數(shù)學(xué)建模論文心得范文(17篇)

格式:DOC 上傳日期:2023-11-06 11:20:04
數(shù)學(xué)建模論文心得范文(17篇)
時(shí)間:2023-11-06 11:20:04     小編:BW筆俠

在工作中,總結(jié)是提高工作效率和質(zhì)量的重要手段。注意總結(jié)的語(yǔ)氣和感情色彩,使得文章更加生動(dòng)和有感染力。以下是一些總結(jié)范文,供大家參考和借鑒。

數(shù)學(xué)建模論文心得篇一

摘要:在新課改以后,要求教師要在教學(xué)中重視學(xué)生的主體地位,提升學(xué)生學(xué)習(xí)興趣,培養(yǎng)他們的自主學(xué)習(xí)能力。本文從小學(xué)數(shù)學(xué)教學(xué)過(guò)程中數(shù)學(xué)建模入手,對(duì)如何將數(shù)學(xué)建模運(yùn)用到學(xué)生解題過(guò)程中進(jìn)行了分析。

關(guān)鍵詞:小學(xué)數(shù)學(xué);建模;運(yùn)用

數(shù)學(xué)建模是指利用數(shù)學(xué)模型的形式去解決實(shí)際中遇到的問(wèn)題,換句話說(shuō),就是利用數(shù)學(xué)思維、數(shù)學(xué)方法解決各種數(shù)學(xué)問(wèn)題。數(shù)學(xué)建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過(guò)一段時(shí)間的觀察我們可以發(fā)現(xiàn),數(shù)學(xué)建模的方法能夠有效的提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)能力。這種方式能夠?qū)?fù)雜的數(shù)學(xué)問(wèn)題利用簡(jiǎn)單的方式找到解決方案,是提高小學(xué)數(shù)學(xué)課堂效率及課堂質(zhì)量的有效手段。小學(xué)數(shù)學(xué)是小學(xué)學(xué)習(xí)中的重要課程之一,也是培養(yǎng)學(xué)生數(shù)學(xué)思維的重要階段??梢哉f(shuō),小學(xué)數(shù)學(xué)的學(xué)習(xí)是學(xué)生學(xué)習(xí)數(shù)學(xué)的關(guān)鍵,對(duì)今后的學(xué)習(xí)起到極大的影響。因此,對(duì)于小學(xué)數(shù)學(xué)教師來(lái)說(shuō),不斷的完善教學(xué)手段,提高數(shù)學(xué)課堂質(zhì)量是教學(xué)工作中的重中之重。而數(shù)學(xué)建模就是為了解決數(shù)學(xué)在生活中的實(shí)際問(wèn)題,能夠讓學(xué)生感受到數(shù)學(xué)本身的魅力,培養(yǎng)他們的數(shù)學(xué)思維,提高數(shù)學(xué)學(xué)習(xí)能力,從而讓小學(xué)數(shù)學(xué)教學(xué)質(zhì)量也得到大幅度的提升。小學(xué)數(shù)學(xué)與數(shù)學(xué)建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進(jìn),如何有效的將數(shù)學(xué)建模運(yùn)用在小學(xué)數(shù)學(xué)教學(xué)過(guò)程中,是每個(gè)小學(xué)數(shù)學(xué)教師都值得思考的問(wèn)題。

一、培養(yǎng)學(xué)生數(shù)學(xué)建模意識(shí)

數(shù)學(xué)建模是為了解決數(shù)學(xué)中遇到的問(wèn)題,數(shù)學(xué)本身特別是小學(xué)數(shù)學(xué)也是一門較貼近學(xué)生生活的學(xué)科。因此在數(shù)學(xué)學(xué)習(xí)中,教師要首先培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)習(xí)意識(shí),讓他們感受到數(shù)學(xué)與生活的緊密聯(lián)系,然后再引導(dǎo)學(xué)生用數(shù)學(xué)建模去解決遇到的問(wèn)題。在這一過(guò)程中,數(shù)學(xué)教師要注意以下兩個(gè)問(wèn)題:(一)在教學(xué)中一定要貼近學(xué)生的生活,課堂中所提出的問(wèn)題也必須要符合生活實(shí)際,讓學(xué)生對(duì)所學(xué)內(nèi)容感到親切。積極引導(dǎo)學(xué)生利用多種方式解決同一問(wèn)題,尤其是利用數(shù)學(xué)建模的方式,以達(dá)到培養(yǎng)他們的數(shù)學(xué)思維以及想象能力的目的。(二)在學(xué)生進(jìn)行數(shù)學(xué)建模的過(guò)程中要利用多鼓勵(lì)的方式調(diào)動(dòng)他們對(duì)數(shù)學(xué)學(xué)習(xí)的積極性,讓他們?cè)跀?shù)學(xué)建模中獲得成就感,增加自信心,以此來(lái)提高學(xué)生在今后學(xué)習(xí)中使用數(shù)學(xué)建模方法的熱情。

二、提高學(xué)生想象力,用數(shù)學(xué)建模簡(jiǎn)化問(wèn)題

對(duì)于小學(xué)生來(lái)說(shuō),他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學(xué)學(xué)習(xí)中,如果能將想象力與數(shù)學(xué)學(xué)習(xí)結(jié)合在一起,一定會(huì)得到意想不到的效果。教師可以根據(jù)小學(xué)生這一特點(diǎn),提高他們的想象力,然后再引導(dǎo)他們利用數(shù)學(xué)建模解決問(wèn)題,讓題目簡(jiǎn)單化。具體來(lái)說(shuō),就是在面對(duì)復(fù)雜的'數(shù)學(xué)問(wèn)題時(shí),教師可以先為學(xué)生創(chuàng)建教學(xué)情境,以這樣的方式提高學(xué)生的學(xué)習(xí)興趣,讓他們?cè)敢庵鲃?dòng)去深入的研究遇到的題目。之后教師再去對(duì)他們進(jìn)行引導(dǎo),讓他們能夠理解題目中所提問(wèn)題的含義,并能夠運(yùn)用他們的想象能力思考解決問(wèn)題的方式。最后再引導(dǎo)他們進(jìn)行數(shù)學(xué)建模,解決問(wèn)題。這樣的方式充分的利用了學(xué)生的想象能力,將所需解決的問(wèn)題簡(jiǎn)單化。

三、選擇合適的題目作為建模案例

在數(shù)學(xué)建模過(guò)程中,教師也要時(shí)刻牢記題目應(yīng)該貼近學(xué)生的生活,符合實(shí)際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學(xué)建模的過(guò)程中去,然后再反復(fù)練習(xí)之后達(dá)到提高他們建模能力的目的。在選擇數(shù)學(xué)建模案例時(shí)教師主要應(yīng)該注意以下兩點(diǎn):首先,教師在選擇建模案例時(shí)要盡量選擇比較典型的問(wèn)題,能夠讓學(xué)生在學(xué)習(xí)了該題目以后掌握這一類的解題方法,達(dá)到小學(xué)數(shù)學(xué)教學(xué)的目的。所以,這就需要教師對(duì)題目進(jìn)行深入的分析,看是否在擁有趣味性、真實(shí)性的同時(shí)符合教學(xué)要求。其次,題目最好能夠擁有可變性,教師能夠通過(guò)對(duì)題目中已知條件的改變讓學(xué)生進(jìn)行不同方面的建模練習(xí),以此提高他們數(shù)學(xué)建模的能力。

四、引導(dǎo)學(xué)生主動(dòng)進(jìn)行數(shù)學(xué)建模

在教師經(jīng)過(guò)反復(fù)的教學(xué)后,學(xué)生都已經(jīng)擁有了基本的數(shù)學(xué)建模知識(shí),了解了數(shù)學(xué)建模過(guò)程,并且能夠在解題過(guò)程中簡(jiǎn)單的使用數(shù)學(xué)建模。此時(shí),教師在教學(xué)中就可以引導(dǎo)學(xué)生利用數(shù)學(xué)建模解決數(shù)學(xué)題目了。引導(dǎo)學(xué)生用數(shù)學(xué)建模方法解決數(shù)學(xué)問(wèn)題,就要在解題過(guò)程中多對(duì)學(xué)生進(jìn)行這一方面的鼓勵(lì),讓他們提高建模信心。在這一過(guò)程中,教師還可以嘗試讓學(xué)生之間利用合作的方式讓他們進(jìn)行數(shù)學(xué)建模方法的探討,并在探討的過(guò)程中吸取他人的經(jīng)驗(yàn),提高自己數(shù)學(xué)建模水平,同時(shí)這樣的方式能夠讓數(shù)學(xué)建模深入到每一個(gè)學(xué)生的心中,逐漸影響每一個(gè)學(xué)生的解題思路,讓他們能夠在解題過(guò)程中熟練運(yùn)用建模的方式,提高解題能力。數(shù)學(xué)建模的方法能夠有效的改變過(guò)去的傳統(tǒng)教學(xué)思路,增加學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣,提高數(shù)學(xué)解題能力。這種教學(xué)方法對(duì)于小學(xué)數(shù)學(xué)教師來(lái)說(shuō),值得不斷的探討研究,并應(yīng)用在教學(xué)中,以此提高數(shù)學(xué)課堂的教學(xué)效率和教學(xué)質(zhì)量。

數(shù)學(xué)建模論文心得篇二

摘要:數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時(shí)、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。

一、新課的引入需要發(fā)揮教師的作用。

教師在數(shù)學(xué)建模課堂上的引導(dǎo)作用首先體現(xiàn)在教師對(duì)新課的引入上。教師一段精彩的導(dǎo)入會(huì)點(diǎn)燃學(xué)生學(xué)習(xí)的熱情、激發(fā)學(xué)生的學(xué)習(xí)興趣、喚起學(xué)生的好奇心,能把學(xué)生的注意力迅速集中到要學(xué)的知識(shí)上來(lái)。這對(duì)提高教學(xué)質(zhì)量、提高學(xué)生的學(xué)習(xí)效果起著不可估量的作用。同時(shí),新課前的導(dǎo)入環(huán)節(jié)是對(duì)學(xué)生進(jìn)行情感教育的最佳時(shí)刻。學(xué)生只有在教師的引導(dǎo)下才能夠體會(huì)到數(shù)學(xué)建模的價(jià)值、增強(qiáng)學(xué)好數(shù)學(xué)建模的信心。俗話說(shuō):“好的開始是成功的一半?!睌?shù)學(xué)建模課堂也是這樣。因此,在新課引入時(shí)要充分發(fā)揮教師的作用。

二、在教學(xué)任務(wù)的設(shè)計(jì)上需要發(fā)揮教師的作用。

數(shù)學(xué)建模課堂一般應(yīng)采用任務(wù)型教學(xué)模式,是讓學(xué)生通過(guò)自主探究、合作學(xué)習(xí)、交流展示的方式完成一系列學(xué)習(xí)任務(wù)來(lái)達(dá)到特定的教學(xué)目標(biāo)和學(xué)習(xí)目標(biāo)。學(xué)生在課堂中的主體作用能否得到有效發(fā)揮取決于教師對(duì)問(wèn)題設(shè)計(jì)質(zhì)量的高低。教師應(yīng)通過(guò)設(shè)計(jì)一系列高質(zhì)量的問(wèn)題把復(fù)雜的數(shù)學(xué)建模問(wèn)題分解成若干簡(jiǎn)單問(wèn)題來(lái)引導(dǎo)學(xué)生更好地發(fā)揮其主動(dòng)性。學(xué)生也只有在這些問(wèn)題的正確引導(dǎo)下才能突破難點(diǎn)并向著學(xué)習(xí)目標(biāo)努力,有效防止學(xué)生思考、探究、交流的內(nèi)容偏離學(xué)習(xí)目標(biāo)等現(xiàn)象的出現(xiàn)。這些任務(wù)的制訂需要充分發(fā)揮教師的作用。

三、在新舊知識(shí)的聯(lián)系點(diǎn)上需要發(fā)揮教師的作用。

建構(gòu)主義強(qiáng)調(diào)新知識(shí)是在學(xué)生已有知識(shí)的基礎(chǔ)上通過(guò)學(xué)生自身有意義的建構(gòu)獲得的。筆者認(rèn)為,學(xué)生自主建構(gòu)知識(shí)應(yīng)在教師的科學(xué)引導(dǎo)下進(jìn)行。尤其是對(duì)于數(shù)學(xué)建模這樣高難度的知識(shí)更是這樣。失去了教師的科學(xué)引導(dǎo),學(xué)生易產(chǎn)生疲倦感,久而久之會(huì)喪失學(xué)習(xí)數(shù)學(xué)建模的興趣和信心。因此,在新舊知識(shí)聯(lián)系點(diǎn)上應(yīng)發(fā)揮教師的作用。教師應(yīng)在準(zhǔn)確掌握教學(xué)目標(biāo)、難點(diǎn)的基礎(chǔ)上,充分考慮學(xué)生的認(rèn)知能力、習(xí)慣、思維方式,通過(guò)有針對(duì)性的具體問(wèn)題喚起學(xué)生對(duì)舊知識(shí)的回憶,再通過(guò)啟發(fā)性問(wèn)題引導(dǎo)學(xué)生去發(fā)現(xiàn)新知識(shí),從而實(shí)現(xiàn)溫故知新的目的。在教師引領(lǐng)下學(xué)生自主建構(gòu)知識(shí)可以使學(xué)生少走彎路,從而使學(xué)生更加高效地自主探究、掌握新知識(shí)。

