名人名言,蘊(yùn)含著深刻的道理和智慧,是我們學(xué)習(xí)和思考的重要素材。總結(jié)應(yīng)該從整體上把握,結(jié)構(gòu)合理,邏輯清晰。以下是一些行業(yè)內(nèi)的專家觀點(diǎn)和見解,相信會(huì)對(duì)大家有所幫助。
一次函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)篇一
《一次函數(shù)的應(yīng)用》這節(jié)課的教學(xué)內(nèi)容是湘教版版八年級(jí)數(shù)學(xué)上冊(cè)第二章第三節(jié)的內(nèi)容。本節(jié)課討論了一次函數(shù)的某些應(yīng)用,在這些實(shí)際應(yīng)用中,備課時(shí)注意到與學(xué)生的實(shí)際生活相聯(lián)系,切實(shí)發(fā)生在學(xué)生的身邊的某些實(shí)際情境,并且注意用函數(shù)觀點(diǎn)來處理問題或?qū)栴}的解決用函數(shù)做出某種解釋,用以加深對(duì)函數(shù)的認(rèn)識(shí),并突出知識(shí)之間的內(nèi)在聯(lián)系。本節(jié)的主要內(nèi)容是讓學(xué)生逐步形成用函數(shù)的觀點(diǎn)處理問題意識(shí),體驗(yàn)數(shù)形結(jié)合的思想方法。
教學(xué)時(shí),能夠達(dá)到三維目標(biāo)的要求,突出重點(diǎn)把握難點(diǎn)。能夠讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的應(yīng)用過程,關(guān)注對(duì)問題的分析過程,讓學(xué)生自己利用已經(jīng)具備的知識(shí)分析實(shí)例。用函數(shù)的觀點(diǎn)處理實(shí)際問題的關(guān)鍵在于分析實(shí)際情境,建立函數(shù)模型,并進(jìn)一步提出明確的數(shù)學(xué)問題,注意分析的過程,即將實(shí)際問題置于已有的知識(shí)背景之中,用數(shù)學(xué)知識(shí)重新理解(這是什么?可以看成什么?),讓學(xué)生逐步學(xué)會(huì)用數(shù)學(xué)的眼光考察實(shí)際問題。同時(shí),在解決問題的過程中,要充分利用函數(shù)的圖象,滲透數(shù)形結(jié)合的思想。
具體分析本節(jié)課,首先簡(jiǎn)單的用幾分鐘時(shí)間回顧一下一次函數(shù)的基本理論,“學(xué)習(xí)理論是為了服務(wù)于實(shí)踐”的一句話,打開了本節(jié)課的課題,過渡自然。本節(jié)課用函數(shù)的觀點(diǎn)處理實(shí)際問題,主要圍繞著路程、價(jià)格這樣的實(shí)際問題,通過在速度一定的條件下路程與時(shí)間的關(guān)系,總價(jià)在單價(jià)一定的情形下,總價(jià)與數(shù)量的關(guān)系這幾個(gè)例題,認(rèn)識(shí)到一次函數(shù)與實(shí)際問題的關(guān)系,在講解這幾個(gè)例子的時(shí)候,創(chuàng)設(shè)了學(xué)生熟悉的情境,如在建立一次函數(shù)模型進(jìn)行預(yù)測(cè)的問題時(shí),問學(xué)生:“你知道今年奧運(yùn)會(huì)的撐桿跳高的記錄是多少?你能對(duì)它進(jìn)行預(yù)測(cè)嗎?”,簡(jiǎn)單的一句話引出問題,這樣更能引起學(xué)生的興趣,使學(xué)生更積極地參與到教學(xué)中來,因?yàn)榍榫呈煜ぃ材芸焖俚嘏c學(xué)生產(chǎn)生共鳴。創(chuàng)設(shè)了輕松和諧的教學(xué)環(huán)境與氛圍,師生互動(dòng)較好,這樣能使學(xué)生主動(dòng)開動(dòng)思維,利用已有的知識(shí)順利的解決這幾個(gè)問題。
在講解例題的同時(shí),試著讓學(xué)生利用圖象解決問題,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,并提示學(xué)生注意自變量在實(shí)際情境中的取值范圍問題。而后,給學(xué)生幾分鐘的思考時(shí)間,讓他們通過平時(shí)對(duì)生活的細(xì)心觀察,生活中有關(guān)一次函數(shù)的有價(jià)值的問題,說出來與全班共同分享。這一環(huán)節(jié)的設(shè)置,不僅體現(xiàn)新教改的合作交流的思想,更主要的培養(yǎng)他們與人協(xié)作的能力。更好的發(fā)展了學(xué)生的主體性,讓他們也做了一回小老師,展示他們的個(gè)性,這樣有益于他們健康的人格的成長。最后在總結(jié)中讓學(xué)生體會(huì)到利用一次函數(shù)解決實(shí)際問題,關(guān)鍵在于建立數(shù)學(xué)函數(shù)模型,并布置了作業(yè)。從總體看整個(gè)教學(xué)環(huán)節(jié)也比較完整。
這節(jié)課如果能利用多媒體課件幻燈片的方式展示出來,例題的展示將會(huì)更快點(diǎn),整節(jié)課將會(huì)更加豐滿。當(dāng)然,在教學(xué)實(shí)施中我也考慮到了這一點(diǎn),所以在講解例題的時(shí)候?qū)⒚總€(gè)例題的要點(diǎn)以簡(jiǎn)短的板書形式展示出來,在一定程度上也節(jié)省了時(shí)間。
一次函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)篇二
用二次函數(shù)的性質(zhì)解決實(shí)際問題,特別是最大值、最小值問題.【難點(diǎn)】。
一、創(chuàng)設(shè)情境,導(dǎo)入新知師:二次函數(shù)有哪些性質(zhì)?學(xué)生回憶.教師提示:結(jié)合函數(shù)的圖象.生:y隨x的變化增減的性質(zhì),有最大值或最小值.師:很好!我們今天就用二次函數(shù)和它的這些性質(zhì)來解決教材21.1節(jié)開關(guān)提出的一個(gè)實(shí)際問題.二、共同探究,獲取新知教師多媒體課件出示:。
)a.20元。
b.25元。
c.30元。
)a.20s。
b.2sc.(2+2)s。
;(2)銷售額可以表示為。
;(3)所獲利潤可以表示為。
(4)當(dāng)銷售單價(jià)x是。
元時(shí),可以獲得最大利潤,最大利潤是。
二次函數(shù)歷來是初三學(xué)生要重點(diǎn)掌握的數(shù)學(xué)知識(shí),尤其是二次函數(shù)的最值問題及在生活中的應(yīng)用,更是中考尤其是壓軸題中常見的題型.二次函數(shù)在知識(shí)上的難度較大,且具有特殊地位,二次函數(shù)的應(yīng)用中滲透了數(shù)學(xué)建模的思想,使學(xué)生感受實(shí)際生活中的相關(guān)量之間的二次函數(shù)關(guān)系,并且通過求利益最大化的實(shí)例讓學(xué)生再一次感受到了數(shù)學(xué)的實(shí)用性.在求利潤時(shí),因?yàn)橛行﹩栴}比較相似,為避免學(xué)生混淆,我強(qiáng)調(diào)了不同問題的區(qū)別.在求最值時(shí),在實(shí)際問題的最值點(diǎn)可能不是函數(shù)在全體實(shí)數(shù)范圍內(nèi)的極值點(diǎn)求到的,所以要學(xué)生注意自變量的取值范圍.
