教案是教學(xué)活動的設(shè)計(jì)藍(lán)本,有助于教師明確目標(biāo)和組織教學(xué)內(nèi)容。在編寫教案過程中,要注重綜合素質(zhì)教育的實(shí)施。通過閱讀教案范例,可以了解到教學(xué)過程的安排和教學(xué)環(huán)節(jié)的設(shè)置。
勾股樹教案篇一
勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進(jìn)一步刻畫了直角三角形的特點(diǎn)。學(xué)習(xí)勾股定理極其逆定理是進(jìn)一步認(rèn)識和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運(yùn)算和代數(shù)學(xué)習(xí)的必然基礎(chǔ)?!缎掳鏀?shù)學(xué)課程標(biāo)準(zhǔn)》對勾股定理教學(xué)內(nèi)容的要求是:
1、在研究圖形性質(zhì)和運(yùn)動等過程中,進(jìn)一步發(fā)展空間觀念;
2、在多種形式的數(shù)學(xué)活動中,發(fā)展合情推理能力;
3、經(jīng)歷從不同角度分析問題和解決問題的方法的過程,體驗(yàn)解決問題方法的多樣性;
4、探索勾股定理及其逆定理,并能運(yùn)用它們解決一些簡單的實(shí)際問題。
本節(jié)課的教學(xué)目標(biāo)是:
1、能正確運(yùn)用勾股定理及其逆定理解決簡單的實(shí)際問題。
教學(xué)重點(diǎn)和難點(diǎn):
應(yīng)用勾股定理及其逆定理解決實(shí)際問題是重點(diǎn)。
把實(shí)際問題化歸成數(shù)學(xué)模型是難點(diǎn)。
根據(jù)新課標(biāo)提出的“要從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋和運(yùn)用的同時(shí),在思維能力情感態(tài)度和價(jià)值觀等方面得到進(jìn)步和發(fā)展”的理念,我想盡量給學(xué)生創(chuàng)設(shè)豐富的實(shí)際問題情境,使教學(xué)活動充滿趣味性和吸引力,讓他們在自主探究,合作交流中分析問題,建立數(shù)學(xué)模型,利用勾股定理及其逆定理解決問題。在教學(xué)過程中,采用一題多變的形式拓寬學(xué)生視野,訓(xùn)練學(xué)生思維的靈活性,滲透化歸的思想以及分類討論思想,方程思想等,使學(xué)生在獲得知識的同時(shí)提高能力。
在教學(xué)設(shè)計(jì)中,盡量考慮到不同學(xué)習(xí)水平的學(xué)生,注意知識由易到難的層次性,在課堂上,要照顧到接受較慢的學(xué)生。使不同學(xué)生有不同的收獲和發(fā)展。
本節(jié)課設(shè)計(jì)了七個(gè)環(huán)《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)節(jié)、第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):變式訓(xùn)練;第四環(huán)節(jié):議一議;第五環(huán)節(jié):做一做;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):情境引入。
情景1:復(fù)習(xí)提問:勾股定理的語言表述以及幾何語言表達(dá)?
設(shè)計(jì)意圖:溫習(xí)舊知識,規(guī)范語言及數(shù)學(xué)表達(dá),體現(xiàn)。
設(shè)計(jì)意圖:既靈活考察學(xué)生對勾股定理的理解,又增加了趣味性,還能考察學(xué)生三角形三邊關(guān)系。
第二環(huán)節(jié):合作探究(圓柱體表面路程最短問題)。
情景3:課本引例(螞蟻怎樣走最近)。
第三環(huán)節(jié):變式訓(xùn)練(由圓柱體表面路程最短問題逐步變?yōu)殚L方體表面的距離最短問題)。
設(shè)計(jì)意圖:將問題的條件稍做改變,讓學(xué)生嘗試獨(dú)立解決,拓展學(xué)生視野,又加深他們對知識的理解和鞏固。再將圓柱問題變?yōu)檎襟w長方體問題,學(xué)生有了之前的經(jīng)驗(yàn),自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長方體問題中學(xué)生會有不同的做法,正好透分類討論思想。
第四環(huán)節(jié):議一議。
內(nèi)容:李叔叔想要檢測雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺:
(1)你能替他想辦法完成任務(wù)嗎?
