心得體會是對經(jīng)驗(yàn)的深入思考和獨(dú)特見解的表達(dá)。在撰寫心得體會時,我們應(yīng)該注重挖掘自身在學(xué)習(xí)或工作中的成長和經(jīng)驗(yàn)積累。這些精選的心得體會檔案收集了許多不同領(lǐng)域的經(jīng)驗(yàn)總結(jié),希望能夠?qū)δ阌兴鶈⑹尽?/p>
二次函數(shù)心得體會篇一
從課本的體系來看,這節(jié)課明顯是要讓學(xué)生明白什么是二次函數(shù),能區(qū)別二次函數(shù)與其他函數(shù)的不同,能深刻理解二次函數(shù)的一般形式,并能初步理解實(shí)際問題中對定義域的限制。
重新思索教材的編寫意圖,發(fā)現(xiàn)課本這部分內(nèi)容大部分篇幅是在講三個實(shí)際問題,由此引出了二次函數(shù),我才意識其實(shí)這節(jié)課的重點(diǎn)實(shí)際上應(yīng)該放在“經(jīng)歷探索和表示二次函數(shù)關(guān)系的過程,獲得用二次函數(shù)表示變量之間關(guān)系的體驗(yàn),從而形成定義”上,有了這個認(rèn)識,一切變得簡單了!
對于實(shí)際問題的選擇,我將4個問題整和于同一個實(shí)際背景下,這樣設(shè)計(jì)既能引起學(xué)生興趣,也盡量減少學(xué)生審題的時間,顯得非常有層次性,這些實(shí)際問題貫穿整個課堂的始終,使整個課堂有渾然天成的感覺。
對于練習(xí)的設(shè)計(jì),仍然采取了不重復(fù)的原則性,盡量做到每題針對一個問題,并進(jìn)行及時的小結(jié),也遵循了從開放到封閉的原則,達(dá)到了良好的效果。
二次函數(shù)心得體會篇二
近日,我在數(shù)學(xué)課上進(jìn)行了二次函數(shù)的復(fù)習(xí),通過這一過程,我深深體會到了二次函數(shù)的重要性和應(yīng)用價值。以下是我對此的心得體會。
在復(fù)習(xí)過程中,我首先意識到了二次函數(shù)在現(xiàn)實(shí)中的廣泛應(yīng)用。二次函數(shù)可以描述物理學(xué)、經(jīng)濟(jì)學(xué)、生物學(xué)等各個領(lǐng)域的現(xiàn)象。例如,在物理學(xué)中,拋物線的軌跡就可以由二次函數(shù)來描述。另外,數(shù)學(xué)模型也常常采用二次函數(shù)來分析和預(yù)測實(shí)際問題的發(fā)展趨勢。因此,了解和掌握二次函數(shù)的知識對我們理解和處理各種實(shí)際問題具有重要意義。
其次,我對二次函數(shù)的圖像和性質(zhì)有了更深入的認(rèn)識。通過畫圖和求解方程,我發(fā)現(xiàn)二次函數(shù)的圖像是一個拋物線。這個拋物線在坐標(biāo)軸上的交點(diǎn)稱為零點(diǎn),也就是方程的解。而頂點(diǎn)則是拋物線的最高點(diǎn)(對于開口向上的拋物線)或最低點(diǎn)(對于開口向下的拋物線)。了解這些性質(zhì)有助于我們更方便地分析和解決問題,比如在最值求解或方程解析方面。
進(jìn)一步地,我也深入研究了二次函數(shù)的預(yù)測和建模。通過給定一些歷史數(shù)據(jù),我們可以使用二次函數(shù)來預(yù)測未來的趨勢和結(jié)果。例如,在經(jīng)濟(jì)學(xué)中,我們可以利用二次函數(shù)來預(yù)測某個市場的發(fā)展趨勢,幫助企業(yè)做出更準(zhǔn)確的決策。此外,二次函數(shù)還可以用于優(yōu)化問題的建模,比如求解最值問題。通過對二次函數(shù)進(jìn)行求導(dǎo),我們可以得到函數(shù)的最值點(diǎn),從而可以找到問題的最優(yōu)解。
最后,我認(rèn)識到二次函數(shù)對于我們的數(shù)學(xué)思維能力和解決問題的能力的培養(yǎng)具有重要意義。在學(xué)習(xí)二次函數(shù)的過程中,我們需要通過觀察和分析,運(yùn)用數(shù)學(xué)知識來解決問題。這種思維方式的培養(yǎng),不僅可以幫助我們更好地理解和掌握二次函數(shù),還可以提升我們的數(shù)學(xué)思維能力,培養(yǎng)良好的邏輯思維和問題解決能力。這對于我們未來的學(xué)習(xí)和工作都十分重要。
通過本次二次函數(shù)的復(fù)習(xí),我對二次函數(shù)的重要性和應(yīng)用價值有了更深入的理解。在實(shí)際生活中,我們不僅要關(guān)注數(shù)學(xué)知識的學(xué)習(xí)和應(yīng)用,更要培養(yǎng)好的數(shù)學(xué)思維能力和解決問題的能力。只有這樣,我們才能更好地應(yīng)對未來的挑戰(zhàn),發(fā)現(xiàn)數(shù)學(xué)背后的美妙和智慧。