一次函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)篇三
1、本節(jié)課首先從最簡(jiǎn)單的正比例函數(shù)入手、從正比例函數(shù)的定義、函數(shù)關(guān)系式、引入次函數(shù)的概念。
2、八年級(jí)數(shù)學(xué)中的一次函數(shù)是中學(xué)數(shù)學(xué)中的一種最簡(jiǎn)單、最基本的函數(shù),是反映現(xiàn)實(shí)世界的數(shù)量關(guān)系和變化規(guī)律的常見數(shù)學(xué)模型之一,也是學(xué)生今后進(jìn)一步學(xué)習(xí)初、高中其它函數(shù)和高中解析幾何中的直線方程的基礎(chǔ)。
1、雖然這是一節(jié)全新的數(shù)學(xué)概念課,學(xué)生沒有接觸過。但是,孩子們已經(jīng)具備了函數(shù)的一些知識(shí),如正比例函數(shù)的概念及性質(zhì),這些都為學(xué)習(xí)本節(jié)內(nèi)容做好了鋪墊。
2、八年級(jí)數(shù)學(xué)中的一次函數(shù)是中學(xué)數(shù)學(xué)中的一種最簡(jiǎn)單、最基本的函數(shù),是反映現(xiàn)實(shí)世界的數(shù)量關(guān)系和變化規(guī)律的常見數(shù)學(xué)模型之一,也是學(xué)生今后進(jìn)一步學(xué)習(xí)其它函數(shù)的基礎(chǔ)。
3、學(xué)生認(rèn)知障礙點(diǎn):根據(jù)問題信息寫出一次函數(shù)的表達(dá)式。
1、理解一次函數(shù)與正比例函數(shù)的概念以及它們的關(guān)系,在探索過程中,發(fā)展抽象思維及概括能力,體驗(yàn)特殊和一般的辯證關(guān)系。
2、能根據(jù)問題信息寫出一次函數(shù)的表達(dá)式。能利用一次函數(shù)解決簡(jiǎn)單的實(shí)際問題。
3、經(jīng)歷利用一次函數(shù)解決實(shí)際問題的過程,逐步形成利用函數(shù)觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的意識(shí)和能力。
2、會(huì)根據(jù)已知信息寫出一次函數(shù)的表達(dá)式。
一次函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)篇四
本節(jié)的主要內(nèi)容是讓學(xué)生逐步形成用函數(shù)的觀點(diǎn)處理問題意識(shí),體驗(yàn)數(shù)形結(jié)合的思想方法。
教學(xué)時(shí),能夠達(dá)到三維目標(biāo)的要求,突出重點(diǎn)把握難點(diǎn)。能夠讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的應(yīng)用過程,關(guān)注對(duì)問題的分析過程,讓學(xué)生自己利用已經(jīng)具備的知識(shí)分析實(shí)例。用函數(shù)的觀點(diǎn)處理實(shí)際問題的關(guān)鍵在于分析實(shí)際情境,建立函數(shù)模型,并進(jìn)一步提出明確的數(shù)學(xué)問題,注意分析的過程,即將實(shí)際問題置于已有的知識(shí)背景之中,用數(shù)學(xué)知識(shí)重新理解(這是什么?可以看成什么?),讓學(xué)生逐步學(xué)會(huì)用數(shù)學(xué)的'眼光考察實(shí)際問題。同時(shí),在解決問題的過程中,要充分利用函數(shù)的圖象,滲透數(shù)形結(jié)合的思想。
具體分析本節(jié)課,首先簡(jiǎn)單的用幾分鐘時(shí)間回顧一下一次函數(shù)的基本理論,“學(xué)習(xí)理論是為了服務(wù)于實(shí)踐”的一句話,打開了本節(jié)課的課題,過渡自然。本節(jié)課用函數(shù)的觀點(diǎn)處理實(shí)際問題,主要圍繞著路程、價(jià)格這樣的實(shí)際問題,通過在速度一定的條件下路程與時(shí)間的關(guān)系,總價(jià)在單價(jià)一定的情形下,總價(jià)與數(shù)量的關(guān)系這幾個(gè)例題,認(rèn)識(shí)到一次函數(shù)與實(shí)際問題的關(guān)系,在講解這幾個(gè)例子的時(shí)候,創(chuàng)設(shè)了學(xué)生熟悉的情境,如在建立一次函數(shù)模型進(jìn)行預(yù)測(cè)的問題時(shí),問學(xué)生:“你知道今年奧運(yùn)會(huì)的撐桿跳高的記錄是多少?你能對(duì)它進(jìn)行預(yù)測(cè)嗎?”,簡(jiǎn)單的一句話引出問題,這樣更能引起學(xué)生的興趣,使學(xué)生更積極地參與到教學(xué)中來,因?yàn)榍榫呈煜?,也能快速地與學(xué)生產(chǎn)生共鳴。創(chuàng)設(shè)了輕松和諧的教學(xué)環(huán)境與氛圍,師生互動(dòng)較好,這樣能使學(xué)生主動(dòng)開動(dòng)思維,利用已有的知識(shí)順利的解決這幾個(gè)問題。在講解例題的同時(shí),試著讓學(xué)生利用圖象解決問題,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,并提示學(xué)生注意自變量在實(shí)際情境中的取值范圍問題。
而后,給學(xué)生幾分鐘的思考時(shí)間,讓他們通過平時(shí)對(duì)生活的細(xì)心觀察,生活中有關(guān)一次函數(shù)的有價(jià)值的問題,說出來與全班共同分享。這一環(huán)節(jié)的設(shè)置,不僅體現(xiàn)新教改的合作交流的思想,更主要的培養(yǎng)他們與人協(xié)作的能力。更好的發(fā)展了學(xué)生的主體性,讓他們也做了一回小老師,展示他們的個(gè)性,這樣有益于他們健康的人格的成長。最后在總結(jié)中讓學(xué)生體會(huì)到利用一次函數(shù)解決實(shí)際問題,關(guān)鍵在于建立數(shù)學(xué)函數(shù)模型,并布置了作業(yè)。從總體看整個(gè)教學(xué)環(huán)節(jié)也比較完整。
這節(jié)課如果能利用多媒體課件幻燈片的方式展示出來,例題的展示將會(huì)更快點(diǎn),整節(jié)課將會(huì)更加豐滿。當(dāng)然,在教學(xué)實(shí)施中我也考慮到了這一點(diǎn),所以在講解例題的時(shí)候?qū)⒚總€(gè)例題的要點(diǎn)以簡(jiǎn)短的板書形式展示出來,在一定程度上也節(jié)省了時(shí)間。
一次函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)篇五
本節(jié)內(nèi)容共安排2個(gè)課時(shí)完成。該節(jié)內(nèi)容是二元一次方程(組)與一次函數(shù)及其圖像的綜合應(yīng)用。通過探索方程與函數(shù)圖像的關(guān)系,培養(yǎng)學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想,通過二元一次方程方程組的圖像解法,使學(xué)生初步建立了數(shù)(二元一次方程)與形(一次函數(shù)的圖像(直線))之間的對(duì)應(yīng)關(guān)系,進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí)和能力。本節(jié)要注意的是由兩條直線求交點(diǎn),其交點(diǎn)的橫縱坐標(biāo)為二元一次方程組的近似解,要得到準(zhǔn)確的結(jié)果,應(yīng)從圖像中獲取信息,確立直線對(duì)應(yīng)的函數(shù)表達(dá)式即方程,再聯(lián)立方程應(yīng)用代數(shù)方法求解,其結(jié)果才是準(zhǔn)確的。
學(xué)生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識(shí),學(xué)習(xí)本節(jié)知識(shí)困難不大,關(guān)鍵是讓學(xué)生理解二元一次方程和一次函數(shù)之間的內(nèi)在聯(lián)系,體會(huì)數(shù)和形間的相互轉(zhuǎn)化,從中使學(xué)生進(jìn)一步感受到數(shù)的問題可以通過形來解決,形的問題也可以通過數(shù)來解決。
1、教學(xué)目標(biāo)。
知識(shí)與技能目標(biāo)。
(1)初步理解二元一次方程和一次函數(shù)的關(guān)系;
(2)掌握二元一次方程組和對(duì)應(yīng)的兩條直線之間的關(guān)系;
(3)掌握二元一次方程組的圖像解法。
過程與方法目標(biāo)。
(2)通過做一做引入例1,進(jìn)一步發(fā)展學(xué)生數(shù)形結(jié)合的意識(shí)和能力。
(3)情感與態(tài)度目標(biāo)。
(1)在探究二元一次方程和一次函數(shù)的對(duì)應(yīng)關(guān)系中,在體會(huì)近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神。
(2)在經(jīng)歷同一數(shù)學(xué)知識(shí)可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和變式能力。
2、教學(xué)重點(diǎn)。
(1)二元一次方程和一次函數(shù)的關(guān)系;
(2)二元一次方程組和對(duì)應(yīng)的兩條直線的關(guān)系。
3、教學(xué)難點(diǎn)。
數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識(shí)。
1、教法學(xué)法。
啟發(fā)引導(dǎo)與自主探索相結(jié)合。
2、課前準(zhǔn)備。
教具:多媒體課件、三角板。
學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙。
本節(jié)課設(shè)計(jì)了六個(gè)教學(xué)環(huán)節(jié):第一環(huán)節(jié)設(shè)置問題情境,啟發(fā)引導(dǎo);第二環(huán)節(jié)自主探索,建立方程與函數(shù)圖像的模型;第三環(huán)節(jié)典型例題,探究方程與函數(shù)的相互轉(zhuǎn)化;第四環(huán)節(jié)反饋練習(xí);第五環(huán)節(jié)課堂小結(jié);第六環(huán)節(jié)作業(yè)布置。
第一環(huán)節(jié):設(shè)置問題情境,啟發(fā)引導(dǎo)。
內(nèi)容:1.方程x+y=5的解有多少個(gè)?是這個(gè)方程的解嗎?