設(shè)計(jì)意圖:
第五環(huán)節(jié):方程與勾股定理。
在我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問題,這個(gè)問題的意思是:有一個(gè)水池,水面是一個(gè)邊長為10尺的正方形,在水池的中央有一根新生的蘆葦,它高出水面1尺,如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達(dá)岸邊的水面,請問這個(gè)水池的深度和這根蘆葦?shù)拈L度各是多少尺?《意圖:學(xué)生可以進(jìn)一步了解勾股定理的悠久歷史和廣泛應(yīng)用,了解我國古代人民的聰明才智;學(xué)會運(yùn)用方程的思想借助勾股定理解決實(shí)際問題。
第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):
1、解決實(shí)際問題的方法是建立數(shù)學(xué)模型求解、
2、在尋求最短路徑時(shí),往往把空間問題平面化,利用勾股定理及其逆定理解決實(shí)際問題、
3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。
第七環(huán)作業(yè)設(shè)計(jì):
第一道題難度較小,大部分學(xué)生可以獨(dú)立完成,第二道題有較大難度,可以交流討論完成。
勾股樹教案篇二
1、勾股定理直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2=c2)。
2、勾股定理的逆定理如果三角形的三邊長:a、b、c,則有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形。
3、勾股定理的證明常見方法如下:
方法一:,,化簡可證.
方法二:
四個(gè)直角三角形的面積與小正方形面積的和等于大正方形的面積.
四個(gè)直角三角形的面積與小正方形面積的和為。
大正方形面積為所以。
方法三:,,化簡得證。
勾股樹教案篇三
本節(jié)課教學(xué)模式主要采用“互動式”教學(xué)模式及“類比”的教學(xué)方法.通過前面所學(xué)的垂直平分線定理及其逆定理,做類比對象,讓學(xué)生自己提出問題并解決問題.在課堂教學(xué)中營造輕松、活潑的課堂氣氛.通過師生互動、生生互動、學(xué)生與教材之間的互動,造成“情意共鳴,溝通信息,反饋流暢,思維活躍”,達(dá)到培養(yǎng)學(xué)生思維能力的目的.具體說明如下:
(1)讓學(xué)生主動提出問題。
(2)讓學(xué)生自己解決問題。
(3)通過實(shí)際問題的解決,培養(yǎng)學(xué)生的數(shù)學(xué)意識.。
勾股樹教案篇四
應(yīng)用勾股定理及勾股定理的逆定理解決實(shí)際問題。
2。內(nèi)容解析。
運(yùn)用勾股定理的逆定理可以從三角形邊的數(shù)量關(guān)系來識別三角形的形狀,它是用代數(shù)方法來研究幾何圖形,也是向?qū)W生滲透“數(shù)形結(jié)合”這一數(shù)學(xué)思想方法的很好素材。綜合運(yùn)用勾股定理及其逆定理能幫助我們解決實(shí)際問題。
基于以上分析,可以確定本課的教學(xué)重點(diǎn)是靈活運(yùn)用勾股定理的逆定理解決實(shí)際問題。
勾股樹教案篇五
(1)靈活應(yīng)用勾股定理及逆定理解決實(shí)際問題。
(2)進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識。
2。目標(biāo)解析。
目標(biāo)(2)能先用勾股定理的逆定理判斷一個(gè)三角形是直角三角形,再用勾股定理及直角三角形的性質(zhì)進(jìn)行有關(guān)的計(jì)算和證明。
勾股樹教案篇六
教學(xué)方法葉圣陶說過“教師之為教,不在全盤授予,而在相機(jī)誘導(dǎo)?!币虼私處熇脦缀沃庇^提出問題,引導(dǎo)學(xué)生由淺入深的探索,設(shè)計(jì)實(shí)驗(yàn)讓學(xué)生進(jìn)行驗(yàn)證,感悟其中所蘊(yùn)涵的思想方法。
學(xué)法指導(dǎo)為把學(xué)習(xí)的主動權(quán)還給學(xué)生,教師鼓勵學(xué)生采用動手實(shí)踐,自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生親自感知體驗(yàn)知識的形成過程。
勾股樹教案篇七
即直角三角形兩直角的平方和等于斜邊的平方.。
因此,在運(yùn)用勾股定理計(jì)算三角形的邊長時(shí),要注意如下三點(diǎn):
(2)注意分清斜邊和直角邊,避免盲目代入公式致錯(cuò);
如,利用四個(gè)如圖1所示的直角三角形三角形,拼出如圖2所示的三個(gè)圖形.。
請讀者證明.。
請同學(xué)們自己證明圖(2)、(3).。
3.在數(shù)軸上表示無理數(shù)。
二、典例精析。
132-52=144,所以另一條直角邊的長為12.。
所以這個(gè)直角三角形的面積是×12×5=30(cm2).。
例2如圖3(1),一只螞蟻沿棱長為a的正方體表面從頂點(diǎn)a爬到。
頂點(diǎn)b,則它走過的最短路程為。
a.b.c.3ad.分析:本題顯然與例2屬同種類型,思路相同.但正方體的。
各棱長相等,因此只有一種展開圖.。
解:將正方體側(cè)面展開。
勾股樹教案篇八
1、通過拼圖,用面積的方法說明勾股定理的正確性.