二次函數(shù)心得體會篇三
學(xué)習(xí)數(shù)學(xué),二次函數(shù)是一個不可避免的話題。它是高中數(shù)學(xué)中的一個重要部分。學(xué)好二次函數(shù)的知識對于學(xué)生來說非常有必要,不僅可以提高數(shù)學(xué)成績,也可以應(yīng)用到實(shí)際生活中。然而,二次函數(shù)不是一項(xiàng)輕松的任務(wù)。在備考二次函數(shù)的過程中,我積攢了一些心得體會,想和大家分享一下。
第二段:正文1——建立數(shù)學(xué)思維。
在備考二次函數(shù)的過程中,首先要建立數(shù)學(xué)思維。這是因?yàn)槎魏瘮?shù)是數(shù)學(xué)中的一門較為抽象的學(xué)問,需要更強(qiáng)的邏輯性和抽象思維能力。我們需要通過理解和掌握二次函數(shù)的概念和方法,進(jìn)一步發(fā)展數(shù)學(xué)思維,提高數(shù)學(xué)素養(yǎng)。我們可以從一些簡單的例子入手,逐漸熟悉二次函數(shù)的表達(dá)式和圖像,明確二次函數(shù)的定義和范圍。
第三段:正文2——切實(shí)掌握知識點(diǎn)。
掌握二次函數(shù)的知識點(diǎn)是備考的核心,因此在備考中務(wù)必要認(rèn)真、深度地學(xué)習(xí)二次函數(shù)。這需要我們掌握二次函數(shù)的特征和性質(zhì),深入理解其圖像、根、頂點(diǎn)、對稱軸等概念。在實(shí)踐中,我們需要通過做題來加深對知識點(diǎn)的理解和掌握。同時,我們可以適當(dāng)畫圖、動手操作等方式,加深對二次函數(shù)的認(rèn)識,激發(fā)學(xué)習(xí)興趣,提升學(xué)習(xí)效率。
第四段:正文3——練習(xí)和提高能力。
在備考二次函數(shù)中,大量的練習(xí)是必不可少的。我們可以系統(tǒng)地做一些例題、習(xí)題和試卷,逐步提高自己的應(yīng)試能力。而且要注意實(shí)踐中的方法和技巧,如觀察題目中的特征信息,靈活應(yīng)用解題方法,正確理解題意,等等。除此之外,我們可以多了解一些數(shù)學(xué)應(yīng)用知識,培養(yǎng)邏輯思維能力和判斷力,從而提高實(shí)際生活中解決問題的能力。
第五段:總結(jié)。
備考二次函數(shù),需要我們建立數(shù)學(xué)思維,掌握知識點(diǎn),練習(xí)和提高能力。而這些在一定程度上也反映出了數(shù)學(xué)學(xué)習(xí)的方法和精神。不論是備考二次函數(shù),還是學(xué)習(xí)其它數(shù)學(xué)知識,我們都應(yīng)該在學(xué)習(xí)中體會學(xué)習(xí)的樂趣、深度、廣度和實(shí)際價值。當(dāng)我們克服了困難,真正掌握了二次函數(shù)的知識,我們就會發(fā)現(xiàn)數(shù)學(xué)之美。
二次函數(shù)心得體會篇四
11月18日,我在九年三班上了《2.1二次函數(shù)所描述的關(guān)系》這節(jié)課,結(jié)合一些聽課老師的建議,現(xiàn)。
總結(jié)。
1.對二次函數(shù)的學(xué)習(xí),本節(jié)課通過豐富的現(xiàn)實(shí)背景和學(xué)生感興趣的問題出發(fā),以多媒體演示圖片的形式使學(xué)生感受二次函數(shù)的意義,感受數(shù)學(xué)的廣泛聯(lián)系和應(yīng)用價值。對二次函數(shù)的學(xué)習(xí),通過學(xué)生的探究性活動,通過學(xué)生之間的合作與交流,通過分析實(shí)際問題,如探究面積問題,利息問題、觀察表格找規(guī)律及用關(guān)系式表示這些關(guān)系的過程,引出二次函數(shù)的概念,使學(xué)生感受二次函數(shù)與生活的密切聯(lián)系。
2.在新知鞏固環(huán)節(jié),我精心設(shè)計(jì)了具有代表性和易錯題型的問題,鞏固應(yīng)用了本節(jié)的新知,課堂達(dá)到了較好的教學(xué)效果。
3.在合作討論的環(huán)節(jié)中,銀行利率問題中文字?jǐn)⑹霾粔驀?yán)密,兩年后的利息一句產(chǎn)生分歧,應(yīng)該改成第二年的利息。
4.在課堂時間的安排上不算太合理,有一道能力提升的問題沒講??傊?,通過本節(jié)課,讓我真正意識到:對于每節(jié)課的教學(xué)不能僅僅憑經(jīng)驗(yàn)設(shè)計(jì)。在每節(jié)課的課前,一定要進(jìn)行精心的預(yù)設(shè)。在課堂中,同時要結(jié)合課堂的實(shí)際效果和學(xué)生的情況注意靈活處理課堂生成。課堂上在進(jìn)行分組教學(xué)時,提前預(yù)設(shè)好教學(xué)時間,在每節(jié)課上,既要放的開,同時又要注意在適當(dāng)?shù)臅r機(jī)收回,以保證每節(jié)教學(xué)基本任務(wù)完成。