2、點(diǎn)(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?
3、在一次函數(shù)y=的圖像上任取一點(diǎn),它的坐標(biāo)適合方程x+y=5嗎?
4、以方程x+y=5的解為坐標(biāo)的所有點(diǎn)組成的圖像與一次函數(shù)y=的圖像相同嗎?
由此得到本節(jié)課的第一個(gè)知識(shí)點(diǎn):
二元一次方程和一次函數(shù)的圖像有如下關(guān)系:
(1)以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;
(2)一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程。
意圖:通過設(shè)置問題情景,讓學(xué)生感受方程x+y=5和一次函數(shù)y=相互轉(zhuǎn)化,啟發(fā)引導(dǎo)學(xué)生總結(jié)二元一次方程與一次函數(shù)的對(duì)應(yīng)關(guān)系。
效果:以問題串的形式,啟發(fā)引導(dǎo)學(xué)生探索知識(shí)的形成過程,培養(yǎng)了學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想意識(shí)。
前面研究了一個(gè)二元一次方程和相應(yīng)的一個(gè)一次函數(shù)的關(guān)系,現(xiàn)在來研究?jī)蓚€(gè)二元一次方程組成的方程組和相應(yīng)的兩個(gè)一次函數(shù)的關(guān)系。順其自然進(jìn)入下一環(huán)節(jié)。
第二環(huán)節(jié)自主探索方程組的解與圖像之間的關(guān)系。
內(nèi)容:1.解方程組。
2、上述方程移項(xiàng)變形轉(zhuǎn)化為兩個(gè)一次函數(shù)y=和y=2x,在同一直角坐標(biāo)系內(nèi)分別作出這兩個(gè)函數(shù)的圖像。
(1)求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點(diǎn)的橫縱坐標(biāo);
(2)求兩條直線的交點(diǎn)坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對(duì)應(yīng)的函數(shù)表達(dá)式聯(lián)立的二元一次方程組的解。
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。
注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組。
意圖:通過自主探索,使學(xué)生初步體會(huì)數(shù)(二元一次方程)與形(兩條直線)之間的對(duì)應(yīng)關(guān)系,為求兩條直線的交點(diǎn)坐標(biāo)打下基礎(chǔ)。
效果:由學(xué)生自主學(xué)習(xí),十分自然地建立了數(shù)形結(jié)合的意識(shí),學(xué)生初步感受到了數(shù)的問題可以轉(zhuǎn)化為形來處理,反之形的問題可以轉(zhuǎn)化成數(shù)來處理,培養(yǎng)了學(xué)生的創(chuàng)新意識(shí)和變式能力。
第三環(huán)節(jié)典型例題。
探究方程與函數(shù)的相互轉(zhuǎn)化。
內(nèi)容:例1用作圖像的方法解方程組。
例2如圖,直線與的交點(diǎn)坐標(biāo)是。
意圖:設(shè)計(jì)例1進(jìn)一步揭示數(shù)的問題可以轉(zhuǎn)化成形來處理,但所求解為近似解。通過例2,讓學(xué)生深刻感受到由形來處理的困難性,由此自然想到求這兩條直線對(duì)應(yīng)的函數(shù)表達(dá)式,把形的問題轉(zhuǎn)化成數(shù)來處理。這兩例充分展示了數(shù)形結(jié)合的思想方法,為下一課時(shí)解決實(shí)際問題作了很好的鋪墊。
效果:進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí)和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化。
第四環(huán)節(jié)反饋練習(xí)。
內(nèi)容:1.已知一次函數(shù)與的圖像的交點(diǎn)為,則。
2、已知一次函數(shù)與的圖像都經(jīng)過點(diǎn)a(2,0),且與軸分別交于b,c兩點(diǎn),則的面積為()。
(a)4(b)5(c)6(d)7。
3、求兩條直線與和軸所圍成的三角形面積。
4、如圖,兩條直線與的交點(diǎn)坐標(biāo)可以看作哪個(gè)方程組的解?
