數(shù)學建模心得體會論文(優(yōu)秀23篇)

格式:DOC 上傳日期:2023-11-07 15:25:12
數(shù)學建模心得體會論文(優(yōu)秀23篇)
時間:2023-11-07 15:25:12     小編:琴心月

心得體會是我們在學習或者工作生活中對經(jīng)歷和感悟的總結(jié)和歸納,有助于我們進一步提高和成長。寫心得體會時,我們可以把握邏輯關(guān)系,合理組織文章的結(jié)構(gòu)和段落。歡迎閱讀小編為大家整理的一些精選心得體會范文,希望對大家有所啟發(fā)。

數(shù)學建模心得體會論文篇一

讀數(shù)學建模課程是我大學三年級的必修課程,這門課程讓我感受到了數(shù)學的實用性和嚴謹性,也讓我深刻理解到數(shù)學在現(xiàn)實生活中的重要性。在這門課程中,我學習了數(shù)學模型的構(gòu)建、求解和分析方法,我認為,這些知識對于我以后的學習和工作都有很大的幫助。

第二段:探究。

在學習數(shù)學建模的過程中,我發(fā)現(xiàn),一個好的數(shù)學模型不僅要符合現(xiàn)實,還要有嚴謹?shù)臄?shù)學證明。因此,我學習了多種數(shù)學知識,包括微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計等,這些知識讓我能夠更好地構(gòu)建數(shù)學模型,同時也能夠更好地驗證和分析結(jié)果。

第三段:發(fā)揮。

在實踐建模的過程中,我發(fā)現(xiàn),一個好的數(shù)學模型不僅需要有合適的數(shù)學公式,還需要有合理的數(shù)據(jù)支持。因此,我學習了如何獲取和分析數(shù)據(jù),并學會了使用MATLAB等計算工具對數(shù)據(jù)進行分析和可視化。這些工具不僅方便了我對數(shù)據(jù)的理解,還能夠幫助我更好地展示數(shù)學模型的結(jié)果。

第四段:總結(jié)。

通過學習數(shù)學建模,我發(fā)現(xiàn)成功的模型需要具備以下特點:1、模型要符合現(xiàn)實;2、模型的數(shù)學表達式要嚴謹;3、模型需要有合理的數(shù)據(jù)支持;4、模型的結(jié)果需要有實際意義。這些特點相互為依存,缺一不可。同時,我也認識到,在數(shù)學建模中,靈活性和創(chuàng)新性同樣重要,只有掌握了嚴謹?shù)臄?shù)學知識,才能更好地發(fā)揮個人思維的特點,構(gòu)建出更為優(yōu)秀的數(shù)學模型。

第五段:啟示。

學習數(shù)學建模的過程中,我不僅學到了嚴謹?shù)臄?shù)學知識,還學會了如何分析和解決實際問題。在以后的學習和工作中,我將不斷運用這些知識和技能,以更好地解決實際問題,為社會做出自己的貢獻。同時,我也希望更多的人能夠認識到數(shù)學的實用性和重要性,從而更好地學習和應用數(shù)學。

數(shù)學建模心得體會論文篇二

讀數(shù)學建模是一項需要較高能力的學問,需要具備豐富的數(shù)學知識和邏輯思維能力。在我學習的過程中,我深刻認識到了數(shù)學建模的重要性以及在實際工作和生活中的應用價值。以下是我的讀數(shù)學建模的心得體會。

作為一個計算機科班出身的學生,我很早就開始了接觸數(shù)學建模。但在一開始的時候,我并沒有真正理解什么是數(shù)學建模。直到在大學的選修課中系統(tǒng)地學習了一門《數(shù)學建模及應用》課程后,我才對數(shù)學建模有了更深入的認知和理解。

第二段:理解“建?!?/p>

“建?!钡暮诵囊馑际菍碗s的實際問題轉(zhuǎn)化為數(shù)學模型,然后用數(shù)學語言描述該問題并進行數(shù)學分析。在實際的工作和生活中,我們要面對、研究的諸如市場營銷、物流運輸、氣象環(huán)境、圖像視頻等不同領域的問題都可以通過“建模”的方式進行求解。

第三段:掌握數(shù)學和編程技能。

數(shù)學建模需要掌握扎實的數(shù)學功底,同時也要在編程技能上有所涉獵。這是因為數(shù)學建模過程中需要運用到很多數(shù)據(jù)分類和篩選、數(shù)據(jù)可視化、計算機程序的實現(xiàn)等技能。只有將數(shù)學和編程技能完美結(jié)合,才能為數(shù)學建模提供最有利的條件。

第四段:關(guān)注實際問題。

在理論知識的積累與技術(shù)能力的提升之外,數(shù)學建模中還需要關(guān)注實際問題。我們不能將理論和技術(shù)與實際問題劃分開來??尚械摹敖!眴栴}是源于實際問題,因此,在發(fā)現(xiàn)實際問題的基礎上,我們才能夠有更清晰的目標和向?qū)崿F(xiàn)目標的循序漸進的步驟。

第五段:學習和交流。

數(shù)學建模需要廣泛學習和交流。我們要閱讀相關(guān)領域的探討和論文,獲取更多的行業(yè)知識。同時,我們還要積極參加學術(shù)會議和交流活動,與其他學者和專家協(xié)同工作和深度探討,交換經(jīng)驗和知識,并不斷提升自己的建模能力。

在讀數(shù)學建模的過程中,我也留下了許多經(jīng)典案例和優(yōu)秀論文,堅持探索科學問題的本質(zhì),發(fā)掘應用數(shù)學的潛力。數(shù)學建模是一個學習與實踐并行、動態(tài)更新的過程,它將不斷影響我們思考問題和解決問題的方式,讓我們更好地懂得數(shù)學對人類社會發(fā)展的重要性。

數(shù)學建模心得體會論文篇三

計算機學院、軟件學院級學生吳瑞紅(保送為我院研究生)。

大一時聽學長們講數(shù)學建模競賽,對他們有一種敬佩,對數(shù)學建模競賽有一種渴望。這種渴望不是一定要拿個什么獎項,而是想體驗一下這三天三夜的競賽,提高自身能力。意想不到的是,我們榮獲了全國一等獎。我們心里充滿驚喜的同時也充滿了感激。感謝老師和同學對我們悉心指導和鼓勵;感謝學院和學校給我們提供物質(zhì)和精神的幫助和支持。

一直以來,我們都認為我們是很平凡的一組。第一,我們都沒有深入學習過數(shù)學建模,短短的個把月的學習時間讓我們始終有點懷疑自己能否真正了解它。盡管,我們不是信心十足地開始了,但我們卻沒有放棄。我們堅持著從最基本的開始,一點點攻破。我們抱著能提高自己,學習知識的想法去對待這場競賽?;蛟S,正是我們這種平常心讓我們把自己發(fā)揮得淋漓盡致,才有了最后的結(jié)果。有心栽花花不開,無心插柳柳成蔭,這讓我們明白一個道理:遇事不可太急功近利,那樣可能會適得其反。

第二,我想說的是我們的團隊。我們其實僅僅是臨時組的一個隊,甚至我們之間有的幾乎沒說過幾句話,但這并不影響我們的合作。我們在一開始便進行了分工:選組長也是一個很重要的問題:他的作用就相當于計算機中的cpu,是全隊的核心,如果一個隊的leader不得力,往往影響一個隊的正常發(fā)揮。由于身為班長的我具備了一定組織、協(xié)調(diào)和較強的決策能力以及對matlab較濃厚的興趣,決定由我擔任小組組長并負責編程。我的隊友中有對數(shù)學比較感興趣的于是由她負責進行算法的分析,另外一個隊友負責論文。組長應該有較強的決策能力,在大家出現(xiàn)分歧時能果斷地拿出主意,當隊中有人信心動搖時(特別是第三天,人可能已經(jīng)心力交瘁了),組長應發(fā)揮其作用,讓整個隊伍重整信心,否則可能導致隊伍的前功盡棄。注意有人說,團隊需要磨合期,這是毋庸置疑的,但是如果你真的把自己當成其中的一員,努力融入其中,你會發(fā)現(xiàn)那原來是一件很簡單的事情。記得,你們是一個團隊,要相互支持,相互鼓勵,要有相容的胸襟,要有合作的意識,要時刻記得你們是榮辱與共的,不要只注重個人得失。在比賽時,一個人的思考是不全面的,大家要一起討論才有可能把問題搞清楚,因此無論做任何板塊,三個人要齊心才行,只靠一個人的力量,要在三天之內(nèi)寫出一篇高水平的文章幾乎是不可能的。

數(shù)學建模心得體會論文篇四

通過一個月的集訓,我受益匪淺。我進一步的認識到數(shù)學建模的實質(zhì)和對參賽隊員的要求。數(shù)學建模就是培養(yǎng)學生運用數(shù)學知識解決實際問題的能力。它要求參賽隊員有較強的創(chuàng)新精神,有較大的靈活性和隨機應變能力,要求參賽隊員之間有良好的團隊精神和相互協(xié)作意識。在一個月里,我們學了許多知識放方法,可以說數(shù)學建模需要的`知識我們都了解了一點,關(guān)鍵在于如何應用這些知識。這種即學即用的能力是我們以后學習、工作所必須的能力。在此我對建模是出現(xiàn)的一些現(xiàn)象發(fā)表一些看法。

隨著信息的高速化,我們很容易找到和建模有關(guān)的資料,這對我們理解題目意思和促發(fā)新思路、新想法是有幫助的。但是有的集訓小組或集訓隊員他們建模完全依靠找資料,建出來的模型就是幾本參考書的綜合,他們所用的方法完全是別人研究過的東西,連一點改進也沒有。如果這樣的話,數(shù)學建模就失去了意義。我始終堅持一個觀點:數(shù)學建模最重要的是創(chuàng)新。無論是你創(chuàng)造一種新方法還是創(chuàng)造性的運用一種方法,還是改進別人的方法都是很重要的。沒有創(chuàng)新,模型就失去了靈魂;沒有創(chuàng)新,模型就不是你的模型。

我們隊配合不是很理想。主要是有個隊員他總認為自己是正確的,別人找到的資料不如他好,別人提出的觀點、思想思想無論正確與否,他總是會反對一下。他總是十分注重小的方面,不從大局考慮。由于這些原因,我們建的模型總是不好。

數(shù)學建模心得體會論文篇五

數(shù)學建模作為一門綜合性學科,具有廣泛的應用領域和深遠的影響,對于提高解決實際問題的能力和培養(yǎng)創(chuàng)新思維具有重要意義。通過參與數(shù)學建模比賽和項目,我深刻地認識到數(shù)學建模的重要性,也積累了一些心得體會。下面我將結(jié)合個人經(jīng)歷,談談我在數(shù)學建模過程中的心得體會。

一、明確問題與方法。

在進行數(shù)學建模之前,首先要明確問題的面貌和要解決的目標,然后選擇適合的方法進行分析和求解。在這個過程中,我們要善于抓住問題的關(guān)鍵點,理清問題與已有知識的聯(lián)系,避免偏離主題和走入死胡同。同時,我們也要善于借鑒已有的數(shù)學工具和模型,不斷開拓創(chuàng)新。

在一次模擬城市交通擁堵的建模比賽中,我意識到對于這個復雜的問題,單純的數(shù)學模型是遠遠不夠的。所以,我結(jié)合地理信息系統(tǒng)(GIS)和傳感器技術(shù),將城市道路分隔成小區(qū)域,通過收集實時的交通數(shù)據(jù),建立起更為精確和實用的交通擁堵模型。這一方法不僅使得模型具有了更高的可靠性和準確度,也增加了我們對解決問題的信心。

二、合理假設與模型構(gòu)建。

在進行數(shù)學建模時,我們往往需要根據(jù)實際情況進行一些合理的假設,以簡化復雜的問題和推動建模的進程。但是,這些假設必須是合理和可行的,不能過于片面或離實際太遠。同時,在構(gòu)建模型時,我們也要盡量選用簡單而有力的數(shù)學工具,以便于計算和分析。

在解決一個涉及醫(yī)學影像分析的問題時,我們需要對醫(yī)學影像進行處理和分析,還要設計出一個能夠自動識別和分析影像的數(shù)學模型。我所參與的團隊深入了解醫(yī)學影像學,分析了不同的影像特征,并基于傳統(tǒng)的神經(jīng)網(wǎng)絡模型構(gòu)建了一個高效的醫(yī)學影像分析模型。在模型的構(gòu)建過程中,我們注意了計算和實施的可行性,將模型的復雜度降低到合理的范圍內(nèi),并采用了一些有效的算法來提高模型的精確性和準確度。

三、數(shù)據(jù)分析與結(jié)果驗證。

在數(shù)學建模中,數(shù)據(jù)的分析和結(jié)果的驗證是非常重要的環(huán)節(jié)。通過對數(shù)據(jù)的分析,我們可以揭示問題的本質(zhì)和規(guī)律,進而得出解決問題的方法和結(jié)論。而結(jié)果的驗證則是模型可靠性和精確性的檢驗,也是對我們解決問題的能力和方法的評判。

在一次銀行信用評估的建模過程中,我們基于大量的歷史交易數(shù)據(jù),通過建立一套信用評估模型,對客戶的信用情況進行分析和預測。在對模型進行驗證時,我們通過對部分客戶進行篩選和測試,對比模型預測的結(jié)果與實際情況,發(fā)現(xiàn)模型的準確度達到了90%以上。這使我們對模型的有效性和可靠性有了更加深刻的認識,并為進一步完善和推廣模型提供了依據(jù)。

