教案的編寫過程需要反復(fù)修改和完善,確保教學(xué)目標(biāo)的實(shí)現(xiàn)和教學(xué)效果的提高。如何編寫一份優(yōu)秀的教案是每位教師需掌握的基本技能。小編為大家收集整理了一些經(jīng)典的教案案例,希望能夠?yàn)槟愕膫湔n工作提供一些參考。
成人高中數(shù)學(xué)教案篇一
【知識(shí)與技能】
掌握三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。
【過程與方法】
經(jīng)歷三角函數(shù)的單調(diào)性的探索過程,提升邏輯推理能力。
【情感態(tài)度價(jià)值觀】
在猜想計(jì)算的過程中,提高學(xué)習(xí)數(shù)學(xué)的興趣。
【教學(xué)重點(diǎn)】
三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。
【教學(xué)難點(diǎn)】
探究三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍過程。
(一)引入新課
提出問題:如何研究三角函數(shù)的單調(diào)性
(四)小結(jié)作業(yè)
提問:今天學(xué)習(xí)了什么?
引導(dǎo)學(xué)生回顧:基本不等式以及推導(dǎo)證明過程。
課后作業(yè):
思考如何用三角函數(shù)單調(diào)性比較三角函數(shù)值的大小。
成人高中數(shù)學(xué)教案篇二
了解雙曲線的定義,幾何圖形和標(biāo)準(zhǔn)方程,知道它的簡(jiǎn)單性質(zhì)。
【自學(xué)質(zhì)疑】
漸近線方程是 ,離心率 ,若點(diǎn) 是雙曲線上的點(diǎn),則 , 。
2.又曲線 的左支上一點(diǎn)到左焦點(diǎn)的距離是7,則這點(diǎn)到雙曲線的右焦點(diǎn)的距離是
3.經(jīng)過兩點(diǎn) 的雙曲線的標(biāo)準(zhǔn)方程是 。
4.雙曲線的漸近線方程是 ,則該雙曲線的離心率等于 。
5.與雙曲線 有公共的漸近線,且經(jīng)過點(diǎn) 的雙曲線的方程為
【例題精講】
1.雙曲線的離心率等于 ,且與橢圓 有公共焦點(diǎn),求該雙曲線的方程。
2.已知橢圓具有性質(zhì):若 是橢圓 上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn) 是橢圓上任意一點(diǎn),當(dāng)直線 的斜率都存在,并記為 時(shí),那么 之積是與點(diǎn) 位置無關(guān)的定值,試對(duì)雙曲線 寫出具有類似特性的性質(zhì),并加以證明。
3.設(shè)雙曲線 的半焦距為 ,直線 過 兩點(diǎn),已知原點(diǎn)到直線 的距離為 ,求雙曲線的離心率。
【矯正鞏固】
1.雙曲線 上一點(diǎn) 到一個(gè)焦點(diǎn)的距離為 ,則它到另一個(gè)焦點(diǎn)的距離為 。
2.與雙曲線 有共同的漸近線,且經(jīng)過點(diǎn) 的雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離是 。
3.若雙曲線 上一點(diǎn) 到它的右焦點(diǎn)的距離是 ,則點(diǎn) 到 軸的距離是
4.過雙曲線 的左焦點(diǎn) 的直線交雙曲線于 兩點(diǎn),若 。則這樣的直線一共有 條。
【遷移應(yīng)用】
2. 已知雙曲線 的焦點(diǎn)為 ,點(diǎn) 在雙曲線上,且 ,則點(diǎn) 到 軸的距離為 。
3. 雙曲線 的焦距為
4. 已知雙曲線 的一個(gè)頂點(diǎn)到它的一條漸近線的距離為 ,則
5. 設(shè) 是等腰三角形, ,則以 為焦點(diǎn)且過點(diǎn) 的雙曲線的離心率為 .
成人高中數(shù)學(xué)教案篇三
高中數(shù)學(xué)趣味競(jìng)賽題(共10題)
5個(gè)高中生有,她們面對(duì)學(xué)校的新聞采訪說了如下的話:
愛:“我還沒有談過戀愛。” 靜香:“愛撒謊了。”
瑪麗:“我曾經(jīng)去過昆明?!?惠美:“瑪麗在撒謊?!?/p>
千葉子:“瑪麗和惠美都在撒謊?!?那么,這5個(gè)人之中到底有幾個(gè)人在撒謊呢?
有天使、惡魔、人三者,天使時(shí)刻都說真話,惡魔時(shí)時(shí)刻刻都說假話,人呢,有時(shí)候說真話,有時(shí)候說假話。
聽說祖父家的波斯貓生了好多小貓,喜歡貓的我興高采烈地來到祖父家??墒牵皇O?只小貓了。
一只愛吃墨水的蟲子把下圖的算式中的數(shù)字全部吃掉了。當(dāng)然,沒有數(shù)字的部分它沒有吃(因?yàn)闆]有墨水)。
那么,請(qǐng)問原來的算式是什么樣子的呢?