意圖:4個(gè)練習(xí),意在及時(shí)檢測(cè)學(xué)生對(duì)本節(jié)知識(shí)的掌握情況。
效果:加深了兩條直線交點(diǎn)的坐標(biāo)就是對(duì)應(yīng)的函數(shù)表達(dá)式所組成的方程組的解的印象,培養(yǎng)了學(xué)生的計(jì)算能力和數(shù)學(xué)轉(zhuǎn)化的能力,使學(xué)生進(jìn)一步領(lǐng)悟到應(yīng)用數(shù)形結(jié)合的思想方法解題的重要性。
第五環(huán)節(jié)課堂小結(jié)。
內(nèi)容:以問題串的形式,要求學(xué)生自主總結(jié)有關(guān)知識(shí)、方法:
1、二元一次方程和一次函數(shù)的圖像的關(guān)系;
(1)以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;
(2)一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程。
2、方程組和對(duì)應(yīng)的兩條直線的關(guān)系:
(1)方程組的解是對(duì)應(yīng)的兩條直線的交點(diǎn)坐標(biāo);
(2)兩條直線的交點(diǎn)坐標(biāo)是對(duì)應(yīng)的方程組的解;
3、解二元一次方程組的方法有3種:
(1)代入消元法;
(2)加減消元法;
(3)圖像法。要強(qiáng)調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解。
意圖:旨在使本節(jié)課的知識(shí)點(diǎn)系統(tǒng)化、結(jié)構(gòu)化,只有結(jié)構(gòu)化的知識(shí)才能形成能力;使學(xué)生進(jìn)一步明確學(xué)什么,學(xué)了有什么用。
第六環(huán)節(jié)作業(yè)布置。
習(xí)題7.7。
附:板書設(shè)計(jì)。
本節(jié)課在學(xué)生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識(shí)的基礎(chǔ)上,通過教師啟發(fā)引導(dǎo)和學(xué)生自主學(xué)習(xí)探索相結(jié)合的方法,進(jìn)一步揭示了二元一次方程和函數(shù)圖像之間的對(duì)應(yīng)關(guān)系,從而引出了二元一次方程組的圖像解法,以及應(yīng)用代數(shù)方法解決有關(guān)圖像問題,培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí)和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化。教學(xué)過程中教師一定要講清楚圖像解法的局限性,這是由于畫圖的不準(zhǔn)確性,所求的解往往是近似解。因此為了準(zhǔn)確地解決有關(guān)圖像問題常常把它轉(zhuǎn)化為代數(shù)問題來處理,如例2及反饋練習(xí)中的4個(gè)問題。
一次函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)篇六
(一)教學(xué)知識(shí)點(diǎn)。
1、經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系、建立反比例函數(shù)模型,進(jìn)而解決問題的過程。
2、體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí),提高運(yùn)用代數(shù)方法解決問題的能力。
(二)能力訓(xùn)練要求。
1、激發(fā)學(xué)生在已有知識(shí)的基礎(chǔ)上,進(jìn)一步探索新知識(shí)的欲望。
1、調(diào)動(dòng)學(xué)生參與數(shù)學(xué)活動(dòng)的積極性,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索性和創(chuàng)造性。
2、培養(yǎng)學(xué)生在學(xué)習(xí)過程中良好的情感態(tài)度,主動(dòng)參與、合作、交流的意識(shí),并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問題的成功體驗(yàn),有學(xué)好數(shù)學(xué)的自信心。
教學(xué)重點(diǎn)建立反比例函數(shù)的模型,進(jìn)而解決實(shí)際問題。
教學(xué)難點(diǎn)經(jīng)歷探索的過程,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的主動(dòng)性和解決問題的能力。
二、教學(xué)過程分析。
第一環(huán)節(jié)復(fù)習(xí)回顧。
活動(dòng)目的:以提問的方式引導(dǎo)學(xué)生復(fù)習(xí)反比例函數(shù)的圖象與性質(zhì)。
活動(dòng)過程:反比例函數(shù):當(dāng)k0時(shí),兩支曲線分別在,在每一象限內(nèi),y的值隨x的增大而。
當(dāng)k。
活動(dòng)目的:多媒體給出情境材料,引起學(xué)生的興趣,體現(xiàn)數(shù)學(xué)的現(xiàn)實(shí)性?;顒?dòng)過程:某校科技小組進(jìn)行野外考察,途中遇到一片十幾米寬的爛泥濕地,為了安全、迅速通過這片濕地,他們沿著前進(jìn)路線鋪墊了若干塊木板,構(gòu)筑成一條臨時(shí)通道,從而順利完成了任務(wù)的情境。你能解釋他們這樣做的道理嗎?(見書p143)。
(3)如果要求壓強(qiáng)不超過6000pa,木板面積至少要多大(4)在直角坐標(biāo)系中,作出相應(yīng)的函數(shù)圖象。
(5)請(qǐng)利用圖象對(duì)(2)和(3)作出直觀解釋,并與同伴進(jìn)行交流。
活動(dòng)過程:做一做。
2.如圖,正比例函數(shù)y=k1x的圖象與反比例函數(shù)k2y=x的圖象相交于a,b兩點(diǎn),其中點(diǎn)a的坐標(biāo)為(3,23).(1)分別寫出這兩個(gè)函數(shù)的表達(dá)式:
活動(dòng)目的:用函數(shù)觀點(diǎn)來處理實(shí)際問題的應(yīng)用,加深對(duì)函數(shù)的認(rèn)識(shí)?;顒?dòng)過程:練習(xí)。
(3)寫出t與q之間的關(guān)系;。
活動(dòng)目的:通過老師小結(jié),帶領(lǐng)學(xué)生回顧反思本節(jié)課對(duì)知識(shí)的研究探索過程,提煉數(shù)學(xué)思想,掌握數(shù)學(xué)知識(shí)。
活動(dòng)過程:今天這節(jié)課學(xué)習(xí)了什么?你掌握了什么?
生:這節(jié)課我們學(xué)習(xí)了反比例函數(shù)的應(yīng)用.具體步驟是:認(rèn)真分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而用反比例函數(shù)的有關(guān)知識(shí)解決實(shí)際問題今天學(xué)習(xí)了反比例函數(shù)的應(yīng)用,講了四個(gè)類型:
第六環(huán)節(jié)作業(yè)布置。
課本146頁習(xí)題5.41,2。
三、教學(xué)反思。
本節(jié)課采用引導(dǎo)、啟發(fā)及問題討論相結(jié)合的教學(xué)方式,引導(dǎo)學(xué)生從已有的知識(shí)和生活經(jīng)驗(yàn)出發(fā),師生共同探究解決新問題的途徑和方法。這一過程中,充分發(fā)揮教師的主導(dǎo)作用,學(xué)生的主體作用,教材的主源作用,舊知識(shí)的遷移作用,學(xué)生之間的相互作用,從而師生得到共同發(fā)展。
一次函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)篇七
2.能判斷一個(gè)給定的函數(shù)是否為反比例函數(shù),并會(huì)用待定系數(shù)法求函數(shù)解析式。
3.能根據(jù)實(shí)際問題中的條件確定反比例函數(shù)的解析式,體會(huì)函數(shù)的模型思想。
二、重、難點(diǎn)。
1.重點(diǎn):理解反比例函數(shù)的概念,能根據(jù)已知條件寫出函數(shù)解析式。
3.難點(diǎn)的突破方法:
(2)注意引導(dǎo)學(xué)生對(duì)反比例函數(shù)概念的理解,看形式,等號(hào)左邊是函數(shù)y,等號(hào)右邊是一個(gè)分式,自變量x在分母上,且x的指數(shù)是1,分子是不為0的常數(shù)k;看自變量x的取值范圍,由于x在分母上,故取x0的一切實(shí)數(shù);看函數(shù)y的取值范圍,因?yàn)閗0,且x0,所以函數(shù)值y也不可能為0。講解時(shí)可對(duì)照正比例函數(shù)y=kx(k0),比較二者解析式的相同點(diǎn)和不同點(diǎn)。
(3)(k0)還可以寫成(k0)或xy=k(k0)的形式。
三、例題的意圖分析。
教材第46頁的思考題是為引入反比例函數(shù)的概念而設(shè)置的,目的是讓學(xué)生從實(shí)際問題出發(fā),探索其中的數(shù)量關(guān)系和變化規(guī)律,通過觀察、討論、歸納,最后得出反比例函數(shù)的概念,體會(huì)函數(shù)的模型思想。
教材第47頁的例1是一道用待定系數(shù)法求反比例函數(shù)解析式的題,此題的目的一是要加深學(xué)生對(duì)反比例函數(shù)概念的理解,掌握求函數(shù)解析式的方法;二是讓學(xué)生進(jìn)一步體會(huì)函數(shù)所蘊(yùn)含的變化與對(duì)應(yīng)的思想,特別是函數(shù)與自變量之間的單值對(duì)應(yīng)關(guān)系。
補(bǔ)充例1、例2都是常見的題型,能幫助學(xué)生更好地理解反比例函數(shù)的概念。補(bǔ)充例3是一道綜合題,此題是用待定系數(shù)法確定由兩個(gè)函數(shù)組合而成的新的函數(shù)關(guān)系式,有一定難度,但能提高學(xué)生分析、解決問題的能力。
一次函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)篇八
1、問題導(dǎo)入:
請(qǐng)同學(xué)們思考后回答:
(1)找出問題中的變量并用字母表示,列出函數(shù)關(guān)系式、
(2)這兩個(gè)函數(shù)關(guān)系式有什么共同點(diǎn)?自變量的取值范圍各有什么限制?
