編寫教案要考慮學生的認知特點和學習需求,以幫助學生更好地理解和掌握知識。教案的教學過程應當靈活多樣,注重激發(fā)學生的學習興趣和參與度。教案的質(zhì)量對教學效果有著至關重要的影響,以下是幾種典型的教案范例。
人教版高中數(shù)學教案篇一
了解雙曲線的定義,幾何圖形和標準方程,知道它的簡單性質(zhì)。
【自學質(zhì)疑】
漸近線方程是 ,離心率 ,若點 是雙曲線上的點,則 , 。
2.又曲線 的左支上一點到左焦點的距離是7,則這點到雙曲線的右焦點的距離是
3.經(jīng)過兩點 的雙曲線的標準方程是 。
4.雙曲線的漸近線方程是 ,則該雙曲線的離心率等于 。
5.與雙曲線 有公共的漸近線,且經(jīng)過點 的雙曲線的方程為
【例題精講】
1.雙曲線的離心率等于 ,且與橢圓 有公共焦點,求該雙曲線的方程。
2.已知橢圓具有性質(zhì):若 是橢圓 上關于原點對稱的兩個點,點 是橢圓上任意一點,當直線 的斜率都存在,并記為 時,那么 之積是與點 位置無關的定值,試對雙曲線 寫出具有類似特性的性質(zhì),并加以證明。
3.設雙曲線 的半焦距為 ,直線 過 兩點,已知原點到直線 的距離為 ,求雙曲線的離心率。
【矯正鞏固】
1.雙曲線 上一點 到一個焦點的距離為 ,則它到另一個焦點的距離為 。
2.與雙曲線 有共同的漸近線,且經(jīng)過點 的雙曲線的一個焦點到一條漸近線的距離是 。
3.若雙曲線 上一點 到它的右焦點的距離是 ,則點 到 軸的距離是
4.過雙曲線 的左焦點 的直線交雙曲線于 兩點,若 。則這樣的直線一共有 條。
【遷移應用】
2. 已知雙曲線 的焦點為 ,點 在雙曲線上,且 ,則點 到 軸的距離為 。
3. 雙曲線 的焦距為
4. 已知雙曲線 的一個頂點到它的一條漸近線的距離為 ,則
5. 設 是等腰三角形, ,則以 為焦點且過點 的雙曲線的離心率為 .
人教版高中數(shù)學教案篇二
1.在九年義務教育基礎上,使學生進一步學習并掌握職業(yè)崗位和生活中所必要的數(shù)學基礎知識。2.培養(yǎng)學生的計算技能、計算工具使用技能和數(shù)據(jù)處理技能,培養(yǎng)學生的觀察能力、空間想象能力、分析與解決問題能力和數(shù)學思維能力。
本課程的教學內(nèi)容由基礎模塊、職業(yè)模塊和拓展模塊三個部分構成。
1.基礎模塊是各專業(yè)學生必修的基礎性內(nèi)容和應達到的基本要求,教學時數(shù)為128學時。2.職業(yè)模塊是適應學生學習相關專業(yè)需要的限定選修內(nèi)容,各學校根據(jù)實際情況進行選擇和安排教學,教學時數(shù)為32~64學時。
(一)本大綱教學要求用語的表述1.認知要求(分為三個層次)
了解:初步知道知識的含義及其簡單應用。
理解:懂得知識的概念和規(guī)律(定義、定理、法則等)以及與其他相關知識的聯(lián)系。掌握:能夠應用知識的概念、定義、定理、法則去解決一些問題。2.技能與能力培養(yǎng)要求(分為三項技能與四項能力)
計算技能:根據(jù)法則、公式,或按照一定的操作步驟,正確地進行運算求解。計算工具使用技能:正確使用科學型計算器及常用的數(shù)學工具軟件。數(shù)據(jù)處理技能:按要求對數(shù)據(jù)(數(shù)據(jù)表格)進行處理并提取有關信息。觀察能力:根據(jù)數(shù)據(jù)趨勢,數(shù)量關系或圖形、圖示,描述其規(guī)律。
空間想象能力:依據(jù)文字、語言描述,或較簡單的幾何體及其組合,想象相應的空間圖形;能夠在基本圖形中找出基本元素及其位置關系,或根據(jù)條件畫出圖形。
分析與解決問題能力:能對工作和生活中的簡單數(shù)學相關問題,作出分析并運用適當?shù)臄?shù)學方法予以解決。
數(shù)學思維能力:依據(jù)所學的數(shù)學知識,運用類比、歸納、綜合等方法,對數(shù)學及其應用問題能進行有條理的思考、判斷、推理和求解;針對不同的問題(或需求),會選擇合適的模型(模式)。
(二)教學內(nèi)容與要求1.基礎模塊(128學時)第1單元集合(10學時)
第2單元不等式(8學時)
第3單元函數(shù)(12學時)
第4單元指數(shù)函數(shù)與對數(shù)函數(shù)(12學時)
第5單元三角函數(shù)(18學時)
第6單元數(shù)列(10學時)
第7單元平面向量(矢量)(10學時)
第8單元直線和圓的方程(18學時)
第9單元立體幾何(14學時)
第10單元概率與統(tǒng)計初步(16學時)
2.職業(yè)模塊
第1單元三角計算及其應用(16學時)
第2單元坐標變換與參數(shù)方程(12學時)
第3單元復數(shù)及其應用(10學時)
人教版高中數(shù)學教案篇三
三角函數(shù)的誘導公式是普通高中課程標準實驗教科書(人教b版)數(shù)學必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時,教學內(nèi)容是公式(三)。教材要求通過學生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎上,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)三角函數(shù)值的關系。同時教材滲透了轉化與化歸等數(shù)學思想方法。
通過學生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎上,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)三角函數(shù)值的關系。同時教材滲透了轉化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求。因此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結合等數(shù)學思想方法,采用提出問題、啟發(fā)引導、共同探究、綜合應用等教學模式。
借助單位圓探究誘導公式。
能正確運用誘導公式將任意角的三角函數(shù)化為銳角三角函數(shù)。
誘導公式(三)的推導及應用。
誘導公式的應用。
多媒體。
1. 誘導公式(一)(二)。
2. 角 (終邊在一條直線上)
3. 思考:下列一組角有什么特征?( )能否用式子來表示?
已知 由
可知
而 (課件演示,學生發(fā)現(xiàn))
所以
于是可得: (三)
設計意圖:結合幾何畫板的演示利用同一點的坐標變換,導出公式。
由公式(一)(三)可以看出,角 角 相等。即:
.