用16根火柴擺成5個(gè)正方形。請(qǐng)移動(dòng)2根火柴,
使
正形變成4。
把正三角形的紙如圖那樣折過來時(shí),角?的度數(shù)是多少度?
求星形尖端的角度之和。
丈夫臨死前,給有身孕的妻子留下遺言說,生的是男孩就給他財(cái)產(chǎn)的 2/3 、如果生的是女孩就給他財(cái)產(chǎn)的 2/5 、剩下的給妻子。
結(jié)果,生出來的是孿生兄妹——雙胞胎。這可難壞了妻子,3個(gè)人怎么分財(cái)產(chǎn)好呢?
用折紙做成45度很簡(jiǎn)單是吧。那么,請(qǐng)折成15度,你會(huì)嗎?
成人高中數(shù)學(xué)教案篇四
(1)了解含有“或”、“且”、“非”復(fù)合命題的概念及其構(gòu)成形式;
(2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;
(3)能用邏輯聯(lián)結(jié)詞和簡(jiǎn)單命題構(gòu)成不同形式的復(fù)合命題;
(4)能識(shí)別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡(jiǎn)單命題;
(5)會(huì)用真值表判斷相應(yīng)的復(fù)合命題的真假;
(6)在知識(shí)學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡(jiǎn)單推理的技能.
重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對(duì)“或”的含義的理解.
1.新課導(dǎo)入
在當(dāng)今社會(huì)中,人們從事任何工作、學(xué)習(xí),都離不開邏輯.具有一定邏輯知識(shí)是構(gòu)成一個(gè)公民的文化素質(zhì)的重要方面.數(shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強(qiáng)調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識(shí),將會(huì)在我們學(xué)習(xí)的過程中不知不覺地經(jīng)常犯邏輯性的錯(cuò)誤.其實(shí),同學(xué)們?cè)诔踔幸呀?jīng)開始接觸一些簡(jiǎn)易邏輯的知識(shí).
初一平面幾何中曾學(xué)過命題,請(qǐng)同學(xué)們舉一個(gè)命題的例子.(板書:命題.)
(從初中接觸過的“命題”入手,提出問題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識(shí).)
學(xué)生舉例:平行四邊形的對(duì)角線互相平. ……(1)
兩直線平行,同位角相等.…………(2)
教師提問:“……相等的角是對(duì)頂角”是不是命題?……(3)
(同學(xué)議論結(jié)果,答案是肯定的)
教師提問:什么是命題?
(學(xué)生進(jìn)行回憶、思考.)
概念總結(jié):對(duì)一件事情作出了判斷的語句叫做命題.
(教師肯定了同學(xué)的回答,并作板書.)
由于判斷有正確與錯(cuò)誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.
(教師利用投影片,和學(xué)生討論以下問題.)
例1 判斷以下各語句是不是命題,若是,判斷其真假:
命題一定要對(duì)一件事情作出判斷,(3)、(4)沒有對(duì)一件事情作出判斷,所以它們不是命題.
初中所學(xué)的命題概念涉及邏輯知識(shí),我們今天開始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡(jiǎn)易邏輯的知識(shí).
2.講授新課
(片刻后請(qǐng)同學(xué)舉手回答,一共講了四個(gè)問題.師生一道歸納如下.)
(1)什么叫做命題?
可以判斷真假的語句叫做命題.
判斷一個(gè)語句是不是命題,關(guān)鍵看這語句有沒有對(duì)一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如 中含有變量 ,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).
(2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.
“或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式.
對(duì)“或”的理解,可聯(lián)想到集合中“并集”的概念. 中的“或”,它是指“ ”、“ ”中至少一個(gè)是成立的,即 且 ;也可以 且 ;也可以 且 .這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能.
對(duì)“且”的理解,可聯(lián)想到集合中“交集”的概念. 中的“且”,是指“ ”、“ 這兩個(gè)條件都要滿足的意思.
對(duì)“非”的理解,可聯(lián)想到集合中的“補(bǔ)集”概念,若命題 對(duì)應(yīng)于集合 ,則命題非 就對(duì)應(yīng)著集合 在全集 中的補(bǔ)集 .
命題可分為簡(jiǎn)單命題和復(fù)合命題.
不含邏輯聯(lián)結(jié)詞的命題叫做簡(jiǎn)單命題.簡(jiǎn)單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.
由簡(jiǎn)單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡(jiǎn)單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.
(4)命題的表示:用 , , , ,……來表示.
(教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對(duì)復(fù)合命題的概念作出分析和展開.)
我們接觸的復(fù)合命題一般有“ 或 ”、“ 且 ”、“非 ”、“若 則 ”等形式.
給出一個(gè)含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說出構(gòu)成它的簡(jiǎn)單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個(gè)簡(jiǎn)單命題,寫出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.