2、通過實(shí)例應(yīng)用勾股定理,培養(yǎng)學(xué)生的知識應(yīng)用技能.
一、學(xué)前準(zhǔn)備:
1、閱讀課本第46頁到第47頁,完成下列問題:。
2、剪四個(gè)完全相同的直角三角形,然后將它們拼成如圖所示的'圖形。大正方形的面積可以表示為_________________________,又可以表示為__________________________.對比兩種表示方法,看看能不能得到勾股定理的結(jié)論。用上面得到的完全相同的四個(gè)直角三角形,還可以拼成如下圖所示的圖形,與上面的方法類似,也能說明勾股定理是正確的方法(請逐一說明)。
二、合作探究:
(一)自學(xué)、相信自己:
(二)思索、交流:
(三)應(yīng)用、探究:
(四)鞏固練習(xí):
1、如圖,64、400分別為所在正方形的面積,則圖中字。
母a所代表的正方形面積是_________。
三.學(xué)習(xí)體會:
本節(jié)課我們進(jìn)一步認(rèn)識了勾股定理,并用兩種方法證明了這個(gè)定理,在應(yīng)用此定理解決問題時(shí),應(yīng)注意只有直角三角形的三邊才有這樣的關(guān)系,如果不是直角三角形應(yīng)該構(gòu)造直角三角形來解決。
2②圖。
四.自我測試:
五.自我提高:
勾股樹教案篇九
二.新課學(xué)習(xí)。
探究點(diǎn)一:螞蟻沿圓柱側(cè)面爬行的最短路徑問題。
思考:
1.利用學(xué)具,嘗試從a點(diǎn)到b點(diǎn)沿圓柱側(cè)面畫出幾條線路,你認(rèn)為。
這樣的線路有幾條?可分為幾類?
2.將右圖的圓柱側(cè)面剪開展開成一個(gè)長方形,b點(diǎn)在什么位置?從。
a點(diǎn)到b點(diǎn)的最短路線是什么?你是如何畫的?
1.33.螞蟻從a點(diǎn)出發(fā),想吃到b點(diǎn)上的食物,它沿圓柱側(cè)面爬行的最短路程是多少?你是如何解答這個(gè)問題的?畫出圖形,寫出解答過程。
4.你是如何將這個(gè)實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的?
小結(jié):
你是如何解決圓柱體側(cè)面上兩點(diǎn)之間的最短距離問題的?
探究點(diǎn)二:利用勾股定理逆定理如何判斷兩線垂直?
但他隨身只帶了卷尺。(參看p13頁雕塑圖1-13)。
(1)你能替他想辦法完成任務(wù)嗎?
1.31.3(2)李叔叔量得ad的長是30cm,ab的長是40cm,
邊垂直于ab邊嗎?你是如何解決這個(gè)問題的?
小結(jié):通過本道例題的探索,判斷兩線垂直,你學(xué)會了什么方法?
探究點(diǎn)三:利用勾股定理的方程思想在實(shí)際問題中的應(yīng)用。
例圖1-14是一個(gè)滑梯示意圖,若將滑道ac水平放置,則剛好與ab一樣長.已知滑梯的高度ce=3m,cd=1m,試求滑道ac的長.
1.3。
思考:
1.求滑道ac的長的問題可以轉(zhuǎn)化為什么數(shù)學(xué)問題?
2.你是如何解決這個(gè)問題的?寫出解答過程。
小結(jié):
四.課堂小結(jié):本節(jié)課你學(xué)到了什么?