四、團隊合作與學習。

數(shù)學建模不僅僅是一個人的事情,更是一個團隊的合作。通過和其他隊員的合作,我們可以相互學習和借鑒彼此的經(jīng)驗和思維模式,在解決實際問題的過程中形成協(xié)同效應。同時,團隊合作也是一個學習的過程,通過和隊友的交流和探討,我們可以不斷拓寬思維,并且從對方身上學到更多的知識和技能。

在一次研究森林生態(tài)系統(tǒng)的建模項目中,我和團隊成員們共同制定了研究方案和實驗設計,并分工協(xié)作。通過團隊的合作,我們不斷從實驗數(shù)據(jù)中總結(jié)經(jīng)驗,進行模型驗證和修正,并最終成功地建立了一個能夠模擬和預測森林生態(tài)系統(tǒng)變化的多元模型。這個成功的案例不僅使我們對數(shù)學建模有了更深入的認識,也讓我們領悟到團隊合作的重要性和價值。

五、不斷學習和總結(jié)。

在數(shù)學建模的過程中,我們要不斷學習和總結(jié),積累經(jīng)驗和提高能力。只有不斷的學習和實踐,我們才能夠更好地適應和解決不同領域的實際問題,并在數(shù)學建模的道路上不斷成長。

總的來說,參與數(shù)學建模是一次很有收獲和意義的經(jīng)歷。通過這次經(jīng)歷,我不僅提高了數(shù)學建模的能力和素養(yǎng),也深刻領悟到了科學研究的重要性和技術(shù)創(chuàng)新的意義。我相信,在未來的學習和工作中,我會更加努力地學習和實踐,用數(shù)學的力量為解決實際問題做出更大的貢獻。

數(shù)學建模心得體會論文篇六

一年一度的全國數(shù)學建模大賽在今年的x月x日上午8點拉開戰(zhàn)幕,各隊將在3天72小時內(nèi)對一個現(xiàn)實中的實際問題進行模型建立,求解和分析,確定題目后,我們隊三人分頭行動,一人去圖書館查閱資料,一人在網(wǎng)上搜索相關(guān)信息,一人建立模型,通過三人的努力,在前兩天中建立出兩個模型并編程求解,經(jīng)過艱苦的奮斗,終于在第三天完成了論文的寫作,在這三天里我感觸很深,現(xiàn)將心得體會寫出,希望與大家交流。

1.團隊精神:團隊精神是數(shù)學建模是否取得好成績的最重要的因素,一隊三個人要相互支持,相互鼓勵。切勿自己只管自己的一部分(數(shù)學好的只管建模,計算機好的只管編程,寫作好的只管論文寫作),很多時候,一個人的思考是不全面的,只有大家一起討論才有可能把問題搞清楚,因此無論做任何板塊,三個人要一起齊心才行,只靠一個人的力量,要在三天之內(nèi)寫出一篇高水平的文章幾乎是不可能的。

2.有影響力的leader:在比賽中,leader是很重要的,他的作用就相當與計算機中的cpu,是全隊的核心,如果一個隊的leader不得力,往往影響一個隊的正常發(fā)揮,就拿選題來說,有人想做a題,有人想做b題,如果爭論一天都未確定方案的話,可能就沒有足夠時間完成一篇論文了,又比如,當隊中有人信心動搖時(特別是第三天,人可能已經(jīng)心力交瘁了),leader應發(fā)揮其作用,讓整個隊伍重整信心,否則可能導致隊伍的前功盡棄。

3.合理的時間安排:做任何事情,合理的時間安排非常重要,建模也是一樣,事先要做好一個規(guī)劃,建模一共分十個板塊(摘要,問題提出,模型假設,問題分析,模型假設,模型建立,模型求解,結(jié)果分析,模型的評價與推廣,參考文獻,附錄)。你每天要做完哪幾個板塊事先要確定好,這樣做才會使自己游刃有余,保證在規(guī)定時間內(nèi)完成論文,以避免由于時間上的不妥,以致于最后無法完成論文。

4.正確的論文格式:論文屬于科學性的文章,它有嚴格的書寫格式規(guī)范,因此一篇好的論文一定要有正確的格式,就拿摘要來說吧,它要包括6要素(問題,方法,模型,算法,結(jié)論,特色),它是一篇論文的概括,摘要的好壞將決定你的論文是否吸引評委的目光,但聽閱卷老師說,這次有些論文的摘要里出現(xiàn)了大量的圖表和程序,這都是不符合論文格式的,這種論文也不會取得好成績,因此我們寫論文時要端正態(tài)度,注意書寫格式。

5.論文的寫作:我個人認為論文的寫作是至關(guān)重要的,其實大家最后的模型和結(jié)果都差不多,為什么有些隊可以送全國,有些隊可以拿省獎,而有些隊卻什么都拿不到,這關(guān)鍵在于論文的寫作上面。一篇好的論文首先讀上去便使人感到邏輯清晰,有條例性,能打動評委;其次,論文在語言上的表述也很重要,要注意用詞的準確性;另外,一篇好的論文應有閃光點,有自己的特色,有自己的想法和思考在里面,總之,論文寫作的好壞將直接影響到成績的優(yōu)劣。

6.算法的設計:算法的設計的好壞將直接影響運算速度的快慢,建議大家多用數(shù)學軟件(mathematice,matlab,maple,mathcad,lindo,lingo,sas等),這里提供十種數(shù)學建模常用算法,僅供參考:

(1)蒙特卡羅算法(該算法又稱隨機性模擬算法,是通過計算機仿真來解決問題的算法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法)。

(2)數(shù)據(jù)擬合、參數(shù)估計、插值等數(shù)據(jù)處理算法(比賽中通常會遇到大量的數(shù)據(jù)需要處理,而處理數(shù)據(jù)的關(guān)鍵就在于這些算法,通常使用matlab作為工具)。

(3)線性規(guī)劃、整數(shù)規(guī)劃、多元規(guī)劃、二次規(guī)劃等規(guī)劃類問題(建模競賽大多數(shù)問題屬于最優(yōu)化問題,很多時候這些問題可以用數(shù)學規(guī)劃算法來描述,通常使用lindo、lingo軟件實現(xiàn))。

(4)圖論算法(這類算法可以分為很多種,包括最短路、網(wǎng)絡流、二分圖等算法,涉及到圖論的問題可以用這些方法解決,需要認真準備)。

(5)動態(tài)規(guī)劃、回溯搜索、分治算法、分支定界等計算機算法(這些算法是算法設計中比較常用的方法,很多場合可以用到競賽中)。

(6)最優(yōu)化理論的三大非經(jīng)典算法:模擬退火法、神經(jīng)網(wǎng)絡、遺傳算法(這些問題是用來解決一些較困難的最優(yōu)化問題的算法,對于有些問題非常有幫助,但是算法的實現(xiàn)比較困難,需慎重使用)。

(7)網(wǎng)格算法和窮舉法(網(wǎng)格算法和窮舉法都是暴力搜索最優(yōu)點的算法,在很多競賽題中有應用,當重點討論模型本身而輕視算法的時候,可以使用這種暴力方案,最好使用一些高級語言作為編程工具)。

(8)一些連續(xù)離散化方法(很多問題都是實際來的,數(shù)據(jù)可以是連續(xù)的,而計算機只認的是離散的數(shù)據(jù),因此將其離散化后進行差分代替微分、求和代替積分等思想是非常重要的)。

(9)數(shù)值分析算法(如果在比賽中采用高級語言進行編程的話,那一些數(shù)值分析中常用的算法比如方程組求解、矩陣運算、函數(shù)積分等算法就需要額外編寫庫函數(shù)進行調(diào)用)。

(10)圖象處理算法(賽題中有一類問題與圖形有關(guān),即使與圖形無關(guān),論文中也應該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用matlab進行處理)。

數(shù)學建模心得體會論文篇七

計算機學院、軟件學院級學生范娜(保送為華東師大研究生)。

9月的“高教杯”全國大學生數(shù)學建模競賽已經(jīng)過去一周多了,但是在我心中,計算機學院、軟件學院三樓機房的燈光依然明亮,與隊友三天三夜一起奮戰(zhàn)的記憶依然清晰。

大二下學期,我院開設了《數(shù)學建?!愤x修課,由于每周只有一大節(jié)《數(shù)學建?!氛n程,再加上大二專業(yè)主干課程很多,任務重,除了老師課上的講解,平日我很少有時間去溫習和預習,更別說去結(jié)合實例進行建模了。那時的數(shù)學建模對于我來說就是一項很重要的任務,想要參加但是又不知道如何去完成。但是我認為數(shù)學建模是要求把模型用在實例中進行求解,最重要的就是創(chuàng)建模型的思路以及用語言去描述建模的過程和結(jié)果。

暑假快要來臨時,學院進行參賽隊員的選拔。參賽的選手由老師選拔和筆試選拔兩部分組成。我是在筆試中被選拔出來的,現(xiàn)在想想,可能差一點就失去了參加數(shù)學建模的資格。我認為選拔還是參照筆試的成績確定人選,從全方位考察學生的綜合素質(zhì)以及寫作素質(zhì),這樣才能更好的遴選出參賽選手,真正的做到給有創(chuàng)新思維的選手機會。

隨后遇到的問題就是如何組隊。我們組是由兩個計算機專業(yè)和一個通信工程專業(yè)的學生組成,現(xiàn)在看來我們的組合有一定的偶然性,但更多的是一種合理性。首先,我們組中有兩位女生,都擅長文字處理工作。應該明確的是,數(shù)學建模比賽最后遞交給組委會的是一篇論文,也就是三天三夜的成果是以文字的形式出現(xiàn)在專家面前,文章中的文字排版、遣詞造句至關(guān)重要。女生的特點之一就是細心,我們平時很注意收集專業(yè)的描述性詞匯,因此論文詞匯豐富、生動;第二,我們?nèi)齻€的思維出發(fā)點不一樣,各有擅長的數(shù)學模型和知識能力,這就使我們在分別思考后有更多的內(nèi)容可以討論,增加建模的創(chuàng)新點,彌補彼此的不足;第三,我們?nèi)齻€的團隊意識很強,彼此相互鼓勵相互扶持。

同時,我還發(fā)現(xiàn)這樣一個現(xiàn)象。由于時間緊張的關(guān)系,我們在培訓的時候還沒有完整的做過一道題目。也就是說在賽前大家主要進行理論上的準備,很少進行實踐,這樣就不能預見和發(fā)現(xiàn)小組在未來要進行的三天三夜中,究竟會遇到什么問題。針對這樣的現(xiàn)象,我們小組用了三天的時間來進行比賽的模擬,每天做一道題。我們嚴格按照比賽的標準來要求自己:早上開始審題,組員分別思考一小時進行個人建模,其次三人一起討論,然后編寫論文,盡量把論文詳細的寫出來一部分直到一天結(jié)束。在模擬的過程中我們遇到很多的問題,比如時常會忘記討論的初步模型和一些思路,因此我們在真正比賽的時候會對小組的的討論進行錄音,這樣可以隨時查看建模的思路。像這樣的細節(jié)問題只能是在模擬中才能發(fā)現(xiàn)的,因此我認為在賽前進行比賽的模擬也是十分重要的。

接下來的三天三夜讓我很難忘,我也有很多的感想。數(shù)學建模不是一般意義的解題,它允許你使用任何已有的東西,包括別人的'研究成果、圖書資料、網(wǎng)絡資源等等,但抄襲是不允許的。這些東西都需要證明,但要結(jié)合實例進行求解。在賽前word文檔要熟練掌握,如果熟練程度不夠,那么在建模比賽中,在整理文檔這一項上就會浪費大量的時間與精力。光有錄入速度是不夠的,還要注意符號的書寫,頁碼的插入,公式編輯器的熟練運用。還要有熱情,要有認真、嚴謹?shù)目茖W精神。當我們遇到我們不會的問題,需要用到新的知識時,我們會毫不猶豫的去學習這些知識,熱情使我們不懼怕任何困難。

總之,這次建模競賽不論是在知識面上還是在動手能力上都是對我的一種挑戰(zhàn),盡管一路走來十分辛苦,但是卻使我多了一種充實自我的經(jīng)歷,多了一份創(chuàng)造的經(jīng)驗,多了一份坦然面對的自信,從而在前進的道路上走的更順暢。在這個過程中,指導老師和我們一起度過炎炎夏日,也陪我們熬夜修改論文,非常辛苦,也向給予我們指導的各位老師和建模過程中關(guān)心我們的院領導表示衷心的感謝!