對(duì)于給出“若 則 ”形式的復(fù)合命題,應(yīng)能找到條件 和結(jié)論 .
在判斷一個(gè)命題是簡(jiǎn)單命題還是復(fù)合命題時(shí),不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無“或”,但它們都是復(fù)合命題.
3.鞏固新課
例2 判斷下列命題,哪些是簡(jiǎn)單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡(jiǎn)單命題.
(1) ;
(2)0.5非整數(shù);
(3)內(nèi)錯(cuò)角相等,兩直線平行;
(4)菱形的對(duì)角線互相垂直且平分;
(5)平行線不相交;
(6)若 ,則 .
(讓學(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對(duì)“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)
例3 寫出下表中各給定語的否定語(用課件打出來).
若給定語為
等于
大于
是
都是
至多有一個(gè)
至少有一個(gè)
至多有個(gè)
其否定語分別為
分析:“等于”的否定語是“不等于”;
“大于”的否定語是“小于或者等于”;
“是”的否定語是“不是”;
“都是”的否定語是“不都是”;
“至多有一個(gè)”的否定語是“至少有兩個(gè)”;
“至少有一個(gè)”的否定語是“一個(gè)都沒有”;
“至多有 個(gè)”的否定語是“至少有 個(gè)”.
(如果時(shí)間寬裕,可讓學(xué)生討論后得出結(jié)論.)
置疑:“或”、“且”的否定是什么?(視學(xué)生的情況、課堂時(shí)間作適當(dāng)?shù)谋嫖雠c展開.)
4.課堂練習(xí):第26頁練習(xí)1
5.課外作業(yè):第29頁習(xí)題1.6
成人高中數(shù)學(xué)教案篇五
了解雙曲線的定義,幾何圖形和標(biāo)準(zhǔn)方程,知道它的簡(jiǎn)單性質(zhì)。
漸近線方程是,離心率,若點(diǎn)是雙曲線上的點(diǎn),則,。
2、又曲線的左支上一點(diǎn)到左焦點(diǎn)的距離是7,則這點(diǎn)到雙曲線的右焦點(diǎn)的距離是
3、經(jīng)過兩點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程是。
4、雙曲線的漸近線方程是,則該雙曲線的離心率等于。
5、與雙曲線有公共的漸近線,且經(jīng)過點(diǎn)的雙曲線的方程為
1、雙曲線的離心率等于,且與橢圓有公共焦點(diǎn),求該雙曲線的方程。
2、已知橢圓具有性質(zhì):若是橢圓上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)是橢圓上任意一點(diǎn),當(dāng)直線的斜率都存在,并記為時(shí),那么之積是與點(diǎn)位置無關(guān)的定值,試對(duì)雙曲線寫出具有類似特性的性質(zhì),并加以證明。
3、設(shè)雙曲線的半焦距為,直線過兩點(diǎn),已知原點(diǎn)到直線的距離為,求雙曲線的離心率。
1、雙曲線上一點(diǎn)到一個(gè)焦點(diǎn)的距離為,則它到另一個(gè)焦點(diǎn)的距離為。
2、與雙曲線有共同的漸近線,且經(jīng)過點(diǎn)的雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離是。
3、若雙曲線上一點(diǎn)到它的右焦點(diǎn)的距離是,則點(diǎn)到軸的距離是
4、過雙曲線的左焦點(diǎn)的直線交雙曲線于兩點(diǎn),若。則這樣的'直線一共有條。
1、已知雙曲線的焦點(diǎn)到漸近線的距離是其頂點(diǎn)到漸近線距離的2倍,則該雙曲線的離心率
2、已知雙曲線的焦點(diǎn)為,點(diǎn)在雙曲線上,且,則點(diǎn)到軸的距離為。
3、雙曲線的焦距為
4、已知雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離為,則
5、設(shè)是等腰三角形,,則以為焦點(diǎn)且過點(diǎn)的雙曲線的離心率為。
成人高中數(shù)學(xué)教案篇六
三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教b版)數(shù)學(xué)必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時(shí),教學(xué)內(nèi)容是公式(三)。教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法。
通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。因此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式。
借助單位圓探究誘導(dǎo)公式。
能正確運(yùn)用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角三角函數(shù)。
誘導(dǎo)公式(三)的推導(dǎo)及應(yīng)用。
誘導(dǎo)公式的應(yīng)用。
多媒體。
1. 誘導(dǎo)公式(一)(二)。
2. 角 (終邊在一條直線上)
3. 思考:下列一組角有什么特征?( )能否用式子來表示?
已知 由
可知
而 (課件演示,學(xué)生發(fā)現(xiàn))
所以
于是可得: (三)
設(shè)計(jì)意圖:結(jié)合幾何畫板的演示利用同一點(diǎn)的坐標(biāo)變換,導(dǎo)出公式。
由公式(一)(三)可以看出,角 角 相等。即:
.