公式(一)(二)(三)都叫誘導公式。利用誘導公式可以求三角函數(shù)式的值或化簡三角函數(shù)式。
設計意圖:結合學過的公式(一)(二),發(fā)現(xiàn)特點,總結公式。
1. 練習
(1)
設計意圖:利用公式解決問題,發(fā)現(xiàn)新問題,小組研究討論,得到新公式。
(學生板演,老師點評,用彩色粉筆強調(diào)重點,引導學生總結公式。)
例3:求下列各三角函數(shù)值:
(1)
(2)
(3)
(4)
設計意圖:利用公式解決問題。
練習:
(1)
(2) (學生板演,師生點評)
設計意圖:觀察公式特點,選擇公式解決問題。
四.課堂小結:將任意角三角函數(shù)轉化為銳角三角函數(shù),體現(xiàn)轉化化歸,數(shù)形結合思想的應用,培養(yǎng)了學生分析問題、解決問題的能力,熟練應用解決問題。
很榮幸大家來聽我的課,通過這課,我學習到如下的東西:
1.要認真的研讀新課標,對教學的目標,重難點把握要到位
2.注意板書設計,注重細節(jié)的東西,語速需要改正
3.進一步的學習網(wǎng)頁制作,讓你的網(wǎng)頁更加的完善,學生更容易操作
5.上課的生動化,形象化需要加強
1.評議者:網(wǎng)絡輔助教學,起到了很好的效果;教態(tài)大方,作為新教師,開設校際課,勇氣可嘉!建議:感覺到老師有點緊張,其實可以放開點的,相信效果會更好的!重點不夠清晰,有引導數(shù)學時,最好值有個側重點;網(wǎng)絡設計上,網(wǎng)頁上公開的推導公式為上,留有更大的空間讓學生來思考。
2.評議者:網(wǎng)絡教學效果良好,給學生自主思考,學習的空間發(fā)揮,教學設計得好;建議:課堂講課聲音,語調(diào)可以更有節(jié)奏感一些,抑揚頓挫應注意課堂例題練習可以多兩題。
3.評議者:學科網(wǎng)絡平臺的使用;建議:應重視引導學生將一些唾手可得的有用結論總結出來,并形成自我的經(jīng)驗。
4.評議者:引導學生通過網(wǎng)絡進行探究。
建議:課件制作在線測評部分,建議不能重復選擇,應全部做完后,顯示結果,再重復測試;多提問學生。
( 1)給學生思考的時間較長,語調(diào)相對平緩,總結時,給學生一些激勵的語言更好
( 2)這樣子的教學可以提高上課效率,讓學生更多的時間思考
( 4)給學生答案,這個網(wǎng)頁要進一步的修正,答案能否不要一點就出來
( 5)1.板書設計要進一步的加強,2.語速相對是比較快的3.練習量比較少
( 6)讓學生多探究,課堂會更熱鬧
( 7)注意引入的過程要帶有目的,帶著問題來教學,學生帶著問題來學習
( 8)教學模式相對簡單重復
( 9)思路較為清晰,規(guī)范化的推理
人教版高中數(shù)學教案篇四
:計算機
:啟發(fā)引導法,討論法
下面給出教學實施過程設計的簡要思路:
(一)引入的設計
前邊學習了如何根據(jù)所給條件求出直線方程的方法,看下面問題:
問:說出過點 (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是 ,屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次.
肯定學生回答,并糾正學生中不規(guī)范的表述.再看一個問題:
問:求出過點 , 的直線的方程,并觀察方程屬于哪一類,為什么?
啟發(fā):你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論.
學生紛紛談出自己的想法,教師邊評價邊啟發(fā)引導,使學生的認識統(tǒng)一到如下問題:
【問題1】“任意直線的方程都是二元一次方程嗎?”
(二)本節(jié)主體內(nèi)容教學的設計
學生或獨立研究,或合作研究,教師巡視指導.
經(jīng)過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:
思路一:…
思路二:…
……
教師組織評價,確定最優(yōu)方案(其它待課下研究)如下:
按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.
當 存在時,直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.
當 不存在時,直線 的方程可表示為 形式的方程,它是二元一次方程嗎?
學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:
綜合兩種情況,我們得出如下結論:
同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?
學生們不難得出:二者可以概括為統(tǒng)一的形式.
這樣上邊的結論可以表述如下:
啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?
【問題2】任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線嗎?
師生共同討論,評價不同思路,達成共識:
(1)當 時,方程可化為
這是表示斜率為 、在 軸上的截距為 的直線.
(2)當 時,由于 、 不同時為0,必有 ,方程可化為
這表示一條與 軸垂直的直線.
因此,得到結論:
為方便,我們把 (其中 、 不同時為0)稱作直線方程的一般式是合理的.
【動畫演示】
演示“直線各參數(shù)”文件,體會任何二元一次方程都表示一條直線.
(三)練習鞏固、總結提高、板書和作業(yè)等環(huán)節(jié)的設計
略
人教版高中數(shù)學教案篇五
熟悉兩角和與差的正、余公式的推導過程,提高邏輯推理能力。
掌握兩角和與差的正、余弦公式,能用公式解決相關問題。
教學重難點。
熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。
兩角差的余弦公式。
用-b代替b看看有什么結果?
人教版高中數(shù)學教案篇六
教學目標:
能力目標:用平面向量的數(shù)量積可以處理有關長度、角度和垂直的問題;。
情感目標:感受向量的應用,體會解題的樂趣。
教學重點:平面向量的數(shù)量積定義。
教學難點:平面向量數(shù)量積的定義及運算律的理解和平面向量數(shù)量積的應用。
教學重點、難點及其解決對策:本節(jié)學習的關鍵是啟發(fā)學生理解平面向量數(shù)量積的定義,理解定義之后便可引導學生推導數(shù)量積的運算律,然后通過概念辨析題加深學生對于平面向量數(shù)量積的認識.主要知識點:平面向量數(shù)量積的定義及幾何意義;平面向量數(shù)量積的5個重要性質(zhì);平面向量數(shù)量積的運算律.
教學方法:講練結合法。
教學過程:略。
小結:。
1.兩個非零向量夾角。
2.向量的數(shù)量積的定義和幾何意義.
3.兩個向量的數(shù)量積的性質(zhì):
教學后記:
人教版高中數(shù)學教案篇七
函數(shù)思想在解題中的應用主要表現(xiàn)在兩個方面:一是借助有關初等函數(shù)的性質(zhì),解有關求值、解(證)不等式、解方程以及討論參數(shù)的取值范圍等問題:二是在問題的研究中,通過建立函數(shù)關系式或構造中間函數(shù),把所研究的問題轉化為討論函數(shù)的有關性質(zhì),達到化難為易,化繁為簡的目的。函數(shù)與方程的思想是中學數(shù)學的基本思想,也是歷年高考的重點。
1.函數(shù)的思想,是用運動和變化的觀點,分析和研究數(shù)學中的數(shù)量關系,建立函數(shù)關系或構造函數(shù),運用函數(shù)的圖像和性質(zhì)去分析問題、轉化問題,從而使問題獲得解決。
3.函數(shù)方程思想的幾種重要形式。
(1)函數(shù)和方程是密切相關的,對于函數(shù)y=f(x),當y=0時,就轉化為方程f(x)=0,也可以把函數(shù)式y(tǒng)=f(x)看做二元方程y-f(x)=0。
(6)立體幾何中有關線段、角、面積、體積的計算,經(jīng)常需要運用布列方程或建立函數(shù)表達式的方法加以解決。
人教版高中數(shù)學教案篇八
集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學的一個重要的基礎,一方面,許多重要的數(shù)學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數(shù)學思想,在越來越廣泛的領域種得到應用。
教學重點.難點
重點:集合的含義與表示方法.
