乘法運算定律說課稿(精選14篇)

格式:DOC 上傳日期:2023-12-04 09:42:20
乘法運算定律說課稿(精選14篇)
時間:2023-12-04 09:42:20     小編:字海

總結是對過去經(jīng)歷的回顧和反思,為未來的規(guī)劃提供依據(jù)。注意結合自身實際情況,突出自己的特點和優(yōu)勢。下面是一些我們平時不容易總結出的經(jīng)驗和感悟,希望能給大家?guī)硪恍﹩⑹尽?/p>

乘法運算定律說課稿篇一

1、簡便計算:

999×27+333×19。

38×48+96。

1999+999×999。

先讀一讀、議一議、做一做。

第一個練習。難度不大,只要他能正確運用乘法分配律就能直接做,第二個練習,是學生計算中經(jīng)常出現(xiàn)的問題,通過判斷進一步提升學生運算定律運用的正確性,第三個練習,需要學生知識的綜合應用,先要利用積不變來轉換成有相同因數(shù)的算式,再利用分配律簡便計算。

2、總結:

縱觀全課設計,我以學生自主探究、合作交流貫穿始終,精心設計各個教學環(huán)節(jié),讓學生主動積極地學習,體會到整理知識的好處,感受到簡算的`優(yōu)越性,使本節(jié)課既達到了整理復習的目的,又提高了學生合理、靈活地運用簡便算法的能力。

乘法運算定律說課稿篇二

1、簡便計算:

999×27+333×19。

38×48+96。

+999×999。

先讀一讀、議一議、做一做。

第一個練習。難度不大,只要他能正確運用乘法分配律就能直接做,第二個練習,是學生計算中經(jīng)常出現(xiàn)的問題,通過判斷進一步提升學生運算定律運用的正確性,第三個練習,需要學生知識的綜合應用,先要利用積不變來轉換成有相同因數(shù)的算式,再利用分配律簡便計算。

2、總結:

縱觀全課設計,我以學生自主探究、合作交流貫穿始終,精心設計各個教學環(huán)節(jié),讓學生主動積極地學習,體會到整理知識的好處,感受到簡算的`優(yōu)越性,使本節(jié)課既達到了整理復習的目的,又提高了學生合理、靈活地運用簡便算法的能力。

乘法運算定律說課稿篇三

簡介:ppt制作(1)提供視頻和授課講義同步播放,可個人和集體學習,猶如置身于課堂。

(2)閱讀教材多媒體化,是集圖片、動畫、聲音、視頻等為一體的一部多媒體教材,便于學生在網(wǎng)上閱讀。

(3)教師可靈活選取掃描圖(教材上黑白圖)、彩色圖片和實物圖片,制作自己的電子教案。此部分的內容查找方便、快捷。

(4)教師可將知識點的內容直接用于課堂教學或提取相關素材安插到自己的電子教案中。

相關課件:

乘法運算定律說課稿篇四

教學目標:

2、經(jīng)歷簡便計算的過程,體驗對比分析的學習方法;

3、發(fā)展學生的簡便運算意識和分析能力,體驗算法的優(yōu)化過程。

教學重點:

理解并掌握分數(shù)乘法算式題的簡便算法。

教學難點:

靈活選擇算法進行簡便計算。

教學方法:

創(chuàng)設情境,質疑引導。

觀察發(fā)現(xiàn),分析推理。

教學準備:

ppt、練習紙。

教學過程:

一、復習引入。

師:同學們,通過以前的學習,我們掌握了運用整數(shù)乘法解決相關的數(shù)學問題。今天,智慧老人給大家?guī)砹巳齻€問題,請大家拿出紙和筆迎接它們吧!

(1)25×7×4(2)63×4+37×4(3)(125+8)×8。

師:同學們都很積極,老師很欣賞大家的這種學習狀態(tài)。下面我將請三位同學到黑板上板書。

(三個學生上臺各板書一道題)。

師巡視,后全班訂正:

分別請三個小老師來評判學生的板書情況,給予及時評價:大家同意小老師的觀點么?

師:同學們,你們是怎么做到這么快速又準確地將它們的'結果計算出來的呢?

生1:我們運用了交換律、分配律。

師:你真會學以致用??!

生2:看到25就想到4,看到125就想到8。

師:你對數(shù)字真敏感。

師:仔細回顧一下,我們學過的整數(shù)乘法的運算定律有哪些?

生1:乘法交換律。

生2:乘法結合律。

生3:乘法分配律。

師:你們的記性真好啊?。ㄉ倩卮饡r師邊板書)。

師:你們能用字母表示這些運算定律嗎?(請生在黑板上板書)。

生1:a×b=b×a。

生2:a×b×c=a×(b×c)。

生3:(a+b)×c=a×c+b×c。

師:看來你們用字母表示數(shù)的能力比哈利波特還強!

師:我們通過剛才對整數(shù)乘法進行計算時,運用這些運算定律有什么好處?

生:可以使運算更加簡便。

二、新授。

1、質疑猜測。

師:我們可以先進行大膽地猜測。

生:能。

生:不能。

師:猜測之后需要大家小心地求證。

2、驗證歸納。

師:請同學們看大屏幕,請仔細觀察每組的兩個算式,看看它們有什么關系?請大家先和同桌說一說。

生匯報。

生1:第一組算式中,左右兩邊的因數(shù)相同,只是兩個因數(shù)交換了位置,運用了交換律;

師:你的思考很有條理!