二次函數(shù)心得體會篇五
二次函數(shù)是中學(xué)數(shù)學(xué)中的重要內(nèi)容,也是高考數(shù)學(xué)中的必考內(nèi)容之一。作為學(xué)生,我們在備考過程中應(yīng)該如何有效地掌握和應(yīng)用二次函數(shù)呢?在這篇文章中,我將分享一些我在備考二次函數(shù)過程中的心得體會。
第二段:理解二次函數(shù)的定義及性質(zhì)。
在二次函數(shù)備考中,首先需要掌握的是二次函數(shù)的定義和基本性質(zhì)。二次函數(shù)的標(biāo)準(zhǔn)形式為$f(x)=ax^2+bx+c$,其中$a\neq0$。二次函數(shù)的圖像是一個拋物線,其開口方向由$a$的正負(fù)號決定。在掌握了二次函數(shù)的定義之后,我們需要學(xué)習(xí)二次函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、極值、對稱軸、零點(diǎn)和圖像的方程等。
第三段:掌握二次函數(shù)的變形和運(yùn)用。
掌握二次函數(shù)的變形是備考成功的關(guān)鍵之一。在二次函數(shù)的變形中,常見的有平移、伸縮、翻轉(zhuǎn)等變化,它們都會影響到函數(shù)的圖像和性質(zhì)。因此,我們需要掌握這些變形的規(guī)律和方法,以便于在實(shí)踐中準(zhǔn)確地運(yùn)用。
第四段:熟練掌握二次函數(shù)的解析式。
掌握二次函數(shù)的解析式也是備考二次函數(shù)的重點(diǎn)之一。在練習(xí)中,我們需要熟練地運(yùn)用解析式,解決各種與二次函數(shù)相關(guān)的問題,如求函數(shù)的零點(diǎn)、極值、對稱軸等,這些問題在高考中也是常見的考點(diǎn)。
第五段:多做例題,加深理解。
在備考過程中,多做例題是加深理解的重要方法。通過做例題,我們可以運(yùn)用所學(xué)知識,增強(qiáng)對二次函數(shù)的理解和掌握。在做題過程中,我們還要注意歸納總結(jié),找出問題的規(guī)律和解題方法,加深對二次函數(shù)的認(rèn)識。
結(jié)語:
通過以上幾點(diǎn),我們可以有效地備考二次函數(shù),掌握并鞏固相關(guān)知識點(diǎn)。我們需要注重理論學(xué)習(xí),掌握二次函數(shù)的定義和基本性質(zhì),熟練掌握二次函數(shù)的解析式,并且通過練習(xí)加深對二次函數(shù)的理解和掌握。相信在備考過程中,只要我們持之以恒地學(xué)習(xí)和練習(xí),就一定能夠取得良好的成績。
二次函數(shù)心得體會篇六
標(biāo)簽:。
教學(xué)反思:。
今天,領(lǐng)著學(xué)生復(fù)習(xí)了二次函數(shù)的知識。本節(jié)知識是中考考點(diǎn)之一,往往與其他知識綜合在一起作為中考壓軸題,因此要求學(xué)生重點(diǎn)掌握的有以下幾個內(nèi)容:
2、二次函數(shù)的實(shí)際應(yīng)用。
在復(fù)習(xí)與練習(xí)的過程中,我發(fā)現(xiàn)學(xué)生存在著這樣幾個問題。
1、某些記憶性的知識沒記住。
3、學(xué)生的識圖能力、讀題能力與分析問題解決問題的能力較弱。
4、解題過程寫得不全面,丟三落四的現(xiàn)象嚴(yán)重。
針對上述問題,需要采取的措施與方法是:
1、根據(jù)實(shí)際情況,對于中考升學(xué)有希望的學(xué)生利用課余時間做好他們的思。
想工作。并對他們進(jìn)行面對面的單獨(dú)輔導(dǎo),增強(qiáng)他們的自信心,以此來提高他們的數(shù)學(xué)成績。
2、結(jié)合自己的學(xué)習(xí)經(jīng)驗(yàn)對他們進(jìn)行學(xué)法指導(dǎo)和解題技巧的指導(dǎo)。
3、根據(jù)不同的學(xué)生情況,搜集典型題讓他們單獨(dú)做,并給予及時的輔導(dǎo)與。
矯正。
4、與其它任課教師聯(lián)手一起想對策,指導(dǎo)學(xué)生讀題的方法與分析問題,解。
決問題的方法。
5、無論是做練習(xí)還是考試之前,都告訴學(xué)生要認(rèn)真仔細(xì)的讀題,從圖形中。
獲取信息。
二次函數(shù)心得體會篇七