四、在教學(xué)重點(diǎn)、難點(diǎn)上需要教師的引導(dǎo)。

教學(xué)的重點(diǎn)、難點(diǎn)是每一節(jié)課的核心和主線,只有準(zhǔn)確把握了重點(diǎn)、突破了難點(diǎn)才能更好地掌握本節(jié)課的內(nèi)容。在強(qiáng)調(diào)學(xué)生自主探究、小組合作學(xué)習(xí)的課堂教學(xué)模式中,數(shù)學(xué)建模教材的重點(diǎn)、難點(diǎn)學(xué)生往往把握不準(zhǔn)、難以突破。這就需要教師科學(xué)引導(dǎo)學(xué)生主動(dòng)去發(fā)現(xiàn)重點(diǎn)、突破難點(diǎn)。教師引導(dǎo)學(xué)生發(fā)現(xiàn)重點(diǎn)、突破難點(diǎn)并不是讓教師直接告訴學(xué)生本節(jié)課的重點(diǎn)是什么、怎樣突破難點(diǎn),而是通過(guò)具體問(wèn)題的引導(dǎo)讓學(xué)生自己找到重點(diǎn)、并通過(guò)學(xué)生自己的思考、討論解決疑難問(wèn)題。學(xué)生在教師的引導(dǎo)下通過(guò)自己的努力、討論解決了疑難后,學(xué)生會(huì)非常興奮,從而會(huì)越來(lái)越喜歡數(shù)學(xué)建模課。相反,在沒有教師引導(dǎo)的數(shù)學(xué)建模課堂中,學(xué)生經(jīng)常被困難嚇倒,從而對(duì)數(shù)學(xué)建模課產(chǎn)生畏懼感。由此可見,教師對(duì)學(xué)生的科學(xué)引導(dǎo)是學(xué)生學(xué)好數(shù)學(xué)建模必不可少的環(huán)節(jié)。在以學(xué)生為本、注重學(xué)生全面發(fā)展、提倡課堂中突出學(xué)生主體地位的背景下,教師的引導(dǎo)仍是數(shù)學(xué)建模課堂中不可缺失的要素。數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時(shí)、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。

數(shù)學(xué)建模論文心得篇三

:隨著經(jīng)濟(jì)的快速發(fā)展,我國(guó)的科學(xué)技術(shù)也得到了長(zhǎng)足的進(jìn)步,在計(jì)算機(jī)應(yīng)用方面,從對(duì)計(jì)算機(jī)技術(shù)尚存新鮮感到運(yùn)用成熟,可以說(shuō)有了質(zhì)的飛躍。在日常生活以及技術(shù)操作當(dāng)中,計(jì)算機(jī)已經(jīng)融入其中,廣泛地應(yīng)用于各行各業(yè),筆者以數(shù)學(xué)建模為例,分析了數(shù)學(xué)建模與計(jì)算機(jī)應(yīng)用之間的關(guān)系,與此同時(shí),也探尋了計(jì)算機(jī)應(yīng)用技術(shù)在數(shù)學(xué)建模的輔助之下發(fā)揮的作用,并對(duì)數(shù)學(xué)建模進(jìn)行概念定義,使得讀者能夠?qū)?shù)學(xué)建模的意義有著更深層次的了解,希望能夠起到促進(jìn)二者之間的良性發(fā)展。

數(shù)學(xué)建模;計(jì)算機(jī)技術(shù);計(jì)算機(jī)應(yīng)用

隨著經(jīng)濟(jì)的快速發(fā)展,我國(guó)的科學(xué)技術(shù)也有了長(zhǎng)足的進(jìn)步,而與之密不可分的數(shù)學(xué)學(xué)科也有著不可小覷的進(jìn)步,與此同時(shí),數(shù)學(xué)學(xué)科的延伸領(lǐng)域從物理等逐漸擴(kuò)展到環(huán)境、人口、社會(huì)、經(jīng)濟(jì)范圍,使得其作用力逐漸增強(qiáng)。不僅如此,數(shù)學(xué)學(xué)科由原本的研究事物的性質(zhì)分析逐漸轉(zhuǎn)變到研究定量性質(zhì)范圍,促進(jìn)了多方面多層次的發(fā)展,由此可見,數(shù)學(xué)學(xué)科的重要性質(zhì)。在日常生活中,運(yùn)用數(shù)學(xué)學(xué)科去解決實(shí)際問(wèn)題時(shí),首要完成的就是從復(fù)雜的事物中找到普遍的規(guī)律現(xiàn)象存在,并用最為清晰的數(shù)字、符號(hào)、公式等將潛在的信息表達(dá)出來(lái),再運(yùn)用計(jì)算機(jī)技術(shù)加以呈現(xiàn),形成人們所要完成的結(jié)果。筆者以數(shù)學(xué)建模為例,分析了數(shù)學(xué)建模與計(jì)算機(jī)應(yīng)用之間的關(guān)系,與此同時(shí),也探尋了計(jì)算機(jī)應(yīng)用技術(shù)在數(shù)學(xué)建模的輔助之下發(fā)揮的作用,并對(duì)數(shù)學(xué)建模進(jìn)行概念定義,使得讀者能夠?qū)?shù)學(xué)建模的意義有著更深層次的了解,希望能夠起到促進(jìn)二者之間的良性發(fā)展。

從宏觀角度上來(lái)講,數(shù)學(xué)建模是更側(cè)重于實(shí)際研究方面,并不僅僅是通過(guò)數(shù)字演示來(lái)完成事物的一般發(fā)展規(guī)律,與一般的理論研究截然不同。其研究范圍之廣,能夠深入到各個(gè)領(lǐng)域當(dāng)中,從任何一個(gè)相關(guān)領(lǐng)域中都能夠找到數(shù)學(xué)學(xué)科的發(fā)展軌跡,從中不難看出數(shù)學(xué)學(xué)科的實(shí)際意義與鮮明特點(diǎn)。數(shù)學(xué)為一門注重實(shí)際問(wèn)題研究的學(xué)科,這一性質(zhì)方向決定了其研究的層次,其研究范圍大到漫無(wú)邊際的宇宙,小到對(duì)于個(gè)體微生物或者單細(xì)胞物體,綜合性之強(qiáng)形成了研究范圍廣的特點(diǎn)。多個(gè)學(xué)科之間互相影響,從中找到互相之間存在的相互聯(lián)系,其中有許多不能夠被忽視的數(shù)學(xué)元素,且這些元素都是至關(guān)重要的,所以這個(gè)計(jì)算過(guò)程十分復(fù)雜,計(jì)算量與數(shù)據(jù)驗(yàn)算過(guò)程也十分耗費(fèi)時(shí)間,因此需要充足的存儲(chǔ)空間支持這一過(guò)程的運(yùn)行。在數(shù)學(xué)建模的過(guò)程當(dāng)中,所涉獵的數(shù)學(xué)算法并不是很簡(jiǎn)單,而建立的模型也遵循個(gè)人習(xí)慣,因此建成的模型也不是一成不變的,但是都能夠得出相同的答案。正因如此,在數(shù)學(xué)建模的過(guò)程當(dāng)中,就需要使用各種輔助工具來(lái)完成這一過(guò)程。由于計(jì)算機(jī)軟件具有的高速運(yùn)轉(zhuǎn)空間,使得計(jì)算機(jī)技術(shù)應(yīng)用于數(shù)學(xué)學(xué)科的建模過(guò)程當(dāng)中,與數(shù)學(xué)建模過(guò)程密不可分息息相關(guān)。由此可見,計(jì)算機(jī)技術(shù)的應(yīng)用水平對(duì)于數(shù)學(xué)學(xué)科的重要作用。

2。1計(jì)算機(jī)的獨(dú)特性與數(shù)學(xué)建模的實(shí)際性特點(diǎn)計(jì)算機(jī)的獨(dú)特性與數(shù)學(xué)建模的實(shí)際性特點(diǎn),使得二者之間有著密不可分的聯(lián)系,正是因?yàn)檫@種聯(lián)系使得雙方都能夠有長(zhǎng)足的發(fā)展,在技術(shù)上是起著互相促進(jìn)的作用。計(jì)算機(jī)的廣泛應(yīng)用為數(shù)學(xué)建模提供了較為便利的服務(wù),在使用過(guò)程當(dāng)中,數(shù)學(xué)建模也能夠起到完成對(duì)計(jì)算機(jī)技術(shù)的促進(jìn),能夠在這一過(guò)程中形成更為便捷高速的使用方法與途徑,使得計(jì)算機(jī)技術(shù)應(yīng)用更為靈活,也可以說(shuō)數(shù)學(xué)建模為計(jì)算機(jī)技術(shù)的實(shí)際應(yīng)用提供了更為廣闊的應(yīng)用空間,從中不難發(fā)現(xiàn),數(shù)學(xué)建模對(duì)于計(jì)算機(jī)應(yīng)用技術(shù)的支持性。計(jì)算機(jī)應(yīng)用技術(shù)需要合成的是多方面的技術(shù)支持,而數(shù)學(xué)建模則是需要首要完成的,二者之間是相互影響共同促進(jìn)的作用。

2。2計(jì)算機(jī)為數(shù)學(xué)建模提供了重要的技術(shù)支持?jǐn)?shù)學(xué)建模對(duì)于計(jì)算機(jī)應(yīng)用技術(shù)的重要的指導(dǎo)意義與作用。第一點(diǎn),計(jì)算機(jī)在其技術(shù)的支持之下,有著大量的存儲(chǔ)空間能夠完成存儲(chǔ)資料的這一過(guò)程,許多重要資料在計(jì)算機(jī)技術(shù)的保護(hù)之下,存儲(chǔ)時(shí)間較為長(zhǎng)久,且保護(hù)力度較大,不容易被破壞及減少了不必要的人力以及物力;第二點(diǎn),計(jì)算機(jī)是多媒體的一個(gè)分支,運(yùn)用其成熟的互聯(lián)網(wǎng)思維技術(shù),能夠完成數(shù)學(xué)建模從平面到空間的轉(zhuǎn)化,能夠提供更為成熟的模擬環(huán)境,從而提高實(shí)踐的效率。由于數(shù)學(xué)建模過(guò)程的復(fù)雜化及對(duì)于實(shí)際問(wèn)題的研究方向的特質(zhì),使得對(duì)于各項(xiàng)技術(shù)的要求就很高,所以,需要涉及的操作與數(shù)據(jù)量非常大,過(guò)程也十分復(fù)雜,常見的過(guò)程有三維打印、三維激光掃描等。這些都是需要計(jì)算機(jī)技術(shù)的支持才能夠完成的,所以對(duì)于計(jì)算機(jī)技術(shù)的要求非常高,與此同時(shí),計(jì)算機(jī)應(yīng)用技術(shù)為數(shù)學(xué)建模提供了更為便捷、快速的解決方案與途徑。

2。3數(shù)學(xué)建模為計(jì)算機(jī)的發(fā)展提供了基石計(jì)算機(jī)的產(chǎn)生起源于數(shù)學(xué)建模的過(guò)程,在二十世紀(jì)八十年代,由于導(dǎo)彈在飛行時(shí)的運(yùn)行軌跡的計(jì)算量過(guò)大,人工無(wú)法滿足這一高速率的運(yùn)算條件,基于這一背景條件,產(chǎn)生了計(jì)算機(jī),計(jì)算機(jī)應(yīng)用技術(shù)由此拉開了序幕。數(shù)學(xué)建模的過(guò)程是需要計(jì)算機(jī)來(lái)完成的,在全部的過(guò)程當(dāng)中,計(jì)算機(jī)參與計(jì)算的比重很大,從某種意義程度上來(lái)講,計(jì)算機(jī)技術(shù)對(duì)于數(shù)學(xué)建模的發(fā)展是起著推動(dòng)性的作用的,二者之間是有著聯(lián)系的。

數(shù)學(xué)建模論文心得篇四

摘要:隨著現(xiàn)代社會(huì)的發(fā)展,數(shù)學(xué)的廣泛用途已經(jīng)無(wú)需質(zhì)疑,他深入到我們生活的方方面面?,F(xiàn)階段,數(shù)學(xué)建模已經(jīng)成為應(yīng)用數(shù)學(xué)知識(shí)解決日常問(wèn)題的一個(gè)重要手段。本文通過(guò)簡(jiǎn)述數(shù)學(xué)建模的方法與過(guò)程,以及應(yīng)用數(shù)學(xué)建模解決實(shí)際經(jīng)濟(jì)問(wèn)題的應(yīng)用,展現(xiàn)的了數(shù)學(xué)學(xué)習(xí)的重要意義,以及數(shù)學(xué)在經(jīng)濟(jì)問(wèn)題解決中的重要作用。

關(guān)鍵詞:數(shù)學(xué);數(shù)學(xué)建模;經(jīng)濟(jì);應(yīng)用

經(jīng)濟(jì)現(xiàn)象具有多變性,隨著經(jīng)濟(jì)社會(huì)的發(fā)展,國(guó)際間貿(mào)易往來(lái)的日趨緊密,日常經(jīng)濟(jì)形勢(shì)受到的影響因素越來(lái)越復(fù)雜多變。而日常經(jīng)濟(jì)生活中所遇到的經(jīng)濟(jì)現(xiàn)象同樣存在著諸多的變化的影響因素。如何應(yīng)對(duì)這些難以把控的變量,做好風(fēng)險(xiǎn)的預(yù)估、成本的核算、進(jìn)行最大成本的規(guī)劃,所有這些都可以借助數(shù)學(xué)知識(shí)、應(yīng)用數(shù)學(xué)建模為工具進(jìn)行較為理性的計(jì)算,為經(jīng)濟(jì)決策、企業(yè)規(guī)劃提供重要的幫助。