三.新知應(yīng)用。
1.如圖,臺階a處的螞蟻要爬到b處搬運(yùn)食物,它怎么走最近?并求出最近距離.。
1.3。
2.如圖,在水池的正中央有一根蘆葦,池底長10尺,它高出水而1尺,如果把這根蘆葦拉向水池一邊,它的頂端恰好到達(dá)池邊的水面則這根蘆葦?shù)拈L度是()。
1.3。
五.作業(yè)布置:習(xí)題1.41,3,4題。
勾股樹教案篇十
教學(xué)目標(biāo):
1、知識目標(biāo):
(2)學(xué)會利用勾股定理進(jìn)行計(jì)算、證明與作圖;
(3)了解有關(guān)勾股定理的歷史。
2、能力目標(biāo):
(1)在定理的證明中培養(yǎng)學(xué)生的拼圖能力;
(2)通過問題的解決,提高學(xué)生的運(yùn)算能力。
3、情感目標(biāo):
(1)通過自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識的感受;
(2)通過有關(guān)勾股定理的歷史講解,對學(xué)生進(jìn)行德育教育。
教學(xué)難點(diǎn):通過有關(guān)勾股定理的歷史講解,對學(xué)生進(jìn)行德育教育。
教學(xué)用具:直尺,微機(jī)。
教學(xué)方法:以學(xué)生為主體的討論探索法。
教學(xué)過程:
1、新課背景知識復(fù)習(xí)。
(1)三角形的三邊關(guān)系。
(2)問題:(投影顯示)。
直角三角形的三邊關(guān)系,除了滿足一般關(guān)系外,還有另外的特殊關(guān)系嗎?
2、定理的獲得。
讓學(xué)生用文字語言將上述問題表述出來。
勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。
強(qiáng)調(diào)說明:
(1)勾――最短的邊、股――較長的直角邊、弦――斜邊。
(2)學(xué)生根據(jù)上述學(xué)習(xí),提出自己的問題(待定)。
3、定理的證明方法。
方法一:將四個(gè)全等的直角三角形拼成如圖1所示的正方形。
方法二:將四個(gè)全等的直角三角形拼成如圖2所示的正方形。
方法三:“總統(tǒng)”法、如圖所示將兩個(gè)直角三角形拼成直角梯形。
以上證明方法都由學(xué)生先分組討論獲得,教師只做指導(dǎo)、最后總結(jié)說明。
4、定理與逆定理的應(yīng)用。
5、課堂小結(jié):
已知直角三角形的兩邊求第三邊。
已知直角三角形的一邊,求另兩邊的關(guān)系。
6、布置作業(yè):
a、書面作業(yè)p130#1、2、3。
b、上交作業(yè)p132#1、3。
勾股樹教案篇十一
本節(jié)將利用勾股定理及其逆定理解決一些具體的實(shí)際問題,其中需要學(xué)生了解空間圖形、對一些空間圖形進(jìn)行展開、折疊等活動。學(xué)生在學(xué)習(xí)七年級上第一章時(shí)對生活中的立體圖形已經(jīng)有了一定的認(rèn)識,并從事過相應(yīng)的實(shí)踐活動,因而學(xué)生已經(jīng)具備解決本課問題所需的知識基礎(chǔ)和活動經(jīng)驗(yàn)基礎(chǔ)。
勾股樹教案篇十二
11.如圖,一個(gè)高、寬的大門,需要在對角線的頂點(diǎn)間加固一個(gè)木條,求木條的長.
12.一個(gè)三角形三條邊的長分別為,,,這個(gè)三角形最長邊上的高是多少?
13.如圖,小李準(zhǔn)備建一個(gè)蔬菜大棚,棚寬4m,高3m,長20m,棚的斜面用塑料薄膜遮蓋,不計(jì)墻的厚度,請計(jì)算陽光透過的最大面積.
勾股樹教案篇十三
1.通過觀察圖形,探索圖形間的關(guān)系,發(fā)展學(xué)生的空間觀念.
2.在將實(shí)際問題抽象成數(shù)學(xué)問題的過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想.
3.在利用勾股定理解決實(shí)際問題的過程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性.
利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問題是本節(jié)課的重點(diǎn)也是難點(diǎn).
【本文地址:http://www.mlvmservice.com/zuowen/16915243.html】