第二十六章《二次函數(shù)》是學(xué)生學(xué)習(xí)了正比例函數(shù)、一次函數(shù)和反比例函數(shù)以后,進(jìn)一步學(xué)習(xí)函數(shù)知識,是函數(shù)知識螺旋發(fā)展的一個重要環(huán)節(jié)。二次函數(shù)是描述變量之間關(guān)系的重要的數(shù)學(xué)模型,它既是其他學(xué)科研究時所采用的重要方法之一,也是某些單變量最優(yōu)化問題的數(shù)學(xué)模型。和一次函數(shù)、反比例函數(shù)一樣,二次函數(shù)也是一種非?;镜某醯群瘮?shù),對二次函數(shù)的研究將為學(xué)生進(jìn)一步學(xué)習(xí)函數(shù)、體會函數(shù)的思想奠定基礎(chǔ)和積累經(jīng)驗(yàn)。
下面是我通過本單元的的教學(xué)后的的幾點(diǎn)反思:“二次函數(shù)概念”教學(xué)反思。
關(guān)于“二次函數(shù)概念”教后做如下反思:我的成功之處是:教學(xué)時,通過實(shí)例引入二次函數(shù)的概念,讓學(xué)生明確二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型。通過學(xué)習(xí)求一些簡單的實(shí)際問題中二次函數(shù)的解析式和它的定義域;大部分學(xué)生重視了二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗(yàn)從問題出發(fā)到列二次函數(shù)解析式的過程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義。絕大多數(shù)學(xué)生理解了二次函數(shù)的概念;掌握了二次函數(shù)的一般表達(dá)式以及二次項(xiàng)和二次項(xiàng)的系數(shù)、一次項(xiàng)和一次項(xiàng)的系數(shù)及常數(shù)項(xiàng)。
關(guān)于“二次函數(shù)的圖象和性質(zhì)”教后做如下反思:我的成功之處是:在教學(xué)中我采用了體驗(yàn)探究的教學(xué)方式,在教師的配合引導(dǎo)下,讓學(xué)生自己動手作圖,觀察、歸納出二次函數(shù)的性質(zhì),體驗(yàn)知識的形成過程,力求體現(xiàn)"主體參與、自主探索、合作交流、指導(dǎo)引探"的教學(xué)理念。
通過引導(dǎo)學(xué)生在坐標(biāo)紙上畫出二次函數(shù)y=ax2的圖象。畫圖的過程包括列表、描點(diǎn)、連線。列表過程是我引導(dǎo)學(xué)生取點(diǎn)的,其間我引導(dǎo)學(xué)生要明確取點(diǎn)注意的事項(xiàng),比如代表性、易操作性。學(xué)生在我的引導(dǎo)下順利地畫出了函數(shù)的圖象。緊接著我讓學(xué)生觀察圖像自主探討當(dāng)a0時函數(shù)y=ax2的性質(zhì)。當(dāng)a。
y=a(x-h)。
2、y=a(x-h)2+c的圖像,絕大多數(shù)學(xué)生很快掌握了圖形平移的規(guī)律,理解了平移后圖像的性質(zhì)。達(dá)到了學(xué)習(xí)目標(biāo)中的要求。
不足之處表現(xiàn)在:
1、課堂上講的太多。讓學(xué)生自主觀察總結(jié)的機(jī)會少,學(xué)生還是被動的接受。
2、學(xué)生作圖能力差。簡單的列表、描點(diǎn)、連線。學(xué)生做起來就比較困難。作圖中單位長度不準(zhǔn)確,描點(diǎn)不正確,連線時不會用光滑的曲線,而是畫出很難看的圖形。
3、合作學(xué)習(xí)的有效性不夠。對于老師提出的問題,各組匯報(bào)討論結(jié)果的效果不明顯。說明自主、探究、合作的學(xué)習(xí)方式?jīng)]有落到實(shí)處,沒能培養(yǎng)學(xué)生的創(chuàng)新能力。
4、少數(shù)學(xué)生二次函數(shù)圖像平移變換能力差。不會進(jìn)行二次函數(shù)圖像的平移變換。
關(guān)于“求二次函數(shù)解析式”教后做如下反思:我的成功之處是:教學(xué)中,我設(shè)計(jì)從求一次函數(shù)的解析式入手,引出求二次函數(shù)一般解析式的方法。學(xué)生把已知點(diǎn)代入二次函數(shù)的一般解析式,很快就得出了三元一次方程組,學(xué)生很快就理解了求二次函數(shù)一般解析式的方法。接著我改變條件,給出拋物線的頂點(diǎn)坐標(biāo)和經(jīng)過拋物線的一個點(diǎn),引導(dǎo)學(xué)生設(shè)頂點(diǎn)式的二次函數(shù)解析式,學(xué)生在老師的點(diǎn)撥下,將已知點(diǎn)代入,很快球出了頂點(diǎn)式的二次函數(shù)解析式。接下來,我又引導(dǎo)學(xué)生觀察拋物線與x軸的交點(diǎn),啟發(fā)學(xué)生設(shè)交點(diǎn)式解析式,學(xué)生很快就學(xué)會了用交點(diǎn)式求二次函數(shù)解析式的方法。在整個教學(xué)中,教學(xué)內(nèi)容、教學(xué)環(huán)節(jié)、教學(xué)方法的設(shè)計(jì)都算完美,在教學(xué)目標(biāo)的制定和教學(xué)重點(diǎn)、難點(diǎn)的把握上也很準(zhǔn)確,調(diào)動學(xué)生學(xué)習(xí)的積極性和主動性,所以教學(xué)非常流暢,效果不錯,目標(biāo)的達(dá)成度較高。