數(shù)學建模心得體會論文篇八

數(shù)學建模是利用數(shù)學方法解決實際問題的一種實踐應用。即通過抽象、簡化、假設、引進變量等處理過程后,將實際問題用數(shù)學方式來表達,建立起數(shù)學模型,然后運用先進的數(shù)學方法和計算機技術(shù)進行求解。數(shù)學建模將各種知識綜合應用于解決實際問題中,是培養(yǎng)和提高學生應用所學知識分析問題、解決問題的能力的必備手段之一。

數(shù)學建模是在上世紀六七十年代進入一些西方國家大學的,我國的幾所大學也在80年代初將數(shù)學建模引入課堂。經(jīng)過30多年的發(fā)展,現(xiàn)在,絕大多數(shù)本科院校和許多??茖W校都開設了各種形式的數(shù)學建模課程和講座,為培養(yǎng)學生利用數(shù)學方法分析、解決實際問題的能力開辟了一條有效的途徑。

大學生數(shù)學建模競賽最早是1985年在美國出現(xiàn)的,1989年在幾位從事數(shù)學建模教育的教師的組織和推動下,我國幾所大學的學生開始參加美國的競賽,而且積極性越來越高,近幾年參賽校數(shù)、隊數(shù)占到相當大的比例??梢哉f,數(shù)學建模競賽是在美國誕生、在中國開花、結(jié)果的。

全國大學生數(shù)學建模競賽已成為全國高校規(guī)模最大的基礎性學科競賽,創(chuàng)辦于1992年,每年一屆,目前也是世界上規(guī)模最大的數(shù)學建模競賽。20xx年,來自全國33個省/市/自治區(qū)(包括香港和澳門特區(qū))及新加坡、美國的1338所院校、25347個隊(其中本科組22233隊、??平M3114隊)、7萬多名大學生報名參加本項競賽。

數(shù)學建模是一種數(shù)學的思想方法,是運用數(shù)學的語言和方法,通過抽象、簡化建立能近似刻畫并“解決”實際問題的一種強有力的數(shù)學手段。其過程主要包括以下六個階段:

1.模型準備:了解問題的實際背景,明確其實際意義,掌握對象的各種信息。用數(shù)學語言來描述問題。

2.模型假設:根據(jù)實際對象的特征和建模的目的,對問題進行必要的簡化,并用精確的語言提出一些恰當?shù)募僭O。

3.模型建立:在假設的基礎上,利用適當?shù)臄?shù)學工具來刻劃各變量之間的數(shù)學關(guān)系,建立相應的數(shù)學結(jié)構(gòu)。

4.模型求解:利用獲取的數(shù)據(jù)資料,對模型的所有參數(shù)做出計算。

5.模型分析:對所得的結(jié)果進行數(shù)學上的分析。

6.模型檢驗:將模型分析結(jié)果與實際情形進行比較,以此來驗證模型的準確性、合理性和適用性。如果模型與實際較吻合,則要對計算結(jié)果給出其實際含義,并進行解釋。如果模型與實際吻合較差,則應該修改假設,再次重復建模過程。

7.模型應用:應用方式因問題的性質(zhì)和建模的目的而異。

數(shù)學建模心得體會論文篇九

通過一個月的集訓,我受益匪淺。我進一步的認識到數(shù)學建模的實質(zhì)和對參賽隊員的要求。數(shù)學建模就是培養(yǎng)學生運用數(shù)學知識解決實際問題的能力。它要求參賽隊員有較強的創(chuàng)新精神,有較大的'靈活性和隨機應變能力,要求參賽隊員之間有良好的團隊精神和相互協(xié)作意識。在一個月里,我們學了許多知識放方法,可以說數(shù)學建模需要的知識我們都了解了一點,關(guān)鍵在于如何應用這些知識。這種即學即用的能力是我們以后學習、工作所必須的能力。在此我對建模是出現(xiàn)的一些現(xiàn)象發(fā)表一些看法。

隨著信息的高速化,我們很容易找到和建模有關(guān)的資料,這對我們理解題目意思和促發(fā)新思路、新想法是有幫助的。但是有的集訓小組或集訓隊員他們建模完全依靠找資料,建出來的模型就是幾本參考書的綜合,他們所用的方法完全是別人研究過的東西,連一點改進也沒有。如果這樣的話,數(shù)學建模就失去了意義。我始終堅持一個觀點:數(shù)學建模最重要的是創(chuàng)新。無論是你創(chuàng)造一種新方法還是創(chuàng)造性的運用一種方法,還是改進別人的方法都是很重要的。沒有創(chuàng)新,模型就失去了靈魂;沒有創(chuàng)新,模型就不是你的模型。

我們隊配合不是很理想。主要是有個隊員他總認為自己是正確的,別人找到的資料不如他好,別人提出的觀點、思想思想無論正確與否,他總是會反對一下。他總是十分注重小的方面,不從大局考慮。由于這些原因,我們建的模型總是不好。

數(shù)學建模心得體會論文篇十

數(shù)學建模作為一種綜合性的能力與技術(shù),近年來深受大眾的關(guān)注與推崇。作為一名數(shù)學愛好者,我對數(shù)學建模這個領域也產(chǎn)生了濃厚的興趣。在閱讀關(guān)于數(shù)學建模的相關(guān)書籍、學習課程與參加各類競賽的過程中,我深刻地領悟到了數(shù)學建模的種種魅力,也匯總了一些讀數(shù)學建模的心得與體會。

第二段:學習經(jīng)驗。

為了更好地理解數(shù)學建模,我通過網(wǎng)上課程等不斷學習。由于數(shù)學建模這個領域廣泛涉及到的知識面十分廣泛,所以學習的內(nèi)容也十分繁瑣。在學習的過程中,我力求將各個專業(yè)領域的知識以及各種方法融合在一起,取長補短,做到融會貫通。同時,也需要不斷地與比賽、挑戰(zhàn)賽等交流中,去檢驗自己的知識水平,并不斷地提高自己的學習能力。

第三段:實踐體會。

學習歸來,我開始了自己的實踐之旅。在應對數(shù)學建模的挑戰(zhàn)的過程中,我逐漸意識到模型的準確度與應用性是非常重要的。想要達到這點,必須不斷地加強數(shù)學知識的學習,提高自己的實際操作能力。另外,更加注重分析真實場景與數(shù)據(jù),了解不同數(shù)據(jù)之間的關(guān)系與差異,并運用不同的數(shù)據(jù)分析方法,以保證模型的精度與可靠性。

第四段:對未來的研究目標。

雖然我在數(shù)學建模的學習與實踐中有了一定的收獲,但我深知自己仍是一個初學者,未來的路還有很長。因此,我計劃在未來的學習與實踐中,更加注重對數(shù)學建模理論的深度探究,從更加基礎的角度出發(fā)去分析模型,從而更好地將理論運用于實踐。另外,我也將繼續(xù)參加各種數(shù)學建模競賽,不斷挑戰(zhàn)自己,提高自己的技能水平。

第五段:總結(jié)。

回首自己的數(shù)學建模之路,我深深體會到數(shù)學建模的魅力與難度。在實踐過程中,我不斷地學習、嘗試與挑戰(zhàn)自己,才有了今天的成果。未來,我會繼續(xù)深入學習、實踐,不斷提升自己,讓數(shù)學建模這個寶藏般的領域,能夠不斷地被挖掘、發(fā)現(xiàn)鏈梢,為人類社會提供更多的發(fā)展動力。

數(shù)學建模心得體會論文篇十一

數(shù)學建模是當今社會中越來越受重視的一門學科,通過數(shù)學方法解決實際問題,對于培養(yǎng)學生的邏輯思維、創(chuàng)新能力和實踐能力起著重要的作用。在我參與數(shù)學建模的過程中,我深刻地體會到,數(shù)學建模不僅需要良好的數(shù)學基礎,還需要堅持、努力和合作的精神,以及對實際問題的敏感性和獨立思考的能力。

首先,數(shù)學建模需要良好的數(shù)學基礎。在解決實際問題的過程中,需要運用到多種數(shù)學方法和模型,如概率統(tǒng)計、線性規(guī)劃、微分方程等。而這些都要求我們具備扎實的數(shù)學基礎。因此,在參與數(shù)學建模之前,我們要加強對數(shù)學基礎知識的學習,同時要注重數(shù)學的實際應用,培養(yǎng)數(shù)學思維和解決實際問題的能力。

其次,數(shù)學建模需要堅持、努力和合作的精神。數(shù)學建模不是一蹴而就的過程,需要耐心和毅力去面對問題和困難。在實際操作中,往往會遇到數(shù)據(jù)收集不全、模型構(gòu)建不準確等問題,這時候我們要保持積極樂觀的心態(tài),不斷嘗試和改進。同時,在團隊合作中,我們要尊重他人意見,共同努力,形成優(yōu)勢互補的合作關(guān)系,才能最終完成一個優(yōu)秀的數(shù)學模型。

此外,數(shù)學建模需要對實際問題的敏感性和獨立思考的能力。在解決實際問題時,我們要對問題本身有敏銳的觸覺,能夠發(fā)現(xiàn)問題背后的本質(zhì)和規(guī)律。同時,我們也要具備獨立思考的能力,不僅僅依靠他人的意見和經(jīng)驗,而是要從自己的角度去分析和解決問題。只有這樣才能在數(shù)學建模中取得令人滿意的結(jié)果。

最后,數(shù)學建模是一個不斷學習和提高的過程。在每一次實踐中,我們都可以從中汲取經(jīng)驗,了解到不同領域、不同問題的特點和要點。同時,我們也要關(guān)注前沿的數(shù)學建模成果和方法,及時補充自己的知識和技能。通過不斷學習和提高,我們才能在數(shù)學建模的道路上越走越遠,取得更出色的成就。

總之,數(shù)學建模是一門需要我們付出努力和智慧的學科。通過我自己的經(jīng)歷,我深刻地認識到數(shù)學建模不僅僅是一種學習方法,更是一種鍛煉自己解決實際問題能力的機會。在今后的學習和實踐中,我將繼續(xù)努力,加強自己的數(shù)學基礎,培養(yǎng)堅持、努力和合作的精神,提高對實際問題的敏感性和獨立思考的能力,不斷學習和提高,以更好地應對數(shù)學建模所帶來的挑戰(zhàn)。

數(shù)學建模心得體會論文篇十二

高校數(shù)學教育是高等教育的基礎學科,占據(jù)重要的一席之地。如何改變學生對數(shù)學枯燥乏味的學習狀態(tài),讓學生輕松愉快地參與到數(shù)學學習中,是當前高校數(shù)學教學者面臨的一個重要課題。在高校數(shù)學教學中開展數(shù)學建模競賽,不僅能培養(yǎng)學生的創(chuàng)新思維,還能有效提高提高學生的創(chuàng)新能力、綜合素質(zhì)和對數(shù)學的應用能力。本文對高校開展數(shù)學建模競賽與創(chuàng)新思維培養(yǎng)進行了分析闡述,并對此進行了一定的思考。

數(shù)學建模是一種融合數(shù)學邏輯思想的思考方法,通過運用抽象性的數(shù)學語言和數(shù)學邏輯思考方法,創(chuàng)造性的解決數(shù)學問題。當前很多高校中開始引入數(shù)學建模思想來加強學生創(chuàng)新能力的培養(yǎng),可以使學生的邏輯思維能力和運用數(shù)學邏輯創(chuàng)新解決問題的能力得到提升。數(shù)學建模競賽起源于1985年的美國,幾年后國內(nèi)幾所高校數(shù)學建模教師組織學生開始參與美國的數(shù)學建模大賽,促進了數(shù)學建模思維的快速發(fā)展。直到1992中國首屆數(shù)學建模大賽召開,而后一發(fā)不可收拾,至今仍以每年20%左右的速度增長,呈現(xiàn)一派繁榮景象。

2.1數(shù)學建模競賽自主性較強。自主性首先體現(xiàn)在在數(shù)學建模過程中學生可以根據(jù)自己的建模需要通過一切可以利用的資源、工具來進行資料查閱和收集,建模比賽隊員可以根據(jù)自己的意見和思維進行靈活自由解答,形式不拘一格。其次體現(xiàn)在數(shù)學建模競賽的組織形式呈現(xiàn)多元化特點,組織制度上也較為靈活多樣,數(shù)學建模主要側(cè)重于分析思想,沒有標準答案可以參考分享。2.2建模隊伍呈日益燎原之勢。1992年首屆中國數(shù)學建模大賽開展以來,其影響力與日俱增,高校和社會各界對數(shù)學建模頗為重視,參賽隊伍、參賽學生的質(zhì)量一直處于上升狀態(tài),數(shù)學模型也日漸合理科學,學生團隊在國際數(shù)學建模大賽中屢創(chuàng)驕人戰(zhàn)績。2.3組織培訓日益加強。數(shù)學建模競賽對學生數(shù)學知識的掌握及靈活運用、口套表達、語言邏輯思維、綜合素質(zhì)都有著非常高的要求,因此高校遴選參賽選手都投入了很大的精力,組織培訓的時間很長,培訓內(nèi)容也很豐富,為數(shù)學建模競賽取得好成績奠定了堅實的基礎。

3.1學生的團隊協(xié)作能力和意識得到增強。數(shù)學建模競賽的團隊組織形式活潑自由,通常采用學生組隊模式開展,數(shù)學建模競賽隊伍形成一個團結(jié)戰(zhàn)斗的整體,代表著不僅僅是學校的聲譽,還一定程度上展示著國家的形象。經(jīng)過長時間的培訓,對數(shù)學模型的研究和分析,根據(jù)學生訓練中的優(yōu)勢和特長,進行合理科學的小組分工,讓學生快速高效地完成整個數(shù)學建模,在建模過程中學生統(tǒng)籌協(xié)作、密切配合,發(fā)揮各自的優(yōu)勢和長處,確保數(shù)學建模取得最大效用,學生的團隊協(xié)作能力和意識得到鍛煉,責任感和榮譽感進一步增強,通過建模競賽彰顯團隊的合作能力和中國數(shù)學建模方面的發(fā)展。

3.2高校學生參賽積極性高漲。近年來大學生數(shù)學建模競賽的參與性高漲,參賽人數(shù)保持著20%左右的上漲幅度,參賽成績也較為理想,創(chuàng)新能力得到了較好的鍛煉和培養(yǎng),綜合素質(zhì)得到提高,數(shù)學的應用能力提升。

3.3高校學生數(shù)學邏輯思維能力和靈活運用知識的能力得到提升。數(shù)學建模競賽充滿著刺激性和挑戰(zhàn)性,是學生各方面綜合能力的一個展示。在數(shù)學建模競賽中,學生不僅要需要扎實豐厚的數(shù)學知識儲備,還需要具備清晰的數(shù)學邏輯思維和語言表達能力。同時要有機智的臨場發(fā)揮能力和應變能力,不怯場、不驚慌,有充分的思想準備,能輕松應對其他參賽選手和評委的提問,能組織條理性、邏輯性的語言進行表述,將參賽小組數(shù)學模型的含義和設計清晰完整的傳達給評委和其他參賽選手。在這個過程中,無疑會使學生的數(shù)學邏輯思維和語言表達能力及靈活運用數(shù)學知識的能力有一個較大的提升。