一、數(shù)學(xué)建模

數(shù)學(xué)建模,其實(shí)就是建立數(shù)學(xué)模型的簡(jiǎn)稱,實(shí)際上數(shù)學(xué)建??梢苑Q之為解決問(wèn)題的一種思考方法,借助數(shù)學(xué)工具應(yīng)用已知的定理定義進(jìn)行合理的運(yùn)算,推導(dǎo)出一種理性的結(jié)果的過(guò)程。數(shù)學(xué)建模是可以聯(lián)系數(shù)學(xué)和外部世界的一個(gè)中介和橋梁,在工業(yè)設(shè)計(jì)、經(jīng)濟(jì)領(lǐng)域、工程建設(shè)等各個(gè)方面,運(yùn)用數(shù)學(xué)的語(yǔ)言和方法進(jìn)行問(wèn)題的求解和推導(dǎo),實(shí)際上,都是一種數(shù)學(xué)建模的過(guò)程。數(shù)學(xué)建模的主要過(guò)程可以總結(jié)為如下的框圖形式:實(shí)際上,數(shù)學(xué)模型的最終建立是一個(gè)反復(fù)驗(yàn)證、修改、完善的動(dòng)態(tài)過(guò)程,很少能夠通過(guò)一次過(guò)程就建立起完美適合實(shí)際問(wèn)題的數(shù)學(xué)模型。通過(guò)上述過(guò)程的多次循環(huán)執(zhí)行:1.模型準(zhǔn)備:分析問(wèn)題,明確建模的目的,統(tǒng)計(jì)各種信息數(shù)據(jù);2.模型假設(shè):根據(jù)建模目的,結(jié)合實(shí)際對(duì)象的特性,對(duì)復(fù)雜問(wèn)題進(jìn)行簡(jiǎn)化,提取主要因素,提煉精確的數(shù)學(xué)語(yǔ)言;3.模型建立:根據(jù)提煉的主要因素,選擇適當(dāng)?shù)臄?shù)學(xué)工具,建立各個(gè)量(變量、常量)間的數(shù)學(xué)關(guān)系,化實(shí)際問(wèn)題為數(shù)學(xué)語(yǔ)言;4.模型求解:對(duì)上述數(shù)學(xué)關(guān)系進(jìn)行求解(包括解方程、圖形分析、邏輯運(yùn)算等);5.模型分析:將求解結(jié)果與實(shí)際問(wèn)題結(jié)合,綜合分析,找到模型的缺陷和不足,進(jìn)行數(shù)學(xué)上的優(yōu)化,建立穩(wěn)定模型;6.模型檢驗(yàn):將模型得到的結(jié)果與實(shí)際情況相驗(yàn)證,檢驗(yàn)?zāi)P偷暮侠硇院瓦m用性。

二、經(jīng)濟(jì)問(wèn)題數(shù)學(xué)模型的建立

經(jīng)濟(jì)類問(wèn)題因?yàn)槠涮赜械奶攸c(diǎn),可以按照變量的性質(zhì)分為兩類:概率型和確定型。概率型應(yīng)用于處理具有隨機(jī)性情況的模型,可以解決類似風(fēng)險(xiǎn)評(píng)估、最優(yōu)產(chǎn)量計(jì)算、庫(kù)存平衡等問(wèn)題;確定型則可以基于一定的條件與假設(shè),精確的對(duì)一種特定情況的結(jié)果做出判斷,如成本核算、損失評(píng)估等。對(duì)經(jīng)濟(jì)問(wèn)題的建模計(jì)算實(shí)際上是一個(gè)從經(jīng)濟(jì)世界進(jìn)入數(shù)學(xué)世界再回到經(jīng)濟(jì)世界的過(guò)程。建立經(jīng)濟(jì)數(shù)學(xué)模型,需要首先對(duì)實(shí)際經(jīng)濟(jì)問(wèn)題和情況有一個(gè)較為深入的認(rèn)識(shí),然后通過(guò)細(xì)致的觀察梳理,抽出最為本質(zhì)的特征性的東西。將原始的復(fù)雜的經(jīng)濟(jì)問(wèn)題簡(jiǎn)化提煉為一個(gè)較為理想的自然模型,然后基于這個(gè)原始模型應(yīng)用數(shù)學(xué)知識(shí)建立完整的數(shù)學(xué)經(jīng)濟(jì)模型。

三、建模舉例

四、結(jié)語(yǔ)

綜上所述,我們可以看到,數(shù)學(xué)建模在經(jīng)濟(jì)中的應(yīng)用可以非常廣泛,對(duì)很多的決策和工作都可以提供參考和指導(dǎo),如提高利潤(rùn)、規(guī)避風(fēng)險(xiǎn)、降低成本、節(jié)省開支等各個(gè)方面。上文只提供了一個(gè)簡(jiǎn)單的例子,和初步的介紹,其深入的理念和概念更加值得我們?nèi)ヅΦ膶W(xué)習(xí)和思考。

數(shù)學(xué)建模論文心得篇五

摘要:在新課改以后,要求教師要在教學(xué)中重視學(xué)生的主體地位,提升學(xué)生學(xué)習(xí)興趣,培養(yǎng)他們的自主學(xué)習(xí)能力。本文從初中數(shù)學(xué)教學(xué)過(guò)程中數(shù)學(xué)建模入手,對(duì)如何將數(shù)學(xué)建模運(yùn)用到學(xué)生解題過(guò)程中進(jìn)行了分析。

關(guān)鍵詞:數(shù)學(xué);建模;運(yùn)用

數(shù)學(xué)建模是指利用數(shù)學(xué)模型的形式去解決實(shí)際中遇到的問(wèn)題,換句話說(shuō),就是利用數(shù)學(xué)思維、數(shù)學(xué)方法解決各種數(shù)學(xué)問(wèn)題。數(shù)學(xué)建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過(guò)一段時(shí)間的觀察我們可以發(fā)現(xiàn),數(shù)學(xué)建模的方法能夠有效的提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)能力。這種方式能夠?qū)?fù)雜的數(shù)學(xué)問(wèn)題利用簡(jiǎn)單的方式找到解決方案,是提高初中數(shù)學(xué)課堂效率及課堂質(zhì)量的有效手段。初中數(shù)學(xué)是初中學(xué)習(xí)中的重要課程之一,也是培養(yǎng)學(xué)生數(shù)學(xué)思維的重要階段??梢哉f(shuō),初中數(shù)學(xué)的學(xué)習(xí)是學(xué)生學(xué)習(xí)數(shù)學(xué)的關(guān)鍵,對(duì)今后的學(xué)習(xí)起到極大的影響。因此,對(duì)于初中數(shù)學(xué)教師來(lái)說(shuō),不斷的完善教學(xué)手段,提高數(shù)學(xué)課堂質(zhì)量是教學(xué)工作中的重中之重。而數(shù)學(xué)建模就是為了解決數(shù)學(xué)在生活中的實(shí)際問(wèn)題,能夠讓學(xué)生感受到數(shù)學(xué)本身的魅力,培養(yǎng)他們的數(shù)學(xué)思維,提高數(shù)學(xué)學(xué)習(xí)能力,從而讓初中數(shù)學(xué)教學(xué)質(zhì)量也得到大幅度的提升。初中數(shù)學(xué)與數(shù)學(xué)建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進(jìn),如何有效的.將數(shù)學(xué)建模運(yùn)用在初中數(shù)學(xué)教學(xué)過(guò)程中,是每個(gè)初中數(shù)學(xué)教師都值得思考的問(wèn)題。

一、培養(yǎng)學(xué)生數(shù)學(xué)建模意識(shí)

數(shù)學(xué)建模是為了解決數(shù)學(xué)中遇到的問(wèn)題,數(shù)學(xué)本身特別是初中數(shù)學(xué)也是一門較貼近學(xué)生生活的學(xué)科。因此在數(shù)學(xué)學(xué)習(xí)中,教師要首先培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)習(xí)意識(shí),讓他們感受到數(shù)學(xué)與生活的緊密聯(lián)系,然后再引導(dǎo)學(xué)生用數(shù)學(xué)建模去解決遇到的問(wèn)題。在這一過(guò)程中,數(shù)學(xué)教師要注意以下兩個(gè)問(wèn)題:(一)在教學(xué)中一定要貼近學(xué)生的生活,課堂中所提出的問(wèn)題也必須要符合生活實(shí)際,讓學(xué)生對(duì)所學(xué)內(nèi)容感到親切。積極引導(dǎo)學(xué)生利用多種方式解決同一問(wèn)題,尤其是利用數(shù)學(xué)建模的方式,以達(dá)到培養(yǎng)他們的數(shù)學(xué)思維以及想象能力的目的。(二)在學(xué)生進(jìn)行數(shù)學(xué)建模的過(guò)程中要利用多鼓勵(lì)的方式調(diào)動(dòng)他們對(duì)數(shù)學(xué)學(xué)習(xí)的積極性,讓他們?cè)跀?shù)學(xué)建模中獲得成就感,增加自信心,以此來(lái)提高學(xué)生在今后學(xué)習(xí)中使用數(shù)學(xué)建模方法的熱情。

二、提高學(xué)生想象力,用數(shù)學(xué)建模簡(jiǎn)化問(wèn)題

對(duì)于初中生來(lái)說(shuō),他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學(xué)學(xué)習(xí)中,如果能將想象力與數(shù)學(xué)學(xué)習(xí)結(jié)合在一起,一定會(huì)得到意想不到的效果。教師可以根據(jù)初中生這一特點(diǎn),提高他們的想象力,然后再引導(dǎo)他們利用數(shù)學(xué)建模解決問(wèn)題,讓題目簡(jiǎn)單化。具體來(lái)說(shuō),就是在面對(duì)復(fù)雜的數(shù)學(xué)問(wèn)題時(shí),教師可以先為學(xué)生創(chuàng)建教學(xué)情境,以這樣的方式提高學(xué)生的學(xué)習(xí)興趣,讓他們?cè)敢庵鲃?dòng)去深入的研究遇到的題目。之后教師再去對(duì)他們進(jìn)行引導(dǎo),讓他們能夠理解題目中所提問(wèn)題的含義,并能夠運(yùn)用他們的想象能力思考解決問(wèn)題的方式。最后再引導(dǎo)他們進(jìn)行數(shù)學(xué)建模,解決問(wèn)題。這樣的方式充分的利用了學(xué)生的想象能力,將所需解決的問(wèn)題簡(jiǎn)單化。

三、選擇合適的題目作為建模案例

在數(shù)學(xué)建模過(guò)程中,教師也要時(shí)刻牢記題目應(yīng)該貼近學(xué)生的生活,符合實(shí)際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學(xué)建模的過(guò)程中去,然后再反復(fù)練習(xí)之后達(dá)到提高他們建模能力的目的。在選擇數(shù)學(xué)建模案例時(shí)教師主要應(yīng)該注意以下兩點(diǎn):首先,教師在選擇建模案例時(shí)要盡量選擇比較典型的問(wèn)題,能夠讓學(xué)生在學(xué)習(xí)了該題目以后掌握這一類的解題方法,達(dá)到初中數(shù)學(xué)教學(xué)的目的。所以,這就需要教師對(duì)題目進(jìn)行深入的分析,看是否在擁有趣味性、真實(shí)性的同時(shí)符合教學(xué)要求。其次,題目最好能夠擁有可變性,教師能夠通過(guò)對(duì)題目中已知條件的改變讓學(xué)生進(jìn)行不同方面的建模練習(xí),以此提高他們數(shù)學(xué)建模的能力。

四、引導(dǎo)學(xué)生主動(dòng)進(jìn)行數(shù)學(xué)建模

在教師經(jīng)過(guò)反復(fù)的教學(xué)后,學(xué)生都已經(jīng)擁有了基本的數(shù)學(xué)建模知識(shí),了解了數(shù)學(xué)建模過(guò)程,并且能夠在解題過(guò)程中簡(jiǎn)單的使用數(shù)學(xué)建模。此時(shí),教師在教學(xué)中就可以引導(dǎo)學(xué)生利用數(shù)學(xué)建模解決數(shù)學(xué)題目了。引導(dǎo)學(xué)生用數(shù)學(xué)建模方法解決數(shù)學(xué)問(wèn)題,就要在解題過(guò)程中多對(duì)學(xué)生進(jìn)行這一方面的鼓勵(lì),讓他們提高建模信心。在這一過(guò)程中,教師還可以嘗試讓學(xué)生之間利用合作的方式讓他們進(jìn)行數(shù)學(xué)建模方法的探討,并在探討的過(guò)程中吸取他人的經(jīng)驗(yàn),提高自己數(shù)學(xué)建模水平,同時(shí)這樣的方式能夠讓數(shù)學(xué)建模深入到每一個(gè)學(xué)生的心中,逐漸影響每一個(gè)學(xué)生的解題思路,讓他們能夠在解題過(guò)程中熟練運(yùn)用建模的方式,提高解題能力。數(shù)學(xué)建模的方法能夠有效的改變過(guò)去的傳統(tǒng)教學(xué)思路,增加學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣,提高數(shù)學(xué)解題能力。這種教學(xué)方法對(duì)于初中數(shù)學(xué)教師來(lái)說(shuō),值得不斷的探討研究,并應(yīng)用在教學(xué)中,以此提高數(shù)學(xué)課堂的教學(xué)效率和教學(xué)質(zhì)量。