公式(一)(二)(三)都叫誘導(dǎo)公式。利用誘導(dǎo)公式可以求三角函數(shù)式的值或化簡(jiǎn)三角函數(shù)式。
設(shè)計(jì)意圖:結(jié)合學(xué)過的公式(一)(二),發(fā)現(xiàn)特點(diǎn),總結(jié)公式。
1. 練習(xí)
(1)
設(shè)計(jì)意圖:利用公式解決問題,發(fā)現(xiàn)新問題,小組研究討論,得到新公式。
(學(xué)生板演,老師點(diǎn)評(píng),用彩色粉筆強(qiáng)調(diào)重點(diǎn),引導(dǎo)學(xué)生總結(jié)公式。)
例3:求下列各三角函數(shù)值:
(1)
(2)
(3)
(4)
設(shè)計(jì)意圖:利用公式解決問題。
練習(xí):
(1)
(2) (學(xué)生板演,師生點(diǎn)評(píng))
設(shè)計(jì)意圖:觀察公式特點(diǎn),選擇公式解決問題。
四.課堂小結(jié):將任意角三角函數(shù)轉(zhuǎn)化為銳角三角函數(shù),體現(xiàn)轉(zhuǎn)化化歸,數(shù)形結(jié)合思想的應(yīng)用,培養(yǎng)了學(xué)生分析問題、解決問題的能力,熟練應(yīng)用解決問題。
很榮幸大家來聽我的課,通過這課,我學(xué)習(xí)到如下的東西:
1.要認(rèn)真的研讀新課標(biāo),對(duì)教學(xué)的目標(biāo),重難點(diǎn)把握要到位
2.注意板書設(shè)計(jì),注重細(xì)節(jié)的東西,語速需要改正
3.進(jìn)一步的學(xué)習(xí)網(wǎng)頁制作,讓你的網(wǎng)頁更加的完善,學(xué)生更容易操作
5.上課的生動(dòng)化,形象化需要加強(qiáng)
1.評(píng)議者:網(wǎng)絡(luò)輔助教學(xué),起到了很好的效果;教態(tài)大方,作為新教師,開設(shè)校際課,勇氣可嘉!建議:感覺到老師有點(diǎn)緊張,其實(shí)可以放開點(diǎn)的,相信效果會(huì)更好的!重點(diǎn)不夠清晰,有引導(dǎo)數(shù)學(xué)時(shí),最好值有個(gè)側(cè)重點(diǎn);網(wǎng)絡(luò)設(shè)計(jì)上,網(wǎng)頁上公開的推導(dǎo)公式為上,留有更大的空間讓學(xué)生來思考。
2.評(píng)議者:網(wǎng)絡(luò)教學(xué)效果良好,給學(xué)生自主思考,學(xué)習(xí)的空間發(fā)揮,教學(xué)設(shè)計(jì)得好;建議:課堂講課聲音,語調(diào)可以更有節(jié)奏感一些,抑揚(yáng)頓挫應(yīng)注意課堂例題練習(xí)可以多兩題。
3.評(píng)議者:學(xué)科網(wǎng)絡(luò)平臺(tái)的使用;建議:應(yīng)重視引導(dǎo)學(xué)生將一些唾手可得的有用結(jié)論總結(jié)出來,并形成自我的經(jīng)驗(yàn)。
4.評(píng)議者:引導(dǎo)學(xué)生通過網(wǎng)絡(luò)進(jìn)行探究。
建議:課件制作在線測(cè)評(píng)部分,建議不能重復(fù)選擇,應(yīng)全部做完后,顯示結(jié)果,再重復(fù)測(cè)試;多提問學(xué)生。
( 1)給學(xué)生思考的時(shí)間較長(zhǎng),語調(diào)相對(duì)平緩,總結(jié)時(shí),給學(xué)生一些激勵(lì)的語言更好
( 2)這樣子的教學(xué)可以提高上課效率,讓學(xué)生更多的時(shí)間思考
( 4)給學(xué)生答案,這個(gè)網(wǎng)頁要進(jìn)一步的修正,答案能否不要一點(diǎn)就出來
( 5)1.板書設(shè)計(jì)要進(jìn)一步的加強(qiáng),2.語速相對(duì)是比較快的3.練習(xí)量比較少
( 6)讓學(xué)生多探究,課堂會(huì)更熱鬧
( 7)注意引入的過程要帶有目的,帶著問題來教學(xué),學(xué)生帶著問題來學(xué)習(xí)
( 8)教學(xué)模式相對(duì)簡(jiǎn)單重復(fù)
( 9)思路較為清晰,規(guī)范化的推理
成人高中數(shù)學(xué)教案篇七
教學(xué)內(nèi)容:
整十?dāng)?shù)加一位數(shù)及相應(yīng)的減法
教學(xué)目標(biāo):
1、讓學(xué)生經(jīng)歷兩位數(shù)加、減一位數(shù)的口算方法的探索過程,能比較熟練的進(jìn)行口算。并了解加、減發(fā)算式中各部分的名稱。
2、在根據(jù)數(shù)的組成探索口算方法的過程中,體會(huì)知識(shí)間的內(nèi)在聯(lián)系,發(fā)展思維能力和口算能力。
3、培養(yǎng)用數(shù)學(xué)的觀念看周圍的事物的意識(shí),培養(yǎng)同學(xué)之間的相互合作、交流的態(tài)度。
教學(xué)重難點(diǎn):
兩位數(shù)加、減一位數(shù)的口算方法
教學(xué)準(zhǔn)備:
課件
教學(xué)過程:
2個(gè)十和5個(gè)一合起來是(),8個(gè)十和4個(gè)一合起來是()。95里面是由()個(gè)十和()個(gè)一組成。81里面有()個(gè)十和()個(gè)一。
1、出示32頁情景圖。
2、提問:你能從圖中獲得哪些數(shù)學(xué)信息?能提出一個(gè)數(shù)學(xué)問題嗎?