3.4學生的自學能力和意志力得到鍛。數(shù)學建模競賽對參賽學生的綜合知識和能力要求非常高,難度也非常大,需要與眾不同的智慧和能力??梢哉f數(shù)學建模過程中,有許多高深的知識難于理解,有的日常學習過程中根本接觸不到,需要數(shù)學建模參賽小組成員的互助合作,充分發(fā)揮各自優(yōu)勢和平時培訓中的知識積淀,通過借助大量的工具書及參考資料,加上團隊的`理解分析去摸索,探尋數(shù)學建模所需要的基礎知識,無疑這對學生的自學能力培養(yǎng)是一個很好的鍛煉。另外,搜尋資料、學習數(shù)學建模知識的過程是枯燥乏味的,需要長久的耐力和信心,無疑這對學生的堅毅不畏難的品質(zhì)是一個很好的培養(yǎng)和磨煉。

3.5創(chuàng)新思維與能力得到有效提升。經(jīng)過艱苦復雜的數(shù)學建模訓練,高校學生信息收集與處理復雜問題的能力得到培養(yǎng)鍛煉,學生數(shù)量觀念得到增強,能夠養(yǎng)成敏銳觀察事物數(shù)量變化的能力,數(shù)學的嚴謹推導也使學生養(yǎng)成認真細心、一絲不茍的習慣,邏輯思維能力得到提高,思路變得更加富有條理性,能靈活地處理各種復雜問題,有效解決數(shù)學疑難,數(shù)學理論能更好第應用于實踐,數(shù)學素養(yǎng)進一步得到提升。

綜上所述,高校學生數(shù)學建模競賽的開展,能較高地提升學生的創(chuàng)新能力和綜合素養(yǎng),團隊合作能力、競爭能力、表達交流能力、邏輯思維能力、意志品質(zhì)能力等都能得到良好的塑造。高校要積極組織和開展數(shù)學建模競賽,使學生的綜合素質(zhì)得到發(fā)展和鍛煉。學校用重視和鼓勵全體學生參與數(shù)學建模競賽,通過競賽實現(xiàn)學生各方面能力尤其是創(chuàng)新能力的培養(yǎng)。

[1]趙剛.高校數(shù)學建模競賽與創(chuàng)新思維培養(yǎng)探究[j].才智,20xx(06).

[2]陳羽,徐小紅,房少梅.數(shù)學建模實踐及其對培養(yǎng)學生創(chuàng)新思維的影響分析[j].科技創(chuàng)業(yè)月刊,20xx(08).

[3]趙建英.數(shù)學建模競賽對高校創(chuàng)新人才培養(yǎng)的促進作用分析[j].科技展望,20xx(08)5.

[4]畢波,杜輝.關(guān)于高校開展數(shù)學建模競賽與創(chuàng)新思維培養(yǎng)的思考[j].中國校外教育,20xx(12).

數(shù)學建模心得體會論文篇十三

隨著社會的不斷發(fā)展和科學技術(shù)的進步,數(shù)學在現(xiàn)實生活中的應用越來越廣泛,尤其是計算機技術(shù)的發(fā)展及廣泛應用,使數(shù)學建模思想在解決社會各個領域中的實際問題的應用越來越深入。本文筆者簡要談談數(shù)學建模思想融入大學數(shù)學類課程的意義和方法。

所謂數(shù)學建模就是指構(gòu)造數(shù)學模型的過程,也就是說用公式、符號和圖表等數(shù)學語言來刻畫和描述一個實際問題,再經(jīng)過計算、迭代等數(shù)學處理得到定量的結(jié)果,從而供人們分析、預報、決策與控制。那么數(shù)學模型就是利用數(shù)學術(shù)語對一部分現(xiàn)實世界的描述。數(shù)學建模思想是指理論聯(lián)系實際,將實際的事物抽象成數(shù)學模型,然后利用所學的理論來解決問題的一種思想。

在新形勢下,傳統(tǒng)的數(shù)學教學方法已經(jīng)無法適應現(xiàn)在大學數(shù)學教育改革的需求,數(shù)學建模思想與大學數(shù)學類課程教育融合成為目前高等院校數(shù)學教學改革的突破口。

(1)數(shù)學知識在各個領域的應用越來越廣泛。如今數(shù)學知識在各個領域的應用越來越廣泛,尤其是在經(jīng)濟學中的應用最為顯著。自從1969年創(chuàng)設諾貝爾經(jīng)濟學獎以來,就有不少理論成果來自利用數(shù)學工具分析經(jīng)濟問題。事實上,從1969年到20xx年這35年中,一共產(chǎn)生了53位獲獎者,其中擁有數(shù)學學位的共有19人,所占比例為35.8%;其中擁有理工學位的有9人,所占比例為17%;二者共計占52.8%;其中共有29位諾貝爾經(jīng)濟學獎的獲得者是以數(shù)學方法為主要的研究方法,約占總?cè)藬?shù)的63.1%。然而幾乎所有的諾貝爾經(jīng)濟學獎獲得者都運用了數(shù)學方法來研究經(jīng)濟學理論。除了在經(jīng)濟領域,數(shù)學建模思想也廣泛應用于生物醫(yī)學,包括超聲波、電磁診斷等方面。同時數(shù)學建模還將數(shù)學與生物學融合進了基因科學,例如基因表達的定型、基因組測序、基因分類等等,在生物學領域需要建立大規(guī)模的模擬以及復雜的數(shù)學模型??梢姅?shù)學建模思想的應用是非常廣泛的,并對其他領域的發(fā)展起著重要的推動作用。

(2)有利于激發(fā)學生的學習熱情,豐富大學數(shù)學課程。一般的數(shù)學課,通常只是重視理論知識的講解和傳授,對知識點的推理和思想方法的分析較少。而且多數(shù)學生為了應付考試,也只是以“類型題”的方式去復習知識點。這樣的方式雖然能夠讓學生掌握一部分數(shù)學知識,可是卻不能提高學生的數(shù)學素質(zhì),不能提高學生對大學數(shù)學的學習興趣。而數(shù)學建模思想運用數(shù)學知識來解決生活中的實際問題,這樣就使數(shù)學活了起來,而不是死的理論知識。運用數(shù)學建模思想能夠讓學生在數(shù)學中感悟生活,在生活中體會數(shù)學的價值,更容易吸引學生的學習興趣。而興趣是學習最有效的動力,讓學生主動參與學習而非被動學習,取得的教學效果會更好。

(3)是加強數(shù)學教學改革,適應時代發(fā)展的需要。在大學數(shù)學教學活動中,許多學生常常陷入這樣的困惑之中:花費了大量的精力,做了很多習題,但是卻感受不到數(shù)學的作用和價值。而教師在教學中也總是告訴學生數(shù)學是一門很有用的課程,但是卻舉不出現(xiàn)實的例子。并且傳統(tǒng)的教學方式也只是教會學生掌握簡單的理論知識,并不能提高學生的數(shù)學素養(yǎng)和數(shù)學意識。而將數(shù)學建模思想融入到大學的數(shù)學類課程之中就能很好地解決這些問題。因為將數(shù)學建模思想運用到數(shù)學類課程中,就能夠讓學生在獨立思考和探索中感受到數(shù)學在現(xiàn)實生活中的實用價值,提高學生運用數(shù)學的眼光去觀察、分析以及表示各種事物的空間關(guān)系、數(shù)量關(guān)系和數(shù)學信息的能力,提高學生的創(chuàng)造能力和創(chuàng)新意識。

(1)教師在教學過程中較少滲入數(shù)學建模思想。目前在高校數(shù)學教學中數(shù)學建模的思想應用得仍然較少,重視程度不夠。不少高校的教師在開展大學數(shù)學類課程時,仍然只是停留在數(shù)學知識的教學方面,并沒有對學生進行研究性學習探索。據(jù)調(diào)查,大多數(shù)高校教師對日常的教學工作能夠認真完成規(guī)定的教學任務,但能夠真正創(chuàng)造性地把數(shù)學建模思想融入到數(shù)學教學任務中的教師較少。大多數(shù)高校數(shù)學老師都意識到探索式的數(shù)學建模教學很重要,但真正將數(shù)學建模思想與數(shù)學教學融合的嘗試和探索卻很少??梢姸鄶?shù)高校教師雖然明白數(shù)學建模思想的重要性,但是由于缺乏足夠的數(shù)學建模教學的相關(guān)知識及經(jīng)驗,在實際教學中數(shù)學建模思想仍未得到充分的運用。

(2)開設的有關(guān)數(shù)學建模的課程和活動較少。雖然數(shù)學建模思想得到了越來越廣泛的應用,但是在高校中實際開設的有關(guān)數(shù)學建模的課程并不多,尤其是應用數(shù)學、數(shù)學實驗以及計算機應用等一些需要滲入數(shù)學建模思想的課程在實際的教學過程中并沒有創(chuàng)造性地運用數(shù)學建模思想。另一方面,校內(nèi)自主開展的有關(guān)數(shù)學建模競賽和活動并不多,宣傳力度也不夠,無法讓更多的學生了解數(shù)學建模的意義和價值,更無法參與到數(shù)學建?;顒又腥ァ?/p>

(3)學生對數(shù)學的態(tài)度和觀念還未改變,對數(shù)學建模缺乏深入的了解。大學數(shù)學是一門較為抽象的學科,其概念、定理和性質(zhì)都不容易掌握,由于其具有一定的難度,所以不少學生對大學數(shù)學類課程以及數(shù)學建模沒有興趣。并且這些學生在初中和高中階段也學習數(shù)學,但是不少學生是為了應付考試,并沒有見識到數(shù)學的應用性,覺得數(shù)學是一門純理論的課程,沒有實用價值。同時很多學生對數(shù)學建模思想的運用并不夠了解,不知道如何將數(shù)學知識和數(shù)學方法應用到實際的生活中去,覺得數(shù)學沒有用,也沒有深入學習的意義。

(1)提高課堂教學質(zhì)量,創(chuàng)造性地運用數(shù)學建模思想。大學的數(shù)學類課程主要有“線性代數(shù)”、“高等數(shù)學”、“運籌學”、“數(shù)學建模”、“概率論與數(shù)理統(tǒng)計”等,這些課程的核心部分都跟高等數(shù)學有關(guān),所以要注重提高數(shù)學類課程的教學質(zhì)量關(guān)鍵就在于高等數(shù)學,而要提高高等數(shù)學的教學質(zhì)量就必須在教學過程中創(chuàng)造性地應用數(shù)學建模思想。對于主修數(shù)學的學生,要加強對計算機軟件和語言的學習,系統(tǒng)性地對數(shù)學原理進行剖解和分析,合理運用數(shù)學知識和數(shù)學方法解決社會實際問題。在教學中多引導、啟發(fā)學生利用對生活問題和科學問題的深入研究,主動結(jié)合自己的課程理論知識和數(shù)學建模,使數(shù)學建模思想融入到學生的整個學習過程中去。對于非數(shù)學領域的問題,要啟發(fā)學生運用計算機軟件建模,從而解決不同領域中的數(shù)學建模問題。

(2)多開設跟數(shù)學建模有關(guān)的數(shù)學類課程。例如除了開設跟數(shù)學建模有關(guān)的必修課,還可以開設一些跟數(shù)學建模有關(guān)的選修課,為其他專業(yè)的學生提供接觸和了解數(shù)學建模思想的機會,為學生拓展知識領域,為其解決該領域的問題提供有效的方法。例如,經(jīng)濟學有關(guān)專業(yè)的學生就可以通過選修跟數(shù)學建模有關(guān)的課程,解決其在經(jīng)濟學中遇到的問題,因為很多跟經(jīng)濟學有關(guān)的問題僅僅靠經(jīng)濟學的知識是無法解決的,像貸款計算這樣的問題就要將數(shù)學與經(jīng)濟學聯(lián)系起來才能解決實際問題。

(3)廣泛宣傳,讓學生了解數(shù)學建模的意義和價值。學生是教學過程中的主體,目前,大學數(shù)學建模課程開設效果不佳,學生參與度低的主要原因就是學生缺乏對數(shù)學建模的深入了解。那么,要提高學生的參與性,促進數(shù)學建模思想與大學數(shù)學類課程的融合就必須加強宣傳,讓學生深入了解什么是數(shù)學建模。同時,在課堂上就是也要轉(zhuǎn)變傳統(tǒng)枯燥的教學方式,多使用啟發(fā)式教學和探索式教學,吸引學生的學習興趣,讓他們發(fā)現(xiàn)數(shù)學對社會實際生活的重要作用,轉(zhuǎn)變他們對數(shù)學的態(tài)度,并引導學生對數(shù)學建模和數(shù)學課程感興趣。

(4)轉(zhuǎn)變數(shù)學教育理念及教育方式。要轉(zhuǎn)變傳統(tǒng)的教育方式,將教學的重點放在數(shù)學知識在生活中的應用問題上,而不是將知識與實際生活割裂開來。同時在教學中要注重證明和推理,加強學生對數(shù)學方法的掌握注重培養(yǎng)學生對實際問題的邏輯分析、簡化、抽象并運用數(shù)學語言表達的能力。也就是說教學的重點在于提高學生的數(shù)學學習能力和加強數(shù)學意識和數(shù)學方法的應用,這樣才能夠培養(yǎng)出具有創(chuàng)新能力和創(chuàng)新意識的人才。