數(shù)學(xué)建模論文心得篇六

培養(yǎng)應(yīng)用型人才是我國(guó)高等教育從精英教育向大眾教育發(fā)展的必然產(chǎn)物,也是知識(shí)經(jīng)濟(jì)飛速發(fā)展和市場(chǎng)對(duì)人才多元化需求的必然要求。隨著科學(xué)技術(shù)的不斷發(fā)展,各學(xué)科各領(lǐng)域?qū)?shí)際問(wèn)題的研究日益精確化與定量化,數(shù)學(xué)在科學(xué)研究與工程技術(shù)中的作用不斷增強(qiáng),其應(yīng)用的范圍幾乎覆蓋了所有學(xué)科分支,滲透到社會(huì)生活中的各個(gè)領(lǐng)域。前蘇聯(lián)數(shù)學(xué)家亞歷山大洛夫曾說(shuō)過(guò),“數(shù)學(xué)在其它科學(xué)中,在技術(shù)中,在全部生活實(shí)踐中都有廣泛的應(yīng)用”。1993年,王梓坤院士發(fā)表的著名報(bào)告《今日數(shù)學(xué)及其應(yīng)用》中也深刻指出:“現(xiàn)代世界國(guó)家間的競(jìng)爭(zhēng)本質(zhì)上是高技術(shù)的競(jìng)爭(zhēng),而高技術(shù)本質(zhì)上是一種數(shù)學(xué)技術(shù)?!睌?shù)學(xué)是一門技術(shù)已經(jīng)成為人們的共識(shí)。數(shù)學(xué)技術(shù)離不開數(shù)學(xué)建模,數(shù)學(xué)建模是把數(shù)學(xué)作為工具,并應(yīng)用它解決實(shí)際問(wèn)題的一種活動(dòng),它是一個(gè)跨學(xué)科、跨專業(yè)、綜合性和應(yīng)用性都非常強(qiáng)的過(guò)程,是數(shù)學(xué)應(yīng)用的必由之路,是聯(lián)系數(shù)學(xué)與實(shí)際問(wèn)題的橋梁,是數(shù)學(xué)在各個(gè)領(lǐng)域廣泛應(yīng)用的媒介。因此,數(shù)學(xué)建模的過(guò)程是一個(gè)全而培養(yǎng)學(xué)生綜合素質(zhì)、提高學(xué)生各種能力的過(guò)程,數(shù)學(xué)建模是培養(yǎng)生產(chǎn)一線應(yīng)用型人才的一條重要途徑。

應(yīng)用型人才是將專業(yè)知識(shí)和專業(yè)技能應(yīng)用于社會(huì)實(shí)踐的專門人才是熟練掌握社會(huì)生產(chǎn)或社會(huì)活動(dòng)一線的基礎(chǔ)知識(shí)和基本技能,主要從事一線生產(chǎn)的技術(shù)或?qū)iT人才社會(huì)對(duì)應(yīng)用型人才的基本要求是具有基礎(chǔ)扎實(shí),知識(shí)而寬,應(yīng)用能力強(qiáng),素質(zhì)高,有較強(qiáng)的創(chuàng)新精神和團(tuán)隊(duì)合作精神。他們的突出特點(diǎn)是既具有寬廣的知識(shí)而和深厚的基礎(chǔ)理論,又能將所學(xué)知識(shí)應(yīng)用于本行業(yè)相關(guān)技術(shù)領(lǐng)域,適應(yīng)產(chǎn)業(yè)發(fā)展對(duì)應(yīng)用型人才市場(chǎng)需求的不斷變化,還有接受繼續(xù)教育的基礎(chǔ)條件和進(jìn)一步獲取新知識(shí)的基本能力和擴(kuò)展與職業(yè)相關(guān)的學(xué)科知識(shí)能力。

隨著高等教育的不斷擴(kuò)招,高等教育的大眾化趨勢(shì)已越來(lái)越明顯,在這種背景下,傳統(tǒng)的“研究型”、“學(xué)術(shù)型”人才培養(yǎng)模式受到了嚴(yán)峻的挑戰(zhàn),因此,一些發(fā)達(dá)國(guó)家率先提出了“發(fā)展應(yīng)用型大學(xué)”,“培養(yǎng)應(yīng)用型人才”的口號(hào)。德國(guó)早在20世紀(jì)70年代就成立了應(yīng)用科技大學(xué),其應(yīng)用型人才的培養(yǎng)特色鮮明,深受歡迎。美國(guó)的工程教育,英國(guó)的技術(shù)學(xué)院,日本的短期大學(xué)都以培養(yǎng)應(yīng)用型人才而著稱。近年來(lái),我國(guó)高等院校對(duì)應(yīng)用型人才的培養(yǎng)取得了一定的進(jìn)展,但仍然存在認(rèn)識(shí)上的不足,培養(yǎng)方案和措施仍有許多不盡如人意的地方,應(yīng)用型人才的培養(yǎng)模式還有待于進(jìn)一步探索。通過(guò)多年的實(shí)踐和探索,根據(jù)應(yīng)用型人才的特點(diǎn)和社會(huì)日益數(shù)字化,對(duì)應(yīng)用型人才的要求以及數(shù)學(xué)在各行各業(yè)中的廣泛應(yīng)用、數(shù)學(xué)建模在應(yīng)用型人才培養(yǎng)中具有不可替代的重要作用。

數(shù)學(xué)建模就是用數(shù)學(xué)語(yǔ)言、方法近似地刻畫要解決的實(shí)際問(wèn)題,對(duì)于已建立的模型采用推理、證明、數(shù)值計(jì)算等技術(shù)手段及相應(yīng)的數(shù)學(xué)軟件求解,并利用所得的結(jié)果擬合實(shí)際問(wèn)題。數(shù)學(xué)建模在應(yīng)用型人才培養(yǎng)中的作用主要體現(xiàn)在以下幾個(gè)方面:

由于實(shí)際問(wèn)題的'復(fù)雜性,在數(shù)學(xué)建模過(guò)程中要涉及到大量的數(shù)據(jù)收集和對(duì)數(shù)據(jù)的分析與處理,一個(gè)完整的建模過(guò)程一般要經(jīng)歷模型的假設(shè)、模型的建立與求解、算法的設(shè)計(jì)和計(jì)算機(jī)實(shí)現(xiàn)、對(duì)結(jié)果的分析與檢驗(yàn)并將所得的結(jié)果模擬實(shí)際問(wèn)題等幾個(gè)階段。這些過(guò)程只靠個(gè)人的力量在有限時(shí)間內(nèi)是很難完成的,這就注定了數(shù)學(xué)建模是一個(gè)團(tuán)隊(duì)的集體行為,需要有師生之間、學(xué)生之間以及學(xué)生與社會(huì)之間的交流與合作。因此數(shù)學(xué)建模有利于提高學(xué)生的團(tuán)隊(duì)合作精神,而團(tuán)隊(duì)合作精神又是社會(huì)對(duì)應(yīng)用型人才的基本要求。

數(shù)學(xué)建模所面臨的數(shù)據(jù)是雜亂無(wú)章的,這就要求學(xué)生對(duì)這些數(shù)據(jù)進(jìn)行去粗取精,去偽存真,歸納、提煉、整理、加工和總結(jié),還需要對(duì)一些已知條件進(jìn)行符號(hào)化和量化,然后從中抽象出恰當(dāng)?shù)臄?shù)學(xué)關(guān)系,從而組建一定的數(shù)學(xué)模型,再用所學(xué)的數(shù)學(xué)理論和方法去求解數(shù)學(xué)模型。在對(duì)實(shí)際問(wèn)題中的數(shù)據(jù)進(jìn)行加工和整理過(guò)程中,為使問(wèn)題簡(jiǎn)化,有些因素是可以忽略的,但有些因素不能忽略,究竟哪些因素可以忽略、哪些因素不能忽略并沒有一定的范式,這要根據(jù)建模者對(duì)實(shí)際問(wèn)題的理解、研究問(wèn)題的目的以及數(shù)學(xué)背景來(lái)完成這個(gè)過(guò)程,應(yīng)該說(shuō)這是一個(gè)創(chuàng)造性的過(guò)程。另外,數(shù)學(xué)模型是對(duì)實(shí)際問(wèn)題的近似刻畫,為了使建立的數(shù)學(xué)模型盡可能完美地表達(dá)實(shí)際問(wèn)題,又使模型易于求解,需要對(duì)模型進(jìn)行不斷的改進(jìn)和不斷的完善,這就要求學(xué)生不斷對(duì)問(wèn)題進(jìn)行深入的了解,深入到知識(shí)的更深層面,這樣又會(huì)產(chǎn)生新的疑問(wèn),這個(gè)過(guò)程多次循環(huán)們復(fù),學(xué)生的創(chuàng)新能力將不斷得到加強(qiáng)。創(chuàng)新能力也是社會(huì)對(duì)應(yīng)用型人才的基本要求。

一個(gè)完整的數(shù)學(xué)建模過(guò)程是綜合運(yùn)用知識(shí)和能力,解決實(shí)際問(wèn)題的過(guò)程。這不僅需要學(xué)生有較好的數(shù)學(xué)基礎(chǔ)和嚴(yán)密的邏輯推理能力,還要求學(xué)生對(duì)問(wèn)題的實(shí)際背景有一定的了解,要求學(xué)生有廣博的知識(shí)和深厚的專業(yè)基礎(chǔ),并能對(duì)這些知識(shí)進(jìn)行融會(huì)貫通。數(shù)學(xué)建模面臨的數(shù)據(jù)}i-.}i是龐大而復(fù)雜的,對(duì)數(shù)據(jù)的處理過(guò)程是一個(gè)分析與綜合,抽象與概括,比較與類比,系統(tǒng)化與具體化的過(guò)程。在這個(gè)過(guò)程中,學(xué)生的應(yīng)變能力和多角度分析,多方位思考能力不斷得到提高,綜合素質(zhì)不斷得到加強(qiáng)。綜合素質(zhì)和能力是應(yīng)用型人才的基本特征和社會(huì)對(duì)應(yīng)用型人才的起碼要求。

從實(shí)際問(wèn)題中抽象出來(lái)的數(shù)學(xué)模型一般很復(fù)雜,因此模型的求解一般很困難,甚至無(wú)法求出模型的解析解,即使能求出模型的解析解,由于其復(fù)雜性而無(wú)多大的應(yīng)用價(jià)值。所以數(shù)學(xué)模型的求解通常需要編寫算法,運(yùn)用某些數(shù)學(xué)軟件利用計(jì)算機(jī)求其數(shù)值解,這就要求學(xué)生有較強(qiáng)的數(shù)學(xué)軟件應(yīng)用能力和對(duì)計(jì)算機(jī)的實(shí)際操作能力。在操作的過(guò)程中,學(xué)生的動(dòng)手能力和實(shí)踐能力自然而然得到提高。另外在數(shù)學(xué)建模中,需要進(jìn)行調(diào)查研究,需要對(duì)有關(guān)的數(shù)據(jù)進(jìn)行廣泛的采集和補(bǔ)充,這就是應(yīng)用型人才培養(yǎng)中所強(qiáng)調(diào)的實(shí)踐性。

數(shù)學(xué)建模本身就是綜合運(yùn)用知識(shí),解決實(shí)際問(wèn)題的過(guò)程。數(shù)學(xué)建模中的很多典型案例,如“最優(yōu)捕魚策略”,“投資的收入和風(fēng)險(xiǎn)”,“車燈線光源的優(yōu)化設(shè)計(jì)”等就較好地突現(xiàn)了知識(shí)的應(yīng)用性。數(shù)學(xué)建模是數(shù)學(xué)應(yīng)用的必由之路,是聯(lián)系數(shù)學(xué)與實(shí)際問(wèn)題的橋梁。一方面數(shù)學(xué)建模需要用數(shù)學(xué)語(yǔ)言、方法近似地刻畫要解決的實(shí)際問(wèn)題,另一方面數(shù)學(xué)建模需要利用所得的結(jié)果擬合實(shí)際問(wèn)題,所有這些都與應(yīng)用型人才的突出特點(diǎn)和社會(huì)對(duì)應(yīng)用型人才的要求是一致的。

數(shù)學(xué)建模需要學(xué)生親自參與問(wèn)題的研究與探索,數(shù)據(jù)的收集和補(bǔ)充需要學(xué)生的積極參與,數(shù)據(jù)的處理和模型的建立需要學(xué)生的主動(dòng)參與,模型的求解需要學(xué)生獨(dú)立完成。數(shù)學(xué)建模一般需要綜合運(yùn)用多方面的知識(shí),需要了解相關(guān)問(wèn)題的背景材料,需要對(duì)相關(guān)的數(shù)據(jù)進(jìn)行合理的取舍和有效的篩選,有些知識(shí)和相關(guān)的資料需要學(xué)生自己去查詢,所有這些都為學(xué)生的自主學(xué)習(xí)提供了一個(gè)良好的“下臺(tái)。另外,數(shù)學(xué)建模需要用自己的語(yǔ)言描述問(wèn)題的解決過(guò)程,需要廣泛的交流與合作,還需要進(jìn)行論文的寫作等等,這些都對(duì)學(xué)生語(yǔ)言表達(dá)能力的提高具有重要的作用。應(yīng)用型人才的一個(gè)突出特點(diǎn)就是具有接受繼續(xù)教育的基礎(chǔ)條件和進(jìn)一步獲取新知識(shí)的基本能力和擴(kuò)展與職業(yè)相關(guān)的學(xué)科知識(shí)能力,而自學(xué)能力和語(yǔ)言表達(dá)能力為進(jìn)一步獲取新知識(shí)等能力提供了良好的基礎(chǔ)。

應(yīng)該說(shuō),數(shù)學(xué)建模的作用是多方面的,通過(guò)數(shù)學(xué)建模的訓(xùn)練,學(xué)生獲得了參與研究探索的體驗(yàn),培養(yǎng)了收集、分析和利用信息的能力,學(xué)會(huì)了分享與合作,鍛煉了學(xué)生的意志力、洞察力、想象力、自學(xué)能力、語(yǔ)言的翻譯和表達(dá)能力以及綜合應(yīng)用專業(yè)知識(shí)解決實(shí)際問(wèn)題的能力與分析問(wèn)題、解決問(wèn)題的能力,所有這一切都是應(yīng)用型人才培養(yǎng)所要達(dá)到的目標(biāo),也是與應(yīng)用型人才培養(yǎng)模式的四個(gè)基本點(diǎn)是一致的。因此數(shù)學(xué)建模能將應(yīng)用型人才的突出特征和社會(huì)對(duì)應(yīng)用型人才的要求體現(xiàn)得淋漓盡致,它在應(yīng)用型人才的培養(yǎng)中具有不可替代的重要作用。