不足之處表現(xiàn)在:
1、學(xué)生對新學(xué)知識理解了,但一部分學(xué)生不會解三元一次方程組。
2、少數(shù)學(xué)生對求頂點(diǎn)式和交點(diǎn)式的二次函數(shù)解析式有困難。
3、由于對學(xué)生估計(jì)不足,引導(dǎo)學(xué)生探究三種不同形式的函數(shù)解析式的方法用時較多,導(dǎo)致教學(xué)時間緊張。
關(guān)于“二次函數(shù)應(yīng)用題”教后做如下反思:我的成功之處是:一開始我引導(dǎo)學(xué)生回憶二次函數(shù)的三種不同形式的解析式,即一般式、頂點(diǎn)式、交點(diǎn)式,并說出它們各自的性質(zhì)如拋物線的開口方向,對稱軸,頂點(diǎn)坐標(biāo),最大最小值,函數(shù)在對稱軸兩側(cè)的增減性。然后出示問題,對于這個問題,不少學(xué)生表情凝重,目光迷惘,思路不暢,不知從何處下手。我反復(fù)引導(dǎo)學(xué)生建立平面直角坐標(biāo)系,分析解決問題的方法。學(xué)生從直角坐標(biāo)系中發(fā)現(xiàn)了拋物線上的點(diǎn),我進(jìn)一步引導(dǎo)學(xué)生找拋物線的頂點(diǎn)坐標(biāo),在老師的引導(dǎo)下,學(xué)生設(shè)出了二次函數(shù)的解析式,并將找到的已知點(diǎn)代入,求出了二次函數(shù)的解析式。接著我引導(dǎo)學(xué)生就同一問題建立不同的直角坐標(biāo)系,再去找拋物線上的已知點(diǎn),這是學(xué)生找到了已知點(diǎn),就能判斷用哪種解析式,試著求出函數(shù)的解析式。接下來,再出示例題,引導(dǎo)學(xué)生分析解答。學(xué)生從上面的解題過程中得到了啟示,學(xué)到了解題方法。教學(xué)中,我從學(xué)生的實(shí)際出發(fā),幫助學(xué)生解決學(xué)習(xí)中的困難,啟發(fā)和引導(dǎo)學(xué)生觀察二次函數(shù)圖像,對圖像進(jìn)行分析,得出解決問題的方案。所以教學(xué)方法的設(shè)計(jì)較完美,并且教學(xué)重點(diǎn)、難點(diǎn)把握的較準(zhǔn)確,同時調(diào)動大多數(shù)學(xué)生學(xué)習(xí)的積極性和主動性,所以較好的達(dá)到教學(xué)目標(biāo)。
不足之處表現(xiàn)在:
1、少數(shù)學(xué)生對于建立平面直角坐標(biāo)系有困難。不會根據(jù)拋物線正確建立坐標(biāo)系。
2、少數(shù)學(xué)生不會分析題意,不能正確列式求出二次函數(shù)的解析式。
3、學(xué)生對一些常規(guī)知識的缺失突出的暴露出來。如利用三點(diǎn)坐標(biāo)求二次函數(shù)解析式,學(xué)生解三元一次方程組感到困難等。
4、少數(shù)學(xué)生不會將二次函數(shù)的一般式配方轉(zhuǎn)化為頂點(diǎn)式;不會利用頂點(diǎn)式求函數(shù)的最大值或最小值。
總之,本單元的教學(xué),雖取得了一些成績。但也暴露出了許多問題。今后在教學(xué)中我一定吸取教訓(xùn),努力改正自己的不足,提高自己的教學(xué)上水平。
二次函數(shù)心得體會篇八
二次函數(shù)的應(yīng)用是在學(xué)習(xí)二次函數(shù)的圖像與性質(zhì)后,檢驗(yàn)學(xué)生應(yīng)用所學(xué)知識解決實(shí)際問題能力的一個綜合考查,它是本章的難點(diǎn)。新的課程標(biāo)準(zhǔn)要求學(xué)生能通過對實(shí)際問題的情境的分析確定二次函數(shù)的表達(dá)式,體會其意義,能根據(jù)圖像的性質(zhì)解決簡單的實(shí)際問題,而最大值問題是生活中利用二次函數(shù)知識解決最常見、最有實(shí)際應(yīng)用價值的問題,它生活背景豐富,學(xué)生比較感興趣。本節(jié)課通過學(xué)習(xí)求水流的最高點(diǎn)問題,引導(dǎo)學(xué)生將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型,利用數(shù)學(xué)建模的思想去解決和函數(shù)有關(guān)的應(yīng)用問題。此部分內(nèi)容是學(xué)習(xí)一次函數(shù)及其應(yīng)用后的鞏固與延伸,又為高中乃至以后學(xué)習(xí)更多函數(shù)打下堅(jiān)實(shí)的基礎(chǔ)。