生3:第三組算式中,左邊是先用兩個加數(shù)的和乘,右邊是兩個加數(shù)分別與相乘,然后相加。

師:同學們觀察地很仔細,表述很清楚。

師:不計算,你能知道這三組算式中內應填什么符號?

生:等于號。

生:大于號。

生:小于號。

師:看來大家的意見不統(tǒng)一??!現(xiàn)在請第1、3、5、7小組的同學計算左邊的算式,請2、4、6、8小組的同學完成右邊的算式,大家都動手驗證一下你們的猜測吧!

師:通過剛才的驗證,你有什么想說的?

生1:我們發(fā)現(xiàn)運用交換律可以很快得出結果。

生2:我們發(fā)現(xiàn)整數(shù)乘法的結合律在分數(shù)乘法中也可以用。

生3:我們發(fā)現(xiàn)整數(shù)乘法的分配律在分數(shù)乘法中可用。

生4:我們剛才的猜測是對的,這些運算定律在分數(shù)乘法中都是可以用的。

師:經(jīng)過我們這么多小組的驗證,我們得出了左邊算式的結果等于右邊算式的結果,那也就是說――整數(shù)乘法的整數(shù)乘法的交換律、結合律、分配律對于分數(shù)乘法也適用。

請生自己出題驗證。

師:通過同學們自己動手,我們得出了整數(shù)乘法的整數(shù)乘法的交換律、結合律、分配律對于分數(shù)乘法也適用。

小結:(板書)。

整數(shù)乘法的交換律、結合律、分配律對于分數(shù)乘法也適用。

3、實踐運用。

(1)出示例6。

××5=(+)×4=。

生1:3個數(shù)連乘,其中與5可以放在一起,先約分,可用交換律。

生2:有乘法還有加法,且可與4放在一起,先約分,可用分配律。

師:你的表達能力真強!

(2)生獨立計算。

師:請同學們運用這些運算定律,用簡便方法計算。

生獨立做。

請生板演。

生匯報想法、思路,訂正。

師:運用這些運算定律,我們的計算更加地簡便了,這就是我們這節(jié)課所學習的內容(板課題:整數(shù)乘法的運算定律推廣到分數(shù)乘法)。

生齊讀課題。

三、鞏固拓展。

1、基礎練。

師:請大家將課本打開,到第14頁的“做一做”

ppt出示其中兩題,另選一題(共三題)。

用簡便方法計算下面各題,并說一說運用了什么定律?

××3=(+)×27=×+×=。

先請生讀題,抓住關鍵詞、簡便方法,確定方法,生再獨立完成,請3生板演,師巡視。

2、提高練習。

用簡便方法計算下面各題。

―×=87×=。

四、小結。

師:通過這節(jié)課的學習,你收獲了什么?

整數(shù)乘法的交換律、結合律、分配律對于分數(shù)乘法也適用。應用乘法的運算定律,六一對乘法進行簡便計算,但要注意具體情況具體分析,靈活運用。

附:板書。

乘法運算定律說課稿篇五

38×48+96。

1999+999×999。

先讀一讀、議一議、做一做。

第一個練習。難度不大,只要他能正確運用乘法分配律就能直接做,第二個練習,是學生計算中經(jīng)常出現(xiàn)的問題,通過判斷進一步提升學生運算定律運用的正確性,第三個練習,需要學生知識的綜合應用,先要利用積不變來轉換成有相同因數(shù)的算式,再利用分配律簡便計算。

縱觀全課設計,我以學生自主探究、合作交流貫穿始終,精心設計各個教學環(huán)節(jié),讓學生主動積極地學習,體會到整理知識的好處,感受到簡算的優(yōu)越性,使本節(jié)課既達到了整理復習的'目的,又提高了學生合理、靈活地運用簡便算法的能力。

乘法運算定律說課稿篇六

面對新的課程改革,教師首先應該改變教學的行為,即把對新課程的理解轉化為自覺的教學行動。這就要求教師在教學行為的層面上,呈現(xiàn)出新課程的所蘊涵的新的教育理念和新的教學方式。在教學“整數(shù)乘法運算定律推廣到分數(shù)乘法”這一課后,我做了深刻的反思:

一、注重了情境的導入,提高孩子們的參與熱情。

本節(jié)課,開啟課時,我注重從孩子的身邊挖掘素材,引出整數(shù)乘法運算定律,加以復習鞏固,緊接著引導學生回憶這些運算定律曾經(jīng)運用到什么知識中,引導到小數(shù)乘法的簡算中,為后面的新知學習打下良好的基礎。真正達到了“以舊導新,以舊帶新”的效果。