1.馬克思有一句名言,“一門科學(xué)只有成功地應(yīng)用了數(shù)學(xué)時(shí),才算真正達(dá)到了完善的地步”。不論是自然科學(xué)還是社會(huì)科學(xué)都需要數(shù)學(xué),都蘊(yùn)含數(shù)學(xué)。一門科學(xué)要成功地應(yīng)用數(shù)學(xué),必須對(duì)這門學(xué)科中的問(wèn)題建立數(shù)學(xué)模型。因此,建議高等院校的各個(gè)專業(yè)都要不同程度地開設(shè)數(shù)學(xué)建模課程,并根據(jù)專業(yè)的不同要求選擇合適的數(shù)學(xué)建模內(nèi)容,真正做到“人人學(xué)有用的數(shù)學(xué),人人做有用的數(shù)學(xué),人人用有用的數(shù)學(xué)”。

2.數(shù)學(xué)建模課程應(yīng)增加實(shí)訓(xùn)內(nèi)容,數(shù)學(xué)建模的學(xué)習(xí)應(yīng)以實(shí)訓(xùn)內(nèi)容為主。教師應(yīng)根據(jù)學(xué)生的具體情況,女排布置具有綜合性、開放性、靈活性和趣味性的實(shí)訓(xùn)題目,讓學(xué)生自己進(jìn)行調(diào)查研究,自己收集數(shù)據(jù)、分析數(shù)據(jù)和處理數(shù)據(jù),模型的建立和求解要以學(xué)生為主體,并以論文的形式提交給教師,教師提供實(shí)時(shí)指導(dǎo)和幫助,對(duì)建模的結(jié)果進(jìn)行有的放矢的點(diǎn)評(píng),并將實(shí)訓(xùn)內(nèi)容作為學(xué)生期末考評(píng)的主要內(nèi)容和重要依據(jù)。

3.舉辦多種形式的數(shù)學(xué)建模競(jìng)賽,豐富數(shù)學(xué)建模的教學(xué)內(nèi)容和教學(xué)方式,引進(jìn)案例教學(xué)和專題講座,通過(guò)對(duì)典型案例的深入剖析,激發(fā)學(xué)生的學(xué)習(xí)興趣和積極性,培養(yǎng)學(xué)生的數(shù)學(xué)建模思想和堅(jiān)忍不拔的毅力,聘請(qǐng)專家對(duì)一些典型問(wèn)題進(jìn)行專題講座。

數(shù)學(xué)建模論文心得篇七

2.1、建立引導(dǎo)機(jī)制,激發(fā)學(xué)習(xí)動(dòng)力。

2.2、建立轉(zhuǎn)化機(jī)制,促進(jìn)知識(shí)向能力的轉(zhuǎn)化。

2.3、建立協(xié)作機(jī)制,增強(qiáng)團(tuán)隊(duì)意識(shí)。

高校學(xué)生在平時(shí)的學(xué)習(xí)過(guò)程中,絕大多數(shù)情況下,基本上都是獨(dú)自學(xué)習(xí),與他人合作研究和解決問(wèn)題機(jī)會(huì)很少.而在各種層次級(jí)別的數(shù)學(xué)建模競(jìng)賽中,參賽學(xué)生要3人一組,以團(tuán)隊(duì)而不是個(gè)人身份參賽.在正式比賽之前,要按照學(xué)科、特長(zhǎng)等因素尋找隊(duì)友,組成隊(duì)伍.在比賽期間,由于隊(duì)友經(jīng)常是來(lái)自不同專業(yè),知識(shí)能力水平各有所長(zhǎng),脾氣秉性各有特點(diǎn),需要在比賽時(shí)認(rèn)真溝通,相互協(xié)調(diào),合理分工,團(tuán)結(jié)協(xié)作共同完成整個(gè)比賽.為了比賽,在發(fā)生矛盾時(shí),要學(xué)會(huì)忍耐和妥協(xié),而不能意氣用事.在整個(gè)比賽期間,求同存異,取長(zhǎng)補(bǔ)短,優(yōu)勢(shì)互補(bǔ),最終合作完成任務(wù).這個(gè)過(guò)程,無(wú)形中就培養(yǎng)了學(xué)生的合作意識(shí)和團(tuán)隊(duì)精神,使學(xué)生親身感受到現(xiàn)代社會(huì)與人合作是大多數(shù)人成功的必要選擇.依托數(shù)學(xué)建模競(jìng)賽,培養(yǎng)創(chuàng)新型人才的團(tuán)隊(duì)協(xié)作意識(shí),建立培養(yǎng)人才的.合作交流機(jī)制,這是適應(yīng)社會(huì)和時(shí)代需要的人才培養(yǎng)過(guò)程中的重要環(huán)節(jié)之一。

2.4、建立溝通表達(dá)機(jī)制,提高學(xué)生的語(yǔ)言及文字表達(dá)能力。

2.5、建立問(wèn)題導(dǎo)向機(jī)制,培養(yǎng)學(xué)生主動(dòng)式學(xué)習(xí)的自主學(xué)習(xí)能力。

3.1、促進(jìn)了學(xué)生全面發(fā)展。

3.2、提高了學(xué)生的就業(yè)質(zhì)量。

數(shù)學(xué)建模論文心得篇八

運(yùn)籌學(xué)與數(shù)學(xué)建模2門課程聯(lián)系密切,在運(yùn)籌學(xué)教學(xué)中,適當(dāng)融入數(shù)學(xué)建模思想,能大幅度提高學(xué)生應(yīng)用數(shù)學(xué)解決實(shí)際問(wèn)題的能力.從運(yùn)籌學(xué)教學(xué)中教學(xué)大綱的改革、教學(xué)環(huán)節(jié)的設(shè)計(jì)等方面進(jìn)行了探索與實(shí)踐.教學(xué)實(shí)踐表明,將數(shù)學(xué)建模思想融入到運(yùn)籌學(xué)教學(xué)中能提高課堂教學(xué)的效果,鍛煉學(xué)生的動(dòng)手實(shí)踐能力.

數(shù)學(xué)建模;運(yùn)籌學(xué);教學(xué)實(shí)踐

數(shù)學(xué)建模論文心得篇九

數(shù)學(xué),源于人們對(duì)生產(chǎn)與生活實(shí)際問(wèn)題,抽象出的數(shù)量關(guān)系與空間結(jié)構(gòu)發(fā)展而成的.近年來(lái),信息技術(shù)飛速發(fā)展,推動(dòng)了應(yīng)用數(shù)學(xué)的發(fā)展,使數(shù)學(xué)日益滲透到社會(huì)各個(gè)領(lǐng)域.中考實(shí)際應(yīng)用題目更貼近日常生活,具有時(shí)代性、靈活性,涉及的模型有方程、函數(shù)、不等式、統(tǒng)計(jì)、幾何等模型.數(shù)學(xué)課程標(biāo)準(zhǔn)指出,教師在教學(xué)中應(yīng)引導(dǎo)學(xué)生從實(shí)際背景中理清數(shù)學(xué)關(guān)系、把握變化規(guī)律,能從實(shí)際問(wèn)題中建立數(shù)學(xué)模型.教師要為學(xué)生創(chuàng)造用數(shù)學(xué)的氛圍,引導(dǎo)學(xué)生參與自主學(xué)習(xí)、自主探索、自主提問(wèn)、自主解決,體驗(yàn)做數(shù)學(xué)的過(guò)程,從而提高解決實(shí)際問(wèn)題的能力.

一、影響數(shù)學(xué)建模教學(xué)的成因探析

一是教師未能實(shí)現(xiàn)角色轉(zhuǎn)換.建模教學(xué)離不開學(xué)生“做”數(shù)學(xué)的過(guò)程,因而教師在教學(xué)中要留有讓學(xué)生思考、想象的空間,讓他們自主選擇方法.然而部分教師對(duì)學(xué)生缺乏信任,由“引導(dǎo)者”變?yōu)椤肮噍斦摺?,將解題過(guò)程直接教給學(xué)生,影響了學(xué)生建模能力的提高.二是教師的專業(yè)素養(yǎng)有待提高.開展建模教學(xué),需要教師具有一定的專業(yè)素養(yǎng),能駕馭課堂教學(xué),激發(fā)學(xué)生的興趣,啟發(fā)學(xué)生進(jìn)行思考,誘發(fā)學(xué)生進(jìn)行探索,但是部分教師專業(yè)素養(yǎng)有待提高,或認(rèn)為建模就是解應(yīng)用題,或重生活味輕數(shù)學(xué)味,或使討論活動(dòng)流于形式.三是學(xué)生的抽象能力較差.在建模教學(xué)中,教師須呈現(xiàn)生活中的實(shí)際問(wèn)題,其題目長(zhǎng)、信息量大、數(shù)據(jù)多,需要學(xué)生經(jīng)歷閱讀提取有用的信息,但是部分學(xué)生感悟能力差,不能明析已知與未知之間的關(guān)系,影響了學(xué)生成功建模.

二、數(shù)學(xué)建模教學(xué)的有效原則

1.自主探索原則.

學(xué)生長(zhǎng)期處于師講、生聽的教學(xué)模式,淪為被動(dòng)接受知識(shí)的“容器”,難有創(chuàng)造的意識(shí).在教學(xué)中,教師要為學(xué)生創(chuàng)設(shè)輕松愉悅的探究氛圍,讓學(xué)生手腦并用,在探索、交流、操作中提高解決問(wèn)題的`能力.

2.因材施教原則.

教師要著眼于學(xué)生原有的認(rèn)知結(jié)構(gòu),要貼近學(xué)生的最近發(fā)展區(qū),引導(dǎo)他們從舊知的角度思考,找出問(wèn)題的解決方法。

3.可接受性原則.

數(shù)學(xué)建模內(nèi)容的設(shè)計(jì),要符合學(xué)生的年齡特點(diǎn)和認(rèn)知能力,能讓學(xué)生理解所探究的內(nèi)容.若設(shè)計(jì)的問(wèn)題不切實(shí)際,往往會(huì)扼殺學(xué)生的興趣,教師要密切聯(lián)系教學(xué)內(nèi)容、生活實(shí)際,讓學(xué)生有能力解決問(wèn)題.

數(shù)學(xué)建模論文心得篇十

高校學(xué)生社團(tuán)是一種具有共同興趣愛好的學(xué)生自發(fā)組織的開展一些藝術(shù)、娛樂(lè)和學(xué)術(shù)型的活動(dòng)的團(tuán)體。學(xué)生社團(tuán)以其鮮明的開放性、自主性以及多樣性等特點(diǎn),為一些有特長(zhǎng)的學(xué)生提供了廣闊的舞臺(tái),讓這些學(xué)生可以更好的發(fā)揮自己的才能,促進(jìn)其更好的成才。全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽是最早由教育部工業(yè)與數(shù)學(xué)應(yīng)用學(xué)會(huì)共同承辦的一個(gè)科技性的賽事,該比賽要通過(guò)數(shù)學(xué)和計(jì)算機(jī)的知識(shí)來(lái)解決實(shí)際生活中的問(wèn)題,由于其特有的比賽形式,使得高職院校在全校范圍內(nèi)直接選拔參賽隊(duì)員是件費(fèi)神的事情,因此,為了更好的為數(shù)學(xué)建模競(jìng)賽選拔人才,激發(fā)學(xué)生的學(xué)習(xí)興趣,學(xué)術(shù)性社團(tuán)“數(shù)學(xué)建模協(xié)會(huì)”也就應(yīng)運(yùn)而生。數(shù)學(xué)建模協(xié)會(huì)的成立,可以更好的為學(xué)生提供一個(gè)展示自己的機(jī)會(huì),可以增強(qiáng)學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)解決實(shí)際問(wèn)題的能力,激發(fā)學(xué)生的創(chuàng)新思維,為數(shù)學(xué)建模競(jìng)賽選拔人才。本文主要以西安航空職業(yè)技術(shù)學(xué)院數(shù)學(xué)建模協(xié)會(huì)為例,探討高職數(shù)學(xué)建模社團(tuán)活動(dòng)開展的形式和意義。