難點:表示法的恰當選擇.
教學目標
l.知識與技能
(1)通過實例,了解集合的含義,體會元素與集合的屬于關系;
(2)知道常用數(shù)集及其專用記號; (3)了解集合中元素的確定性.互異性.無序性;
(4)會用集合語言表示有關數(shù)學對象;
2.過程與方法
(1)讓學生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.
(2)讓學生歸納整理本節(jié)所學知識.
3.情感.態(tài)度與價值觀
使學生感受到學習集合的必要性,增強學習的積極性.
1.教學方法:學生通過閱讀教材,自主學習.思考.交流.討論和概括,從而更好地完成本節(jié)課的教學目標.2.教學手段:在教學中使用投影儀來輔助教學.
(一)創(chuàng)設情景,揭示課題
1.教師首先提出問題:(1)介紹自己的家庭、原來就讀的學校、現(xiàn)在的班級。
(2)問題:像“家庭”、“學?!薄ⅰ鞍嗉墶钡?,有什么共同特征?
引導學生互相交流.與此同時,教師對學生的活動給予評價.
2.活動:(1)列舉生活中的集合的例子;(2)分析、概括各實例的共同特征
由此引出這節(jié)要學的內(nèi)容。
設計意圖:既激發(fā)了學生濃厚的學習興趣,又為新知作好鋪墊
(二)研探新知,建構概念
1.教師利用多媒體設備向?qū)W生投影出下面7個實例:
(1)1—20以內(nèi)的所有質(zhì)數(shù);(2)我國古代的四大發(fā)明;
(3)所有的安理會常任理事國; (4)所有的正方形;
(5)海南省在20xx年9月之前建成的所有立交橋;
(6)到一個角的兩邊距離相等的所有的點;
(7)國興中學20xx年9月入學的高一學生的全體.
2.教師組織學生分組討論:這7個實例的共同特征是什么?
3.每個小組選出——位同學發(fā)表本組的討論結果,在此基礎上,師生共同概括出7個實例的特征,并給出集合的含義.一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.
4.教師指出:集合常用大寫字母a,b,c,d,?表示,元素常用小寫字母a,b,c,d?表示.
設計意圖:通過實例讓學生感受集合的概念,激發(fā)學習的興趣,培養(yǎng)學生樂于求索的精神
(三)質(zhì)疑答辯,發(fā)展思維
1.教師引導學生閱讀教材中的相關內(nèi)容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難.使學生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構成兩個集合的元素是一樣的,我們就稱這兩個集合相等.
2.教師組織引導學生思考以下問題:
判斷以下元素的全體是否組成集合,并說明理由:
(1)大于3小于11的偶數(shù);(2)我國的小河流.讓學生充分發(fā)表自己的建解.
3.讓學生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說明理由.教師對學生的學習活動給予及時的評價.
4.教師提出問題,讓學生思考
高一(4)班的一位同學,那么a,b與集合a分別有什么關系?由此引導學生得出元素與集合的關系有兩種:屬于和不屬于.
如果a是集合a的元素,就說a屬于集合a,記作a?a.
如果a不是集合a的元素,就說a不屬于集合a,記作a?a.
(2)如果用a表示“所有的安理會常任理事國”組成的集合,則中國.日本與集合a的關系分別是什么?請用數(shù)學符號分別表示.
(3)讓學生完成教材第6頁練習第1題.
5.教師引導學生回憶數(shù)集擴充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號.并讓學生完成習題1.1a組第1題.
6.教師引導學生閱讀教材中的相關內(nèi)容,并思考.討論下列問題:
(1)要表示一個集合共有幾種方式?
(2)試比較自然語言.列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?
(3)如何根據(jù)問題選擇適當?shù)募媳硎痉?
使學生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。
設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。
(四)鞏固深化,反饋矯正
教師投影學習:
(3)試選擇適當?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習第2題.
設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象
(五)歸納小結,布置作業(yè)
小結:在師生互動中,讓學生了解或體會下例問題:
1.本節(jié)課我們學習了哪些知識內(nèi)容? 2.你認為學習集合有什么意義?
3.選擇集合的表示法時應注意些什么?
設計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。
作業(yè):1.課后書面作業(yè):第13頁習題1.1a組第4題.
2.元素與集合的關系有多少種?如何表示?類似地集合與集合間的關系又有多少種
呢?如何表示?請同學們通過預習教材.
人教版高中數(shù)學教案篇九
1。使學生掌握的概念,圖象和性質(zhì)。
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域。
(2)能在基本性質(zhì)的指導下,用列表描點法畫出的圖象,能從數(shù)形兩方面認識的性質(zhì)。
(3)能利用的性質(zhì)比較某些冪形數(shù)的大小,會利用的圖象畫出形如的圖象。
2。通過對的概念圖象性質(zhì)的學習,培養(yǎng)學生觀察,分析歸納的能力,進一步體會數(shù)形結合的思想方法。
3。通過對的研究,讓學生認識到數(shù)學的應用價值,激發(fā)學生學習數(shù)學的興趣。使學生善于從現(xiàn)實生活中數(shù)學的發(fā)現(xiàn)問題,解決問題。
教學建議。
教材分析。
(1)是在學生系統(tǒng)學習了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應用,也是今后學習對數(shù)函數(shù)的基礎,同時在生活及生產(chǎn)實際中有著廣泛的應用,所以應重點研究。
(2)本節(jié)的教學重點是在理解定義的基礎上掌握的圖象和性質(zhì)。難點是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分。
(3)是學生完全陌生的一類函數(shù),對于這樣的函數(shù)應怎樣進行較為系統(tǒng)的理論研究是學生面臨的重要問題,所以從的研究過程中得到相應的結論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究。
教法建議。
(1)關于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如,等都不是。
(2)對底數(shù)的限制條件的理解與認識也是認識的重要內(nèi)容。如果有可能盡量讓學生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關系到對的認識及性質(zhì)的分類討論,還關系到后面學習對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來。
關于圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象。
教學設計示例。
課題。
1。理解的定義,初步掌握的圖象,性質(zhì)及其簡單應用。
2。通過的圖象和性質(zhì)的學習,培養(yǎng)學生觀察,分析,歸納的能力,進一步體會數(shù)形結合的思想方法。
3。通過對的研究,使學生能把握函數(shù)研究的基本方法,激發(fā)學生的學習興趣。
教學重點和難點。
重點是理解的定義,把握圖象和性質(zhì)。
難點是認識底數(shù)對函數(shù)值影響的認識。
教學用具。
投影儀。
教學方法。
啟發(fā)討論研究式。
教學過程。
一。引入新課。
我們前面學習了指數(shù)運算,在此基礎上,今天我們要來研究一類新的常見函數(shù)———————。
1。6。(板書)。
這類函數(shù)之所以重點介紹的原因就是它是實際生活中的一種需要。比如我們看下面的問題:
由學生回答:與之間的關系式,可以表示為。
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的長度為米,試寫出與之間的函數(shù)關系。
由學生回答:。
在以上兩個實例中我們可以看到這兩個函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為。
一。的概念(板書)。
1。定義:形如的函數(shù)稱為。(板書)。
教師在給出定義之后再對定義作幾點說明。
2。幾點說明(板書)。
(1)關于對的規(guī)定:
教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學生感到有困難,可將問題分解為若會有什么問題?如,此時,等在實數(shù)范圍內(nèi)相應的函數(shù)值不存在。
若對于都無意義,若則無論取何值,它總是1,對它沒有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定且。