二、鼓勵學生大膽的質疑與猜想,激發(fā)學生內在的求知動力。

在新授課時,我設計的兩個環(huán)節(jié),引起了學生強烈的求知欲望。第一,在復習完后,我讓學生自己說說,你現(xiàn)在最想研究一個什么樣的問題?孩子們表現(xiàn)出空前的熱情,比如有的孩子談到想研究一下整數(shù)乘法運算定律是否可以推廣到分數(shù)乘法?于是我鼓勵學生根據(jù)已有的知識,去大膽的猜想。孩子們的思維活躍極了,甚至大大超出了我事先的預料;第二,在探究確認上述問題后,我又讓學生大膽的質疑,定律推廣到分數(shù)乘法中會起到什么作用呢?真的能簡便嗎?孩子的好奇心又一次被激起,他們又樂此不疲的投入到了簡算的探究中去。整堂課下來,孩子們始終處在“質疑--猜想--驗證”的學習過程中,真正變成了學習的主人。

三、需要改進之處:

1.對學生的多樣思維應加大評價力度。比如:在開始情境導入這一環(huán)節(jié)中,學生除了出現(xiàn)4×(2+3)4×2+4×3兩種做法外,還出現(xiàn)了4×2×2+4這樣的做法,雖然這種做法與本節(jié)課要研究的問題沒有多大的聯(lián)系,但老師卻不應忽視孩子多樣化的思維方式,應及時給予肯定,并加以合理的評價。再比如:孩子們在猜想整數(shù)乘法運算定律是否可以推廣到分數(shù)乘法時,有一個孩子說到她是想到了整數(shù)加法的運算定律可以推廣到分數(shù)加法,所以斷定也能推廣到乘法。這里,我給予了肯定,但力度不夠。以上可以看出,評價一個孩子,要適時,適當,決不能敷衍,更不能抹殺,否則可能會壓制孩子的思維積極性。這一點,在今后的教學中,我還有待加強。

2.課前對學生的估計過高,所以使一些事先設計好的練習,沒來得及做完。這也提醒我,備課,不僅要備教材,備教案,更重要的還是要備好學生,這是上好一堂課的關鍵。

總之,通過本節(jié)課,使我在教育教學上,在落實新課改的精神上,有了很大的轉變和提高,讓教為學服務,提高教學質量,關鍵在課堂。

乘法運算定律說課稿篇七

《乘法運算定律》是人教版小學四年級下冊第三單元第二節(jié)的內容。本單元主要講授的是加法運算定律、乘法運算定律,而本節(jié)課著重講授的乘法交換律。乘法交換律是學生掌握了加法運算定律的基礎上教學的。正確的理解掌握乘法交換律,可以加深學生對選擇計算方法的靈活性。同時,在今后進一步的整數(shù)的乘法、有理數(shù)的乘法,實數(shù)甚至復數(shù)的乘法都有一定的作用。因此學好乘法交換定律,在數(shù)學中具有重要的基礎地位和橋梁作用。

乘法交換律的學習與之前所學的加法交換律類似,學生理解起來難度不大。但是乘法運算律不僅有助于加深乘法計算方法的理解,還能使計算簡便,所以需要學生理解記憶。本節(jié)課的講授應注重從學生生活情境的數(shù)學問題引入課題,并充分利用之前所學的加法交換律,由學生來歸納。

依據(jù)前面對教材的分析和對學情的把握,我確定了以下三維教學目標:

(一)知識與技能。

理解和掌握乘法交換律,會運用乘法運算律進行簡便計算。

(二)過程與方法。

經(jīng)歷乘法運算定律的猜想、驗證、結論的過程,增強分析、比較、綜合能力以及初步的抽象概括能力。

(三)情感態(tài)度與價值觀。

通過自主學習,感受數(shù)學探索的樂趣,激發(fā)學習數(shù)學的興趣,提高自主探究問題的能力。

(一)教學重點。

引導學生概括出乘法交換律,并運用乘法運算律進行簡算。

(二)教學難點。

乘法交換律的推導過程。

為了實現(xiàn)教學目標,有效地突出重點,突破難點,在教學過程中主要采用:

1.情境教學法:在特定的.情境中進行學習能激發(fā)學生學習興趣,激發(fā)學生思維,轉變學生的學習方式,變要我學為我要學。為了解決問題,學生會主動探索、觀察,發(fā)現(xiàn)生活中的平移現(xiàn)象。這樣安排有利于數(shù)學與生活的密切聯(lián)系,使學生感受到數(shù)學的價值,增強學生應用數(shù)學的意識。

2.討論法:學生積極地參與討論、合作交流,各抒己見。這樣既能啟迪思維,又增加了合作的意識,便于形成平等、寬松、民主的學習氛圍,促進學生的參與。同時讓學生動手、動腦去探索發(fā)現(xiàn),并解決問題,真正體現(xiàn)以學生為主體的教學理念。

3.觀察、分析法:觀察、分析、概括發(fā)現(xiàn)是本節(jié)課的亮點,在授課過程中努力體現(xiàn)“觀察-初步結論-舉例論證-概括規(guī)律”的教學流程,采用多媒體輔助教學,引導探究等有效教學手段,循序漸進引導學生發(fā)現(xiàn)規(guī)律。

(一)導入新課。

首先是導入環(huán)節(jié),我會以多媒體課件出示主題圖,并讓學生觀察發(fā)現(xiàn)數(shù)學問題,指明列式,說明列式依據(jù)。

設計意圖:這樣設計不但可以活躍課堂氣氛,融洽師生關系,還可以讓學生學會從生活中的情境來發(fā)現(xiàn)數(shù)學問題,而且還可以指出列式為新課的講授做好鋪墊。同時由學生來觀察、分析圖中信息也培養(yǎng)了學生的觀察分析能力。