(5)多開展數(shù)學建?;顒雍透傎?,提高學生參與性。在高校內(nèi)部要多開展跟數(shù)學有關(guān)的活動和競賽以及專家講座等,一方面加強學生對數(shù)學建模的認識,另一方面也提高了學生的參與性。通過專家講座,不僅可以讓學生更深入地了解數(shù)學建模的價值,也加強了學術(shù)交流,提高學生的數(shù)學建模應用能力。通過數(shù)學建模競賽,為學生提供展示自己智慧、充分發(fā)揮其能力的平臺。同時,競賽也可以讓學生在競賽中發(fā)現(xiàn)自己的不足,在交流中不斷完善自己的缺陷,拓展學生的思維。而且,在數(shù)學建模比賽中,通過讓學生探究跟生活實際有關(guān)的例子,提高學生對數(shù)學建模的興趣,加強學生對模型應用的直觀性認識,促進學校應用型人才的培養(yǎng)。

總之,數(shù)學建模思想和高校數(shù)學類課程的融合,對于高等數(shù)學教學改革具有非常重要的意義。把數(shù)學建模思想融入到高等數(shù)學教學中,可以更好地提高學生的數(shù)學學習能力,提高他們運用數(shù)學思想和數(shù)學方法分析問題、解決問題和抽象思維的能力。高校教師要加強數(shù)學建模思想的應用,讓學生初步掌握從實際問題中總結(jié)數(shù)學內(nèi)涵的方法,提高學生的數(shù)學學習興趣,為高校學生專業(yè)課的學習奠定堅實的數(shù)學基礎。

數(shù)學建模心得體會論文篇十四

摘要:隨著現(xiàn)代社會的發(fā)展,數(shù)學的廣泛用途已經(jīng)無需質(zhì)疑,他深入到我們生活的方方面面?,F(xiàn)階段,數(shù)學建模已經(jīng)成為應用數(shù)學知識解決日常問題的一個重要手段。本文通過簡述數(shù)學建模的方法與過程,以及應用數(shù)學建模解決實際經(jīng)濟問題的應用,展現(xiàn)的了數(shù)學學習的重要意義,以及數(shù)學在經(jīng)濟問題解決中的重要作用。

經(jīng)濟現(xiàn)象具有多變性,隨著經(jīng)濟社會的發(fā)展,國際間貿(mào)易往來的日趨緊密,日常經(jīng)濟形勢受到的影響因素越來越復雜多變。而日常經(jīng)濟生活中所遇到的經(jīng)濟現(xiàn)象同樣存在著諸多的變化的影響因素。如何應對這些難以把控的變量,做好風險的預估、成本的核算、進行最大成本的規(guī)劃,所有這些都可以借助數(shù)學知識、應用數(shù)學建模為工具進行較為理性的計算,為經(jīng)濟決策、企業(yè)規(guī)劃提供重要的幫助。

數(shù)學建模,其實就是建立數(shù)學模型的簡稱,實際上數(shù)學建??梢苑Q之為解決問題的一種思考方法,借助數(shù)學工具應用已知的定理定義進行合理的運算,推導出一種理性的結(jié)果的過程。數(shù)學建模是可以聯(lián)系數(shù)學和外部世界的一個中介和橋梁,在工業(yè)設計、經(jīng)濟領域、工程建設等各個方面,運用數(shù)學的語言和方法進行問題的求解和推導,實際上,都是一種數(shù)學建模的過程。數(shù)學建模的主要過程可以總結(jié)為如下的框圖形式:實際上,數(shù)學模型的最終建立是一個反復驗證、修改、完善的動態(tài)過程,很少能夠通過一次過程就建立起完美適合實際問題的數(shù)學模型。通過上述過程的多次循環(huán)執(zhí)行:1.模型準備:分析問題,明確建模的目的,統(tǒng)計各種信息數(shù)據(jù);2.模型假設:根據(jù)建模目的,結(jié)合實際對象的特性,對復雜問題進行簡化,提取主要因素,提煉精確的數(shù)學語言;3.模型建立:根據(jù)提煉的主要因素,選擇適當?shù)臄?shù)學工具,建立各個量(變量、常量)間的數(shù)學關(guān)系,化實際問題為數(shù)學語言;4.模型求解:對上述數(shù)學關(guān)系進行求解(包括解方程、圖形分析、邏輯運算等);5.模型分析:將求解結(jié)果與實際問題結(jié)合,綜合分析,找到模型的缺陷和不足,進行數(shù)學上的優(yōu)化,建立穩(wěn)定模型;6.模型檢驗:將模型得到的結(jié)果與實際情況相驗證,檢驗模型的合理性和適用性。

二、經(jīng)濟問題數(shù)學模型的建立。

經(jīng)濟類問題因為其特有的特點,可以按照變量的性質(zhì)分為兩類:概率型和確定型。概率型應用于處理具有隨機性情況的模型,可以解決類似風險評估、最優(yōu)產(chǎn)量計算、庫存平衡等問題;確定型則可以基于一定的條件與假設,精確的對一種特定情況的結(jié)果做出判斷,如成本核算、損失評估等。對經(jīng)濟問題的建模計算實際上是一個從經(jīng)濟世界進入數(shù)學世界再回到經(jīng)濟世界的過程。建立經(jīng)濟數(shù)學模型,需要首先對實際經(jīng)濟問題和情況有一個較為深入的認識,然后通過細致的觀察梳理,抽出最為本質(zhì)的特征性的東西。將原始的復雜的經(jīng)濟問題簡化提煉為一個較為理想的自然模型,然后基于這個原始模型應用數(shù)學知識建立完整的數(shù)學經(jīng)濟模型。

三、建模舉例。

四、結(jié)語。

綜上所述,我們可以看到,數(shù)學建模在經(jīng)濟中的應用可以非常廣泛,對很多的決策和工作都可以提供參考和指導,如提高利潤、規(guī)避風險、降低成本、節(jié)省開支等各個方面。上文只提供了一個簡單的例子,和初步的介紹,其深入的理念和概念更加值得我們?nèi)ヅΦ膶W習和思考。

數(shù)學建模心得體會論文篇十五

第一條,論文用白色a4紙打印(單面、雙面均可);上下左右各留出至少2.5厘米的頁邊距;從左側(cè)裝訂。

第二條,論文第一頁為承諾書,第二頁為編號專用頁,具體內(nèi)容見本規(guī)范第3、4頁。

第三條,論文第三頁為摘要專用頁(含標題和關(guān)鍵詞,但不需要翻譯成英文),從此頁開始編寫頁碼;頁碼必須位于每頁頁腳中部,用阿拉伯數(shù)字從“1”開始連續(xù)編號。摘要專用頁必須單獨一頁,且篇幅不能超過一頁。

第四條,從第四頁開始是論文正文(不要目錄,盡量控制在20頁以內(nèi));正文之后是論文附錄(頁數(shù)不限)。

第五條,論文附錄至少應包括參賽論文的所有源程序代碼,如實際使用的軟件名稱、命令和編寫的全部可運行的源程序(含excel、spss等軟件的交互命令);通常還應包括自主查閱使用的數(shù)據(jù)等資料。賽題中提供的數(shù)據(jù)不要放在附錄。如果缺少必要的源程序或程序不能運行,可能會被取消評獎資格。論文附錄必須打印裝訂在論文紙質(zhì)版中。如果確實沒有需要以附錄形式提供的信息,論文可以沒有附錄。

第六條,論文正文和附錄不能有任何可能顯示答題人身份和所在學校及賽區(qū)的信息。

第七條,引用別人的成果或其他公開的資料(包括網(wǎng)上資料)必須按照科技論文寫作的規(guī)范格式列出參考文獻,并在正文引用處予以標注。

第八條,本規(guī)范中未作規(guī)定的,如排版格式(字號、字體、行距、顏色等)不做統(tǒng)一要求,可由賽區(qū)自行決定。在不違反本規(guī)范的前提下,各賽區(qū)可以對論文增加其他要求。

第九條,參賽隊應按照《全國大學生數(shù)學建模競賽報名和參賽須知》的要求命名和提交以下兩個電子文件,分別對應于參賽論文和相關(guān)的支撐材料。

第十條,參賽論文的電子版不能包含承諾書和編號專用頁(即電子版論文第一頁為摘要頁)。除此之外,其內(nèi)容及格式必須與紙質(zhì)版完全一致(包括正文及附錄),且必須是一個單獨的文件,文件格式只能為pdf或者word格式之一(建議使用pdf格式),不要壓縮,文件大小不要超過20mb。

第十一條,支撐材料(不超過20mb)包括用于支撐論文模型、結(jié)果、結(jié)論的所有必要文件,至少應包含參賽論文的所有源程序,通常還應包含參賽論文使用的`數(shù)據(jù)(賽題中提供的原始數(shù)據(jù)除外)、較大篇幅的中間結(jié)果的圖形或表格、難以從公開渠道找到的相關(guān)資料等。所有支撐材料使用winrar軟件壓縮在一個文件中(后綴為rar);如果支撐材料與論文內(nèi)容不相符,該論文可能會被取消評獎資格。支撐材料中不能包含承諾書和編號專用頁,不能有任何可能顯示答題人身份和所在學校及賽區(qū)的信息。如果確實沒有需要提供的支撐材料,可以不提供支撐材料。

第十二條,不符合本格式規(guī)范的論文將被視為違反競賽規(guī)則,可能被取消評獎資格。

第十三條,本規(guī)范的解釋權(quán)屬于全國大學生數(shù)學建模競賽組委會。

說明:

(1)本科組參賽隊從a、b題中任選一題,??平M參賽隊從c、d題中任選一題。

(2)賽區(qū)可自行決定是否在競賽結(jié)束時收集參賽論文的紙質(zhì)版,但對于送全國評閱的論文,賽區(qū)必須提供符合本規(guī)范要求的紙質(zhì)版論文(承諾書由賽區(qū)組委會保存,不必提交給全國組委會)。

(3)賽區(qū)評閱前將紙質(zhì)版論文第一頁(承諾書)取下保存,同時在第一頁和第二頁建立“賽區(qū)評閱編號”(由各賽區(qū)規(guī)定編號方式),“賽區(qū)評閱紀錄”表格可供賽區(qū)評閱時使用(由各賽區(qū)自行決定是否使用)。評閱后,賽區(qū)對送全國評閱的論文在第二頁建立“送全國評閱統(tǒng)一編號”(編號方式由全國組委會規(guī)定),然后送全國評閱。

數(shù)學建模心得體會論文篇十六

眾所周知,高等數(shù)學是所有自然學科的基礎,一個大學生要想在以后的工作、學習中大展宏圖,那么就一定少不了堅實的高等數(shù)學基礎。如何解決大學生在學習高等數(shù)學時碰到的問題?如何調(diào)動大學生學習高等數(shù)學的積極性?讓學生們了解高等數(shù)學的用途,真正愿意靜下心來好好學習高等數(shù)學,努力為以后的發(fā)展打好數(shù)學基礎。一直以來,各所高校的教師們都在努力的想辦法、找對策,一些實用有效的方法已經(jīng)提出并且在逐步推廣,比如,問題驅(qū)動式的教學方法和基于pbl的教學方法等。筆者從所在學校的學生實際學習情況出發(fā),根據(jù)幾年來的教學心得和積累,打算提出一種較為實用的教學方法——利用數(shù)學建模的思想調(diào)動大學生學習高等數(shù)學的積極性。該方法在筆者所教授的班級中已經(jīng)實際應用過幾屆,學生普遍反映效果較好,任課老師也認為該方法確實能極大地調(diào)動學生的學習積極性。

提到高等數(shù)學,學生們的第一反應往往是:各種公式塞滿黑板,各種運算充斥腦海;定義、定理、推論一個連著一個;極限、連續(xù)、可導可積一個涵蓋另一個[1]。和高中數(shù)學相比,記憶的負擔輕了(實際上是知識點太多,記不住了),而對思維的要求卻提高了。對大學生來說,每一次的高數(shù)課,都是一次大腦的思維訓練,時刻要求精神高度集中,一定要緊跟老師的步劃,一旦走神,后面的內(nèi)容就不知所云了。這樣的要求短時間可以達到,長久下去學生們會覺得很辛苦,很有壓力,會出現(xiàn)抱怨。筆者碰到過這樣的學生,剛開始時,興致勃勃,雄心萬丈,可到后來興趣索然,馬虎應對。怪學生嗎?誠然學生有責任,但任課老師也該負很大的責任。作為高等數(shù)學的老師我們經(jīng)常要面對學生提的這些問題:(1)我學的專業(yè)和高等數(shù)學相差甚遠,有可能這一輩子都不會用到高等數(shù)學的知識,那我學高等數(shù)學的目的何在?(2)老師您天天鼓吹高等數(shù)學的強大功能和廣泛用途,但是通過一學期的學習,我發(fā)現(xiàn)除了對付考試有用,真不知高等數(shù)學可以用在何處?這些問題不及時解決,時間長了一定會影響到大學生對高等數(shù)學的學習積極性,甚至有可能會產(chǎn)生厭學的情緒和氛圍。有些極端的學生,期末考試之后,一聽到自己高等數(shù)學考過了,立馬將高等數(shù)學的課本給撕了,可想而知高等數(shù)學對其造成的壓力有多大[2]。如何解決大學生在學習高等數(shù)學時碰到的問題?如何調(diào)動大學生學習高等數(shù)學的積極性?讓學生們了解高等數(shù)學的用途,真正愿意靜下心來好好學習高等數(shù)學,努力地為以后的發(fā)展打好數(shù)學基礎。筆者從所在學校的學生實際學習情況出發(fā),根據(jù)幾年來的教學心得和積累,打算提出一種較為實用的教學方法——利用數(shù)學建模的思想調(diào)動大學生學習高等數(shù)學的積極性。