(2)關于的定義域(板書)。
教師引導學生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時教師可指出,其實當指數(shù)為無理數(shù)時,也是一個確定的實數(shù),對于無理指數(shù)冪,學過的有理指數(shù)冪的性質(zhì)和運算法則它都適用,所以將指數(shù)范圍擴充為實數(shù)范圍,所以的定義域為。擴充的另一個原因是因為使她它更具代表更有應用價值。
(3)關于是否是的判斷(板書)。
剛才分別認識了中底數(shù),指數(shù)的要求,下面我們從整體的角度來認識一下,根據(jù)定義我們知道什么樣的函數(shù)是,請看下面函數(shù)是否是。
(1),(2),(3)。
(4),(5)。
學生回答并說明理由,教師根據(jù)情況作點評,指出只有(1)和(3)是,其中(3)可以寫成,也是指數(shù)圖象。
最后提醒學生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時研究的關鍵在于畫出它的圖象,再細致歸納性質(zhì)。
3。歸納性質(zhì)。
作圖的用什么方法。用列表描點發(fā)現(xiàn),教師準備明確性質(zhì),再由學生回答。
函數(shù)。
1。定義域:
2。值域:
3。奇偶性:既不是奇函數(shù)也不是偶函數(shù)。
4。截距:在軸上沒有,在軸上為1。
對于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對第3條還應會證明。對于單調(diào)性,我建議找一些特殊點。,先看一看,再下定論。對最后一條也是指導函數(shù)圖象畫圖的依據(jù)。(圖象位于軸上方,且與軸不相交。)。
在此基礎上,教師可指導學生列表,描點了。取點時還要提醒學生由于不具備對稱性,故的值應有正有負,且由于單調(diào)性不清,所取點的個數(shù)不能太少。
此處教師可利用計算機列表描點,給出十組數(shù)據(jù),而學生自己列表描點,至少六組數(shù)據(jù)。連點成線時,一定提醒學生圖象的變化趨勢(當越小,圖象越靠近軸,越大,圖象上升的越快),并連出光滑曲線。
二。圖象與性質(zhì)(板書)。
1。圖象的畫法:性質(zhì)指導下的列表描點法。
2。草圖:
當畫完第一個圖象之后,可問學生是否需要再畫第二個?它是否具有代表性?(教師可提示底數(shù)的條件是且,取值可分為兩段)讓學生明白需再畫第二個,不妨取為例。
此時畫它的圖象的方法應讓學生來選擇,應讓學生意識到列表描點不是的方法,而圖象變換的方法更為簡單。即=與圖象之間關于軸對稱,而此時的圖象已經(jīng)有了,具備了變換的條件。讓學生自己做對稱,教師借助計算機畫圖,在同一坐標系下得到的圖象。
最后問學生是否需要再畫。(可能有兩種可能性,若學生認為無需再畫,則追問其原因并要求其說出性質(zhì),若認為還需畫,則教師可利用計算機再畫出如的圖象一起比較,再找共性)。
由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個表,如下:
以上內(nèi)容學生說不齊的,教師可適當提出觀察角度讓學生去描述,然后再讓學生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿。
填好后,讓學生仿照此例再列一個的表,將相應的內(nèi)容填好。為進一步整理性質(zhì),教師可提出從另一個角度來分類,整理函數(shù)的性質(zhì)。
3。性質(zhì)。
(1)無論為何值,都有定義域為,值域為,都過點。
(2)時,在定義域內(nèi)為增函數(shù),時,為減函數(shù)。
(3)時,,時,。
總結之后,特別提醒學生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì)。
三。簡單應用(板書)。
1。利用單調(diào)性比大小。(板書)。
一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡單的問題。首先我們來看下面的問題。
例1。比較下列各組數(shù)的大小。
(1)與;(2)與;。
(3)與1。(板書)。
首先讓學生觀察兩個數(shù)的特點,有什么相同?由學生指出它們底數(shù)相同,指數(shù)不同。再追問根據(jù)這個特點,用什么方法來比較它們的大小呢?讓學生聯(lián)想,提出構造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小。然后以第(1)題為例,給出解答過程。
解:在上是增函數(shù),且。
1,。
解決后由教師小結比較大小的方法。
(1)構造函數(shù)的方法:數(shù)的特征是同底不同指(包括可轉化為同底的)。
(2)搭橋比較法:用特殊的數(shù)1或0。
三。鞏固練習。
練習:比較下列各組數(shù)的大?。ò鍟?。
(1)與(2)與;。
(3)與;(4)與。解答過程略。
四。小結。
1。的概念。
2。的圖象和性質(zhì)。
3。簡單應用。
五。板書設計。
人教版高中數(shù)學教案篇十
函數(shù)作為初等數(shù)學的核心內(nèi)容,貫穿于整個初等數(shù)學體系之中。函數(shù)這一章在高中數(shù)學中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關系,而高中階段不僅把函數(shù)看成變量之間的依賴關系,更是從“變量說”到“對應說”,這是對函數(shù)本質(zhì)特征的進一步認識,也是學生認識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學建模的思想等內(nèi)容,這些內(nèi)容的學習,無疑對學生今后的學習起著深刻的影響。
本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學的基礎,只有對概念做到深刻理解,才能正確靈活地加以應用。本課從集合間的對應來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進一步學習函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、重難點分析。
根據(jù)對上述對教材的分析及新課程標準的要求,確定函數(shù)的概念既是本節(jié)課的重點,也應該是本章的難點。
三、學情分析。
1、有利因素:一方面學生在初中已經(jīng)學習了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認識;另一方面在本書第一章學生已經(jīng)學習了集合的概念,這為學習函數(shù)的現(xiàn)代定義打下了基礎。
2、不利因素:函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應來描繪函數(shù)概念,是一個抽象過程,要求學生的抽象、分析、概括的能力比較高,學生學起來有一定的難度。
四、目標分析。
1、理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。
2、通過對實際問題分析、抽象與概括,培養(yǎng)學生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
3、通過對函數(shù)概念形成的探究過程,培養(yǎng)學生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
五、教法學法。
本節(jié)課的教學以學生為主體、教師是數(shù)學課堂活動的組織者、引導者和參與者,我一方面精心設計問題情景,引導學生主動探索。另一方面,依據(jù)本節(jié)為概念學習的特點,以問題的提出、問題的解決為主線,始終在學生知識的“最近發(fā)展區(qū)”設置問題,倡導學生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學習過程成為學生心靈愉悅的主動認知過程。
學法方面,學生通過對新舊兩種函數(shù)定義的對比,在集合論的觀點下初步建構出函數(shù)的概念。在理解函數(shù)概念的基礎上,建構出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。
2、設計理念。
3、教學目標。
情感態(tài)度與價值觀目標:引導學生學會閱讀數(shù)學教材,學會發(fā)現(xiàn)和欣賞數(shù)學的理性之美、
4、重點難點。
重點:任意角三角函數(shù)的定義、
難點:任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、
5、學情分析。
6、教法分析。
7、學法分析。
本課時先通過“閱讀”學習法,引導學生改造已有的認知結構,再通過類比學習法引導學生形成“任意角的三角函數(shù)的定義”,最后引導學生運用類比學習法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學生形成新的認識結構,達成教學目標。
人教版高中數(shù)學教案篇十一
高中數(shù)學趣味競賽題(共10題)
5個高中生有,她們面對學校的新聞采訪說了如下的話:
愛:“我還沒有談過戀愛。” 靜香:“愛撒謊了?!?/p>
瑪麗:“我曾經(jīng)去過昆明?!?惠美:“瑪麗在撒謊。”
千葉子:“瑪麗和惠美都在撒謊。” 那么,這5個人之中到底有幾個人在撒謊呢?