(二)生成原理。

接下來我會通過“發(fā)現(xiàn)問題-舉例驗證-概括規(guī)律”循序漸進地引導學生。首先嘗試發(fā)現(xiàn)已知算式之間的聯(lián)系,大膽提出猜想,得到初步結論,然后進一步發(fā)現(xiàn)類似的數(shù)學算式也具有這樣的等價關系,最后將以上算式的規(guī)律抽象概括,并充分利用學生之前所學的加法交換律適時引導概括得出乘法交換律的表示形式。

設計意圖:通過學生發(fā)現(xiàn)問題、舉例驗證來發(fā)現(xiàn)歸納乘法交換律,對于學生理解乘法交換律難度不大。再加之學生剛結束了加法交換律的學習,而乘法交換律和加法交換律有很多相似之處。只要將研究加法交換律的方法遷移過來,學生就比較容易探究出乘法交換律。

(三)深化原理。

下面我會就學生所學的加法交換律和今天的新知識乘法交換律之間進行比較,有利于發(fā)現(xiàn)乘法交換律和加法交換律之間的異同點,實現(xiàn)知識的遷移。

設計意圖:通過提問的方式來引發(fā)學生思考,繼而由學生來探究之間的聯(lián)系有利于知識的消化吸收。這一環(huán)節(jié)教師充分指導學生完成任務,將學習的主動權完全還給學生,讓學生真正成為學習的主人。

(四)應用原理。

在這一部分我會要求學生用前面所得到的規(guī)律來探究變式練習:一道填空題、一道判斷題,指名判斷并重點指出錯誤原因來加深學生印象。

設計意圖:通過兩道練習題讓學生真正理解和掌握乘法交換律。整個過程都是在學生自主探究中完成,可以使每個學生的學生更具活力,也有利于讓學生感受到數(shù)學的成就感。

(五)小結作業(yè)。

回顧這節(jié)課的學習過程,請多個同學談談這節(jié)課學到的知識。

設計意圖:小學的課堂應著重讓學生體會知識的獲得過程,并能真正學會將所學的知識應用到實際生活,能發(fā)現(xiàn)生活中的數(shù)學問題。

我的板書本著簡潔、直觀、清晰的原則,這就是我的板書設計。

25×4=4×25。

兩個數(shù)相乘,交換兩個因數(shù)的位置,積不變,這叫做乘法交換律。

a×b=b×a。

乘法運算定律說課稿篇八

教學目標:

進一步掌握乘法運算定律,會根據(jù)不同算式的特征,正確靈活、合理選擇運算定律進行簡算,提高應用乘法運算定律進行簡便計算的能力。

教學過程:

(一)明確目標。

出示上節(jié)課出來的本單元的框架,指出本節(jié)課要復習的內容,并提出要求,掌握乘法的三個運算定律,并能靈活的運用于簡便計算。

(二)復習定律。

1、簡算。

4×13×25125×(8+80)。

全班練習、兩位學生板演,完成后反饋校對,并說明計算的理由。教師板書運算定律的名稱。

2、掌握定律。

簡要的敘述運算定律和字母表示,學生回答,教師板書相應的字母公式。

根據(jù)字母公式,比較乘法結合律和乘法分配律有什么區(qū)別?根據(jù)字母公式說說他們的結構特征。

(三)定律運用。

1、課本第6題。

(1)歸類,各應用什么運算定律可以使運算簡便,畫出具有特征的數(shù)學運算符號。

(2)全班練習,完成上面一行3題,完成后反饋校對,指出每一題的特征。

(3)全班練習,完成下面一行3題,完成后反饋校對,指出每一題的特征。

2、判斷、改錯練習。

(1)400×(25+1)=400×25+1。

(2)(64+4)×25=64×25+25。

(3)25×32=25×(4×8)=25×4+25×8。

(四)綜合練習。

1、練習第7題。

(1)找出能運用乘法運算定律的算式,并各自歸入相應運算定律類型中。

(3)獨立練習。

(4)反饋矯正。

2、兩步四則混合運算練習。

(1)計算課本第8題,完成后校對。

(2)計算第9題,完成后的、反饋講評。

3、應用題練習。

(1)獨立練習第10題。

(2)反饋講評,對25×400+25×400、25×400×2兩種方法進行比較。

4、思考題指導。

(1)獨立思考2分鐘。

(2)指名已解答的同學說思路。

(五)鞏固知識結構。

(六)作業(yè):《作業(yè)本》。

乘法運算定律說課稿篇九

乘法運算是數(shù)學中重要而基礎的概念,通過乘法的思維方式,可以解決各種實際問題。在學習乘法運算的過程中,我認識到了乘法運算定律的重要性。乘法運算定律分為乘法交換律、乘法結合律和乘法分配律。這三個定律在乘法運算中發(fā)揮著重要的作用,對于提高計算效率和準確度起到了至關重要的作用。下面,我將詳細介紹并總結乘法運算定律的心得體會。