由于本節(jié)課是二次函數(shù)的應(yīng)用問題,重在通過學(xué)習(xí)總結(jié)解決問題的方法,故而本節(jié)課以“啟發(fā)探究式”為主線開展教學(xué)活動,以學(xué)生動手動腦探究為主,充分調(diào)動學(xué)生學(xué)習(xí)積極性和主動性,突出學(xué)生的主體地位,達(dá)到“不但使學(xué)生學(xué)會,而且使學(xué)生會學(xué)”的目的。
不足之處:《數(shù)學(xué)課程標(biāo)準(zhǔn)》提出:教師不僅是學(xué)生的引導(dǎo)者,也是學(xué)生的合作者。教學(xué)中,要讓學(xué)生通過自主討論、交流,來探究學(xué)習(xí)中碰到的問題、難題,教師從中點(diǎn)撥、引導(dǎo),并和學(xué)生一起學(xué)習(xí)探討。在本節(jié)課的教學(xué)中,教師引導(dǎo)學(xué)生較多,沒有完全放開讓學(xué)生自主探究學(xué)習(xí),獲得新知;學(xué)生在數(shù)學(xué)學(xué)習(xí)中還是有較強(qiáng)的依賴性,教師要有意培養(yǎng)學(xué)生自主學(xué)習(xí)的能力。
教師要想在開放的課堂上具有靈活駕馭的能力,就需要在備課時盡量考慮周到,既要備教材,又要備學(xué)生,更需要教師具有豐富的科學(xué)文化知識,這樣才能使我們的學(xué)生在輕松活躍的課堂上找到學(xué)習(xí)的樂趣與興趣。
二次函數(shù)心得體會篇九
1.注意滲透局部和全體、有限和無限、近似和精確等矛盾對立統(tǒng)一的觀點(diǎn)。
2.注意培養(yǎng)學(xué)生觀察分析問題的能力。比如,結(jié)合所畫二次函數(shù)y=x2的圖象,要求學(xué)生思考:
(1)y=x2的圖象的圖象有什么特點(diǎn)。(答:具有對稱性。)。
(2)如何判斷y=x2的圖象有上面所說的特點(diǎn)?(答:由觀察圖象看出來;或由列表求值得出來;或由解析式y(tǒng)=x2看出來。)。
二次函數(shù)心得體會篇十
在整個中學(xué)數(shù)學(xué)知識體系中,二次函數(shù)占據(jù)極其關(guān)鍵且重要的地位,二次函數(shù)不僅是中高考數(shù)學(xué)的重要考點(diǎn),也是線性數(shù)學(xué)知識的基礎(chǔ)。那老師應(yīng)該怎么教呢?今天,小編給大家?guī)沓跞龜?shù)學(xué)二次函數(shù)教案教學(xué)方法。
一、重視每一堂復(fù)習(xí)課數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過的東西,我想許多老師都和我有相同的體會,那就是復(fù)習(xí)課比新課難上。
四、要多了解學(xué)生。你對學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時了解每個學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計(jì)劃和備下一堂課,也有利于你更好的改進(jìn)教學(xué)方法。
二、立足課堂,提高效率:做到教師入題海,學(xué)生出題海.教師應(yīng)多做題、多研究近幾年的中考試題,并根據(jù)本班學(xué)生的實(shí)際情況,從眾多復(fù)習(xí)資料中,選擇適合本班學(xué)生的最佳練習(xí),也可通過對題目的重組。
三、教師在設(shè)計(jì)教學(xué)目標(biāo)時,要做到胸中有書,目中有人,讓每一節(jié)課都給學(xué)生留有時間,讓他們有獨(dú)立思考、合作探究交流的過程,最大限度的調(diào)動學(xué)生的參與度,激發(fā)他們的學(xué)習(xí)興趣,達(dá)到最佳的復(fù)習(xí)效果.
四、激發(fā)興趣,提高質(zhì)量:興趣是學(xué)習(xí)最好的動力,在上復(fù)習(xí)課時尤為重要.因此,我們在授課的過程中,在關(guān)注知識復(fù)習(xí)的同時,也要關(guān)注學(xué)生的學(xué)習(xí)欲望和學(xué)習(xí)效果,要讓學(xué)生在學(xué)習(xí)的過程中體驗(yàn)成功的快感.這樣他們才會更有興趣的學(xué)習(xí)下去.