學(xué)生回答:梳理問題
(1)一共有多少個(gè)桃?
(2)一共有34個(gè)桃,去掉框里的30個(gè),還剩多少個(gè)桃?
3、怎樣列式?
(1)先想一想。
(2)小組交流。
小組內(nèi)交流自己的算法。
(3)指名小組匯報(bào)。
結(jié)合學(xué)生回答小結(jié):根據(jù)看圖,數(shù)出來的;用小棒擺出來的;根據(jù)數(shù)的組成來思考的。34+4就是把3個(gè)十和4個(gè)一合起來,是34;34-30就是從34里去掉3個(gè)十,還剩4個(gè)一,是4。
4、解答“試一試”。
提問:4+30等于多少,你又可以怎樣算?
(1)先想一想。
(2)小組交流。
小組內(nèi)交流自己的算法。
(3)指名小組匯報(bào)。
4個(gè)一和3個(gè)十和起來是34;因?yàn)?0+4=34,所以4+30=34。
談話:“34-4”你會(huì)算嗎?填在書上,并輕聲地說說你是怎樣想的。
指名回答,結(jié)合學(xué)生回答適當(dāng)補(bǔ)充。
5、介紹算式中各部分的名稱。
(1)介紹加法算式中各部分的名稱。
談話:每個(gè)小朋友都有自己的名子,在每一個(gè)算式中每個(gè)部分也都有各自的名子。在加法算式30+4=34中,相加的兩個(gè)數(shù)都叫做加數(shù)。兩個(gè)加數(shù)相加的結(jié)果叫做和。
(2)介紹減法算式各部分的名稱。
(3)指名說出算式4+30=34,34-4=30中各部分的名稱。
1、“想想做做”第1題。
(1)出示圖,讓學(xué)生說圖意。
(2)根據(jù)圖意,列出四個(gè)算式。
(3)說說每道算式表達(dá)什么意思。
2、“想想做做”第2題。
先獨(dú)立完成,再說說怎樣想的?
提問:根據(jù)60+3=63你能想到其他三個(gè)算式嗎?
3、“想想做做”第3題。
先獨(dú)立完成,再說說是怎樣想的,集體核對(duì)結(jié)果。
4、“想想做做”第4題。
根據(jù)表中第一行的名稱說說左表用什么方法計(jì)算,右表用什么方法計(jì)算。
5、“想想做做”第5題。
先了解“相鄰數(shù)”是什么意思,再寫數(shù)交流。
6、“想想做做”第6、7題。
先說說每題中的.已知條件和要求的問題。
再自己獨(dú)立完成。
同桌交流并說說是怎樣想的。
成人高中數(shù)學(xué)教案篇八
數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識(shí)和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學(xué)問題——嘗試解決問題——驗(yàn)證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。
(1)、基礎(chǔ)知識(shí)目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導(dǎo)公式;
1、教學(xué)重點(diǎn)
理解并掌握誘導(dǎo)公式、
2、教學(xué)難點(diǎn)
正確運(yùn)用誘導(dǎo)公式,求三角函數(shù)值,化簡(jiǎn)三角函數(shù)式、
1、教法
2、學(xué)法
3、預(yù)期效果
(一)創(chuàng)設(shè)情景
1、復(fù)習(xí)銳角300,450,600的三角函數(shù)值;
2、復(fù)習(xí)任意角的三角函數(shù)定義;
3、問題:由,你能否知道sin2100的值嗎?引如新課、
成人高中數(shù)學(xué)教案篇九
三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教b版)數(shù)學(xué)必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時(shí),教學(xué)內(nèi)容是公式(三)。教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法。
通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。因此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式。
借助單位圓探究誘導(dǎo)公式。
能正確運(yùn)用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角三角函數(shù)。
誘導(dǎo)公式(三)的推導(dǎo)及應(yīng)用。
誘導(dǎo)公式的應(yīng)用。
多媒體。
1.誘導(dǎo)公式(一)(二)。
2.角(終邊在一條直線上)
3.思考:下列一組角有什么特征?()能否用式子來表示?