有天使、惡魔、人三者,天使時刻都說真話,惡魔時時刻刻都說假話,人呢,有時候說真話,有時候說假話。
聽說祖父家的波斯貓生了好多小貓,喜歡貓的我興高采烈地來到祖父家??墒?,只剩下1只小貓了。
一只愛吃墨水的蟲子把下圖的算式中的數(shù)字全部吃掉了。當然,沒有數(shù)字的部分它沒有吃(因為沒有墨水)。
那么,請問原來的算式是什么樣子的呢?
用16根火柴擺成5個正方形。請移動2根火柴,
使
正形變成4。
把正三角形的紙如圖那樣折過來時,角?的度數(shù)是多少度?
求星形尖端的角度之和。
丈夫臨死前,給有身孕的妻子留下遺言說,生的是男孩就給他財產(chǎn)的 2/3 、如果生的是女孩就給他財產(chǎn)的 2/5 、剩下的給妻子。
結果,生出來的是孿生兄妹——雙胞胎。這可難壞了妻子,3個人怎么分財產(chǎn)好呢?
用折紙做成45度很簡單是吧。那么,請折成15度,你會嗎?
人教版高中數(shù)學教案篇十二
2. 你尊敬老師、團結同學、熱愛勞動、關心集體,所以大家都喜歡你。能嚴格遵守學校的各項規(guī)章制度。學習不夠刻苦,有畏難情緒。學習方法有待改進,掌握知識不夠牢固,思維能力要進一步培養(yǎng)和提高。學習成績比上學期有一定的進步。平時能積極參加體育鍛煉和有益的文娛活動。今后如果能注意分配好學習時間,各科全面發(fā)展,均衡提高,相信一定會成為一名更加出色的學生。
3. 你性格活潑開朗,總是帶著甜甜的笑容,你能與同學友愛相處,待人有禮,能虛心接受老師的教導。大多數(shù)的時候你都能遵守紀律,偶爾會犯一些小錯誤。有時上課不夠留心,還有些小動作,你能想辦法控制自己嗎?一開學老師就發(fā)現(xiàn)你的作業(yè)干凈又整齊,你的字清秀又漂亮。但學習成績不容樂觀,需努力提高學習成績。希望能從根本上認識到自己的不足,在課堂上能認真聽講,開動腦筋,遇到問題敢于請教。
4. 你熱情大方,為人豪爽,身上透露出女生少有的霸氣,作為班干部,你會提醒同學們及時安靜,對學習態(tài)度端正,及時完成作業(yè),但是少了點耐心,試著把心沉下來,上課集中注意力,跟著老師的思路走,一步一個腳印,一定能走出你自己絢麗的人生!
5. 學習態(tài)度端正,效率高,合理分配時間,學習生活兩不誤,善良熱情,熱愛生活,樂于助人,與周圍同學相處關系融洽。能嚴格遵守學校的各項規(guī)章制度。上課能專心聽講,認真做好筆記,課后能按時完成作業(yè)。記憶力好,自學能力較強。希望你能更主動地學習,多思,多問,多練,大膽向老師和同學請教,注意采用科學的學習方法,提高學習效率,一定能取得滿意的成績!
6. 作為本班的班長,你對待班級工作能夠認真負責,積極配合老師和班委工作,集體榮譽感很強,人際關系很好,待人真誠,熱心幫助人,老師十分欣賞你的善良和聰明,希望在以后能夠積極發(fā)揮自己的所長,帶領全班不僅在班級管理上有進步,而且能在學習上也能成為全班的領頭雁,在下學期能取得更大的進步!
7. 身為班委的你,對工作認真負責,以身作則,性格和善,與同學關系融洽,積極參加各項活動,不太張揚的你顯得穩(wěn)重和踏實,在學習上,你認真聽課,及時完成各科作業(yè),但是我總覺得你的學習還不夠主動,沒有形成自己的一套方法,若從被動的學習中解脫出來,應該穩(wěn)定在班級前五名啊!加油!
8. 你是個懂禮貌明事理的孩子,你能嚴格遵守班級紀律,熱愛集體,對待學習態(tài)度端正,上課能夠?qū)P穆犞v,課下能夠認真完成作業(yè)。你的學習方法有待改進,若能做到學習時心無旁騖就好了,掌握知識也不夠牢固,思維能力要進一步培養(yǎng)和提高。只要有恒心,有毅力,老師相信你會在各方面取得長足進步!