1.質(zhì)疑問難是學(xué)生自主學(xué)習(xí)的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學(xué)生的主體意識,必須鼓勵學(xué)生質(zhì)疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學(xué)生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。
2.二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學(xué)生要學(xué)習(xí)的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實(shí)世界變量之間關(guān)系的重要的數(shù)學(xué)模型。
3.學(xué)生有疑而問、質(zhì)疑問難,是用心思考、自主學(xué)習(xí)、主動探究的可貴表現(xiàn),理應(yīng)得到老師的熱情鼓勵和贊揚(yáng)?,F(xiàn)在對學(xué)生的隨時“插嘴”,提出的各種疑難問題,應(yīng)抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。
4.初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點(diǎn)審視一元二次方程,用二次函數(shù)的相關(guān)知識分析和解決簡單的實(shí)際問題。
1.教學(xué)案例、教學(xué)設(shè)計(jì)、教學(xué)實(shí)錄、教學(xué)敘事的區(qū)別:教學(xué)案例與教案:教案(教學(xué)設(shè)計(jì))是事先設(shè)想的教育教學(xué)思路,是對準(zhǔn)備實(shí)施的教育措施的簡要說明,反映的是教學(xué)預(yù)期;而教學(xué)案例則是對已發(fā)生的教育教學(xué)過程的描述,反映的是教學(xué)結(jié)果。
2.教學(xué)案例與教學(xué)實(shí)錄:它們同樣是對教育教學(xué)情境的描述,但教學(xué)實(shí)錄是有聞必錄(事實(shí)判斷),而教學(xué)案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷)。
4.教學(xué)案例必須從教學(xué)任務(wù)分析的目標(biāo)出發(fā),有意識地選擇有關(guān)信息,必須事先進(jìn)行實(shí)地作業(yè),因此日常教育敘事日志可以作為寫作教學(xué)案例的素材積累。
二次函數(shù)心得體會篇十一
在整個中學(xué)數(shù)學(xué)知識體系中,二次函數(shù)占據(jù)極其關(guān)鍵且重要的地位,二次函數(shù)不僅是中高考數(shù)學(xué)的重要考點(diǎn),也是線性數(shù)學(xué)知識的基礎(chǔ)。那老師應(yīng)該怎么教呢?今天,小編給大家?guī)沓跞龜?shù)學(xué)二次函數(shù)教案教學(xué)方法。
一、重視每一堂復(fù)習(xí)課數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過的東西,我想許多老師都和我有相同的體會,那就是復(fù)習(xí)課比新課難上。
四、要多了解學(xué)生。你對學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時了解每個學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計(jì)劃和備下一堂課,也有利于你更好的改進(jìn)教學(xué)方法。
將本文的word文檔下載到電腦,方便收藏和打印。
二次函數(shù)心得體會篇十二
2、會用二次函數(shù)的圖象與性質(zhì)解決問題;
學(xué)習(xí)難點(diǎn):二次函數(shù)的性質(zhì)與圖像的應(yīng)用;
函數(shù)函數(shù)。
圖象a0a0。
性質(zhì)。
例2:
(1)已知函數(shù)n在區(qū)間上為增函數(shù),求a的范圍;
(2)已知函數(shù)n的單調(diào)區(qū)間是(0,1),求a;
例3:求二次函數(shù)n在區(qū)間[0,3]上的最大值和最小值;
變式:
(1)已知m在[t,t+1]上的最小值為g(t),求g(t)的表達(dá)式。
(2)已知m在區(qū)間[0,1]內(nèi)有最大值-5,求a。
(略)。
二次函數(shù)心得體會篇十三
作為現(xiàn)代編程領(lǐng)域中最為重要的概念之一,函數(shù)是每一位程序員必須掌握的基本技能。函數(shù)可以幫助我們實(shí)現(xiàn)代碼的復(fù)用,并最大化代碼的可維護(hù)性和可讀性,提高代碼的效率。在我研究函數(shù)的實(shí)踐和編程經(jīng)驗(yàn)中,我發(fā)現(xiàn)函數(shù)不僅僅是一個工具,而是一種思考方式,一種編寫高質(zhì)量代碼的宏觀策略。接下來,我將分享在學(xué)習(xí)和使用函數(shù)的過程中所體會到的經(jīng)驗(yàn)和心得。
第二段:函數(shù)與代碼復(fù)用。
函數(shù)的主要優(yōu)勢之一是代碼的復(fù)用。通過將相似或重復(fù)的代碼封裝在函數(shù)中,我們可以將其多次調(diào)用,而不必重寫相同的代碼。這不僅減少了代碼量,減輕了維護(hù)代碼的負(fù)擔(dān),還使代碼的可讀性更好,因?yàn)檎{(diào)用一組相關(guān)功能的函數(shù)總比分散在不同位置的代碼更易于理解。
第三段:函數(shù)與代碼可維護(hù)性。
另一個函數(shù)的優(yōu)勢是提高代碼可維護(hù)性。通過將相似功能的代碼封裝在函數(shù)中,我們可以建立代碼的分層表示,使代碼更具有結(jié)構(gòu)性。如果將許多類似的代碼放在同一文件中,那么將來需要添加或修改其中的一部分代碼將會非常困難。而函數(shù)可以將相關(guān)代碼組合在一起,使代碼的邏輯更加清晰,因此更容易維護(hù)。
第四段:函數(shù)與代碼測試。