一、以實際問題反推解決問題時我們需要的高等數(shù)學知識。

有這樣一個實際問題:報童每天清晨從報社購進報紙零售,晚上將沒賣掉的報紙退回給報社。假設報紙每份的購進價為b元,零售價為a元,退回價為c元,自然地有abc。這就是說,報童每售出一份報紙賺a-b元,每退回一份報紙賠b-c元,報童每天如果購進的報紙?zhí)?,那么會不夠賣,就會少賺錢;如果每天購進的報紙?zhí)?,那么會賣不完,將要賠錢。請為報童規(guī)劃一下,他該如何確定每天購進的報紙份數(shù),以獲得最大的收入[3]。

現(xiàn)在我們來反推該問題涉及到的高等數(shù)學的知識:首先,通過分析題目可知,問題解決的關(guān)鍵在于——如何確定每天的報紙需求量,注意每天的報紙需求量是隨機變化的?解決這個關(guān)鍵問題的知識我們早就掌握了,分別是數(shù)理統(tǒng)計中的頻率連續(xù)化、概率論中的概率密度與期望和高等數(shù)學中的定積分[4]。

二、利用高等數(shù)學的解決實際問題。

f(r)[4]。如果求出了f(r),那么。

g(n)=[(a-b)r+(b-c)(n-r)]f(r)+(a-b)nf(r).(1)。

現(xiàn)在我們來求f(r),假定報童已經(jīng)通過自己的經(jīng)驗和其他渠道掌握了一年(365天)中每天報紙的售出份數(shù),那么在他的銷售范圍內(nèi),每天報紙日需求量r的概率f(r)為:

f(r)=,r=(0,1,2,3,…)。

其中k表示為賣出r份的天數(shù)。

g(n)=[(a-b)r+(b-c)(n-r)]p(r)dr+(a-b)np(r)dr.(2)。

通過上面的分析,可知實際問題歸結(jié)為,在p(r)和a,b,c已知時,求n使得g(n)最大。

=-(b-c)p(r)dr+(a-b)p(r)dr.(3)。

令=0,得到=,又因為p(r)dr+p(r)dr=1,所以p(r)dr=.(4)。

在等式(4)中,p(r)和a,b,c均為已知,所以利用定積分的知識一定可以求出n。也即可以確定每天購進的報紙份數(shù),使報童每天獲得最大的收入。

三、利用現(xiàn)實問題,讓學生學會思考,給他們提供創(chuàng)造成就感的機會。

通過上面碰到的實際問題,可以很容易地說服同學們靜下心來好好學習高等數(shù)學。因為通過實際問題的求解,學生們了解到了,要想解決一個實際問題(哪怕是很小的問題),也需要大量的高等數(shù)學知識的儲備;學生們也大概領略到了高等數(shù)學的用途與功能。這樣的教學方法簡單、直接,勝過老師課堂上反復的嘮叨與強調(diào)。有了這樣的一些實際問題,老師們就可以大膽地將數(shù)學建模思想引入高等數(shù)學的教學當中,讓學生們在解決實際問題中學會思考,掌握知識,提高能力。

通過訓練后,碰到實際問題,同學們會自然的想到我們的教學方法:(1)這些實際問題涉及到的高等數(shù)學知識?那些自己掌握了,那些還沒有弄明白,學要加強學習。(2)知識點找到后,如何建立起數(shù)學與實際問題求解之間的關(guān)系?也即如何建立數(shù)學模型。(3)除了老師給的題目,自己本專業(yè)中的實際問題,能否用高等數(shù)學的知識去解決?通過思考、分析、解決這些問題,學生們會有一種創(chuàng)造創(chuàng)新的成就感,會愿意自主學習,自然而然其學習高等數(shù)學的積極性也會大大提高了。

數(shù)學建模心得體會論文篇十七

(一)教學觀念陳舊化

就當前高等數(shù)學的教育教學而言,高數(shù)老師對學生的計算能力、思考能力以及邏輯思維能力過于重視,一切以課本為基礎開展教學活動。作為一門充滿活力并讓人感到新奇的學科,由于教育觀念和思想的落后,課堂教學之中沒有穿插應用實例,在工作的時候?qū)W生不知道怎樣把問題解決,工作效率無法進一步提升,不僅如此,陳舊的教學理念和思想讓學生漸漸的失去學習的興趣和動力。

(二)教學方法傳統(tǒng)化

教學方法的優(yōu)秀與否在學生學習的過程中發(fā)揮著重要的作用,也直接影響著學生的學習成績。一般高數(shù)老師在授課的時候都是以課本的順次進行,也就意味著老師“由定義到定理”、“由習題到練習”,這種默守陳規(guī)的教學方式無法為學生營造活躍的學習氛圍,讓學生獨自學習、思考的能力進一步下降。這就要求教師致力于和諧課堂氛圍營造以及使用新穎的教育教學方法,讓學生在課堂中主動參與學習。

二、建模在高等數(shù)學教學中的作用

對學生的想象力、觀察力、發(fā)現(xiàn)、分析并解決問題的能力進行培養(yǎng)的過程中,數(shù)學建模發(fā)揮著重要的作用。最近幾年,國內(nèi)出現(xiàn)很多以數(shù)學建模為主體的賽事活動以及教研活動,其在學生學習興趣的提升、激發(fā)學生主動學習的積極性上扮演著重要的角色,發(fā)揮著突出的作用,在高等數(shù)學教學中引入數(shù)學建模還能培養(yǎng)學生不畏困難的品質(zhì),培養(yǎng)踏實的工作精神,在協(xié)調(diào)學生學習的知識、實際應用能力等上有突出的作用。雖然國內(nèi)高等院校大都開設了數(shù)學建模選修課或者培訓班,但是由于課程的要求和學生的認知水平差異較大,所以課程無法普及為大眾化的教育。如今,高等院校都在積極的尋找一種載體,對學生的整體素質(zhì)進行培養(yǎng),提升學生的創(chuàng)新精神以及創(chuàng)造力,讓學生滿足社會對復合型人才的需求,而最好的載體則是高等數(shù)學。

高等數(shù)學作為工科類學生的一門基礎課,由于其必修課的性質(zhì),把數(shù)學建模引入高等數(shù)學課堂中具有較廣的影響力。把數(shù)學建模思想滲入高等數(shù)學教學中,不僅能讓數(shù)學知識的本來面貌得以還原,更讓學生在日常中應用數(shù)學知識的能力得到很好的培養(yǎng)。數(shù)學建模要求學生在簡化、抽象、翻譯部分現(xiàn)實世界信息的過程中使用數(shù)學的語言以及工具,把內(nèi)在的聯(lián)系使用圖形、表格等方式表現(xiàn)出來,以便于提升學生的表達能力。在實際的學習數(shù)學建模之后,需要檢驗現(xiàn)實的信息,確定最后的結(jié)果是否正確,通過這一過程中的鍛煉,學生在分析問題的過程中可以主動地、客觀的辯證的運用數(shù)學方法,最終得出解決問題的最好方法。因此,在高等數(shù)學教學中引入數(shù)學建模思想具有重要的意義。

三、將建模思想應用在高等數(shù)學教學中的具體措施

(一)在公式中使用建模思想

在高數(shù)教材中占有重要位置的是公式,也是要求學生必須掌握的內(nèi)容之一。為了讓教師的'教學效果進一步提升,在課堂上老師不僅要讓學生對計算的技巧進一步提升之余,還要和建模思想結(jié)合在一起,讓解題難度更容易,還讓課堂氛圍更活躍。為了讓學生對公式中使用建模思想理解的更透徹,老師還應該結(jié)合實例開展教學。

(二)講解習題的時候使用數(shù)學模型的方式

課本例題使用建模思想進行解決,老師通過對例題的講解,很好的講述使用數(shù)學建模解決問題的方式,讓學生清醒的認識在解決問題的過程中怎樣使用數(shù)學建模。完成每章學習的內(nèi)容之后,充分的利用時間為學生解疑答惑,以學生所學的專業(yè)情況和學生水平的高低選擇合適的例題,完成建模、解決問題的全部過程,提升學生解決問題的效率。

(三)組織學生積極參加數(shù)學建模競賽

一般而言,在競賽中可以很好地鍛煉學生競爭意識以及獨立思考的能力。這就要求學校充分的利用資源并廣泛的宣傳,讓學生積極的參加競賽,在實踐中鍛煉學生的實際能力。在日常生活中使用數(shù)學建模解決問題,讓學生獨自思考,然后在競爭的過程中意識到自己的不足,今后也會努力學習,改正錯誤,提升自身的能力。

四、結(jié)束語

高等數(shù)學主要對學生從理論學習走向解決實際問題的能力進行培養(yǎng),在高等數(shù)學中應用建模思想,促使學生對高數(shù)知識更充分的理解,學習的難度進一步降低,提升應用能力和探索能力。當前,在高等教學過程中引入建模思想還存在一定的不足,需要高校高等數(shù)學老師進行深入的研究和探索的同時也需要學生很好的配合,以便于今后的教學中進一步提升教學的質(zhì)量。

參考文獻

[1]謝鳳艷,楊永艷。高等數(shù)學教學中融入數(shù)學建模思想[j]。齊齊哈爾師范高等??茖W校學報,20xx(02):119—120。

[2]李薇。在高等數(shù)學教學中融入數(shù)學建模思想的探索與實踐[j]。教育實踐與改革,20xx(04):177—178,189。

[3]楊四香。淺析高等數(shù)學教學中數(shù)學建模思想的滲透[j]。長春教育學院學報,20xx(30):89,95。

[4]劉合財。在高等數(shù)學教學中融入數(shù)學建模思想[j]。貴陽學院學報,20xx(03):63—65。

數(shù)學建模心得體會論文篇十八

高校學生社團是一種具有共同興趣愛好的學生自發(fā)組織的開展一些藝術(shù)、娛樂和學術(shù)型的活動的團體。學生社團以其鮮明的開放性、自主性以及多樣性等特點,為一些有特長的學生提供了廣闊的舞臺,讓這些學生可以更好的發(fā)揮自己的才能,促進其更好的成才。全國大學生數(shù)學建模競賽是最早由教育部工業(yè)與數(shù)學應用學會共同承辦的一個科技性的賽事,該比賽要通過數(shù)學和計算機的知識來解決實際生活中的問題,由于其特有的比賽形式,使得高職院校在全校范圍內(nèi)直接選拔參賽隊員是件費神的事情,因此,為了更好的為數(shù)學建模競賽選拔人才,激發(fā)學生的學習興趣,學術(shù)性社團“數(shù)學建模協(xié)會”也就應運而生。數(shù)學建模協(xié)會的成立,可以更好的為學生提供一個展示自己的機會,可以增強學生對數(shù)學的學習興趣,培養(yǎng)學生應用數(shù)學解決實際問題的能力,激發(fā)學生的創(chuàng)新思維,為數(shù)學建模競賽選拔人才。本文主要以西安航空職業(yè)技術(shù)學院數(shù)學建模協(xié)會為例,探討高職數(shù)學建模社團活動開展的形式和意義。

(一)數(shù)學建模社團有利于數(shù)學建模競賽的開展。高職數(shù)學建模協(xié)會為數(shù)學建模競賽搭建了一個平臺,是數(shù)學建模競賽強有力的后盾,數(shù)學建模競賽成績的取得與這個平臺密不可分,只有充分發(fā)揮數(shù)學建模社團的作用,才能源源不斷的為數(shù)學建模提供人力和智力保障,才能更好的推動高職數(shù)學的學習氛圍。1、數(shù)學建模協(xié)會起著動員宣傳的作用從沒聽過,到知道,在到熟悉,只有通過大力宣傳和動員,才能讓更多的人了解數(shù)學建模,讓更多優(yōu)秀學生參加到數(shù)學建模競賽中。大學校園中有許多數(shù)學愛好者,他們對數(shù)學建模也有一定的認識,只要有參加數(shù)學建模活動的愿望的,都可以利用數(shù)學建模協(xié)會招新的機會,加入數(shù)學建模創(chuàng)新協(xié)會。將成績優(yōu)秀的學生邀請加入數(shù)學建模協(xié)會,對進一步擴大數(shù)學建模協(xié)會,夯實數(shù)學建模基礎,起著舉足輕重的作用。2、數(shù)學建模協(xié)會起著知識傳播的作用高職院校學生在校學習時間較短,學業(yè)較為繁重,課余時間較少,數(shù)學建模培訓的時間不足,無法讓學生在短時期內(nèi)掌握較多的數(shù)學建模相關(guān)知識。因此,利用數(shù)學建模協(xié)會活動可以開展數(shù)學建模課程的培訓工作,普及數(shù)學建模相關(guān)知識。采用“老帶新”的模式進行數(shù)學建模知識的普及。通過制定系統(tǒng)的培訓方案,在每年秋季競賽后,參加過競賽的同學對新入?yún)f(xié)會的成員可以進行初級培訓,為今后的競賽奠定基礎。3、數(shù)學建模社團起著選拔學生的作用每年數(shù)學建模競賽的隊員需要通過校內(nèi)賽等形式進行選拔,此時,數(shù)學建模協(xié)會就起著校內(nèi)賽命題及選拔隊員的作用,當然這種選拔方式也有的弊端,就是所有隊員都是來自校內(nèi)賽成績優(yōu)秀的學生,而校內(nèi)賽發(fā)揮不理想但建模能力突出或計算機技術(shù)水平優(yōu)秀的學生就沒法參加數(shù)學建模競賽。為確保每一位有能力的學生都能夠加入到建模競賽隊伍中來,可以通過校內(nèi)競賽與建模協(xié)會推薦兩者相結(jié)合的方式選拔建模競賽學生,以確保最優(yōu)優(yōu)秀的學生參加數(shù)學建模競賽。(二)數(shù)學建模社團有利于大學生綜合素質(zhì)的培養(yǎng)。(1)數(shù)學建模社團屬于專業(yè)的學術(shù)性社團,成立的目的是為了參加全國大學生數(shù)學建模競賽,數(shù)學建模社團活動的趣味性和實踐性可以提高學生的學習興趣,培養(yǎng)學生自主學習的能力,增加學生參與競賽的熱情。社團活動中的培訓使學生可以更好的應對競賽,取得更好的成績。另外,競賽之余還可以進行其他領域的學術(shù)交流,比如計算機,經(jīng)濟,工程等領域,良好的交流氛圍激發(fā)學生的創(chuàng)新思維和意識,從而培養(yǎng)他們的創(chuàng)新能力。(2)數(shù)學建模社團是學生自發(fā)組織的服務學生的群體,除了學術(shù)研究之外,還可以進行一些創(chuàng)新創(chuàng)業(yè)的活動,具有更多的實踐的機會。比如,可以利用平時社團所學的知識,以團體的形式進行一些數(shù)據(jù)處理的校企合作;也可以以微信平臺和微信群等發(fā)布一些數(shù)學建模相關(guān)的微課等,進行一些微信群講座等等。這樣可以讓學生真正體會到數(shù)學的用處,達到學以致用的效果。(3)數(shù)學建模社團是學生自發(fā)組織的學術(shù)性社團,社團的組織機構(gòu)都是學生在擔任,社團的活動也都是學生在協(xié)調(diào)策劃,甚至很多時候社團的老成員都可以輔助老師進行社團的一些學術(shù)性的講座。因此,在學習的同時還鍛煉了他們的處事應變能力團隊合作的能力,可以說提高了學生的綜合素質(zhì)。