9. 你為人熱情大方,能和同學友好相處。你為人正直誠懇,尊敬老師,關心班集體,待人有禮,能認真聽從老師的教導,自覺遵守學校的各項規(guī)章制度,抵制各種不良思想。有集體榮譽感,樂于為集體做事。學習刻苦,成績有所提高。上課能專心聽講,思維活躍,積極回答問題,積極思考,認真做好筆記。今后如果能注意分配好學習時間,各科全面發(fā)展,均衡提高,相信一定會成為一名更加出色的學生。
10. 記得和你說過,你是個太聰明的孩子,你反應敏捷,活潑靈動。但是做學問是需要靜下心來老老實實去鉆研的,容不得賣弄小聰明和半點頑皮話。要知道,學如逆水行舟,不進則退;心似平原野馬,易放難收!望你下學期重新抖擻精神早日進入狀態(tài),不辜負關愛你的人對你的殷殷期盼。
人教版高中數(shù)學教案篇十三
三角函數(shù)的誘導公式是普通高中課程標準實驗教科書(人教b版)數(shù)學必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時,教學內(nèi)容是公式(三)。教材要求通過學生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎上,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)三角函數(shù)值的關系。同時教材滲透了轉化與化歸等數(shù)學思想方法。
通過學生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎上,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)三角函數(shù)值的關系。同時教材滲透了轉化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求。因此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結合等數(shù)學思想方法,采用提出問題、啟發(fā)引導、共同探究、綜合應用等教學模式。
借助單位圓探究誘導公式。
能正確運用誘導公式將任意角的三角函數(shù)化為銳角三角函數(shù)。
誘導公式(三)的推導及應用。
誘導公式的應用。
多媒體。
1.誘導公式(一)(二)。
2.角(終邊在一條直線上)。
3.思考:下列一組角有什么特征?()能否用式子來表示?
已知由。
可知。
而(課件演示,學生發(fā)現(xiàn))。
所以。
于是可得:(三)。
設計意圖:結合幾何畫板的演示利用同一點的坐標變換,導出公式。
由公式(一)(三)可以看出,角角相等。即:
公式(一)(二)(三)都叫誘導公式。利用誘導公式可以求三角函數(shù)式的值或化簡三角函數(shù)式。
設計意圖:結合學過的公式(一)(二),發(fā)現(xiàn)特點,總結公式。
1.練習。
(1)。
設計意圖:利用公式解決問題,發(fā)現(xiàn)新問題,小組研究討論,得到新公式。
(學生板演,老師點評,用彩色粉筆強調(diào)重點,引導學生總結公式。)。
例3:求下列各三角函數(shù)值:
(1)。
(2)。
(3)。
(4)。
設計意圖:利用公式解決問題。
練習:
(1)。
(2)(學生板演,師生點評)。
設計意圖:觀察公式特點,選擇公式解決問題。
四.課堂小結:將任意角三角函數(shù)轉化為銳角三角函數(shù),體現(xiàn)轉化化歸,數(shù)形結合思想的應用,培養(yǎng)了學生分析問題、解決問題的能力,熟練應用解決問題。
很榮幸大家來聽我的課,通過這課,我學習到如下的東西:
1.要認真的研讀新課標,對教學的目標,重難點把握要到位。
2.注意板書設計,注重細節(jié)的東西,語速需要改正。
3.進一步的學習網(wǎng)頁制作,讓你的網(wǎng)頁更加的完善,學生更容易操作。
5.上課的生動化,形象化需要加強。
1.評議者:網(wǎng)絡輔助教學,起到了很好的效果;教態(tài)大方,作為新教師,開設校際課,勇氣可嘉!建議:感覺到老師有點緊張,其實可以放開點的`,相信效果會更好的!重點不夠清晰,有引導數(shù)學時,最好值有個側重點;網(wǎng)絡設計上,網(wǎng)頁上公開的推導公式為上,留有更大的空間讓學生來思考。
2.評議者:網(wǎng)絡教學效果良好,給學生自主思考,學習的空間發(fā)揮,教學設計得好;建議:課堂講課聲音,語調(diào)可以更有節(jié)奏感一些,抑揚頓挫應注意課堂例題練習可以多兩題。
3.評議者:學科網(wǎng)絡平臺的使用;建議:應重視引導學生將一些唾手可得的有用結論總結出來,并形成自我的經(jīng)驗。
4.評議者:引導學生通過網(wǎng)絡進行探究。
建議:課件制作在線測評部分,建議不能重復選擇,應全部做完后,顯示結果,再重復測試;多提問學生。
(1)給學生思考的時間較長,語調(diào)相對平緩,總結時,給學生一些激勵的語言更好。
(2)這樣子的教學可以提高上課效率,讓學生更多的時間思考。
(4)給學生答案,這個網(wǎng)頁要進一步的修正,答案能否不要一點就出來。
(5)1.板書設計要進一步的加強,2.語速相對是比較快的3.練習量比較少。
(6)讓學生多探究,課堂會更熱鬧。
(7)注意引入的過程要帶有目的,帶著問題來教學,學生帶著問題來學習。
(8)教學模式相對簡單重復。
(9)思路較為清晰,規(guī)范化的推理。
人教版高中數(shù)學教案篇十四
2、能識別和理解簡單的框圖的功能。
3。、能運用三種基本邏輯結構設計流程圖以解決簡單的問題。
1。、通過模仿、操作、探索,經(jīng)歷設計流程圖表達求解問題的過程,加深對流程圖的感知。
2。、在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結構。
一、問題情境。
1、情境:
某鐵路客運部門規(guī)定甲、乙兩地之間旅客托運行李的費用為x。
其中(單位:)為行李的重量.。
試給出計算費用(單位:元)的一個算法,并畫出流程圖。
二、學生活動。
學生討論,教師引導學生進行表達。
解算法為:
輸入行李的重量;
如果,那么,
否則;
輸出行李的重量和運費.。
上述算法可以用流程圖表示為:
教師邊講解邊畫出第10頁圖1—2—6.。
在上述計費過程中,第二步進行了判斷.。
1、選擇結構的概念:
先根據(jù)條件作出判斷,再決定執(zhí)行哪一種操作的結構稱為選擇結構。
(4)流程圖圖框的形狀要規(guī)范,判斷框必須畫成菱形,它有一個進入點和兩個退出點。
3、思考:教材第7頁圖所示的算法中,哪一步進行了判斷?
人教版高中數(shù)學教案篇十五
(3)能用邏輯聯(lián)結詞和簡單命題構成不同形式的復合命題;
(4)能識別復合命題中所用的邏輯聯(lián)結詞及其聯(lián)結的簡單命題;
(5)會用真值表判斷相應的復合命題的真假;
(6)在知識學習的基礎上,培養(yǎng)學生簡單推理的技能.
重點是判斷復合命題真假的方法;難點是對“或”的含義的理解.
1.新課導入
在當今社會中,人們從事任何工作、學習,都離不開邏輯.具有一定邏輯知識是構成一個公民的文化素質(zhì)的重要方面.數(shù)學的特點是邏輯性強,特別是進入高中以后,所學的教學比初中更強調(diào)邏輯性.如果不學習一定的邏輯知識,將會在我們學習的過程中不知不覺地經(jīng)常犯邏輯性的錯誤.其實,同學們在初中已經(jīng)開始接觸一些簡易邏輯的知識.
初一平面幾何中曾學過命題,請同學們舉一個命題的例子.(板書:命題.)
(從初中接觸過的“命題”入手,提出問題,進而學習邏輯的有關知識.)
學生舉例:平行四邊形的對角線互相平. ……(1)
兩直線平行,同位角相等.…………(2)
教師提問:“……相等的角是對頂角”是不是命題?……(3)
(同學議論結果,答案是肯定的)
教師提問:什么是命題?
(學生進行回憶、思考.)