已知由
可知
而(課件演示,學(xué)生發(fā)現(xiàn))
所以
于是可得:(三)
設(shè)計(jì)意圖:結(jié)合幾何畫板的演示利用同一點(diǎn)的坐標(biāo)變換,導(dǎo)出公式。
由公式(一)(三)可以看出,角角相等。即:
.
公式(一)(二)(三)都叫誘導(dǎo)公式。利用誘導(dǎo)公式可以求三角函數(shù)式的值或化簡(jiǎn)三角函數(shù)式。
設(shè)計(jì)意圖:結(jié)合學(xué)過的公式(一)(二),發(fā)現(xiàn)特點(diǎn),總結(jié)公式。
1.練習(xí)
(1)
設(shè)計(jì)意圖:利用公式解決問題,發(fā)現(xiàn)新問題,小組研究討論,得到新公式。
(學(xué)生板演,老師點(diǎn)評(píng),用彩色粉筆強(qiáng)調(diào)重點(diǎn),引導(dǎo)學(xué)生總結(jié)公式。)
例3:求下列各三角函數(shù)值:
(1)
(2)
(3)
(4)
設(shè)計(jì)意圖:利用公式解決問題。
練習(xí):
(1)
(2)(學(xué)生板演,師生點(diǎn)評(píng))
設(shè)計(jì)意圖:觀察公式特點(diǎn),選擇公式解決問題。
四.課堂小結(jié):將任意角三角函數(shù)轉(zhuǎn)化為銳角三角函數(shù),體現(xiàn)轉(zhuǎn)化化歸,數(shù)形結(jié)合思想的應(yīng)用,培養(yǎng)了學(xué)生分析問題、解決問題的能力,熟練應(yīng)用解決問題。
很榮幸大家來聽我的課,通過這課,我學(xué)習(xí)到如下的東西:
1.要認(rèn)真的研讀新課標(biāo),對(duì)教學(xué)的目標(biāo),重難點(diǎn)把握要到位
2.注意板書設(shè)計(jì),注重細(xì)節(jié)的東西,語速需要改正
3.進(jìn)一步的學(xué)習(xí)網(wǎng)頁制作,讓你的網(wǎng)頁更加的完善,學(xué)生更容易操作
5.上課的生動(dòng)化,形象化需要加強(qiáng)
1.評(píng)議者:網(wǎng)絡(luò)輔助教學(xué),起到了很好的效果;教態(tài)大方,作為新教師,開設(shè)校際課,勇氣可嘉!建議:感覺到老師有點(diǎn)緊張,其實(shí)可以放開點(diǎn)的`,相信效果會(huì)更好的!重點(diǎn)不夠清晰,有引導(dǎo)數(shù)學(xué)時(shí),最好值有個(gè)側(cè)重點(diǎn);網(wǎng)絡(luò)設(shè)計(jì)上,網(wǎng)頁上公開的推導(dǎo)公式為上,留有更大的空間讓學(xué)生來思考。
2.評(píng)議者:網(wǎng)絡(luò)教學(xué)效果良好,給學(xué)生自主思考,學(xué)習(xí)的空間發(fā)揮,教學(xué)設(shè)計(jì)得好;建議:課堂講課聲音,語調(diào)可以更有節(jié)奏感一些,抑揚(yáng)頓挫應(yīng)注意課堂例題練習(xí)可以多兩題。
3.評(píng)議者:學(xué)科網(wǎng)絡(luò)平臺(tái)的使用;建議:應(yīng)重視引導(dǎo)學(xué)生將一些唾手可得的有用結(jié)論總結(jié)出來,并形成自我的經(jīng)驗(yàn)。
4.評(píng)議者:引導(dǎo)學(xué)生通過網(wǎng)絡(luò)進(jìn)行探究。
建議:課件制作在線測(cè)評(píng)部分,建議不能重復(fù)選擇,應(yīng)全部做完后,顯示結(jié)果,再重復(fù)測(cè)試;多提問學(xué)生。
(1)給學(xué)生思考的時(shí)間較長(zhǎng),語調(diào)相對(duì)平緩,總結(jié)時(shí),給學(xué)生一些激勵(lì)的語言更好
(2)這樣子的教學(xué)可以提高上課效率,讓學(xué)生更多的時(shí)間思考
(4)給學(xué)生答案,這個(gè)網(wǎng)頁要進(jìn)一步的修正,答案能否不要一點(diǎn)就出來
(5)1.板書設(shè)計(jì)要進(jìn)一步的加強(qiáng),2.語速相對(duì)是比較快的3.練習(xí)量比較少
(6)讓學(xué)生多探究,課堂會(huì)更熱鬧
(7)注意引入的過程要帶有目的,帶著問題來教學(xué),學(xué)生帶著問題來學(xué)習(xí)
(8)教學(xué)模式相對(duì)簡(jiǎn)單重復(fù)
(9)思路較為清晰,規(guī)范化的推理
成人高中數(shù)學(xué)教案篇十
(1)掌握斜二測(cè)畫法畫水平設(shè)置的平面圖形的直觀圖。
(2)采用對(duì)比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點(diǎn)。
2、過程與方法。
學(xué)生通過觀察和類比,利用斜二測(cè)畫法畫出空間幾何體的直觀圖。
3、情感態(tài)度與價(jià)值觀。
(1)提高空間想象力與直觀感受。
(2)體會(huì)對(duì)比在學(xué)習(xí)中的作用。
(3)感受幾何作圖在生產(chǎn)活動(dòng)中的應(yīng)用。
重點(diǎn)、難點(diǎn):用斜二測(cè)畫法畫空間幾何值的直觀圖。
1、學(xué)法:學(xué)生通過作圖感受圖形直觀感,并自然采用斜二測(cè)畫法畫空間幾何體的過程。
2、教學(xué)用具:三角板、圓規(guī)。
(一)創(chuàng)設(shè)情景,揭示課題。
1、我們都學(xué)過畫畫,這節(jié)課我們畫一物體:圓柱。
把實(shí)物圓柱放在講臺(tái)上讓學(xué)生畫。
2、學(xué)生畫完后展示自己的結(jié)果并與同學(xué)交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。
(二)研探新知。