(一)數(shù)學建模社團的管理形式。數(shù)學建模協(xié)會作為一個學生群體組織,需要好的制度和管理模式。以筆者所在學校為例,數(shù)學建模創(chuàng)新協(xié)會具有自己的一套規(guī)章管理制度;在管理形式方面是以“三個管理面”來進行社團管理和學術(shù)交流的,具體如下:1、學術(shù)交流面這個主要是通過“社團內(nèi)部進行學術(shù)交流活動”和“老帶新培訓”兩部分組成,內(nèi)部的交流活動主要是學生之間的相互溝通和交流,以及不定期的邀請指導教師和外校專家做一些數(shù)學建模報告。老帶新培訓是指社團主席團成員(一般是參加過前一年全國大學生數(shù)學建模競賽的學生)為新入社團的學生進行培訓,培訓的內(nèi)容基本上都是之前指導教師對他們集訓時的內(nèi)容,這種培訓方式可以提升社團成員的授課和理解問題的能力,對于在校大學生來說是一次很好的鍛煉。2、網(wǎng)絡交流面采用qq群,網(wǎng)絡空間和微信公眾平臺等開展社團成員之間的交流互動,社團宣傳。筆者所在學校的數(shù)學建模創(chuàng)新協(xié)會每一屆社團都有相應的qq群,另外,在20xx年也積極申請了微信平臺,目前的'關(guān)注量也在800余人,微信平臺的建立可以更方面使大學生關(guān)注數(shù)學建模相關(guān)信息,尤其是對大一新生可以更多的取了解數(shù)學建模,擴大數(shù)學建模的受益面和影響力。力求在大學生中營造一種“人人知數(shù)模,人人愛數(shù)模,人人參與數(shù)?!钡牧己玫慕逃h(huán)境,使建模活動廣泛化、群眾化。3、交流互訪面開展研討會,專家報告會,社團聯(lián)誼會等交流活動,既可以豐富數(shù)學建模社團學生的知識面,又能促進數(shù)學知識的理解和吸收,通過與其他社團的聯(lián)誼,豐富了社團學生的業(yè)余生活,又能學習其他社團好的管理經(jīng)驗,促進社團管理的制度化、規(guī)范化、專業(yè)化,也只有通過不斷的學習,不斷的交流,才能真正“走出去”,建立一個管理完善,富有成效的學生社團。(二)數(shù)學建模社團的特色活動。數(shù)學建模社團在開展學術(shù)活動和輔助教師進行競賽培訓的同時,還不定期的舉行一些活動,在提高學生學習興趣的同時也以擴大了數(shù)學建模的影響力。以筆者坐在學校為例,每年可以開展一系列的數(shù)學建?;顒?。比如,數(shù)學建模創(chuàng)新協(xié)會納新,數(shù)學建模創(chuàng)新協(xié)會趣味運動會,數(shù)學科技節(jié),趣味數(shù)學知識競賽,數(shù)學建模經(jīng)驗交流會,數(shù)學建模校內(nèi)賽,數(shù)學輔導周,數(shù)學建模專題講座。這些社團活動貫穿整個學年,不僅可以“由點及面、由淺入深”的對全國大學生數(shù)學建模競賽進行宣傳,在最大的范圍內(nèi),提升數(shù)學建模大賽的影響力及參與度,成效較好。而且讓枯燥的學術(shù)型社團變得豐富多彩,成為學生課后獲取知識的一種平臺,同時也是社團蓬勃發(fā)展的利器。

總之,數(shù)學建模社團活動的開展,有利于培養(yǎng)學生的創(chuàng)新意識和思維,有利于激發(fā)了學生的學習興趣,有利于豐富學生的課后生活,有利于調(diào)動了學生參加學術(shù)型社團的積極性,同時也是高職院校組織參加數(shù)學建模競賽的強有力的后盾。

[1]胡建茹,王搖娟.加強專業(yè)社團建設推進大學生創(chuàng)新實踐能力培養(yǎng)[j].中國石油大學學報:社會科學版,20xx(12)

[2]王珍娥,宋維,孫潔.數(shù)學社團建設的探索與實踐[j].機械職業(yè)教育,20xx(7)

[3]李湘玲,王泳興.大學生社團發(fā)展與創(chuàng)新型人才培養(yǎng)互動機制研究:以吉首大學為例[j].黑龍江教育,20xx(11)

[4]孫浩,葉正麟.西北工業(yè)大學數(shù)學建模創(chuàng)新教育之探索[j].高等數(shù)學研究,20xx(4)

作者:張?zhí)m單位:西安航空職業(yè)技術(shù)學院通識教育學院

數(shù)學建模心得體會論文篇十九

運籌學與數(shù)學建模2門課程聯(lián)系密切,在運籌學教學中,適當融入數(shù)學建模思想,能大幅度提高學生應用數(shù)學解決實際問題的能力.從運籌學教學中教學大綱的改革、教學環(huán)節(jié)的設計等方面進行了探索與實踐.教學實踐表明,將數(shù)學建模思想融入到運籌學教學中能提高課堂教學的效果,鍛煉學生的動手實踐能力.

數(shù)學建模心得體會論文篇二十

摘要:在新課改以后,要求教師要在教學中重視學生的主體地位,提升學生學習興趣,培養(yǎng)他們的自主學習能力。本文從小學數(shù)學教學過程中數(shù)學建模入手,對如何將數(shù)學建模運用到學生解題過程中進行了分析。

數(shù)學建模是指利用數(shù)學模型的形式去解決實際中遇到的問題,換句話說,就是利用數(shù)學思維、數(shù)學方法解決各種數(shù)學問題。數(shù)學建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過一段時間的觀察我們可以發(fā)現(xiàn),數(shù)學建模的方法能夠有效的提高學生的學習興趣,培養(yǎng)學生的數(shù)學能力。這種方式能夠?qū)碗s的數(shù)學問題利用簡單的方式找到解決方案,是提高小學數(shù)學課堂效率及課堂質(zhì)量的有效手段。小學數(shù)學是小學學習中的重要課程之一,也是培養(yǎng)學生數(shù)學思維的重要階段??梢哉f,小學數(shù)學的學習是學生學習數(shù)學的關(guān)鍵,對今后的學習起到極大的影響。因此,對于小學數(shù)學教師來說,不斷的完善教學手段,提高數(shù)學課堂質(zhì)量是教學工作中的重中之重。而數(shù)學建模就是為了解決數(shù)學在生活中的實際問題,能夠讓學生感受到數(shù)學本身的魅力,培養(yǎng)他們的數(shù)學思維,提高數(shù)學學習能力,從而讓小學數(shù)學教學質(zhì)量也得到大幅度的提升。小學數(shù)學與數(shù)學建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進,如何有效的將數(shù)學建模運用在小學數(shù)學教學過程中,是每個小學數(shù)學教師都值得思考的問題。

數(shù)學建模是為了解決數(shù)學中遇到的問題,數(shù)學本身特別是小學數(shù)學也是一門較貼近學生生活的學科。因此在數(shù)學學習中,教師要首先培養(yǎng)學生的數(shù)學學習意識,讓他們感受到數(shù)學與生活的緊密聯(lián)系,然后再引導學生用數(shù)學建模去解決遇到的問題。在這一過程中,數(shù)學教師要注意以下兩個問題:(一)在教學中一定要貼近學生的生活,課堂中所提出的問題也必須要符合生活實際,讓學生對所學內(nèi)容感到親切。積極引導學生利用多種方式解決同一問題,尤其是利用數(shù)學建模的方式,以達到培養(yǎng)他們的數(shù)學思維以及想象能力的目的。(二)在學生進行數(shù)學建模的過程中要利用多鼓勵的方式調(diào)動他們對數(shù)學學習的積極性,讓他們在數(shù)學建模中獲得成就感,增加自信心,以此來提高學生在今后學習中使用數(shù)學建模方法的熱情。

二、提高學生想象力,用數(shù)學建模簡化問題。

對于小學生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學學習中,如果能將想象力與數(shù)學學習結(jié)合在一起,一定會得到意想不到的效果。教師可以根據(jù)小學生這一特點,提高他們的想象力,然后再引導他們利用數(shù)學建模解決問題,讓題目簡單化。具體來說,就是在面對復雜的'數(shù)學問題時,教師可以先為學生創(chuàng)建教學情境,以這樣的方式提高學生的學習興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進行引導,讓他們能夠理解題目中所提問題的含義,并能夠運用他們的想象能力思考解決問題的方式。最后再引導他們進行數(shù)學建模,解決問題。這樣的方式充分的利用了學生的想象能力,將所需解決的問題簡單化。

三、選擇合適的題目作為建模案例。

在數(shù)學建模過程中,教師也要時刻牢記題目應該貼近學生的生活,符合實際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學建模的過程中去,然后再反復練習之后達到提高他們建模能力的目的。在選擇數(shù)學建模案例時教師主要應該注意以下兩點:首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學生在學習了該題目以后掌握這一類的解題方法,達到小學數(shù)學教學的目的。所以,這就需要教師對題目進行深入的分析,看是否在擁有趣味性、真實性的同時符合教學要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學生進行不同方面的建模練習,以此提高他們數(shù)學建模的能力。

四、引導學生主動進行數(shù)學建模。

在教師經(jīng)過反復的教學后,學生都已經(jīng)擁有了基本的數(shù)學建模知識,了解了數(shù)學建模過程,并且能夠在解題過程中簡單的使用數(shù)學建模。此時,教師在教學中就可以引導學生利用數(shù)學建模解決數(shù)學題目了。引導學生用數(shù)學建模方法解決數(shù)學問題,就要在解題過程中多對學生進行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學生之間利用合作的方式讓他們進行數(shù)學建模方法的探討,并在探討的過程中吸取他人的經(jīng)驗,提高自己數(shù)學建模水平,同時這樣的方式能夠讓數(shù)學建模深入到每一個學生的心中,逐漸影響每一個學生的解題思路,讓他們能夠在解題過程中熟練運用建模的方式,提高解題能力。數(shù)學建模的方法能夠有效的改變過去的傳統(tǒng)教學思路,增加學生對數(shù)學的學習興趣,提高數(shù)學解題能力。這種教學方法對于小學數(shù)學教師來說,值得不斷的探討研究,并應用在教學中,以此提高數(shù)學課堂的教學效率和教學質(zhì)量。

數(shù)學建模心得體會論文篇二十一

摘要:數(shù)學建模課堂中學生的自主探究、合作學習與教師的科學引導并不矛盾而是相輔相成的。只有在教師科學、適時、適當?shù)匾龑虏拍芨玫赝怀鰧W生的主體地位,從而打造出自主探究、合作學習、愉悅發(fā)展的高效數(shù)學建模課堂。

一、新課的引入需要發(fā)揮教師的作用。

教師在數(shù)學建模課堂上的引導作用首先體現(xiàn)在教師對新課的引入上。教師一段精彩的導入會點燃學生學習的熱情、激發(fā)學生的學習興趣、喚起學生的好奇心,能把學生的注意力迅速集中到要學的知識上來。這對提高教學質(zhì)量、提高學生的學習效果起著不可估量的作用。同時,新課前的導入環(huán)節(jié)是對學生進行情感教育的最佳時刻。學生只有在教師的引導下才能夠體會到數(shù)學建模的價值、增強學好數(shù)學建模的信心。俗話說:“好的開始是成功的一半?!睌?shù)學建模課堂也是這樣。因此,在新課引入時要充分發(fā)揮教師的作用。

二、在教學任務的設計上需要發(fā)揮教師的作用。

數(shù)學建模課堂一般應采用任務型教學模式,是讓學生通過自主探究、合作學習、交流展示的方式完成一系列學習任務來達到特定的教學目標和學習目標。學生在課堂中的主體作用能否得到有效發(fā)揮取決于教師對問題設計質(zhì)量的高低。教師應通過設計一系列高質(zhì)量的問題把復雜的數(shù)學建模問題分解成若干簡單問題來引導學生更好地發(fā)揮其主動性。學生也只有在這些問題的正確引導下才能突破難點并向著學習目標努力,有效防止學生思考、探究、交流的內(nèi)容偏離學習目標等現(xiàn)象的出現(xiàn)。這些任務的制訂需要充分發(fā)揮教師的作用。