(一)數(shù)學(xué)建模社團(tuán)有利于數(shù)學(xué)建模競(jìng)賽的開展。高職數(shù)學(xué)建模協(xié)會(huì)為數(shù)學(xué)建模競(jìng)賽搭建了一個(gè)平臺(tái),是數(shù)學(xué)建模競(jìng)賽強(qiáng)有力的后盾,數(shù)學(xué)建模競(jìng)賽成績(jī)的取得與這個(gè)平臺(tái)密不可分,只有充分發(fā)揮數(shù)學(xué)建模社團(tuán)的作用,才能源源不斷的為數(shù)學(xué)建模提供人力和智力保障,才能更好的推動(dòng)高職數(shù)學(xué)的學(xué)習(xí)氛圍。1、數(shù)學(xué)建模協(xié)會(huì)起著動(dòng)員宣傳的作用從沒聽過(guò),到知道,在到熟悉,只有通過(guò)大力宣傳和動(dòng)員,才能讓更多的人了解數(shù)學(xué)建模,讓更多優(yōu)秀學(xué)生參加到數(shù)學(xué)建模競(jìng)賽中。大學(xué)校園中有許多數(shù)學(xué)愛好者,他們對(duì)數(shù)學(xué)建模也有一定的認(rèn)識(shí),只要有參加數(shù)學(xué)建?;顒?dòng)的愿望的,都可以利用數(shù)學(xué)建模協(xié)會(huì)招新的機(jī)會(huì),加入數(shù)學(xué)建模創(chuàng)新協(xié)會(huì)。將成績(jī)優(yōu)秀的學(xué)生邀請(qǐng)加入數(shù)學(xué)建模協(xié)會(huì),對(duì)進(jìn)一步擴(kuò)大數(shù)學(xué)建模協(xié)會(huì),夯實(shí)數(shù)學(xué)建?;A(chǔ),起著舉足輕重的作用。2、數(shù)學(xué)建模協(xié)會(huì)起著知識(shí)傳播的作用高職院校學(xué)生在校學(xué)習(xí)時(shí)間較短,學(xué)業(yè)較為繁重,課余時(shí)間較少,數(shù)學(xué)建模培訓(xùn)的時(shí)間不足,無(wú)法讓學(xué)生在短時(shí)期內(nèi)掌握較多的數(shù)學(xué)建模相關(guān)知識(shí)。因此,利用數(shù)學(xué)建模協(xié)會(huì)活動(dòng)可以開展數(shù)學(xué)建模課程的培訓(xùn)工作,普及數(shù)學(xué)建模相關(guān)知識(shí)。采用“老帶新”的模式進(jìn)行數(shù)學(xué)建模知識(shí)的普及。通過(guò)制定系統(tǒng)的培訓(xùn)方案,在每年秋季競(jìng)賽后,參加過(guò)競(jìng)賽的同學(xué)對(duì)新入?yún)f(xié)會(huì)的成員可以進(jìn)行初級(jí)培訓(xùn),為今后的競(jìng)賽奠定基礎(chǔ)。3、數(shù)學(xué)建模社團(tuán)起著選拔學(xué)生的作用每年數(shù)學(xué)建模競(jìng)賽的隊(duì)員需要通過(guò)校內(nèi)賽等形式進(jìn)行選拔,此時(shí),數(shù)學(xué)建模協(xié)會(huì)就起著校內(nèi)賽命題及選拔隊(duì)員的作用,當(dāng)然這種選拔方式也有的弊端,就是所有隊(duì)員都是來(lái)自校內(nèi)賽成績(jī)優(yōu)秀的學(xué)生,而校內(nèi)賽發(fā)揮不理想但建模能力突出或計(jì)算機(jī)技術(shù)水平優(yōu)秀的學(xué)生就沒法參加數(shù)學(xué)建模競(jìng)賽。為確保每一位有能力的學(xué)生都能夠加入到建模競(jìng)賽隊(duì)伍中來(lái),可以通過(guò)校內(nèi)競(jìng)賽與建模協(xié)會(huì)推薦兩者相結(jié)合的方式選拔建模競(jìng)賽學(xué)生,以確保最優(yōu)優(yōu)秀的學(xué)生參加數(shù)學(xué)建模競(jìng)賽。(二)數(shù)學(xué)建模社團(tuán)有利于大學(xué)生綜合素質(zhì)的培養(yǎng)。(1)數(shù)學(xué)建模社團(tuán)屬于專業(yè)的學(xué)術(shù)性社團(tuán),成立的目的是為了參加全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽,數(shù)學(xué)建模社團(tuán)活動(dòng)的趣味性和實(shí)踐性可以提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生自主學(xué)習(xí)的能力,增加學(xué)生參與競(jìng)賽的熱情。社團(tuán)活動(dòng)中的培訓(xùn)使學(xué)生可以更好的應(yīng)對(duì)競(jìng)賽,取得更好的成績(jī)。另外,競(jìng)賽之余還可以進(jìn)行其他領(lǐng)域的學(xué)術(shù)交流,比如計(jì)算機(jī),經(jīng)濟(jì),工程等領(lǐng)域,良好的交流氛圍激發(fā)學(xué)生的創(chuàng)新思維和意識(shí),從而培養(yǎng)他們的創(chuàng)新能力。(2)數(shù)學(xué)建模社團(tuán)是學(xué)生自發(fā)組織的服務(wù)學(xué)生的群體,除了學(xué)術(shù)研究之外,還可以進(jìn)行一些創(chuàng)新創(chuàng)業(yè)的活動(dòng),具有更多的實(shí)踐的機(jī)會(huì)。比如,可以利用平時(shí)社團(tuán)所學(xué)的知識(shí),以團(tuán)體的形式進(jìn)行一些數(shù)據(jù)處理的校企合作;也可以以微信平臺(tái)和微信群等發(fā)布一些數(shù)學(xué)建模相關(guān)的微課等,進(jìn)行一些微信群講座等等。這樣可以讓學(xué)生真正體會(huì)到數(shù)學(xué)的用處,達(dá)到學(xué)以致用的效果。(3)數(shù)學(xué)建模社團(tuán)是學(xué)生自發(fā)組織的學(xué)術(shù)性社團(tuán),社團(tuán)的組織機(jī)構(gòu)都是學(xué)生在擔(dān)任,社團(tuán)的活動(dòng)也都是學(xué)生在協(xié)調(diào)策劃,甚至很多時(shí)候社團(tuán)的老成員都可以輔助老師進(jìn)行社團(tuán)的一些學(xué)術(shù)性的講座。因此,在學(xué)習(xí)的同時(shí)還鍛煉了他們的處事應(yīng)變能力團(tuán)隊(duì)合作的能力,可以說(shuō)提高了學(xué)生的綜合素質(zhì)。

(一)數(shù)學(xué)建模社團(tuán)的管理形式。數(shù)學(xué)建模協(xié)會(huì)作為一個(gè)學(xué)生群體組織,需要好的制度和管理模式。以筆者所在學(xué)校為例,數(shù)學(xué)建模創(chuàng)新協(xié)會(huì)具有自己的一套規(guī)章管理制度;在管理形式方面是以“三個(gè)管理面”來(lái)進(jìn)行社團(tuán)管理和學(xué)術(shù)交流的,具體如下:1、學(xué)術(shù)交流面這個(gè)主要是通過(guò)“社團(tuán)內(nèi)部進(jìn)行學(xué)術(shù)交流活動(dòng)”和“老帶新培訓(xùn)”兩部分組成,內(nèi)部的交流活動(dòng)主要是學(xué)生之間的相互溝通和交流,以及不定期的邀請(qǐng)指導(dǎo)教師和外校專家做一些數(shù)學(xué)建模報(bào)告。老帶新培訓(xùn)是指社團(tuán)主席團(tuán)成員(一般是參加過(guò)前一年全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽的學(xué)生)為新入社團(tuán)的學(xué)生進(jìn)行培訓(xùn),培訓(xùn)的內(nèi)容基本上都是之前指導(dǎo)教師對(duì)他們集訓(xùn)時(shí)的內(nèi)容,這種培訓(xùn)方式可以提升社團(tuán)成員的授課和理解問(wèn)題的能力,對(duì)于在校大學(xué)生來(lái)說(shuō)是一次很好的鍛煉。2、網(wǎng)絡(luò)交流面采用qq群,網(wǎng)絡(luò)空間和微信公眾平臺(tái)等開展社團(tuán)成員之間的交流互動(dòng),社團(tuán)宣傳。筆者所在學(xué)校的數(shù)學(xué)建模創(chuàng)新協(xié)會(huì)每一屆社團(tuán)都有相應(yīng)的qq群,另外,在20xx年也積極申請(qǐng)了微信平臺(tái),目前的'關(guān)注量也在800余人,微信平臺(tái)的建立可以更方面使大學(xué)生關(guān)注數(shù)學(xué)建模相關(guān)信息,尤其是對(duì)大一新生可以更多的取了解數(shù)學(xué)建模,擴(kuò)大數(shù)學(xué)建模的受益面和影響力。力求在大學(xué)生中營(yíng)造一種“人人知數(shù)模,人人愛數(shù)模,人人參與數(shù)模”的良好的教育環(huán)境,使建?;顒?dòng)廣泛化、群眾化。3、交流互訪面開展研討會(huì),專家報(bào)告會(huì),社團(tuán)聯(lián)誼會(huì)等交流活動(dòng),既可以豐富數(shù)學(xué)建模社團(tuán)學(xué)生的知識(shí)面,又能促進(jìn)數(shù)學(xué)知識(shí)的理解和吸收,通過(guò)與其他社團(tuán)的聯(lián)誼,豐富了社團(tuán)學(xué)生的業(yè)余生活,又能學(xué)習(xí)其他社團(tuán)好的管理經(jīng)驗(yàn),促進(jìn)社團(tuán)管理的制度化、規(guī)范化、專業(yè)化,也只有通過(guò)不斷的學(xué)習(xí),不斷的交流,才能真正“走出去”,建立一個(gè)管理完善,富有成效的學(xué)生社團(tuán)。(二)數(shù)學(xué)建模社團(tuán)的特色活動(dòng)。數(shù)學(xué)建模社團(tuán)在開展學(xué)術(shù)活動(dòng)和輔助教師進(jìn)行競(jìng)賽培訓(xùn)的同時(shí),還不定期的舉行一些活動(dòng),在提高學(xué)生學(xué)習(xí)興趣的同時(shí)也以擴(kuò)大了數(shù)學(xué)建模的影響力。以筆者坐在學(xué)校為例,每年可以開展一系列的數(shù)學(xué)建模活動(dòng)。比如,數(shù)學(xué)建模創(chuàng)新協(xié)會(huì)納新,數(shù)學(xué)建模創(chuàng)新協(xié)會(huì)趣味運(yùn)動(dòng)會(huì),數(shù)學(xué)科技節(jié),趣味數(shù)學(xué)知識(shí)競(jìng)賽,數(shù)學(xué)建模經(jīng)驗(yàn)交流會(huì),數(shù)學(xué)建模校內(nèi)賽,數(shù)學(xué)輔導(dǎo)周,數(shù)學(xué)建模專題講座。這些社團(tuán)活動(dòng)貫穿整個(gè)學(xué)年,不僅可以“由點(diǎn)及面、由淺入深”的對(duì)全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽進(jìn)行宣傳,在最大的范圍內(nèi),提升數(shù)學(xué)建模大賽的影響力及參與度,成效較好。而且讓枯燥的學(xué)術(shù)型社團(tuán)變得豐富多彩,成為學(xué)生課后獲取知識(shí)的一種平臺(tái),同時(shí)也是社團(tuán)蓬勃發(fā)展的利器。

總之,數(shù)學(xué)建模社團(tuán)活動(dòng)的開展,有利于培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和思維,有利于激發(fā)了學(xué)生的學(xué)習(xí)興趣,有利于豐富學(xué)生的課后生活,有利于調(diào)動(dòng)了學(xué)生參加學(xué)術(shù)型社團(tuán)的積極性,同時(shí)也是高職院校組織參加數(shù)學(xué)建模競(jìng)賽的強(qiáng)有力的后盾。

[1]胡建茹,王搖娟.加強(qiáng)專業(yè)社團(tuán)建設(shè)推進(jìn)大學(xué)生創(chuàng)新實(shí)踐能力培養(yǎng)[j].中國(guó)石油大學(xué)學(xué)報(bào):社會(huì)科學(xué)版,20xx(12)

[2]王珍娥,宋維,孫潔.?dāng)?shù)學(xué)社團(tuán)建設(shè)的探索與實(shí)踐[j].機(jī)械職業(yè)教育,20xx(7)

[3]李湘玲,王泳興.大學(xué)生社團(tuán)發(fā)展與創(chuàng)新型人才培養(yǎng)互動(dòng)機(jī)制研究:以吉首大學(xué)為例[j].黑龍江教育,20xx(11)

[4]孫浩,葉正麟.西北工業(yè)大學(xué)數(shù)學(xué)建模創(chuàng)新教育之探索[j].高等數(shù)學(xué)研究,20xx(4)

作者:張?zhí)m單位:西安航空職業(yè)技術(shù)學(xué)院通識(shí)教育學(xué)院

數(shù)學(xué)建模論文心得篇十一

眾所周知,高等數(shù)學(xué)是所有自然學(xué)科的基礎(chǔ),一個(gè)大學(xué)生要想在以后的工作、學(xué)習(xí)中大展宏圖,那么就一定少不了堅(jiān)實(shí)的高等數(shù)學(xué)基礎(chǔ)。如何解決大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時(shí)碰到的問(wèn)題?如何調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性?讓學(xué)生們了解高等數(shù)學(xué)的用途,真正愿意靜下心來(lái)好好學(xué)習(xí)高等數(shù)學(xué),努力為以后的發(fā)展打好數(shù)學(xué)基礎(chǔ)。一直以來(lái),各所高校的教師們都在努力的想辦法、找對(duì)策,一些實(shí)用有效的方法已經(jīng)提出并且在逐步推廣,比如,問(wèn)題驅(qū)動(dòng)式的教學(xué)方法和基于pbl的教學(xué)方法等。筆者從所在學(xué)校的學(xué)生實(shí)際學(xué)習(xí)情況出發(fā),根據(jù)幾年來(lái)的教學(xué)心得和積累,打算提出一種較為實(shí)用的教學(xué)方法——利用數(shù)學(xué)建模的思想調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性。該方法在筆者所教授的班級(jí)中已經(jīng)實(shí)際應(yīng)用過(guò)幾屆,學(xué)生普遍反映效果較好,任課老師也認(rèn)為該方法確實(shí)能極大地調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。