1、例1,用斜二測(cè)畫法畫水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測(cè)畫法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見解,教師及時(shí)給予點(diǎn)評(píng)。
畫水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫出多邊形來,因此平面多邊形水平放置時(shí),直觀圖的畫法可以歸結(jié)為確定點(diǎn)的位置的畫法。強(qiáng)調(diào)斜二測(cè)畫法的步驟。
練習(xí)反饋。
根據(jù)斜二測(cè)畫法,畫出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。
2、例2,用斜二測(cè)畫法畫水平放置的圓的直觀圖。
教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的`直觀圖,也是要先畫出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。
教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書畫法。
3、探求空間幾何體的直觀圖的畫法。
(1)例3,用斜二測(cè)畫法畫長(zhǎng)、寬、高分別是4cm、3cm、2cm的長(zhǎng)方體abcd-a’b’c’d’的直觀圖。
教師引導(dǎo)學(xué)生完成,要注意對(duì)每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫好每一步,不能敷衍了事。
(2)投影出示幾何體的三視圖、課本p15圖1.2-9,請(qǐng)說出三視圖表示的幾何體?并用斜二測(cè)畫法畫出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握?qǐng)D形尺寸大小之間的關(guān)系。
4、平行投影與中心投影。
投影出示課本p17圖1.2-12,讓學(xué)生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點(diǎn)。
5、鞏固練習(xí),課本p16練習(xí)1(1),2,3,4。
三、歸納整理。
學(xué)生回顧斜二測(cè)畫法的關(guān)鍵與步驟。
四、作業(yè)。
1、書畫作業(yè),課本p17練習(xí)第5題。
成人高中數(shù)學(xué)教案篇十一
(1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化
(2)理解直線與二元一次方程的關(guān)系及其證明
:計(jì)算機(jī)
:?jiǎn)l(fā)引導(dǎo)法,討論法
下面給出教學(xué)實(shí)施過程設(shè)計(jì)的簡(jiǎn)要思路:
(一)引入的設(shè)計(jì)
前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問題:
問:說出過點(diǎn)(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次。
肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個(gè)問題:
問:求出過點(diǎn),的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是(或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次。
肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次”。
啟發(fā):你在想什么(或你想到了什么)?誰來談?wù)劊扛餍〗M可以討論討論。
學(xué)生紛紛談出自己的想法,教師邊評(píng)價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問題:
【問題1】“任意直線的方程都是二元一次方程嗎?”
(二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計(jì)
這是本節(jié)課要解決的第一個(gè)問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路。
學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo).
經(jīng)過一定時(shí)間的研究,教師組織開展集體討論.首先讓學(xué)生陳述解決思路或解決方案:
思路一:…
思路二:…
教師組織評(píng)價(jià),確定最優(yōu)方案(其它待課下研究)如下:
按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在。
當(dāng)存在時(shí),直線的截距也一定存在,直線的方程可表示為,它是二元一次方程。
當(dāng)不存在時(shí),直線的方程可表示為形式的方程,它是二元一次方程嗎?
學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合理性:
平面直角坐標(biāo)系中直線上點(diǎn)的坐標(biāo)形式,與其它直線上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。
綜合兩種情況,我們得出如下結(jié)論:
在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的關(guān)于、的二元一次方程。
至此,我們的問題1就解決了.簡(jiǎn)單點(diǎn)說就是:直線方程都是二元一次方程.而且這個(gè)方程一定可以表示成或的形式,準(zhǔn)確地說應(yīng)該是“要么形如這樣,要么形如這樣的方程”。
同學(xué)們注意:這樣表達(dá)起來是不是很啰嗦,能不能有一個(gè)更好的表達(dá)?