函數(shù)還是測試代碼的重要工具。通過測試函數(shù)的輸出和輸入,我們可以確保其正確性,并保證代碼的質(zhì)量。函數(shù)可以切割代碼,以便調(diào)試,而不用擔(dān)心整個代碼庫的問題。如果一個函數(shù)經(jīng)過良好的測試,則可以自信地將其重用在許多其他代碼中。
第五段:結(jié)論。
總之,函數(shù)是用于構(gòu)建任何高質(zhì)量代碼的關(guān)鍵概念。函數(shù)使代碼更具有結(jié)構(gòu)性,更容易維護(hù)和測試,并使代碼更易于閱讀,比分散的代碼更具可讀性。作為程序員,我們應(yīng)該時刻牢記編寫高質(zhì)量、易于理解的代碼是我們的目標(biāo)之一,函數(shù)是我們達(dá)成這個目標(biāo)的重要工具。不斷深入學(xué)習(xí)和使用函數(shù),對于變得更好的程序員和編寫高質(zhì)量代碼都能夠產(chǎn)生重要的影響。
二次函數(shù)心得體會篇十四
本節(jié)內(nèi)容是人民教育出版社出版的九年級《數(shù)學(xué)》下第26章第一節(jié)第二課時的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了二次函數(shù)的概念,對于函數(shù)的積累知識有一次函數(shù)和反比例函數(shù)。本節(jié)內(nèi)容是對二次函數(shù)圖像及其性質(zhì)的學(xué)習(xí),是后續(xù)研究二次函數(shù)圖像的變換的基礎(chǔ)。二次函數(shù)在初中函數(shù)的教學(xué)中有重要地位,它不僅是初中代數(shù)內(nèi)容的引申,也是初中數(shù)學(xué)教學(xué)的重點(diǎn)和難點(diǎn)之一,更為高中學(xué)習(xí)一元二次不等式和圓錐曲線奠定基礎(chǔ)。
本節(jié)課中的教學(xué)重點(diǎn)利用描點(diǎn)法畫出二次函數(shù)的圖像,建構(gòu)符合學(xué)生認(rèn)知結(jié)構(gòu)的知識體系,教學(xué)難點(diǎn)是運(yùn)用數(shù)形結(jié)合的思想描述函數(shù),根據(jù)解析式判斷函數(shù)的開口方向、對稱軸、頂點(diǎn)坐標(biāo)。基于以上對教材的認(rèn)識,根據(jù)數(shù)學(xué)課程標(biāo)準(zhǔn),考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)與心理特征,制定如下的教學(xué)目標(biāo)。
2.說目標(biāo)。
二次函數(shù)心得體會篇十五
冪函數(shù)是我們在數(shù)學(xué)課上常遇到的一種函數(shù)類型,也是我們在高中數(shù)學(xué)學(xué)習(xí)最基礎(chǔ)卻也很重要的知識點(diǎn)之一。冪函數(shù)可以運(yùn)用到實(shí)際生活中,如探究物體體積、質(zhì)量等問題。但是,學(xué)習(xí)時,我們常常會覺得冪函數(shù)很抽象而難懂,也不知道如何應(yīng)用到實(shí)際生活中,下面是我對于學(xué)習(xí)冪函數(shù)的理解,以及它在實(shí)際生活中的應(yīng)用體會。
段落二:冪函數(shù)的定義與基本特征。
冪函數(shù)表示為y=x^k,其中k是常數(shù)。在冪函數(shù)中,底數(shù)x可以是負(fù)數(shù)、正數(shù)或零;指數(shù)k可以是正數(shù)或負(fù)數(shù),但是當(dāng)x等于0時,指數(shù)k必須是正數(shù)。冪函數(shù)的圖像一般都是單調(diào)的,它的單調(diào)性與指數(shù)k的正負(fù)有關(guān),當(dāng)指數(shù)k是正數(shù)時,冪函數(shù)呈現(xiàn)上升趨勢;當(dāng)指數(shù)k是負(fù)數(shù)時,冪函數(shù)呈現(xiàn)下降趨勢,具有軸對稱性,對于y=0的水平線必定是一條水平漸近線。
冪函數(shù)是各種函數(shù)類型中應(yīng)用最廣泛的一種。它在科學(xué)、工程、經(jīng)濟(jì)學(xué)等眾多領(lǐng)域中都有廣泛應(yīng)用,常用于解決各種業(yè)務(wù)問題。常常使用冪函數(shù)來解決跟面積、體積相關(guān)的問題,如球的體積V是球半徑r的三次方,水缸的容積V是底部圓面積與高度h的乘積,等等。在經(jīng)濟(jì)學(xué)中,利率、匯率等指標(biāo)變化往往以冪函數(shù)的方式進(jìn)行計(jì)算。冪函數(shù)的廣泛應(yīng)用使其在實(shí)際生活中發(fā)揮了極大的作用。
段落四:冪函數(shù)學(xué)習(xí)的難點(diǎn)及應(yīng)對方法。
學(xué)習(xí)冪函數(shù)需要對指數(shù)和冪函數(shù)的定義有清晰的認(rèn)識,這就對學(xué)生的數(shù)學(xué)基礎(chǔ)要求相對高一些。此外,由于冪函數(shù)的定義比較抽象,圖像和具體應(yīng)用不是很直觀,初學(xué)者常常難以理解,這就對老師的講解和學(xué)生的自學(xué)能力提出了要求。在學(xué)習(xí)的過程中,我們可以在課堂上認(rèn)真聽講,將問題逐一分析和歸納,不要忽略掉中間的一些知識點(diǎn)和環(huán)節(jié),需要多方面學(xué)習(xí),適時拓展知識面,掌握更多解決問題的實(shí)用方法。
段落五:總結(jié)。
冪函數(shù)是數(shù)學(xué)學(xué)習(xí)中的一個重要知識點(diǎn)。它的定義較為抽象,所以看似有點(diǎn)抽象。但是,學(xué)好冪函數(shù)對于掌握其他的函數(shù)類型、進(jìn)一步將數(shù)學(xué)知識運(yùn)用到實(shí)際生活、培養(yǎng)自己的邏輯思維等方面均有幫助。在學(xué)習(xí)冪函數(shù)的過程中,需要結(jié)合實(shí)際問題進(jìn)行理解與應(yīng)用,注重課堂和自學(xué)的合理安排。我相信,在不斷學(xué)習(xí)和實(shí)踐的過程中,我們能夠越來越好地掌握冪函數(shù),更加熟練地應(yīng)用到實(shí)際生活中,為我們未來的學(xué)習(xí)和生活帶來更多的便利。
【本文地址:http://www.mlvmservice.com/zuowen/9935272.html】