三、在新舊知識的聯(lián)系點上需要發(fā)揮教師的作用。

建構(gòu)主義強調(diào)新知識是在學生已有知識的基礎上通過學生自身有意義的建構(gòu)獲得的。筆者認為,學生自主建構(gòu)知識應在教師的科學引導下進行。尤其是對于數(shù)學建模這樣高難度的知識更是這樣。失去了教師的科學引導,學生易產(chǎn)生疲倦感,久而久之會喪失學習數(shù)學建模的興趣和信心。因此,在新舊知識聯(lián)系點上應發(fā)揮教師的作用。教師應在準確掌握教學目標、難點的基礎上,充分考慮學生的認知能力、習慣、思維方式,通過有針對性的具體問題喚起學生對舊知識的回憶,再通過啟發(fā)性問題引導學生去發(fā)現(xiàn)新知識,從而實現(xiàn)溫故知新的目的。在教師引領下學生自主建構(gòu)知識可以使學生少走彎路,從而使學生更加高效地自主探究、掌握新知識。

四、在教學重點、難點上需要教師的引導。

教學的重點、難點是每一節(jié)課的核心和主線,只有準確把握了重點、突破了難點才能更好地掌握本節(jié)課的內(nèi)容。在強調(diào)學生自主探究、小組合作學習的課堂教學模式中,數(shù)學建模教材的重點、難點學生往往把握不準、難以突破。這就需要教師科學引導學生主動去發(fā)現(xiàn)重點、突破難點。教師引導學生發(fā)現(xiàn)重點、突破難點并不是讓教師直接告訴學生本節(jié)課的重點是什么、怎樣突破難點,而是通過具體問題的引導讓學生自己找到重點、并通過學生自己的思考、討論解決疑難問題。學生在教師的引導下通過自己的努力、討論解決了疑難后,學生會非常興奮,從而會越來越喜歡數(shù)學建模課。相反,在沒有教師引導的數(shù)學建模課堂中,學生經(jīng)常被困難嚇倒,從而對數(shù)學建模課產(chǎn)生畏懼感。由此可見,教師對學生的科學引導是學生學好數(shù)學建模必不可少的環(huán)節(jié)。在以學生為本、注重學生全面發(fā)展、提倡課堂中突出學生主體地位的背景下,教師的引導仍是數(shù)學建模課堂中不可缺失的要素。數(shù)學建模課堂中學生的自主探究、合作學習與教師的科學引導并不矛盾而是相輔相成的。只有在教師科學、適時、適當?shù)匾龑虏拍芨玫赝怀鰧W生的主體地位,從而打造出自主探究、合作學習、愉悅發(fā)展的高效數(shù)學建模課堂。

數(shù)學建模心得體會論文篇二十二

為了培養(yǎng)小學生良好的數(shù)學學習興趣,激發(fā)他們的數(shù)學潛能,教師需要采取必要的措施注重數(shù)學建模思想的有效培養(yǎng),促進學生的全面發(fā)展。在制定相關(guān)培養(yǎng)策略的過程中,教師應充分考慮小學生的性格特點,提高數(shù)學建模思想培養(yǎng)的有效性。基于此,文章將從不同的方面對小學生數(shù)學建模思想的培養(yǎng)策略進行初步的探討。

作為小學數(shù)學教學中的重要組成部分,數(shù)學建模思想的滲透及相關(guān)教學活動的順利開展,有利于提高復雜數(shù)學問題的處理效率,保持數(shù)學課堂教學的高效性。要實現(xiàn)這樣的發(fā)展目標,增強小學生數(shù)學建模思想的實際培養(yǎng)效果,需要加強對學生動手實踐能力的培養(yǎng),激發(fā)學生的更高興趣。建模的過程涉及問題表述、求解、必要解釋及有效驗證,在這四個環(huán)節(jié)中,可能會存在一定的問題,影響著數(shù)學教學計劃的實施。因此,教師需要利用學生動手實踐能力的作用,實現(xiàn)數(shù)學建模思想的有效培養(yǎng),促使小學生能夠在數(shù)學建模過程中享受到更多的快樂。比如,在講解“認識角”知識的過程中,某些學生認為邊越長角度也越大。為了使學生能夠?qū)ζ渲械闹R點有更加正確而全面的認識,教師可以通過在黑板上設置一些能夠活動的三角板,讓學生親自動手操作,以此得出角與邊長的正確關(guān)系,為后續(xù)教學計劃的實施打下堅實的基礎。通過這種教學方法的合理運用,可以激發(fā)出學生們在數(shù)學建模學習中的更高興趣,豐富他們的想象力,從而使他們對數(shù)學建模思想有一定的了解,在未來學習過程中能夠保持良好的`數(shù)學建模能力。

通過對小學階段各種數(shù)學實踐教學活動實際概況的深入分析,可知構(gòu)建良好的數(shù)學模型有利于加深學生對各知識(福建省莆田市秀嶼區(qū)東嶠前江小學,福建莆田351164)點的深入理解,增強其主動參與數(shù)學建模教學活動的積極性。因此,為了使小學生數(shù)學建模思想培養(yǎng)能夠達到預期的效果,教師需要結(jié)合實際的教學內(nèi)容,建立必要的數(shù)學參考模型,提升學生對數(shù)學建模思想的整體認知水平。比如,在講授“異分母分數(shù)加減法”這部分知識的過程中,可以設置“0.8千克+300克”“1.6千克-400克”等問題,向?qū)W生提問是否可以直接計算,并說出原因。當學生通過對問題的深入思考,總結(jié)出“單位不同不能直接計算”的結(jié)論后,繼續(xù)向?qū)W生提問小數(shù)計算中為什么每一位都要對齊,實現(xiàn)“計數(shù)單位統(tǒng)一后才能計算”這一數(shù)學模型的構(gòu)建。在這樣的教學過程中,學生可以加深對知識點的理解,實現(xiàn)數(shù)學建模思想的有效培養(yǎng)。

加強小學生數(shù)學建模思想的有效培養(yǎng),需要在具體的教學活動開展中注重對數(shù)學思想的靈活運用,增強相關(guān)模型構(gòu)建的可靠性,促使學生在長期的數(shù)學學習中能夠不斷提高自身的數(shù)學能力,運用各種數(shù)學知識處理實際問題。比如,在“角的度量”這部分內(nèi)容講解的過程中,為了提高學生對角的分類及畫角相關(guān)知識點的深入理解,教師可以將所有的學生分為不同的小組,讓學生們通過小組討論的方式,對角的正確分類及如何畫角有一定的了解,并讓每個小組代表在講臺上演示畫角的過程。此時,教師可以通過對多媒體教學設備的合理運用,利用動態(tài)化的文字與圖片對其中的知識要點進行展示,確保學生們能夠在良好的教學模式中提升自身的認知水平,并在不斷的思考過程中逐漸形成良好的創(chuàng)造性思維,強化自身的創(chuàng)新意識。比如,在講解“圖形變換”中的軸對稱、旋轉(zhuǎn)知識點的過程中,教師應通過對學生的正確引導,運用三角板、圓柱等教學輔助工具,讓學生從不同的角度對各種軸對稱圖形、旋轉(zhuǎn)后得到的圖形進行深入思考,提高自身數(shù)學建模過程中的創(chuàng)新能力,從不同的角度深入理解圖像變換過程,對這部分內(nèi)容有更多的了解。因此,教師應注重小學生數(shù)學建模思想培養(yǎng)中多方位思考方式的針對性培養(yǎng),提高學生的創(chuàng)新能力,優(yōu)化學生的思維方式,全面提升小學數(shù)學建模教學水平。

總之,加強小學生數(shù)學建模思想培養(yǎng)策略的制定與實施,有利于滿足素質(zhì)教育的更高要求,實現(xiàn)對小學生數(shù)學能力的有效鍛煉,確保相關(guān)的教學計劃能夠在規(guī)定的時間內(nèi)順利地完成。與此同時,結(jié)合當前小學數(shù)學教育教學的實際發(fā)展概況,可知靈活運用各種科學的數(shù)學建模思想培養(yǎng)策略,有利于滿足學生數(shù)學建模學習中的多樣化需求,為相關(guān)教學目標的順利實現(xiàn)提供可靠的保障。

[1]童小艷.小學數(shù)學教學中培養(yǎng)學生建模思想的策略[j].學子(教育新理念),20xx(6).

[2]白寧.先學而后教——小學生數(shù)學建模思想培養(yǎng)的捷徑[j].數(shù)學學習與研究,20xx(16).

數(shù)學建模心得體會論文篇二十三

1培養(yǎng)創(chuàng)造性思維學生在學習數(shù)學知識的過程中,雖然其接受的知識和經(jīng)驗是前人研究和發(fā)現(xiàn)的成果,但對于學生來說,其處于知識再發(fā)現(xiàn)的地位。教師向?qū)W生教授數(shù)學發(fā)現(xiàn)的思維和方法,換言之就是重點引導學生重溫數(shù)學經(jīng)驗和知識的研究道路,進而保證學生的再發(fā)現(xiàn)能夠順利實現(xiàn)。這也是培養(yǎng)學生創(chuàng)新思維和能力的一個重要途徑。利用數(shù)學建模能夠有效地彌補數(shù)學教學過程中存在的缺陷,使學生充分體會到數(shù)學發(fā)現(xiàn)過程中的樂趣,進而激發(fā)學生學習數(shù)學的熱情和積極性,培養(yǎng)其創(chuàng)造性思維。

2選擇經(jīng)典案例開展數(shù)學建模討論、分析教師在實際的數(shù)學課堂教學中,可選擇一些社會實際案例為講授分析的主要對象,如實際生活和高科技的熱點話題。教師可對此類實例進行必要的分析與講解,在此過程中,積極引導學生獨立鉆研和研究問題,并培養(yǎng)學生主動查閱相關(guān)資料、自主討論的能力。與此同時,教師還要及時與學生進行交流,答疑釋難,并要求學生在自己實際能力的基礎上構(gòu)建恰當?shù)哪P?,由易到難,循序漸進。除此之外,還要使學生充分發(fā)揮其主觀能動性,培養(yǎng)學生發(fā)現(xiàn)問題,思考問題以及處理問題的能力。以微積分方程為例,教師在課堂教學中,可以“經(jīng)濟增長”作為主要案例,向?qū)W生系統(tǒng)地闡述微積分方程的實際應用過程,進一步加深學生對知識的理解、掌握和應用。

3同時開設數(shù)學建模與高等數(shù)學課程在職業(yè)院校數(shù)學教學過程中,同時開設數(shù)學建模與高等數(shù)學課程,能夠有效提高學生對基礎知識的理解能力和掌握程度,促進學生實踐動手能力的培養(yǎng)。在數(shù)學建模課程的開設中,應該在教師的指導下,充分利用教學軟件,引導學生動手實驗和計算,加深學生對知識的掌握。在此過程中,使學生充分了解到運用數(shù)學理論和方法去分析和解決實際問題的全過程,進一步提高學生的積極性和思維意識能力,使他們意識到數(shù)學在實際生活應用中的關(guān)鍵作用。同時,促使學生將計算機技術(shù)融入數(shù)學學習中去,以現(xiàn)代化的高新科技為媒介,著手實際社會問題的解決。

4創(chuàng)新教學模式根據(jù)職業(yè)院校學生學習的特點和知識水平,重點提高學生運用數(shù)學的技能和思維方式來處理實際生活和專業(yè)問題的能力。要想從根本上培養(yǎng)學生的創(chuàng)新能力,一定要改變原來單一固定的教學模式,嘗試和探索基于學生實際情況的教學措施和方式。經(jīng)過長期的實踐經(jīng)驗研究,討論式教學和雙向教學方式對培養(yǎng)學生的能力非常有效。這兩種教學模式能夠加深學生參與課堂教學的程度,激發(fā)學生學習數(shù)學的'主動性,最終達到提高教學效率的目的。所以,數(shù)學建??梢砸跃唧w問題為媒介,采用小組集體討論解決問題的方法,培養(yǎng)學生的創(chuàng)新能力和意識,進一步加快職業(yè)技術(shù)院校數(shù)學教學模式的創(chuàng)新。

5組建數(shù)學建模團隊在實際的數(shù)學教學中,教師可引導學生構(gòu)建數(shù)學建模團隊。在教師對數(shù)學建模的深入分析為基礎,充分調(diào)動學生參與問題解決的主動性,師生積極互動,最終完成數(shù)學建模。如此一來,不僅能夠有效培養(yǎng)學生積極進取的良好學習態(tài)度,而且還能夠促進學生數(shù)學邏輯思維能力的提高。

6搭建校內(nèi)數(shù)學建模網(wǎng)絡平臺在職業(yè)技術(shù)院校中構(gòu)建校內(nèi)數(shù)學建模網(wǎng)絡平臺,積極宣傳與數(shù)學建模有關(guān)的知識經(jīng)驗,為學生主動獲取數(shù)學建模信息提供各種數(shù)據(jù)資料。數(shù)學建模網(wǎng)絡平臺的搭建,能夠有效促進教師和學生,學生與學生之間的交流與溝通,大大縮短學生和數(shù)學建模之間的距離,進而促進學生自主學習能力的提高和培養(yǎng)。

總而言之,數(shù)學建模思想是學生將基礎理論知識與實際解決問題的方法相結(jié)合的最佳途徑。將數(shù)學建模融入職業(yè)院校數(shù)學中,全面培養(yǎng)學生的創(chuàng)新意識和數(shù)學應用能力,進一步使數(shù)學為達成學院的教學和培養(yǎng)計劃奠定基礎,為培養(yǎng)更多更優(yōu)秀的現(xiàn)代化社會人才服務。

【本文地址:http://www.mlvmservice.com/zuowen/8884092.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