學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式。
這樣上邊的結(jié)論可以表述如下:
在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的形如(其中、不同時(shí)為0)的二元一次方程。
啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關(guān)的問題呢?
【問題2】任何形如(其中、不同時(shí)為0)的二元一次方程都表示一條直線嗎?
師生共同討論,評(píng)價(jià)不同思路,達(dá)成共識(shí):
(1)當(dāng)時(shí),方程可化為
這是表示斜率為、在軸上的截距為的直線。
(2)當(dāng)時(shí),由于、不同時(shí)為0,必有,方程可化為
這表示一條與軸垂直的直線。
因此,得到結(jié)論:
在平面直角坐標(biāo)系中,任何形如(其中不同時(shí)為0)的二元一次方程都表示一條直線。
為方便,我們把(其中不同時(shí)為0)稱作直線方程的一般式是合理。
【動(dòng)畫演示】
演示“直線各參數(shù)”文件,體會(huì)任何二元一次方程都表示一條直線。
(三)練習(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計(jì)
略
成人高中數(shù)學(xué)教案篇十二
掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
向量的性質(zhì)及相關(guān)知識(shí)的綜合應(yīng)用。
(一)主要知識(shí):
1、掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的`有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
(二)例題分析:略。
1、進(jìn)一步熟練有關(guān)向量的運(yùn)算和證明;能運(yùn)用解三角形的知識(shí)解決有關(guān)應(yīng)用問題,
2、滲透數(shù)學(xué)建模的思想,切實(shí)培養(yǎng)分析和解決問題的能力。
成人高中數(shù)學(xué)教案篇十三
【知識(shí)與技能】。
在掌握?qǐng)A的標(biāo)準(zhǔn)方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+dx+ey+f=0表示圓的條件。
【過程與方法】。
通過對(duì)方程x+y+dx+ey+f=0表示圓的的條件的探究,學(xué)生探索發(fā)現(xiàn)及分析解決問題的實(shí)際能力得到提高。
【情感態(tài)度與價(jià)值觀】。
滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵(lì)學(xué)生創(chuàng)新,勇于探索。
【重點(diǎn)】。
掌握?qǐng)A的一般方程,以及用待定系數(shù)法求圓的一般方程。
【難點(diǎn)】。
二元二次方程與圓的一般方程及標(biāo)準(zhǔn)圓方程的'關(guān)系。
三、教學(xué)過程。
(一)復(fù)習(xí)舊知,引出課題。
1、復(fù)習(xí)圓的標(biāo)準(zhǔn)方程,圓心、半徑。
2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?
成人高中數(shù)學(xué)教案篇十四
1.理解流程圖的選擇結(jié)構(gòu)這種基本邏輯結(jié)構(gòu).
2.能識(shí)別和理解簡(jiǎn)單的框圖的功能.
3.能運(yùn)用三種基本邏輯結(jié)構(gòu)設(shè)計(jì)流程圖以解決簡(jiǎn)單的問題.
一、問題情境
1.情境:
某鐵路客運(yùn)部門規(guī)定甲、乙兩地之間旅客托運(yùn)行李的費(fèi)用為
其中(單位:)為行李的重量.
試給出計(jì)算費(fèi)用(單位:元)的.一個(gè)算法,并畫出流程圖.
二、學(xué)生活動(dòng)
學(xué)生討論,教師引導(dǎo)學(xué)生進(jìn)行表達(dá).
解算法為:
輸入行李的重量;
如果,那么,
否則;
輸出行李的重量和運(yùn)費(fèi).
上述算法可以用流程圖表示為:
教師邊講解邊畫出第10頁圖1-2-6.
在上述計(jì)費(fèi)過程中,第二步進(jìn)行了判斷.
三、建構(gòu)數(shù)學(xué)
1.選擇結(jié)構(gòu)的概念:
先根據(jù)條件作出判斷,再?zèng)Q定執(zhí)行哪一種
操作的結(jié)構(gòu)稱為選擇結(jié)構(gòu).
2.說明:(1)有些問題需要按給定的條件進(jìn)行分析、比較和判斷,并按判
斷的不同情況進(jìn)行不同的操作,這類問題的實(shí)現(xiàn)就要用到選擇結(jié)構(gòu)的設(shè)計(jì);
(3)在上圖的選擇結(jié)構(gòu)中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)
行,但或兩個(gè)框中可以有一個(gè)是空的,即不執(zhí)行任何操作;
(4)流程圖圖框的形狀要規(guī)范,判斷框必須畫成菱形,它有一個(gè)進(jìn)入點(diǎn)和
兩個(gè)退出點(diǎn).
3.思考:教材第7頁圖所示的算法中,哪一步進(jìn)行了判斷?
【本文地址:http://www.mlvmservice.com/zuowen/9113612.html】