不僅僅是知識演繹的結果,而是具體的模型、圖形、情景等知識相互作用的結果。所以我在設計《分數與除法》這一課時,從以下兩方面考慮:
1.以解決問題入手,感受分數的價值。
從分餅的問題開始引入,讓學生在解決問題的過程中,感受當商不能用整數表示時,可以用分數來表示商。本課主要從兩個層面展開,一是借助學生原有的知識,用分數的意義來解決把1個餅平均分成若干份,商用分數來表示;二是借助實物操作,理解幾個餅平均分成若干份,也可以用分數來表示商。而這兩個層面展開,均從問題解決的角度來設計的。
2.分數意義的拓展與除法之間關系的理解同步。
當用分數表示整數除法的商時,用除數作分母,用被除數作分子。反過來,一個分數也可以看作兩個數相除??梢岳斫鉃榘选?”平均分成4份,表示這樣的3份;也可以理解為把“3”平均分成4份,表示這樣的1份。也就是說,分數與除法之間的關系的理解、建立過程,實質上是與分數的意義的拓展同步的。
教學之后,再來反思自己的教學,發(fā)現(xiàn)就小學階段的數學知識存儲于學生腦海里的狀態(tài)而言,除了抽象性的之外,應當是抽象與具體可以轉換的數學知識。整節(jié)課教學有以下特點:
1.提供豐富的素材,經歷“數學化”過程。
分數與除法關系的理解,是以具體可感的實物、圖片為媒介,用動手操作為方式,在豐富的表象的支撐下生成數學知識,是一個不斷豐富感性積累,并逐步抽象、建模的過程。在這個過程中,關注了以下幾個方面:一是提供豐富數學學習材料,二是在充分使用這些材料的基礎上,學生逐步完善自己發(fā)現(xiàn)的結論,從文字表達、到文字表示的等式再到用字母表示,經歷從復雜到簡潔,從生活語言到數學語言的過程,也是經歷了一個具體到抽象的過程。
2.問題寓于方法,內容承載思想。
數學學習是一個問題解決的過程,方法自然就寓于其中;學習內容則承載著數學思想。也就是說,數學知識本身僅僅是我們學習數學的一方面,更為重要的是以知識為載體滲透數學思想方法。
就分數與除法而言,筆者以為如果僅僅為得出一個關系式而進行教學,僅僅是抓住了冰山一角而已。實際上,借助于這個知識載體,我們還要關注蘊藏其中的歸納、比較等思想方法,以及如何運用已有知識解決問題的方法,從而提高學生的數學素養(yǎng)。
分數除法的教學反思 六年級篇十
教學分數與除法的關系時學生很是配合,仿佛早已掌握了所有知識點,對于我的提問對答如流,甚至當我給出例題÷4時,全班不假思索不屑一顧的脫口而出四分之三,而當我問出為什么時,他們甚至不愿意去思考,仿佛我問的這個"為什么"簡直就是廢話中的廢話。整個班級躁動不安,是清明假期臨的緣故吧??粗磳l(fā)怒的老師,孩子們安靜下一張張稚氣的臉望著我,眼神中帶有一絲絲驚恐。我突然想笑,這不就是兒時的自己嗎?我沉住氣笑著說:明天放假了,看大家很是興奮吧!孩子們長舒一口氣掩面而笑。我接著說:站好最后一班崗的戰(zhàn)士才是真正的好戰(zhàn)士。同學們心領會神的坐得端端正正。"授人以魚,不如授人以漁。"我接著說,"大家都知道除以4得四分之三,那除以4為什么等于四分之三呢?四分之三就相當于魚。而老師想讓你得到的是漁,你覺得呢?"果然還是聰明的孩子,輕輕一撥,大部分開始思考了,我和孩子們開始了我鋪好的探究之旅。