首先是乘法交換律。乘法交換律是指兩個數(shù)相乘的結果與交換乘數(shù)的位置無關。這意味著在乘法運算中,乘數(shù)和被乘數(shù)可以交換位置而不會改變最終的結果。對于我來說,乘法交換律在日常生活中的應用相當廣泛。比如我要去商店買蘋果,蘋果的價格是每個2元,我需要買5個蘋果,按照乘法交換律,我可以先算出2元*5個蘋果的結果,或者5個蘋果*2元的結果,兩者的結果都是一樣的,都是10元。這個定律的應用簡化了我在日常生活中的計算過程,提高了計算的效率。

其次是乘法結合律。乘法結合律是指在三個或更多數(shù)相乘時,先計算其中任意兩個數(shù)的乘積,再將得到的積與第三個數(shù)相乘,結果相同。具體來說,對于任意三個數(shù)a、b和c,(a*b)*c的結果與a*(b*c)的結果是相同的。通過乘法結合律,我可以更加簡化復雜的乘法運算。例如,我要計算2*3*4,根據(jù)乘法結合律,先計算2*3=6,再將6與4相乘,結果是24。這個定律的應用使我可以將復雜的乘法運算分解為多個簡單的計算過程,從而提高了計算效率和準確度。

最后是乘法分配律。乘法分配律是指在一個乘法運算中,將兩個乘積相加或相減后,再與另外一個乘數(shù)相乘,結果與先將該乘數(shù)分別與兩個乘積相乘后,再將兩個乘積的結果相加或相減后得到的結果是相同的。具體來說,對于任意三個數(shù)a、b和c,a*(b+c)的結果與a*b+a*c的結果是相同的。乘法分配律在解決實際問題中起著重要的作用。比如我要計算一個商品原價100元,打8折后再打9折的價格,根據(jù)乘法分配律,我可以先計算100元*8折=80元,再計算100元*9折=90元,最后將80元和90元相加,得到最終價格是170元。這個定律的應用使我在解決復雜問題時能夠簡單而準確地計算出結果。

總結來說,乘法運算定律是我們學習乘法運算的基礎。通過乘法交換律、乘法結合律和乘法分配律的運用,我們可以更加高效地進行乘法運算,提高計算的準確度和速度。在日常生活中,乘法運算定律也廣泛應用于各種實際問題的解決過程中。因此,在學習乘法運算時,我們需要深入理解乘法運算定律的含義和應用,將其靈活運用于解決實際問題中。只有這樣,我們才能更加有效地使用乘法運算,拓展我們的數(shù)學思維和解決問題的能力。

乘法運算定律說課稿篇十

主題圖以植樹為背景,展示了植樹過程中同學們挖坑、種樹、抬水、澆樹等活動的情境。例1是在主題圖的基礎上提出問題“負責挖坑種樹的一共有多少人?”解答這個問題所需要的條件都在主題圖中。例2仍然是利用主題提出問題“一共要澆多少桶水?”從解決這個問題的兩種算法中,可以得到乘法結合律的一個實例。在此基礎上,引導學生觀察、比較、概括得出乘法結合律。

知識與能力:使學生理解和掌握乘法交換律和乘法結合律,并會運用乘法運算律進行簡便計算。

過程與方法:使學生在合作交流中對運算定律的認識由感性認識逐步發(fā)展到理性認識,合理構建知識。

情感態(tài)度與價值觀:培養(yǎng)學生分析、推理能力,培養(yǎng)學生探索規(guī)律的欲望和學習數(shù)學的興趣。

教學重點、難點:

重點:引導學生概括出乘法運算律,并運用乘法運算律進行簡算。

1、情景創(chuàng)設策略:以《數(shù)學新課程標準》的理論知識與跨越式教學理念為指導,通過情景創(chuàng)設,在解決實際問題的過程中充分調用已有的知識經(jīng)驗,進行知識遷移,為學生提供學習支架,自主探究、歸納乘法運算定律。

2、信息技術與學科教學整合策略:把信息技術作為學生探索新知、驗證猜想、運用知識的工具,為學生之間、師生之間的交流提供了廣闊的空間,增強了課堂學習的互動。

3、感受成功策略:鼓勵學生進行大膽猜想,通過科學的驗證確定猜想的成立,感受成功的喜悅,為學習注入動力。

4、激趣策略:課件的使用比普通課堂更能吸引學生的注意,使學生積極動口、動手、動腦課堂學習更具趣味性。

1、充分發(fā)揮學生的主體作用,在教學中注意讓學生自主探索、發(fā)現(xiàn)規(guī)律、理解規(guī)律,通過猜測—驗證,引導啟發(fā)學生發(fā)現(xiàn)規(guī)律。引導學生積極、主動地參與到知識的形成過程中去。

2、自始至終注意培養(yǎng)學生觀察、比較、抽象概括能力,教給學生觀察、比較、抽象概括的方法。在教學中不僅引導學生有序地觀察比較,還充分運用小組合作討論的手段,進行小組合作討論,各抒己見,取長補短,在觀察到的感性材料的基礎上加以抽象概括,形成結論。