以上這些問題,請(qǐng)各小組討論一下,派代表回答、引出課題(板書課題)教師最后總結(jié)一次函數(shù)的概念、(板書)。
1、做一做:
我們已經(jīng)學(xué)習(xí)了用描點(diǎn)法畫函數(shù)的圖象,請(qǐng)同學(xué)運(yùn)用描點(diǎn)法畫出下列函數(shù)的圖象(老師用多媒體打出題目)。根據(jù)學(xué)生的動(dòng)手實(shí)踐、觀察與討論,得出結(jié)論:一次函數(shù)的圖象是一條直線、特別地,正比例函數(shù)的圖象是經(jīng)過原點(diǎn)的一條直線。
2、接下來教師提問:
(1)觀察所畫出的四個(gè)一次函數(shù)的圖象,比較各對(duì)一次函數(shù)的圖象有什么共同點(diǎn),有什么不同點(diǎn)。
4、鞏固訓(xùn)練:
(1)在同一平面直角坐標(biāo)系中畫出下列函數(shù)的圖象。
將直線向上平移5個(gè)單位,得到直線_______________________、
(由學(xué)生到前板演)、
函數(shù)反映了客觀世界中量的變化規(guī)律,那么一次函數(shù)又有什么性質(zhì)呢?
1、請(qǐng)同學(xué)們來一起觀察大屏幕上函數(shù)圖象(教師用多媒體演示函數(shù)的圖象),并回答:當(dāng)一個(gè)點(diǎn)在直線上從左右移動(dòng)時(shí),它的位置如何變化?你能從中得到函數(shù)值的變化與自變量的變化規(guī)律嗎?(教師運(yùn)用現(xiàn)代化的教學(xué)手段來演示點(diǎn)的移動(dòng)情況,進(jìn)一步促進(jìn)了學(xué)生對(duì)一次函數(shù)的變化規(guī)律理解)由學(xué)生討論出結(jié)果:也就是說,函數(shù)值隨自變量的增大而增大、(教師板書)。
一次函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)篇九
知識(shí)目標(biāo):了解二元一次方程、二元一次方程組及其解等有關(guān)概念,并會(huì)判斷一組數(shù)是不是某個(gè)二元一次方程組的解。
能力目標(biāo):通過討論和練習(xí),進(jìn)一步培養(yǎng)學(xué)生的觀察、比較、分析的能力。
情感目標(biāo):通過對(duì)實(shí)際問題的分析,使學(xué)生進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識(shí)。
判斷一組數(shù)是不是某個(gè)二元一次方程組的解,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識(shí)。
一、引入、實(shí)物投影。
2、請(qǐng)每個(gè)學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言)。
這個(gè)問題由于涉及到老牛和小馬的馱包裹的兩個(gè)未知數(shù),我們?cè)O(shè)老牛馱x個(gè)包裹,小馬馱y個(gè)包裹,老牛的包裹數(shù)比小馬多2個(gè),由此得方程x-y=2,若老牛從小馬背上拿來1個(gè)包裹,這時(shí)老牛的包裹是小馬的2倍,得方程:x+1=2(y-1)。
師:同學(xué)們能用方程的。方法來發(fā)現(xiàn)、解決問題這很好,上面所列方程有幾個(gè)未知數(shù)?含未知數(shù)的項(xiàng)的次數(shù)是多少?(含有兩個(gè)未知數(shù),并且所含未知數(shù)項(xiàng)的次數(shù)是1)。
師:含有兩個(gè)未知數(shù),并且含未知數(shù)項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。
一次函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)篇十
2、內(nèi)容解析:教材的地位和作用:本節(jié)課主要是在學(xué)生學(xué)習(xí)了函數(shù)圖象的基礎(chǔ)上,通過動(dòng)手操作接受一次函數(shù)圖象是直線這一事實(shí),在實(shí)踐中體會(huì)兩點(diǎn)法的簡(jiǎn)便,向?qū)W生滲透數(shù)形結(jié)合的數(shù)學(xué)思想,以使學(xué)生借助直觀的圖形,生動(dòng)形象的變化來發(fā)現(xiàn)兩個(gè)一次函數(shù)圖象在直角坐標(biāo)系中的位置關(guān)系。培養(yǎng)學(xué)生主動(dòng)學(xué)習(xí)、主動(dòng)探索、合作學(xué)習(xí)的能力。本節(jié)課為探索一次函數(shù)性質(zhì)作準(zhǔn)備。
1、教學(xué)目標(biāo)的確定。
教學(xué)目標(biāo)是教學(xué)的出發(fā)點(diǎn)和歸宿。因此,我根據(jù)新課標(biāo)的知識(shí)、能力和德育目標(biāo)的要求,以學(xué)生的認(rèn)知點(diǎn),心理特點(diǎn)和本課的特點(diǎn)來制定教學(xué)目標(biāo)。
知識(shí)目標(biāo)。
(1)能用兩點(diǎn)法畫出一次函數(shù)的圖象。
(2)結(jié)合圖象,理解直線y=kx+b(k、b是常數(shù),k0)常數(shù)k和b的取值對(duì)于直線的位置的影響。
能力目標(biāo)。
(1)通過操作、觀察,培養(yǎng)學(xué)生動(dòng)手和歸納的能力。
(2)結(jié)合具體情境向?qū)W生滲透數(shù)形結(jié)合的數(shù)學(xué)思想。
情感目標(biāo)。
(1)通過動(dòng)手操作,觀察探索一次函數(shù)的特征,體驗(yàn)數(shù)學(xué)研究和發(fā)現(xiàn)的過程,逐步培養(yǎng)學(xué)生在教學(xué)活動(dòng)中的主動(dòng)探索的意識(shí)和合作交流的習(xí)慣。
(2)讓學(xué)生通過直觀感知、動(dòng)手操作去經(jīng)歷、體會(huì)規(guī)律形成的過程。
2、教學(xué)重點(diǎn)、難點(diǎn)。
用兩點(diǎn)法畫出一次函數(shù)的圖象是研究一次函數(shù)的性質(zhì)的基礎(chǔ),是本節(jié)課的重點(diǎn)。直線y=kx+b(k、b是常數(shù),k0)常數(shù)k和b的取值對(duì)于直線的位置的影響,是本節(jié)課的難點(diǎn)。關(guān)鍵是通過學(xué)生的直觀感知、動(dòng)手操作、合作交流歸納其規(guī)律。
1、由用描點(diǎn)法畫函數(shù)的圖象的認(rèn)識(shí),學(xué)生能接受一次函數(shù)的圖象是直線,結(jié)合兩點(diǎn)確定一條直線,學(xué)生能畫出一次函數(shù)圖象。
2、根據(jù)學(xué)生抽象歸納能力較差,學(xué)習(xí)直線y=kx+b(k、b是常數(shù),k0)常數(shù)k和b的取值對(duì)于直線的位置的影響有難度。所以教學(xué)中應(yīng)盡可能多地讓學(xué)生動(dòng)手操作,突出圖象變化特征的探索過程,自主探索出其規(guī)律。
3、抓住初中學(xué)生的心理特征,運(yùn)用直觀生動(dòng)的形象,引發(fā)學(xué)生的興趣,吸引他們的注意力;另一方面積極創(chuàng)造條件和機(jī)會(huì),讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性。
恰當(dāng)運(yùn)用現(xiàn)代教育技術(shù)手段,采用自主探究合作交流式教學(xué),讓學(xué)生動(dòng)手操作,主動(dòng)去探索,小組合作交流。而互動(dòng)式教學(xué)將顧及到全體學(xué)生,讓全體學(xué)生都參與,達(dá)到優(yōu)生得到培養(yǎng),后進(jìn)生也有所收獲的效果。
(一)、設(shè)疑,導(dǎo)入新課(2分鐘)。
通過前面的學(xué)習(xí)我們可以發(fā)現(xiàn),一次函數(shù)是一種特殊的函數(shù),那么一次函數(shù)的圖象是什么形狀呢?一次函數(shù)的圖象。(板書課題)。
一次函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)篇十一
教學(xué)目標(biāo):
3、滲透數(shù)形結(jié)合的數(shù)學(xué)思想及普遍聯(lián)系的辨證唯物主義思想;