概念總結:對一件事情作出了判斷的語句叫做命題.
(教師肯定了同學的回答,并作板書.)
由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.
(教師利用投影片,和學生討論以下問題.)
例1 判斷以下各語句是不是命題,若是,判斷其真假:
命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題.
初中所學的命題概念涉及邏輯知識,我們今天開始要在初中學習的基礎上,介紹簡易邏輯的知識.
2.講授新課
(片刻后請同學舉手回答,一共講了四個問題.師生一道歸納如下.)
(1)什么叫做命題?
可以判斷真假的語句叫做命題.
判斷一個語句是不是命題,關鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如 中含有變量 ,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).
(2)介紹邏輯聯(lián)結詞“或”、“且”、“非”.
“或”、“且”、“非”這些詞叫做邏輯聯(lián)結詞.邏輯聯(lián)結詞除這三種形式外,還有“若…則…”和“當且僅當”兩種形式.
對“或”的理解,可聯(lián)想到集合中“并集”的概念. 中的“或”,它是指“ ”、“ ”中至少一個是成立的,即 且 ;也可以 且 ;也可以 且 .這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能.
對“且”的理解,可聯(lián)想到集合中“交集”的概念. 中的“且”,是指“ ”、“ 這兩個條件都要滿足的意思.
對“非”的理解,可聯(lián)想到集合中的“補集”概念,若命題 對應于集合 ,則命題非 就對應著集合 在全集 中的補集 .
命題可分為簡單命題和復合命題.
不含邏輯聯(lián)結詞的命題叫做簡單命題.簡單命題是不含其他命題作為其組成部分(在結構上不能再分解成其他命題)的命題.
由簡單命題和邏輯聯(lián)結詞構成的命題叫做復合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結詞“且”構成的復合命題.
(4)命題的表示:用 , , , ,……來表示.
(教師根據(jù)學生回答的情況作補充和強調(diào),特別是對復合命題的概念作出分析和展開.)
我們接觸的復合命題一般有“ 或 ”、“ 且 ”、“非 ”、“若 則 ”等形式.
給出一個含有“或”、“且”、“非”的復合命題,應能說出構成它的簡單命題和弄清它所用的邏輯聯(lián)結詞;應能根據(jù)所給出的兩個簡單命題,寫出含有邏輯聯(lián)結詞“或”、“且”、“非”的復合命題.
對于給出“若 則 ”形式的復合命題,應能找到條件 和結論 .
在判斷一個命題是簡單命題還是復合命題時,不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無“或”,但它們都是復合命題.
3.鞏固新課
例2 判斷下列命題,哪些是簡單命題,哪些是復合命題.如果是復合命題,指出它的構成形式以及構成它的簡單命題.
(1) ;
(2)0.5非整數(shù);
(3)內(nèi)錯角相等,兩直線平行;
(4)菱形的對角線互相垂直且平分;
(5)平行線不相交;
(6)若 ,則 .
(讓學生有充分的時間進行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學生的情況作些補充.)
例3 寫出下表中各給定語的否定語(用課件打出來).
若給定語為
等于
大于
是
都是
至多有一個
至少有一個
至多有個
其否定語分別為
分析:“等于”的否定語是“不等于”;
“大于”的否定語是“小于或者等于”;
“是”的否定語是“不是”;
“都是”的否定語是“不都是”;
“至多有一個”的否定語是“至少有兩個”;
“至少有一個”的否定語是“一個都沒有”;
“至多有 個”的否定語是“至少有 個”.
(如果時間寬裕,可讓學生討論后得出結論.)
置疑:“或”、“且”的否定是什么?(視學生的情況、課堂時間作適當?shù)谋嫖雠c展開.)
4.課堂練習:第26頁練習1
5.課外作業(yè):第29頁習題1.6
人教版高中數(shù)學教案篇十六
掌握三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。
【過程與方法】
經(jīng)歷三角函數(shù)的單調(diào)性的探索過程,提升邏輯推理能力。
【情感態(tài)度價值觀】
在猜想計算的過程中,提高學習數(shù)學的興趣。
【教學重點】
三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。
【教學難點】
探究三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍過程。
(一)引入新課
提出問題:如何研究三角函數(shù)的單調(diào)性
(四)小結作業(yè)
提問:今天學習了什么?
引導學生回顧:基本不等式以及推導證明過程。
課后作業(yè):
思考如何用三角函數(shù)單調(diào)性比較三角函數(shù)值的大小。
人教版高中數(shù)學教案篇十七
掌握向量的概念、坐標表示、運算性質(zhì),做到融會貫通,能應用向量的有關性質(zhì)解決諸如平面幾何、解析幾何等的問題。
向量的性質(zhì)及相關知識的綜合應用。
(一)主要知識:
1、掌握向量的概念、坐標表示、運算性質(zhì),做到融會貫通,能應用向量的`有關性質(zhì)解決諸如平面幾何、解析幾何等的問題。
(二)例題分析:略。
1、進一步熟練有關向量的運算和證明;能運用解三角形的知識解決有關應用問題,
2、滲透數(shù)學建模的思想,切實培養(yǎng)分析和解決問題的能力。
人教版高中數(shù)學教案篇十八
(2)進一步理解曲線的方程和方程的曲線。
(3)初步掌握求曲線方程的方法。
(4)通過本節(jié)內(nèi)容的教學,培養(yǎng)學生分析問題和轉化的能力。
求曲線的方程。
計算機。
啟發(fā)引導法,討論法。
【引入】。
1.提問:什么是曲線的方程和方程的曲線。
學生思考并回答,教師強調(diào)。
2.坐標法和解析幾何的意義、基本問題。
對于一個幾何問題,在建立坐標系的基礎上,用坐標表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何,解析幾何的兩大基本問題就是:
(1)根據(jù)已知條件,求出表示平面曲線的方程。
(2)通過方程,研究平面曲線的性質(zhì)。
【問題】。
如何根據(jù)已知條件,求出曲線的方程。
【概括總結】通過學生討論,師生共同總結:
分析上面兩個例題的求解過程,我們總結一下求解曲線方程的大體步驟:
首先應有坐標系;其次設曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正.說得更準確一點就是:
(1)建立適當?shù)淖鴺讼担糜行驅(qū)崝?shù)對例如表示曲線上任意一點的坐標;
(2)寫出適合條件的點的集合;
(3)用坐標表示條件,列出方程;
(4)化方程為最簡形式;
(5)證明以化簡后的方程的解為坐標的點都是曲線上的點.
上述五個步驟可簡記為:建系設點;寫出集合;列方程;化簡;修正。
下面再看一個問題:
【小結】師生共同總結:
(1)解析幾何研究研究問題的方法是什么?
(2)如何求曲線的方程?