我叫學生拿出前準備好的三個圓,讓學生在小組內用自己喜歡的方式驗證對除以4這一結果的猜想。孩子們或靜下心仔細思考;或把自己手里的圓形折一折、剪一剪;或在本子上畫一畫、寫一寫;或同桌小聲交流自己的想法。我把想法不同的孩子叫上講臺,在黑板上畫出自己的思考過程。并讓他們一一介紹。通過學生的操作,得出兩種分法,方法(一):把三個圓一個一個分,每次得四分之一,分次,就得個四分之一,就是四分之三張餅。方法(二):把三個圓疊起,平均分成4份,得到張餅的四分之一,也是個四分之一,相當于一張餅的四分之三。不管怎樣分,都可以驗證÷4用分數四分之三表示結果。還有學生想出了方法(三):除以4得07,07化成分數也是四分之三。通過學生自主操作讓其充分理解其中的算理。
在學生初步感知分數與除法的關系時,我有意識地把例題改了一下,把塊餅平均分給個人,把4塊餅平均分給7個人,讓學生通過畫圖或說理,快速的算出它們的商。讓學生親身體會到計算兩個整數相除,除不盡或商里面有小數時就用分數表示他們的商,這樣既簡便又快捷,而且不容易出錯。
通過學生自主生成的三道算式,讓學生去發(fā)現(xiàn)除法與分數之間到底有怎樣的關系?并把自己的想法和同桌互相交流。最終學生小結出:除法中的被除數相當于分數的分子,除數相當于分數的分母,除號相當于分數線。并明確:除法是一種運算,而分數是一種數。
出示:
把三塊餅平均分給7個小朋友,每人分得這些餅的幾分之幾。
把三塊餅平均分給7個小朋友,每人分得幾分之幾塊。
讓學生觀察這兩道題目的區(qū)別,一道帶單位,一道不帶單位。第一道是根據分數的意義把單位"1"平均分成幾份,每份就是單位"1"的幾分之一,是份數與單位"1"的關系,在數學中我們稱為分率,分率不帶單位。第二題帶單位則表示的是一個具體的數量,則用總數量除以平均分的份數得到每份的具體數量,得數的單位跟被除數的單位一致。明確:分數有兩種含義,一種表示與單位1的關系即分率(不帶單位),一種則表示具體的數量(要帶單位),為以后學習分數和百分數應用題做好鋪墊。
在教學過程中,讓學生在自主參與,動手操作、觀察比較、交流匯報的基礎上去推理和概括,能達到事半功倍的效果。我一直崇尚讓學生自己去發(fā)現(xiàn),自己去總結,讓學生能學習探究問題的方法,而不是單純的教授一些解題技巧,因為我知道授生以"漁"永遠比授生以"魚"的重要的多!
分數除法的教學反思 六年級篇十一
應用題的教學無論在乘法還是除法中都是重點中的重點,特別是教學除法時,再對比乘法,學生的思維零亂一下子很清楚看出。到底是用除法還是用乘法來解答,是關鍵,所以教學時該如何把握每道題的重點,引導學生讀題、理解題意是難點。
分數乘法及應用中,也就是“求一個數的幾分之幾是多少?”學生很容易理解,掌握的非常好。而學習的分數除法應用題則是“已知一個數的幾分之幾是多少,求這個數?”兩個問題正好相反,一個是已知“單位1”,一個是要求“單位1”。
所以引導學生審題、找關鍵的句子或者詞語,找單位1、畫圖分析,寫出等量關系。課堂上,我讓學生讀題(至少3遍),找出關鍵的句子(誰的幾分之幾是誰),單位就是(幾分之幾的前面那個詞語),這些好像都不難,難的是寫出等量關系,特別是一些隱藏的關系,如:“原來的1/3”,那么隱藏了“實際”的。對于畫圖也是一個挑戰(zhàn),學生不懂幾分之幾對應的量,為什么要這樣畫?
在鞏固練習中,我有意出一道分數乘法應用題,一道除法應用題,讓學生解答,并觀察、分析,學生們通過這兩道題建立起了表象,對這兩種題型及其解法有了進一步的體會。
在反復尋找單位1和畫圖,寫出等量關系后,接下來的幾道題目中,很多學生都能夠獨立解答,但一些基礎薄弱的學生還存在一定的困難,有待第二課時的再次啟發(fā)吧!
【本文地址:http://www.mlvmservice.com/zuowen/2076406.html】