4、體會(huì)數(shù)學(xué)從實(shí)踐中來又到實(shí)際中去的研究、應(yīng)用過程;
5、培養(yǎng)學(xué)生的觀察能力,及數(shù)學(xué)地發(fā)現(xiàn)問題,解決問題的能力.教學(xué)重點(diǎn):
結(jié)合圖象分析總結(jié)出反比例函數(shù)的性質(zhì);
教學(xué)用具:直尺。
教學(xué)方法:小組合作、探究式。
教學(xué)過程:
我們?cè)谛W(xué)學(xué)過反比例關(guān)系.例如:當(dāng)路程s一定時(shí),時(shí)間t與速度v成反比例。
即vt=;
當(dāng)矩形面積s一定時(shí),長a與寬b成反比例,即ab=。
從函數(shù)的觀點(diǎn)看,在運(yùn)動(dòng)變化的過程中,有兩個(gè)變量可以分別看成自變量與函數(shù),寫成:
(s是常數(shù))。
(s是常數(shù))。
解:列表。
前面學(xué)習(xí)了三類基本的初等函數(shù),有了一定的基礎(chǔ),這里可視學(xué)生的程度或展開全面的討論,或在老師的引導(dǎo)下完成知識(shí)的學(xué)習(xí)。
顯示這兩個(gè)函數(shù)的圖象,提出問題:你能從圖象上發(fā)現(xiàn)什么有關(guān)反比例函數(shù)的性質(zhì)呢?并能從解析式或列表中得到論證.(下列答案僅供參考)。
從圖象中可以看出,當(dāng)x從左向右變化時(shí),圖象呈下坡趨勢(shì).從列表中也可以看出這樣的變化趨勢(shì).有理數(shù)除法說明了同樣的道理,被除數(shù)一定時(shí),若除數(shù)大于零,除數(shù)越大,商越?。蝗舫龜?shù)小于零,同樣是除數(shù)越大,商越小.由此可歸納出,當(dāng)k0時(shí),函數(shù)的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減小.同樣可以推出的圖象的性質(zhì).(3)函數(shù)的圖象不經(jīng)過原點(diǎn),且不與x軸、y軸交.從解析式中也可以看出,.如果x取值越來越大時(shí),y的值越來越小,趨近于零;如果x取負(fù)值且越來越小時(shí),y的值也越來越趨近于零.因此,呈現(xiàn)的是雙曲線的樣子.同理,抽象出圖象的性質(zhì).函數(shù)的圖象性質(zhì)的討論與次類似.4、小結(jié):
一次函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)篇十二
教學(xué)過程中教師應(yīng)通過情境創(chuàng)設(shè)激發(fā)學(xué)生的學(xué)習(xí)興趣,對(duì)函數(shù)與圖像的對(duì)應(yīng)關(guān)系應(yīng)讓學(xué)生動(dòng)手去實(shí)踐,去發(fā)現(xiàn),對(duì)一次函數(shù)的圖象是一條直線應(yīng)讓學(xué)生自己得出。在得出結(jié)論之后,讓學(xué)生能運(yùn)用“兩點(diǎn)確定一條直線”,很快做出一次函數(shù)的圖像。在鞏固練習(xí)活動(dòng)中,鼓勵(lì)學(xué)生積極思考,提高學(xué)生解決實(shí)際問題的能力。
根據(jù)學(xué)生狀況,教學(xué)設(shè)計(jì)也應(yīng)做出相應(yīng)的調(diào)整.如第一環(huán)節(jié):探究新知,固然可以激發(fā)學(xué)生興趣,但也可能容易讓學(xué)生關(guān)注代數(shù)表達(dá)式的尋求,甚至部分學(xué)生形成一定的認(rèn)知障礙,因此該環(huán)節(jié)也可以直接開門見山,直切主題,如提出問題:一次函數(shù)的代數(shù)形式是y=kx+b,那么,一個(gè)一次函數(shù)對(duì)應(yīng)的圖形具有什么特征呢?今天我們就研究一次函數(shù)對(duì)應(yīng)的圖形特征—本節(jié)課是學(xué)生首次接觸利用數(shù)形結(jié)合的思想研究一次函數(shù)圖象和性質(zhì),對(duì)他們而言觀察對(duì)象、探索思路、研究方法都是陌生的,因而在教學(xué)過程中我通過問題情境的創(chuàng)設(shè),激發(fā)學(xué)生的學(xué)習(xí)興趣,引導(dǎo)學(xué)生觀察一次函數(shù)的圖像,探討一次函數(shù)的簡(jiǎn)單性質(zhì),逐步加深學(xué)生對(duì)一次函數(shù)及性質(zhì)的認(rèn)識(shí)。本節(jié)課的重點(diǎn)是要學(xué)生了解正比例函數(shù)的確定需要一個(gè)條件,一次函數(shù)的確定需要兩個(gè)條件,能由條件求出一些簡(jiǎn)單的一次函數(shù)表達(dá)式,并能解決有關(guān)現(xiàn)實(shí)問題。本節(jié)課設(shè)計(jì)注重發(fā)展了學(xué)生的數(shù)形結(jié)合的思想方法及綜合分析解決問題的能力及應(yīng)用意識(shí)的培養(yǎng),為后繼學(xué)習(xí)打下基礎(chǔ)。
由于這節(jié)課的知識(shí)容量較大,而且內(nèi)容較難,我們所用的學(xué)案就能很好地幫助學(xué)生消化理解該知識(shí),。在教學(xué)過程中,讓學(xué)生親自動(dòng)手、動(dòng)腦畫圖的方式,通過教師的引導(dǎo),學(xué)生的交流、歸納等環(huán)節(jié)較成功地完成了教學(xué)目標(biāo),收到了較好的效果。但還存在著不盡人意的地方,由于課的內(nèi)容容量較大,對(duì)于有些知識(shí)點(diǎn),如“隨著x值的增大,y的值分別如何化?”,本應(yīng)給學(xué)生更多的時(shí)間練習(xí)、討論,以幫助理解消化該知識(shí),但由于時(shí)間緊,學(xué)生的這一活動(dòng)開展的不充分。課堂氣氛不夠活躍,個(gè)別學(xué)生的主動(dòng)性、積極性沒有充分調(diào)動(dòng)起來。這是今后教學(xué)中應(yīng)該注意的問題。
一次函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)篇十三
本節(jié)內(nèi)容是人教版《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)》八年級(jí)上冊(cè)“14.2.2一次函數(shù)”(第二課時(shí))。
一、本課數(shù)學(xué)內(nèi)容的本質(zhì)、地位和作用分析。
二、教學(xué)目標(biāo)分析。
三、教學(xué)問題診斷分析。
四、本節(jié)課的教法特點(diǎn)及預(yù)期效果分析。
3.八年級(jí)的學(xué)生好奇、好學(xué)、好動(dòng),所以在教學(xué)過程中通過讓學(xué)生自己動(dòng)手畫圖,同學(xué)之間交流畫法,談?wù)勏敕ǖ然顒?dòng),充分發(fā)揮學(xué)生的主體性,進(jìn)一步激發(fā)學(xué)生的求知欲,課件中的動(dòng)畫過程使數(shù)與形的關(guān)系可視化,有利于學(xué)生對(duì)問題的感知。
以上是我對(duì)這節(jié)課的教學(xué)設(shè)計(jì)的說明,不妥之處懇請(qǐng)各位專家批評(píng)指正。
一次函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)篇十四
作為一位杰出的教職工,編寫教學(xué)設(shè)計(jì)是必不可少的,教學(xué)設(shè)計(jì)是把教學(xué)原理轉(zhuǎn)化為教學(xué)材料和教學(xué)活動(dòng)的計(jì)劃。那么優(yōu)秀的教學(xué)設(shè)計(jì)是什么樣的呢?以下是小編為大家收集的二元一次方程與一次函數(shù)教學(xué)設(shè)計(jì),歡迎閱讀與收藏。
2、能根據(jù)一次函數(shù)的圖像求二元一次方程組的近似值。
1、用作圖像法求二元一次方程組的近似值。
1、做圖像時(shí)要標(biāo)準(zhǔn)、精確,近似值才接近。
先自學(xué)課本,用心思考自主學(xué)習(xí)部分,努力獨(dú)立完成,再與其他同學(xué)討論未明白的內(nèi)容。課上展示,針對(duì)自己不明白問題多聽多問。
問題1、
(1)方程x+y=5的解有多少組?寫出其中的幾組解。
(3)在一次函數(shù)y=5—x的圖像上任取一點(diǎn),它們的坐標(biāo)適合方程x+y=5嗎?