【作業(yè)】課本第72頁練習1,2,3;
人教版高中數(shù)學教案篇十九
1.知識與技能:掌握畫三視圖的基本技能,豐富學生的空間想象力。
2.過程與方法:通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態(tài)度與價值觀:提高學生空間想象力,體會三視圖的作用。
難點:識別三視圖所表示的空間幾何體。
觀察、動手實踐、討論、類比。
(一)創(chuàng)設情景,揭開課題
展示廬山的風景圖——“橫看成嶺側看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。
(二)講授新課
1、中心投影與平行投影:
中心投影:光由一點向外散射形成的投影;
平行投影:在一束平行光線照射下形成的投影。
正投影:在平行投影中,投影線正對著投影面。
2、三視圖:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
側視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側視圖和俯視圖統(tǒng)稱為幾何體的三視圖。
三視圖的畫法規(guī)則:長對正,高平齊,寬相等。
長對正:正視圖與俯視圖的長相等,且相互對正;
高平齊:正視圖與側視圖的高度相等,且相互對齊;
寬相等:俯視圖與側視圖的寬度相等。
3、畫長方體的三視圖:
正視圖、側視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
長方體的三視圖都是長方形,正視圖和側視圖、側視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
4、畫圓柱、圓錐的三視圖:
5、探究:畫出底面是正方形,側面是全等的三角形的棱錐的三視圖。
(三)鞏固練習
課本p15練習1、2;p20習題1.2[a組]2。
(四)歸納整理
請學生回顧發(fā)表如何作好空間幾何體的三視圖
(五)布置作業(yè)
課本p20習題1.2[a組]1。
人教版高中數(shù)學教案篇二十
(1)通過實物操作,增強學生的直觀感知。
(2)能根據(jù)幾何結構特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。
(4)會表示有關于幾何體以及柱、錐、臺的分類。
2.過程與方法。
(1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。
(2)讓學生觀察、討論、歸納、概括所學的知識。
3.情感態(tài)度與價值觀。
(1)使學生感受空間幾何體存在于現(xiàn)實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。
(2)培養(yǎng)學生的空間想象能力和抽象括能力。
重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。
難點:柱、錐、臺、球的結構特征的概括。
(1)學法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀。
(一)創(chuàng)設情景,揭示課題。
1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。
2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結構特征的空間物體),你能通過觀察。根據(jù)某種標準對這些空間物體進行分類嗎?這是我們所要學習的內(nèi)容。
(二)、研探新知。
1.引導學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
3.組織學生分組討論,每小組選出一名同學發(fā)表本組討論結果。在此基礎上得出棱柱的主要結構特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4.教師與學生結合圖形共同得出棱柱相關概念以及棱柱的表示。
6.以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。
7.讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關的概念及圓柱的表示。
8.引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。
9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學生思考。
1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)。
2.棱柱的何兩個平面都可以作為棱柱的底面嗎?
3.課本p8,習題1.1a組第1題。
5.棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?
四、鞏固深化。
練習:課本p7練習1、2(1)(2)。
課本p8習題1.1第2、3、4題。
五、歸納整理。
由學生整理學習了哪些內(nèi)容。
六、布置作業(yè)。
課本p8練習題1.1b組第1題。
課外練習課本p8習題1.1b組第2題。
(1)掌握畫三視圖的基本技能。
(2)豐富學生的.空間想象力。
2.過程與方法。
主要通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態(tài)度與價值觀。
(1)提高學生空間想象力。
(2)體會三視圖的作用。
重點:畫出簡單組合體的三視圖。
難點:識別三視圖所表示的空間幾何體。
1.學法:觀察、動手實踐、討論、類比。
2.教學用具:實物模型、三角板。
(一)創(chuàng)設情景,揭開課題。
“橫看成嶺側看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學習空間幾何體的三視圖。
(二)實踐動手作圖。
2.教師引導學生用類比方法畫出簡單組合體的三視圖。
(1)畫出球放在長方體上的三視圖。
(2)畫出礦泉水瓶(實物放在桌面上)的三視圖。
學生畫完后,可把自己的作品展示并與同學交流,總結自己的作圖心得。
作三視圖之前應當細心觀察,認識了它的基本結構特征后,再動手作圖。
3.三視圖與幾何體之間的相互轉化。
(1)投影出示圖片(課本p10,圖1.2-3)。
請同學們思考圖中的三視圖表示的幾何體是什么?
(2)你能畫出圓臺的三視圖嗎?
(3)三視圖對于認識空間幾何體有何作用?你有何體會?
教師巡視指導,解答學生在學習中遇到的困難,然后讓學生發(fā)表對上述問題的看法。
4.請同學們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學交流。
(三)鞏固練習。
課本p12練習1、2p18習題1.2a組1。
(四)歸納整理。
請學生回顧發(fā)表如何作好空間幾何體的三視圖。
(五)課外練習。
1.自己動手制作一個底面是正方形,側面是全等的三角形的棱錐模型,并畫出它的三視圖。
2.自己制作一個上、下底面都是相似的正三角形,側面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。
(1)掌握斜二測畫法畫水平設置的平面圖形的直觀圖。
(2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。
2.過程與方法。
學生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。
3.情感態(tài)度與價值觀。
(1)提高空間想象力與直觀感受。
(2)體會對比在學習中的作用。
(3)感受幾何作圖在生產(chǎn)活動中的應用。
重點、難點:用斜二測畫法畫空間幾何值的直觀圖。
1.學法:學生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。
2.教學用具:三角板、圓規(guī)。
(一)創(chuàng)設情景,揭示課題。
1.我們都學過畫畫,這節(jié)課我們畫一物體:圓柱。
把實物圓柱放在講臺上讓學生畫。
2.學生畫完后展示自己的結果并與同學交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學習的內(nèi)容。
(二)研探新知。
1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學生閱讀理解,并思考斜二測畫法的關鍵步驟,學生發(fā)表自己的見解,教師及時給予點評。
畫水平放置的多邊形的直觀圖的關鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結為確定點的位置的畫法。強調(diào)斜二測畫法的步驟。
根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學生獨立完成后,教師檢查。
2.例2,用斜二測畫法畫水平放置的圓的直觀圖。
教師引導學生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構造出一些點。
教師組織學生思考、討論和交流,如何構造出需要的一些點,與學生共同完成例2并詳細板書畫法。
3.探求空間幾何體的直觀圖的畫法。
(1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體abcd-a’b’c’d’的直觀圖。
教師引導學生完成,要注意對每一步驟提出嚴格要求,讓學生按部就班地畫好每一步,不能敷衍了事。
(2)投影出示幾何體的三視圖、課本p15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學生思考,討論和交流完成,教師巡視幫不懂的同學解疑,引導學生正確把握圖形尺寸大小之間的關系。
4.平行投影與中心投影。
投影出示課本p17圖1.2-12,讓學生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。
5.鞏固練習,課本p16練習1(1),2,3,4。
三、歸納整理。
學生回顧斜二測畫法的關鍵與步驟。
四、作業(yè)。
1.書畫作業(yè),課本p17練習第5題。
2.課外思考課本p16,探究(1)(2)。
【本文地址:http://www.mlvmservice.com/zuowen/15009904.html】