提到高等數(shù)學(xué),學(xué)生們的第一反應(yīng)往往是:各種公式塞滿黑板,各種運(yùn)算充斥腦海;定義、定理、推論一個(gè)連著一個(gè);極限、連續(xù)、可導(dǎo)可積一個(gè)涵蓋另一個(gè)[1]。和高中數(shù)學(xué)相比,記憶的負(fù)擔(dān)輕了(實(shí)際上是知識(shí)點(diǎn)太多,記不住了),而對(duì)思維的要求卻提高了。對(duì)大學(xué)生來(lái)說(shuō),每一次的高數(shù)課,都是一次大腦的思維訓(xùn)練,時(shí)刻要求精神高度集中,一定要緊跟老師的步劃,一旦走神,后面的內(nèi)容就不知所云了。這樣的要求短時(shí)間可以達(dá)到,長(zhǎng)久下去學(xué)生們會(huì)覺得很辛苦,很有壓力,會(huì)出現(xiàn)抱怨。筆者碰到過(guò)這樣的學(xué)生,剛開始時(shí),興致勃勃,雄心萬(wàn)丈,可到后來(lái)興趣索然,馬虎應(yīng)對(duì)。怪學(xué)生嗎?誠(chéng)然學(xué)生有責(zé)任,但任課老師也該負(fù)很大的責(zé)任。作為高等數(shù)學(xué)的老師我們經(jīng)常要面對(duì)學(xué)生提的這些問(wèn)題:(1)我學(xué)的專業(yè)和高等數(shù)學(xué)相差甚遠(yuǎn),有可能這一輩子都不會(huì)用到高等數(shù)學(xué)的知識(shí),那我學(xué)高等數(shù)學(xué)的目的何在?(2)老師您天天鼓吹高等數(shù)學(xué)的強(qiáng)大功能和廣泛用途,但是通過(guò)一學(xué)期的學(xué)習(xí),我發(fā)現(xiàn)除了對(duì)付考試有用,真不知高等數(shù)學(xué)可以用在何處?這些問(wèn)題不及時(shí)解決,時(shí)間長(zhǎng)了一定會(huì)影響到大學(xué)生對(duì)高等數(shù)學(xué)的學(xué)習(xí)積極性,甚至有可能會(huì)產(chǎn)生厭學(xué)的情緒和氛圍。有些極端的學(xué)生,期末考試之后,一聽到自己高等數(shù)學(xué)考過(guò)了,立馬將高等數(shù)學(xué)的課本給撕了,可想而知高等數(shù)學(xué)對(duì)其造成的壓力有多大[2]。如何解決大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時(shí)碰到的問(wèn)題?如何調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性?讓學(xué)生們了解高等數(shù)學(xué)的用途,真正愿意靜下心來(lái)好好學(xué)習(xí)高等數(shù)學(xué),努力地為以后的發(fā)展打好數(shù)學(xué)基礎(chǔ)。筆者從所在學(xué)校的學(xué)生實(shí)際學(xué)習(xí)情況出發(fā),根據(jù)幾年來(lái)的教學(xué)心得和積累,打算提出一種較為實(shí)用的教學(xué)方法——利用數(shù)學(xué)建模的思想調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性。

一、以實(shí)際問(wèn)題反推解決問(wèn)題時(shí)我們需要的高等數(shù)學(xué)知識(shí)

有這樣一個(gè)實(shí)際問(wèn)題:報(bào)童每天清晨從報(bào)社購(gòu)進(jìn)報(bào)紙零售,晚上將沒賣掉的報(bào)紙退回給報(bào)社。假設(shè)報(bào)紙每份的購(gòu)進(jìn)價(jià)為b元,零售價(jià)為a元,退回價(jià)為c元,自然地有abc。這就是說(shuō),報(bào)童每售出一份報(bào)紙賺a-b元,每退回一份報(bào)紙賠b-c元,報(bào)童每天如果購(gòu)進(jìn)的報(bào)紙?zhí)?,那么?huì)不夠賣,就會(huì)少賺錢;如果每天購(gòu)進(jìn)的報(bào)紙?zhí)啵敲磿?huì)賣不完,將要賠錢。請(qǐng)為報(bào)童規(guī)劃一下,他該如何確定每天購(gòu)進(jìn)的報(bào)紙份數(shù),以獲得最大的收入[3]。

現(xiàn)在我們來(lái)反推該問(wèn)題涉及到的高等數(shù)學(xué)的知識(shí):首先,通過(guò)分析題目可知,問(wèn)題解決的關(guān)鍵在于——如何確定每天的報(bào)紙需求量,注意每天的報(bào)紙需求量是隨機(jī)變化的?解決這個(gè)關(guān)鍵問(wèn)題的知識(shí)我們?cè)缇驼莆樟耍謩e是數(shù)理統(tǒng)計(jì)中的頻率連續(xù)化、概率論中的概率密度與期望和高等數(shù)學(xué)中的定積分[4]。

二、利用高等數(shù)學(xué)的解決實(shí)際問(wèn)題

f(r)[4]。如果求出了f(r),那么

g(n)=[(a-b)r+(b-c)(n-r)]f(r)+(a-b)nf(r).(1)

現(xiàn)在我們來(lái)求f(r),假定報(bào)童已經(jīng)通過(guò)自己的經(jīng)驗(yàn)和其他渠道掌握了一年(365天)中每天報(bào)紙的售出份數(shù),那么在他的銷售范圍內(nèi),每天報(bào)紙日需求量r的概率f(r)為:

f(r)=,r=(0,1,2,3,…)

其中k表示為賣出r份的天數(shù)。

g(n)=[(a-b)r+(b-c)(n-r)]p(r)dr+(a-b)np(r)dr.(2)

通過(guò)上面的分析,可知實(shí)際問(wèn)題歸結(jié)為,在p(r)和a,b,c已知時(shí),求n使得g(n)最大。

=-(b-c)p(r)dr+(a-b)p(r)dr.(3)

令=0,得到=,又因?yàn)閜(r)dr+p(r)dr=1,所以p(r)dr=.(4)

在等式(4)中,p(r)和a,b,c均為已知,所以利用定積分的知識(shí)一定可以求出n。也即可以確定每天購(gòu)進(jìn)的報(bào)紙份數(shù),使報(bào)童每天獲得最大的收入。

三、利用現(xiàn)實(shí)問(wèn)題,讓學(xué)生學(xué)會(huì)思考,給他們提供創(chuàng)造成就感的機(jī)會(huì)

通過(guò)上面碰到的實(shí)際問(wèn)題,可以很容易地說(shuō)服同學(xué)們靜下心來(lái)好好學(xué)習(xí)高等數(shù)學(xué)。因?yàn)橥ㄟ^(guò)實(shí)際問(wèn)題的求解,學(xué)生們了解到了,要想解決一個(gè)實(shí)際問(wèn)題(哪怕是很小的問(wèn)題),也需要大量的高等數(shù)學(xué)知識(shí)的儲(chǔ)備;學(xué)生們也大概領(lǐng)略到了高等數(shù)學(xué)的用途與功能。這樣的教學(xué)方法簡(jiǎn)單、直接,勝過(guò)老師課堂上反復(fù)的嘮叨與強(qiáng)調(diào)。有了這樣的一些實(shí)際問(wèn)題,老師們就可以大膽地將數(shù)學(xué)建模思想引入高等數(shù)學(xué)的教學(xué)當(dāng)中,讓學(xué)生們?cè)诮鉀Q實(shí)際問(wèn)題中學(xué)會(huì)思考,掌握知識(shí),提高能力。

通過(guò)訓(xùn)練后,碰到實(shí)際問(wèn)題,同學(xué)們會(huì)自然的想到我們的教學(xué)方法:(1)這些實(shí)際問(wèn)題涉及到的高等數(shù)學(xué)知識(shí)?那些自己掌握了,那些還沒有弄明白,學(xué)要加強(qiáng)學(xué)習(xí)。(2)知識(shí)點(diǎn)找到后,如何建立起數(shù)學(xué)與實(shí)際問(wèn)題求解之間的關(guān)系?也即如何建立數(shù)學(xué)模型。(3)除了老師給的題目,自己本專業(yè)中的實(shí)際問(wèn)題,能否用高等數(shù)學(xué)的知識(shí)去解決?通過(guò)思考、分析、解決這些問(wèn)題,學(xué)生們會(huì)有一種創(chuàng)造創(chuàng)新的成就感,會(huì)愿意自主學(xué)習(xí),自然而然其學(xué)習(xí)高等數(shù)學(xué)的積極性也會(huì)大大提高了。

數(shù)學(xué)建模論文心得篇十二

走美杯”是“走進(jìn)美妙的數(shù)學(xué)花園”的簡(jiǎn)稱。

“走進(jìn)美妙的數(shù)學(xué)花園”中國(guó)青少年數(shù)學(xué)論壇是中國(guó)少年科學(xué)院創(chuàng)新素質(zhì)教育的品牌活動(dòng)。20xx年,由國(guó)際數(shù)學(xué)家大會(huì)組委會(huì)、中國(guó)數(shù)學(xué)會(huì)、中國(guó)教育學(xué)會(huì)、中國(guó)少年科學(xué)院成功舉辦了首屆“走進(jìn)美妙的數(shù)學(xué)花園”中國(guó)少年數(shù)學(xué)論壇,至今已連續(xù)舉辦七屆,全國(guó)三十多個(gè)城市近三十萬(wàn)人參與了此項(xiàng)活動(dòng),在全國(guó)青少年中產(chǎn)生了巨大的影響?!白哌M(jìn)美妙的數(shù)學(xué)花園”中國(guó)青少年數(shù)學(xué)論壇活動(dòng)是一項(xiàng)面對(duì)小學(xué)三年級(jí)至初中二年級(jí)學(xué)生的綜合性數(shù)學(xué)活動(dòng)。通過(guò)“趣味數(shù)學(xué)解題技能展示”、“數(shù)學(xué)建模小論文答辯”、“數(shù)學(xué)益智游戲”、“團(tuán)體對(duì)抗賽”等一系列內(nèi)容豐富的活動(dòng)提高廣大中小學(xué)生的數(shù)學(xué)建模意識(shí)和數(shù)學(xué)應(yīng)用能力,培養(yǎng)他們一種正確的思想方法。著名數(shù)學(xué)家陳省身先生兩次為同學(xué)們親筆題詞“數(shù)學(xué)好玩”和“走進(jìn)美妙的數(shù)學(xué)花園”,大大鼓舞了廣大青少年攀登數(shù)學(xué)高峰的熱情和信心,使同學(xué)們自覺地成為學(xué)習(xí)的主人,實(shí)現(xiàn)從“學(xué)數(shù)學(xué)”到“用數(shù)學(xué)”過(guò)程的轉(zhuǎn)變,從而進(jìn)一步推動(dòng)我國(guó)數(shù)學(xué)文化的傳播與普及。

“走美”活動(dòng)已連續(xù)舉辦七屆,近30萬(wàn)青少年踴躍參與,已取得良好社會(huì)效果,并被寫入全國(guó)少工委《少先隊(duì)輔導(dǎo)員工作綱要(試行)》,向全國(guó)少年兒童推廣。

“走美”作為數(shù)學(xué)競(jìng)賽中的后起之秀,憑借其新穎的考試形式以及較高的競(jìng)賽難度取得了非常迅速的發(fā)展,近年來(lái)在重點(diǎn)中學(xué)選拔中引起了廣泛的關(guān)注??陀^地說(shuō)“走美”一、二等獎(jiǎng)對(duì)小升初作用非常大,三等獎(jiǎng)作用不大。

1、活動(dòng)對(duì)象。

全國(guó)各地小學(xué)三年級(jí)至初中二年級(jí)學(xué)生。

2、總成績(jī)計(jì)算。

筆試獲獎(jiǎng)率:

一等獎(jiǎng)5%,二等獎(jiǎng)10%,三等獎(jiǎng)15%。

3、筆試時(shí)間。

每年3月上、中旬。

報(bào)名截止時(shí)間:每年12月底。

走美杯比賽流程。

1、全國(guó)組委會(huì)下發(fā)通知,各地組委會(huì)開始組織工作。

2、學(xué)生到當(dāng)?shù)亟M委會(huì)報(bào)名,填寫《報(bào)名表》。

3、各地組委會(huì)將報(bào)名學(xué)生名單全部匯總至全國(guó)組委會(huì)。

4、全國(guó)“走進(jìn)美妙的數(shù)學(xué)花園”趣味數(shù)學(xué)解題技能展示初賽(全國(guó)統(tǒng)一筆試)。

6、全國(guó)組委會(huì)公布初賽獲獎(jiǎng)名單并頒發(fā)獲獎(jiǎng)證書。

7、獲得初賽一、二、三等獎(jiǎng)選手有資格報(bào)名參加暑期赴英國(guó)劍橋大學(xué)數(shù)學(xué)交流活動(dòng)。

8、各地按照組委會(huì)要求提交數(shù)學(xué)建模小論文。

9、前各地組委會(huì)上報(bào)參加全國(guó)總論壇學(xué)生名單。

10、全國(guó)總論壇和表彰活動(dòng)。

數(shù)學(xué)建模論文心得篇十三

摘要:數(shù)學(xué)作為很多學(xué)科的計(jì)算工具,可以說(shuō)是現(xiàn)代科學(xué)的基礎(chǔ),要想利用數(shù)學(xué)來(lái)解決實(shí)際問(wèn)題,首先要建立相應(yīng)的數(shù)學(xué)模型,本文在數(shù)學(xué)建模思想概念和特點(diǎn)的基礎(chǔ)上,從計(jì)算機(jī)軟件、實(shí)際生活中的應(yīng)用等方面,對(duì)其應(yīng)用的發(fā)展進(jìn)行了分析,最后從分析問(wèn)題、建立模型、校驗(yàn)?zāi)P腿齻€(gè)階段,對(duì)數(shù)學(xué)建模的方法,進(jìn)行了深入的研究。

關(guān)鍵詞:數(shù)學(xué)建模;思想;應(yīng)用;方法;分析

引言

隨著自然科學(xué)的發(fā)展,利用數(shù)學(xué)等思想來(lái)解決實(shí)際問(wèn)題,越來(lái)越受到人們的重視,數(shù)學(xué)作為一門歷史悠久的自然科學(xué),是在實(shí)際應(yīng)用的基礎(chǔ)上發(fā)展起來(lái),但是隨著理論研究的深入,現(xiàn)在數(shù)學(xué)理論已經(jīng)非常先進(jìn),很多理論都無(wú)法付諸實(shí)踐,在這種背景下,如何利用現(xiàn)有的數(shù)學(xué)理論來(lái)解決實(shí)際問(wèn)題,成為了很多專家和學(xué)者研究的問(wèn)題。通過(guò)實(shí)際的調(diào)查發(fā)現(xiàn),要想利用數(shù)學(xué)來(lái)解決實(shí)際問(wèn)題,首先要建立相應(yīng)的數(shù)學(xué)模型,將實(shí)際的問(wèn)題轉(zhuǎn)化成數(shù)學(xué)符號(hào)的表達(dá)方式,這樣才能夠通過(guò)數(shù)學(xué)計(jì)算,來(lái)解決一些實(shí)際問(wèn)題,從某種意義上來(lái)說(shuō),計(jì)算機(jī)就是由若干個(gè)數(shù)學(xué)模型組成的,計(jì)算機(jī)軟件之所以能夠解決實(shí)際問(wèn)題,就是根據(jù)實(shí)際應(yīng)用的需要,建立了一個(gè)相應(yīng)的數(shù)學(xué)模型,這樣才能夠讓計(jì)算機(jī)來(lái)解決。