(5)由以上的探究過程,你發(fā)現(xiàn)了什么?
問題2、
(3)由以上探究過程,我們發(fā)現(xiàn)解二元一次方程組的方法除了加減消元法和代入消元法,還可以用法解方程組;我們還發(fā)現(xiàn)可以利用解二元一次方程組的方法求兩條直線交點(diǎn)的坐標(biāo)。
合作探究:
(1)用做圖像的方法解方程組。
(2)用解方程的方法求直線y=4—2x與直線y=2x—12交點(diǎn)。
一次函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)篇十五
過程與方法。
(2)通過“做一做”引入例1,進(jìn)一步發(fā)展學(xué)生數(shù)形結(jié)合的意識(shí)和能力。
情感與態(tài)度。
(1)在探究二元一次方程和一次函數(shù)的對(duì)應(yīng)關(guān)系中,在體會(huì)近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神。
(2)在經(jīng)歷同一數(shù)學(xué)知識(shí)可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和變式能力。
教學(xué)重點(diǎn)。
教學(xué)難點(diǎn)。
數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識(shí)。
教學(xué)準(zhǔn)備。
教具:多媒體課件、三角板。
學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙。
教學(xué)過程。
第一環(huán)節(jié):設(shè)置問題情境,啟發(fā)引導(dǎo)(5分鐘,學(xué)生回答問題回顧知識(shí))。
內(nèi)容:
1.方程x+y=5的解有多少個(gè)?是這個(gè)方程的解嗎?
2.點(diǎn)(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?
3.在一次函數(shù)y=的圖像上任取一點(diǎn),它的坐標(biāo)適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標(biāo)的所有點(diǎn)組成的圖像與一次函數(shù)y=的圖像相同嗎?
由此得到本節(jié)課的第一個(gè)知識(shí)點(diǎn):
(2)一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程。
第二環(huán)節(jié)自主探索方程組的解與圖像之間的關(guān)系(10分鐘,教師引導(dǎo)學(xué)生解決)。
內(nèi)容:
1.解方程組。
2.上述方程移項(xiàng)變形轉(zhuǎn)化為兩個(gè)一次函數(shù)y=和y=2x,在同一直角坐標(biāo)系內(nèi)分別作出這兩個(gè)函數(shù)的圖像。
(1)求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點(diǎn)的橫縱坐標(biāo);
(2)求兩條直線的交點(diǎn)坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對(duì)應(yīng)的函數(shù)表達(dá)式聯(lián)立的二元一次方程組的解。
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。
注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組。
第三環(huán)節(jié)典型例題(10分鐘,學(xué)生獨(dú)立解決)。
探究方程與函數(shù)的相互轉(zhuǎn)化。
內(nèi)容:例1用作圖像的方法解方程組。
例2如圖,直線與的交點(diǎn)坐標(biāo)是。
第四環(huán)節(jié)反饋練習(xí)(10分鐘,學(xué)生解決全班交流)。
內(nèi)容:
1.已知一次函數(shù)與的圖像的交點(diǎn)為,則。
2.已知一次函數(shù)與的圖像都經(jīng)過點(diǎn)a(—2,0),且與軸分別交于b,c兩點(diǎn),則的面積為()。
(a)4(b)5(c)6(d)7。
3.求兩條直線與和軸所圍成的三角形面積。
4.如圖,兩條直線與的交點(diǎn)坐標(biāo)可以看作哪個(gè)方程組的解?
第五環(huán)節(jié)課堂小結(jié)(5分鐘,師生共同總結(jié))。
內(nèi)容:以“問題串”的形式,要求學(xué)生自主總結(jié)有關(guān)知識(shí)、方法:
(2)一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程。
2.方程組和對(duì)應(yīng)的兩條直線的關(guān)系:
(1)方程組的解是對(duì)應(yīng)的兩條直線的交點(diǎn)坐標(biāo);
(2)兩條直線的交點(diǎn)坐標(biāo)是對(duì)應(yīng)的方程組的解;
(1)代入消元法;
(2)加減消元法;
(3)圖像法。要強(qiáng)調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解。
第六環(huán)節(jié)作業(yè)布置。
習(xí)題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2。
一次函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)篇十六
一.教學(xué)目標(biāo):
1.認(rèn)知目標(biāo):
2)理解二元一次方程組的解的概念。
3)會(huì)用列表嘗試的方法找二元一次方程組的解。
2.能力目標(biāo):
1)滲透把實(shí)際問題抽象成數(shù)學(xué)模型的思想。
2)通過嘗試求解,培養(yǎng)學(xué)生的探索能力。
3.情感目標(biāo):
1)培養(yǎng)學(xué)生細(xì)致,認(rèn)真的學(xué)習(xí)習(xí)慣。
2)在積極的教學(xué)評(píng)價(jià)中,促進(jìn)師生的情感交流。
二.教學(xué)重難點(diǎn)。
難點(diǎn):用列表嘗試的方法求出方程組的解。
三.教學(xué)過程。
(一)創(chuàng)設(shè)情景,引入課題。
1.本班共有40人,請(qǐng)問能確定男*各幾人嗎?為什么?
(1)如果設(shè)本班男生x人,*y人,用方程如何表示?(x+y=40)。
(2)這是什么方程?根據(jù)什么?
2.男生比*多了2人。設(shè)男生x人,*y人。方程如何表示?x,y的值是多少?
3.本班男生比*多2人且男*共40人。設(shè)該班男生x人,*y人。方程如何表示?
兩個(gè)方程中的x表示什么?類似的兩個(gè)方程中的y都表示?