1、人民教育出版社義務教育課程標準實驗教科書四年級下冊課本。

2、多媒體演示課件:利用圖片、文字,創(chuàng)設情景,進行練習環(huán)節(jié)。

(一)、課前談話調節(jié)氣氛、調動學生的學習熱情、舒緩緊張環(huán)境。

(三)、在發(fā)現(xiàn)學習了結合律的規(guī)律后,安排了一個及時鞏固的環(huán)節(jié),主要是通過這樣的環(huán)節(jié),讓所學的規(guī)律得到進一步的檢驗和鞏固。讓學生明白數(shù)學知識與生活緊密聯(lián)系,并能很好的解決我們生活中的問題。(數(shù)學實用性、有用性的滲入)。

(四)、在探索完乘法結合的規(guī)律后,直接引出兩組算式,并由此讓學生推導、驗證出乘法的交換律。這種簡約的設計主要是基于在乘法結合的理解基礎上,并且乘法交換律相對簡單易理解。

(五)、最后是運用模型,解決問題。這是在學習完這兩種規(guī)律后,在學生心中建立了一個數(shù)學模型后,運用它解決實際問題。這樣主要是根據(jù)認知的特點,通過練習加以鞏固,同時也是感受數(shù)學學習帶來的快樂與方便。

乘法運算定律說課稿篇十一

乘法運算定律是數(shù)學中一個非?;A的運算規(guī)則,它在解決數(shù)字乘法問題時具有重要的指導作用。近日,我參加了一次乘法運算定律培訓課程,深入學習了乘法運算定律的內容,并且從中收獲了許多寶貴的心得體會。

培訓的第一部分主要介紹了乘法運算定律的定義和基本概念。在這部分的學習中,我了解到乘法運算定律可分為三個方面:乘法交換律、乘法結合律和乘法分配律。乘法交換律指的是乘法中成績的順序可以改變,不會影響最終的結果;乘法結合律則是指三個或更多的數(shù)相乘時,可以改變計算的順序,不會改變最后的結果;乘法分配律則是指在系數(shù)和乘數(shù)間進行乘法運算時,可以對相加或相減的數(shù)進行單獨計算,然后將結果相加或相減。通過這些基本概念的講解,我深入理解了乘法運算定律的內涵和作用,打下了堅實的基礎。

在培訓的第二部分,老師帶領我們通過一系列例題進行習題訓練。這些例題涵蓋了乘法交換律、乘法結合律和乘法分配律的綜合運用。在課堂上,老師每次給出一個題目,我們需要利用所學的乘法運算定律來解答。通過自己手動計算和觀察老師的解題過程,我逐漸掌握了規(guī)律,并學會了在實際運用中如何快速地應用乘法運算定律進行計算。

在培訓的第三部分,老師引導我們進行小組合作練習。每個小組都有一個乘法運算定律的應用題,在限定的時間內,我們需要共同合作解決這個問題。這個環(huán)節(jié)考驗了我們團隊合作的能力和乘法運算定律的熟練應用程度。通過與隊友的緊密配合和快速思維,我們解決了許多復雜的問題,更加深入地體會到乘法運算定律在實際問題中的重要性和實用性。

培訓的最后一部分是乘法運算定律的應用拓展。在這一部分中,老師給我們提供了一些拓展題目和練習,要求我們靈活運用乘法運算定律解決問題。這部分的學習幫助我們更好地理解乘法運算定律在不同場景中的應用,并意識到在實際生活中,乘法運算定律能夠幫助我們更加簡便地解決數(shù)學問題。

通過這次培訓,我對乘法運算定律有了更深入的了解,并且得到了許多寶貴的心得體會。首先,乘法運算定律是數(shù)學中重要的基礎知識,掌握了它可以幫助我們更便捷地解決數(shù)學運算問題。其次,在學習乘法運算定律時,理論與實踐相結合是非常重要的。通過訓練和練習,我們能夠更深入地理解乘法運算定律的內涵和應用,提高應用能力。最后,團隊合作也是學習乘法運算定律的重要環(huán)節(jié)。在團隊合作中,我們能夠互相幫助、共同思考,從中互相學習,取得更好的效果。

總之,通過這次乘法運算定律培訓,我對乘法運算定律的理解和應用能力得到了很大的提高并獲得了許多寶貴的經(jīng)驗。乘法運算定律作為數(shù)學中的基本規(guī)則,不僅僅在學習中起到重要作用,在實際生活中也能幫助我們更好地解決問題。我將更加努力地應用乘法運算定律,并將其應用于更廣泛的領域中。

乘法運算定律說課稿篇十二

《數(shù)學課程標準》指出“學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引導者與合作者?!苯虒W中我們應充分引導我學生去發(fā)現(xiàn)問題、解決問題,才能很好地應用數(shù)學知識。

我在教學乘法的運算定律這部分知識時,作了以下一些調整:

1、按照教參中的教學進程安排,乘法交換律和結合律需要分兩課時完成。我認為將兩課時可以合并為一課時。首先,加法的交換律和結合律與乘法的交換律和結合律比較相似,由兩條加法定律猜想到兩條乘法定律,難度不大,十分自然。其次,兩條乘法定律一起學,一方面有利于比較區(qū)分;另一方面,更利于實際應用,事實上在計算應用中,這兩條定律通常是結合在一起應用的。但是教學后發(fā)現(xiàn),學生在應用時情況較好,但對兩條定律的區(qū)分不夠明確。于是,在接下來的運用運算定律進行簡算運算教學時,我出示了大量的習題,分組沖關奪紅旗比賽,讓學生通過計算從中去發(fā)現(xiàn)問題,并從數(shù)學角度去探討問題,然后再通過舉例驗證,讓學生直觀感知乘法中的一些變化規(guī)律――任意交換因數(shù)的位置,積不變;因數(shù)位置不變,改變計算順序,積也不變。這樣,學生參與非常積極,在驗證的過程中學生把乘法中的這種變化規(guī)律,心領神會。由此,學生在進行簡算過程中,得心應手,不但學得愉快,而且用得靈活,效果較好。

2、乘法分配律的教學則是引導學生自己探索、發(fā)現(xiàn)。利用學生已經(jīng)掌握的知識進行遷移,從學生比較熟悉的生活實際問題引入,學生較易接受與理解。在我的提示指導下,漸漸發(fā)現(xiàn)了幾組算式之間存在著的聯(lián)系,找到規(guī)律,再通過舉例,驗證自己所找到的.規(guī)律,并且再啟發(fā)他們說出了乘法分配律的字母表達式。這樣既讓學生有獨立觀察、思考、練習的機會,又安排了小組討論,讓每個同學都有發(fā)言的機會,使全體學生的學習愿望都能得到滿足。因此,這堂課學生參與的積極性相當高,課堂氣氛比較活躍,回答問題的面也比較廣,從學生的練習反饋情況來看,對這個內容還是掌握較好。從實際教學的情況來看,這樣的調整教學效果還不錯,我自己認為已基本達到了我課前所設定的目標。讓學生參與知識的形成過程,培養(yǎng)學生概括、分析、推理的能力,并滲透“從特殊到一般,再由一般到特殊”的認識事物的方法,提高數(shù)學的應用意識。但由于學生人數(shù)太多,我在面向全體方面做的還不夠,使得個別不愛發(fā)言的同學,很少有表現(xiàn)自己的機會,這也是我在以后的教學當中值得注意,應該改進的地方。

將本文的word文檔下載到電腦,方便收藏和打印。

乘法運算定律說課稿篇十三

乘法是我們日常生活中常見的數(shù)學運算之一,乘法運算定律是我們解決乘法問題時的重要指導原則。為了加強自身的乘法運算技能和能力,我參加了一次乘法運算定律的培訓。這次培訓的目的是幫助我們全面理解乘法運算定律,掌握乘法計算的技巧,提高我們的乘法計算能力。

乘法運算定律有三條基本原理,分別是乘法結合律、乘法交換律和乘法分配律。乘法結合律告訴我們,在進行多個數(shù)的乘法運算時,無論先乘哪兩個數(shù),最終的結果都是一樣的。乘法交換律則指出,乘法運算中,兩個數(shù)的順序可以互換而不影響最終的計算結果。乘法分配律是乘法運算中的另一個重要原理,它告訴我們在計算一個數(shù)與兩個數(shù)的和的乘法時,可以分別乘以這兩個數(shù)然后再相加。掌握了這三條定律,我們只需在計算時根據(jù)具體情況運用相應的原理,就能夠快速準確地解決各種乘法計算題。

第三段:培訓中的學習方式和方法(300字)。

培訓期間,我們采用了多種學習方式和方法,以便更好地理解和掌握乘法運算定律。首先,我們通過老師的講解掌握了乘法運算定律的基本概念和原理。然后,我們進行了許多實際的練習題,在實際的操作中不斷鞏固和加深理解。培訓中,我們還設置了小組討論和互動環(huán)節(jié),通過和同學們的交流和合作,進一步加深了對乘法運算定律的理解。同時,我們還使用了一些實踐教學工具,如乘法運算定律的圖形化表示和實際問題的應用等,加強了我們對乘法運算定律的認知和記憶。

第四段:培訓對我乘法運算能力的提升(300字)。

通過這次培訓,我對乘法運算定律有了更深入的理解,學到了許多解決乘法計算問題的技巧。我學會了根據(jù)題目的具體情況判斷要運用哪一條乘法運算定律,提高了我的乘法運算能力。在培訓中,我注意培養(yǎng)了自己的邏輯思維能力和注意力集中能力,在解題思路上學會了總結規(guī)律并靈活應用。我從中也體會到了合作的重要性,通過和同學的互動,我們互相提出問題、解決問題,共同提升了乘法運算能力。

乘法運算定律在我們的日常生活中有著廣泛的應用。無論是金融投資、商業(yè)運營還是家庭預算,都需要用到乘法運算定律,以正確地計算出結果。乘法運算定律也是研究數(shù)學領域的深入的必備基礎,許多高等數(shù)學和應用數(shù)學的知識都以乘法運算定律作為基礎進行推演和應用。通過這次培訓,我深刻體會到乘法運算定律在實際生活中的重要性,也更加堅定了自己學好數(shù)學、掌握乘法運算定律的決心。

總結:

通過參加乘法運算定律的培訓,我不僅提高了自己的乘法運算能力,還深入理解了乘法運算定律的原理和應用。這次培訓對于我今后的數(shù)學學習和生活工作都具有重要的影響,我將會在實際應用中不斷提升自己乘法運算定律的應用能力,并將這次培訓的收獲運用到更多的領域中。

乘法運算定律說課稿篇十四

1、今天我說課的內容是九年義務教育六年制小學數(shù)學第八冊第二單元第2小節(jié)“加法的意義和運算定律”中的第1課時。其內容包括:加法的意義、加法交換律,完成p49“做一做”以及練習十一第1—2題。

2、從課本內容的縱向接洽看,本課一是在學生前三年半學過的加法知識的基礎上,明白歸納綜合出加法的意義,使學生對加法的了解從感性上升到理性,為以后學習小數(shù)、分數(shù)加法的意義打下基礎;二是在學生前三年半對加法互換律的感性了解的基礎上,用不完全歸納法歸納綜合出加法互換律,為背面學習加法的輕便算法打好基礎。

從課本擺設的局部看,通過p48頁例1的現(xiàn)實事例,使學生明白例1為什么要用加法盤算,在此基礎上歸納綜合出加法的意義。再接洽加法的意義,歸納綜合性闡明加法算式中各部門的名稱,單獨提出有關0的加法,提示學生細致。接著,課本借用例1的具方款式,用不完全歸納法抽象、歸納綜合出加法互換律的筆墨表述情勢和字母情勢。一方面進步知識的抽象、歸納綜合水平,另一方面為以后正式講用字母表現(xiàn)數(shù)打下開端基礎。

3、本課的重難點是理解加法的意義和加法交換律。

1、通過具體實例概括,使學生理解加法的意義,會運用加法的意義說明實際問題為什么用加法算;理解和掌握加法交換律,會用加法交換律驗算加法。

2、培養(yǎng)學生的有根據(jù)的說理能力和初步的推理能力。

3、培養(yǎng)學生的驗算的習慣。

本課在抽象、概括加法的意義時,主要采用直觀教學法,借助具體實例和線段圖讓學生理解加法的意義。在學習加法交換律的過程中,采用了成語故事直觀進行教學,呈現(xiàn)符合加法交換律的若干例證,讓學生歸納出加法交換律。

整個教學過程,充分體現(xiàn)了教師教的主導性和學生學的主體性,增強了學生主動學習的意識。通過抽象概括加法的意義,培養(yǎng)了學生的抽象、概括能力;通過運用加法的意義說明實際問題,培養(yǎng)了學生初步的邏輯思維能力和有根據(jù)的說理能力。通過運用加法交換律驗算加法,培養(yǎng)學生良好的驗算習慣。

(一)導入新課。直接切入,使學生明確學習目的。

(二)學習新知(分3個環(huán)節(jié))。

第1個環(huán)節(jié):學習加法的意義。

1、抽象概括加法的`意義。

(1)多媒體出示例1。先審題,幫助學生用線段圖表示出已知條件和問題,然后指名口頭列式解答,為理解加法的意義作準備。

(2)結合線段圖讓學生展開討論,多媒體配合在出示的線段圖上演示,使學生明確例1為什么要用加法算。

(3)引導學生抽象概括出加法的意義,使學生對加法的認識從感性上升到理性,培養(yǎng)學生的抽象、概括能力。

2、總結加法算式中各部分的名稱。

指名說出在“137+357=494”這個算式中“137”和“357”叫做加數(shù),“494”叫做和。教師分別板書。

3、練習,完成練習十一第1題。先讓學生集體討論,再指名應用加法的意義說明為什么用加法算,培養(yǎng)學生初步的邏輯思維能力和有根據(jù)的說理能力。

4、介紹0的加法。

引導學生通過討論0的加法的幾種情況,明確:一個數(shù)加上0,還得原數(shù)。

第2個環(huán)節(jié):學習加法交換律。

1、多媒體演示方向,指名回答:例1中如果求“濟南到北京的鐵路長多少千米”該怎樣計算?根據(jù)學生的回答先板書:357+137=494(千米),再讓學生用加法的意義說一說為什么用加法計算。一方面鞏固加法的意義,另一方面為下面比較兩種解法作準備。

2、通過引導學生比較兩種解法的結果,得出:137+357=357+137,啟發(fā)學生說出:把357和137交換位置,和不變。

3、讓學生視察p48兩組算式,用不完全歸納的要領抽象歸納綜合出加法互換律,造就學生歸納推理本領。

4、解說加法互換律的字母情勢:a+b=b+a,舉例闡明a和b可以表現(xiàn)恣意一個學過的整數(shù),進步知識的抽象、歸納綜合水平,為以后正式講用字母表現(xiàn)數(shù)打下開端基礎。

第3個關鍵:接納團體訓練,指名板演的情勢完成p49“做一做”,牢固加法互換律,掌握用加法互換律驗算加法的要領。

(三)訓練牢固。

憑據(jù)課本內容訓練:

訓練十一第2題。

訓練接納團體訓練,指名口答的情勢舉行。訓練是使學生加深對加法互換律的了解,牢固運算紀律,從而造就驗算風俗。

(四)全課小結。

【本文地址:http://www.mlvmservice.com/zuowen/17239914.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