象這樣,同一個(gè)未知數(shù)表示相同的量,我們就應(yīng)用大括號(hào)把它們連起來組成一個(gè)方程組。
[設(shè)計(jì)意圖:從學(xué)生身邊取數(shù)據(jù),讓他們感受到生活中處處有數(shù)學(xué)]。
(二)探究新知,練習(xí)鞏固。
(1)請(qǐng)同學(xué)們看課本,了解二元一次方程組的的概念,并找出關(guān)鍵詞由教師板書。
[讓學(xué)生看書,引起他們對(duì)教材重視。找關(guān)鍵詞,加深他們對(duì)概念的了解。]。
x+y=3,x+y=200,。
2x-3=7,3x+4y=3。
y+z=5,x=y+10,。
2y+1=5,4x-y2=2。
學(xué)生作出判斷并要說明理由。
(1)由學(xué)生給出引例的答案,教師指出這就是此方程組的解。
(2)練習(xí):把下列各組數(shù)的題序填入圖中適當(dāng)?shù)奈恢茫?/p>
x=1;x=-2;x=;-x=。
y=0;y=2;y=1;y=。
方程x+y=0的解,方程2x+3y=2的解,方程組x+y=0的解。
2x+3y=2。
(3)既滿足第一個(gè)方程也滿足第二個(gè)方程的解叫作二元一次方程組的解。
(4)練習(xí):已知x=0是方程組x-b=y的解,求a,b的值。
y=0.55x+2a=2y。
(三)合作探索,嘗試求解。
現(xiàn)在我們一起來探索如何尋找方程組的解呢?
1.已知兩個(gè)整數(shù)x,y,試找出方程組3x+y=8的解。
2x+3y=10。
學(xué)生兩人一小組合作探索。并讓已經(jīng)找出方程組解的學(xué)生利用實(shí)物投影,講明自己的解題思路。
提煉方法:列表嘗試法。
一般思路:由一個(gè)方程取適當(dāng)?shù)膞y的值,代到另一個(gè)方程嘗試。
2.據(jù)了解,某商店出售兩種不同星號(hào)的“紅雙喜”牌乒乓球。其中“紅雙喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同學(xué)一共買了4盒,剛好有15個(gè)球。
(1)設(shè)該同學(xué)“紅雙喜”二星乒乓球買了x盒,三星乒乓球買了y盒,請(qǐng)根據(jù)問題中的條件列出關(guān)于x、y的方程組。(2)用列表嘗試的方法解出這個(gè)方程組的解。
由學(xué)生獨(dú)立完成,并分析講解。
(四)課堂小結(jié),布置作業(yè)。
1.這節(jié)課學(xué)哪些知識(shí)和方法?(二元一次方程組及解概念,列表嘗試法)。
2.你還有什么問題或想法需要和大家交流?
3.作業(yè)本。
教學(xué)設(shè)計(jì)說明:
1.本課設(shè)計(jì)主線有兩條。其一是知識(shí)線,內(nèi)容從二元一次方程組的概念到二元一次方程組解的概念再到列表嘗試法,環(huán)環(huán)相扣,層層遞進(jìn);第二是能力培養(yǎng)線,學(xué)生從看書理解二元一次方程組的概念到學(xué)會(huì)歸納解的概念,再到自主探索,用列表嘗試法解題,循序漸進(jìn),逐步提高。
2.“讓學(xué)生成為課堂的真正主體”是本課設(shè)計(jì)的主要理念。由學(xué)生給出數(shù)據(jù),得出結(jié)果,再讓他們?cè)诜e極嘗試后進(jìn)行講解,實(shí)現(xiàn)生生互評(píng)。把課堂的一切交給學(xué)生,相信他們能在已有的知識(shí)上進(jìn)一步學(xué)習(xí)提高,教師只是點(diǎn)播和引導(dǎo)者。
3.本課在設(shè)計(jì)時(shí)對(duì)教材也進(jìn)行了適當(dāng)改動(dòng)。例題方面考慮到數(shù)*時(shí)代,學(xué)生對(duì)膠卷已漸失興趣,所以改為學(xué)生比較熟悉的乒乓球?yàn)轶w裁。另一方面,充分挖掘練習(xí)的作用,為知識(shí)的落實(shí)打下軋實(shí)的基礎(chǔ),為學(xué)生今后的進(jìn)一步學(xué)習(xí)做好鋪墊。
2022初中語文優(yōu)秀教師教案范文-語文優(yōu)秀教案模板范文。
標(biāo)準(zhǔn)教案范文精選。
一次函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)篇十七
3.直線y=kx+b與方程的聯(lián)系。
那么一元一次不等式與一次函數(shù)是怎樣的關(guān)系呢?本節(jié)課研究一元一次不等式與一次函數(shù)的關(guān)系。
教師活動(dòng):引導(dǎo)學(xué)生回顧一次函數(shù)相關(guān)概念以及一次函數(shù)與方程的關(guān)系。
設(shè)計(jì)意圖:回顧所學(xué)知識(shí)作好新知識(shí)的銜接。
二、導(dǎo)探激勵(lì)。
問題1:我們來看下面兩個(gè)問題有什么關(guān)系?
1.解不等式5x+63x+10.。
2.當(dāng)自變量x為何值時(shí)函數(shù)y=2x—4的值大于0?
問題2:作出函數(shù)y=2x—5的圖象,觀察圖象回答下列問題:
(1)x取何值時(shí),2x—5=0?
(2)x取哪些值時(shí),2x—50?
(3)x取哪些值時(shí),2x—50?
(4)x取哪些值時(shí),2x—53?
教師活動(dòng):展示問題1,適當(dāng)時(shí)間后請(qǐng)學(xué)生解答并說明理由,教師借助課件作結(jié)論性評(píng)判。
設(shè)計(jì)意圖:?jiǎn)栴}2可以直接解不等式(或方程)求解,但這里意圖是讓學(xué)生通過直接圖。
象得到。引導(dǎo)學(xué)生體會(huì)既可以運(yùn)用函數(shù)圖象解不等式,也可以運(yùn)用解不等式幫助研究函數(shù)問題,二者互相滲透,互相作用。
學(xué)生可以用不同方法解答,教師意圖是盡量用圖象求解。
問題3:用畫函數(shù)圖象的方法解不等式5x+42x+10。
學(xué)生活動(dòng):在教師指導(dǎo)下,順利完成作圖,觀察求出答案,并能歸納總結(jié)出其特點(diǎn).活動(dòng)過程及結(jié)論:
種函數(shù)觀點(diǎn)認(rèn)識(shí)問題的方法,對(duì)于繼續(xù)學(xué)習(xí)數(shù)學(xué)很重要.。
三、鞏固練習(xí)。
2.利用圖象解出x:
6x—43x+2.。
四.隨堂練習(xí)。
2.利用圖象解不等式5x—12x+5.。
五.課時(shí)小結(jié)。
六.課后作業(yè)。
習(xí)題14.3─3、4、7題.。
七.活動(dòng)與探究。
教學(xué)反思:
本堂課在設(shè)計(jì)上可以跳出教材,根據(jù)學(xué)生的實(shí)際情況,在問題1中可設(shè)計(jì)一。
個(gè)簡(jiǎn)單一點(diǎn)的不等式,待學(xué)生會(huì)將不等式轉(zhuǎn)化為一次函數(shù)分析并用圖像解決時(shí)在增加難度,放在問題3中一并解決,這樣學(xué)生在接受上不會(huì)太難,也不會(huì)導(dǎo)致時(shí)間分配不合理,以至設(shè)計(jì)的內(nèi)容無法完成。另外,這充分發(fā)揮學(xué)生的主體性,讓學(xué)生通過觀察及操作發(fā)現(xiàn)一次函數(shù)與一元一次不等式的關(guān)系及用一次函數(shù)解決一元一次不等式的方法。
【本文地址:http://www.mlvmservice.com/zuowen/14332764.html】