1數(shù)學(xué)建模思想分析

1.1數(shù)學(xué)建模思想的概念

數(shù)學(xué)是一門歷史悠久的自然科學(xué),在古時(shí)候,由于實(shí)際應(yīng)用的需要,人們就已經(jīng)開始使用數(shù)學(xué)來(lái)解決實(shí)際問(wèn)題,但是受到當(dāng)時(shí)技術(shù)條件的限制,數(shù)學(xué)理論的水平比較低,只是利用數(shù)學(xué)來(lái)進(jìn)行計(jì)數(shù)等,隨著經(jīng)濟(jì)和科技水平的提高,尤其是在工業(yè)革命之后,自然科學(xué)得到了極大的發(fā)展,對(duì)于利用自然科學(xué)來(lái)解決實(shí)際問(wèn)題,也成為了人們研究的重點(diǎn),在市場(chǎng)經(jīng)濟(jì)的推動(dòng)下,人們將這些理論知識(shí)轉(zhuǎn)化成為產(chǎn)品。計(jì)算機(jī)就是在這種背景下產(chǎn)生的,在數(shù)學(xué)理論的基礎(chǔ)上,將電路的通和不通兩種狀態(tài),與數(shù)學(xué)的二進(jìn)制相結(jié)合,這樣就能夠讓計(jì)算機(jī)來(lái)處理實(shí)際問(wèn)題,從本質(zhì)上來(lái)說(shuō),這就是數(shù)學(xué)建模思想的范疇,但是在計(jì)算機(jī)出現(xiàn)的早期,數(shù)學(xué)建模的理論還沒有形成,隨著計(jì)算機(jī)軟件技術(shù)的發(fā)展,人們逐漸的意識(shí)到數(shù)學(xué)建模的重要性,發(fā)現(xiàn)利用數(shù)學(xué)建模思想,可以解決很多實(shí)際的問(wèn)題,而數(shù)學(xué)建模的概念,就是將遇到的實(shí)際問(wèn)題,利用特定的數(shù)學(xué)符號(hào)進(jìn)行描述,這樣實(shí)際問(wèn)題就轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,可以利用數(shù)學(xué)的計(jì)算方法來(lái)解決。

1.2數(shù)學(xué)建模思想的特點(diǎn)

如何解決實(shí)際問(wèn)題,從有人類文明開始,就成為了人們研究的重點(diǎn),隨著自然科學(xué)的發(fā)展,出現(xiàn)了很多具體的學(xué)科,利用這些不同的學(xué)科,可以解決不同的實(shí)際問(wèn)題,而數(shù)學(xué)就是其中最重要的一門學(xué)科,而且是其他學(xué)科的基礎(chǔ),如物理學(xué)科中,數(shù)學(xué)就是一個(gè)計(jì)算的工具,由此可以看出數(shù)學(xué)的重要性,進(jìn)入到信息時(shí)代后,計(jì)算機(jī)得到了普及應(yīng)用,無(wú)論是日常生活中還是工作中,計(jì)算機(jī)都有非常重要的應(yīng)用,而在信息時(shí)代,注重的是解決問(wèn)題的效率。與其他解決問(wèn)題的方式相比,數(shù)學(xué)建模顯然更加科學(xué),現(xiàn)在數(shù)學(xué)建模已經(jīng)成為了一門獨(dú)立的學(xué)科,很多高校中都開設(shè)了這門課程,為了培養(yǎng)學(xué)生們利用數(shù)學(xué)解決實(shí)際問(wèn)題的能力,我國(guó)每年都會(huì)舉辦全國(guó)性的數(shù)學(xué)建模大賽,采用開放式的參賽方式,對(duì)學(xué)生們的數(shù)學(xué)建模能力進(jìn)行考驗(yàn),而大賽的題目,很多都是一些實(shí)際問(wèn)題,對(duì)于比賽的結(jié)果,每個(gè)參賽隊(duì)伍的建模方式都有一定的差異,其中選出一個(gè)最有效的方式成為冠軍。由此可以看出,對(duì)于一個(gè)實(shí)際的問(wèn)題,可以建立多個(gè)數(shù)學(xué)模型進(jìn)行解決,但是執(zhí)行的效率具有一定的差異,如有些計(jì)算的步驟較少,而有些計(jì)算的過(guò)程比較簡(jiǎn)單,而如何評(píng)價(jià)一個(gè)模型的效率,必須從各個(gè)方面進(jìn)行綜合的考慮。

2數(shù)學(xué)建模思想的應(yīng)用

2.1計(jì)算機(jī)軟件中數(shù)學(xué)建模思想的應(yīng)用

通過(guò)深入的分析可以知道,計(jì)算機(jī)之所以能夠解決實(shí)際問(wèn)題,很大程度上依賴與計(jì)算機(jī)軟件,而計(jì)算機(jī)軟件自身就是一個(gè)或幾個(gè)數(shù)學(xué)模型,在軟件開發(fā)的過(guò)程中,首先要進(jìn)行需求的分析,這其實(shí)就是數(shù)學(xué)建模的第一個(gè)環(huán)節(jié),對(duì)問(wèn)題進(jìn)行分析,在了解到問(wèn)題之后,就要通過(guò)計(jì)算機(jī)語(yǔ)言,對(duì)問(wèn)題進(jìn)行描述,而計(jì)算機(jī)語(yǔ)言是人與計(jì)算機(jī)進(jìn)行溝通的語(yǔ)言,最終這些語(yǔ)言都要轉(zhuǎn)化成0和1二進(jìn)制的方式,這樣計(jì)算機(jī)才能夠進(jìn)行具體的計(jì)算。由此可以看出,計(jì)算機(jī)就是依靠數(shù)學(xué)來(lái)解決實(shí)際問(wèn)題,而每個(gè)計(jì)算機(jī)軟件,都可以認(rèn)為是一個(gè)數(shù)學(xué)模型,如在早期的計(jì)算機(jī)程序設(shè)計(jì)中,受到當(dāng)時(shí)計(jì)算機(jī)技術(shù)水平的限制,采用的還是低級(jí)語(yǔ)言,由于低級(jí)語(yǔ)言人們很難理解,因此在程序編寫之前,都會(huì)先建立一個(gè)數(shù)學(xué)模型,然后將這個(gè)模型轉(zhuǎn)化成相應(yīng)的計(jì)算機(jī)語(yǔ)言,這樣計(jì)算機(jī)就可以解決實(shí)際的問(wèn)題,由于計(jì)算機(jī)能夠自行計(jì)算的特點(diǎn),只要輸入相應(yīng)的參數(shù)后,就可以直接得到結(jié)果,不再需要人為的計(jì)算。

2.2數(shù)學(xué)建模思想直接解決實(shí)際問(wèn)題

經(jīng)過(guò)了多年的發(fā)展,現(xiàn)在數(shù)學(xué)建模自身已經(jīng)非常完善,為了培養(yǎng)我國(guó)的數(shù)學(xué)建模人才,從1992年開始,每年我國(guó)都會(huì)舉辦一屆全國(guó)數(shù)學(xué)建模大賽,所有的高校學(xué)生都可以參加,大賽采用了開放性的參賽方式,通常情況下,對(duì)于題目設(shè)置的也比較靈活,會(huì)有多個(gè)題目提供給隊(duì)員選擇,學(xué)生可以根據(jù)自己的實(shí)際情況,來(lái)選擇一個(gè)最適合自己的問(wèn)題。而數(shù)學(xué)建模大賽舉辦的主要目的,就是讓學(xué)生們掌握如何利用數(shù)學(xué)理論,來(lái)解決實(shí)際問(wèn)題,在學(xué)習(xí)數(shù)學(xué)知識(shí)的過(guò)程中,很多學(xué)生會(huì)認(rèn)為,數(shù)學(xué)與實(shí)踐的距離很遠(yuǎn),學(xué)習(xí)的都是純理論的知識(shí),學(xué)習(xí)的興趣很低,與一些實(shí)踐密切相關(guān)的學(xué)科相比,選擇數(shù)學(xué)專業(yè)的學(xué)生很少,而數(shù)學(xué)建模的出現(xiàn),在很大程度上改善了這種情況,讓人們真正的了解數(shù)學(xué),并利用數(shù)學(xué)來(lái)解決復(fù)雜的問(wèn)題。受到特殊的歷史因素影響,我國(guó)自然科學(xué)發(fā)展的起步較晚,在建國(guó)后經(jīng)歷了很長(zhǎng)一段時(shí)間封,閉發(fā)展,與西方發(fā)達(dá)國(guó)家之間的交流比較少,因此對(duì)于數(shù)學(xué)建模等現(xiàn)代科學(xué),研究的時(shí)間比較短,導(dǎo)致目前我國(guó)很少會(huì)利用數(shù)學(xué)建模來(lái)解決實(shí)際問(wèn)題,相比之下,發(fā)達(dá)國(guó)家在很多領(lǐng)域中,經(jīng)常會(huì)用到數(shù)學(xué)建模的知識(shí),如在企業(yè)日常運(yùn)營(yíng)中,需要進(jìn)行市場(chǎng)調(diào)研等工作,而對(duì)于這些調(diào)研工作的處理,在進(jìn)行之前都會(huì)建立一個(gè)數(shù)學(xué)模型,然后按照這個(gè)建立的模型來(lái)處理。

2.3數(shù)學(xué)建模思想應(yīng)用的發(fā)展

從本質(zhì)上來(lái)說(shuō),數(shù)學(xué)是在實(shí)際應(yīng)用的基礎(chǔ)上,逐漸形成的一門學(xué)科,但是受到當(dāng)時(shí)技術(shù)水平的限制,雖然人們已經(jīng)懂得去計(jì)算,卻并知道自己使用的是數(shù)學(xué)知識(shí),隨著自然科學(xué)的發(fā)展,對(duì)數(shù)學(xué)的應(yīng)用越來(lái)越多,而數(shù)學(xué)自身理論的發(fā)展速度很快,遠(yuǎn)遠(yuǎn)超過(guò)了實(shí)際應(yīng)用的范圍,同時(shí)隨著其他學(xué)科的發(fā)展,數(shù)學(xué)變成了一種計(jì)算的工具,因此數(shù)學(xué)應(yīng)用的第一個(gè)階段中,主要是作為一種工具。隨著電子計(jì)算機(jī)的出現(xiàn),對(duì)數(shù)學(xué)的應(yīng)用達(dá)到了一個(gè)極限,人們?cè)跀?shù)學(xué)和物理的基礎(chǔ)上,制作出了能夠自動(dòng)計(jì)算的機(jī)器,在計(jì)算機(jī)出現(xiàn)的早期,受到性能和體積上的限制,只能進(jìn)行一些簡(jiǎn)單的數(shù)學(xué)計(jì)算,還不能解決實(shí)際的問(wèn)題,但是計(jì)算機(jī)語(yǔ)言和軟件技術(shù)的.發(fā)展,使其在很多領(lǐng)域得到了應(yīng)用,在計(jì)算的基礎(chǔ)上,能夠解決很多問(wèn)題,而軟件程序的開發(fā),其實(shí)就是建立數(shù)學(xué)模型的過(guò)程,由此可以看出,數(shù)學(xué)建模思想應(yīng)用的第二階段中,主要是以現(xiàn)代計(jì)算機(jī)等電子設(shè)備的方式,來(lái)解決實(shí)際的問(wèn)題。

3數(shù)學(xué)建模思想應(yīng)用的方法

3.1分析問(wèn)題

數(shù)學(xué)模型的應(yīng)用都是為了解決實(shí)際問(wèn)題,雖然很多問(wèn)題都可以通過(guò)建模的方式來(lái)解決,但是并不是所有的問(wèn)題,因此在遇到實(shí)際問(wèn)題時(shí),首先要對(duì)問(wèn)題進(jìn)行具體的分析,首先就是看是否能夠轉(zhuǎn)化成數(shù)學(xué)符號(hào),如果能夠直接用數(shù)學(xué)語(yǔ)言來(lái)進(jìn)行描述,那么就可以容易的建立相應(yīng)的數(shù)學(xué)模型,但是通過(guò)實(shí)際的調(diào)查發(fā)現(xiàn),隨著經(jīng)濟(jì)和科技的發(fā)展,遇到的問(wèn)題越來(lái)越復(fù)雜,其中很多都無(wú)法直接用數(shù)學(xué)語(yǔ)言來(lái)描述,這就增加了數(shù)學(xué)建模的難度。由此可以看出,分析問(wèn)題作為數(shù)學(xué)建模的第一個(gè)環(huán)節(jié),也是最重要的一個(gè)環(huán)節(jié),如果問(wèn)題分析的不夠具體,那么將無(wú)法建立出數(shù)學(xué)模型,同時(shí)對(duì)數(shù)學(xué)模型的建立也具有非常重要的影響,通過(guò)實(shí)際的調(diào)查發(fā)現(xiàn),能夠建立高效率的數(shù)學(xué)模型,都是對(duì)問(wèn)題分析的比較徹底,甚至有些獨(dú)特的理解,只有這樣才能夠采用建立一個(gè)最簡(jiǎn)單的模型,而隨著數(shù)學(xué)建模自身的發(fā)展,現(xiàn)在建立模型的過(guò)程中,對(duì)于一個(gè)實(shí)際的問(wèn)題,經(jīng)常需要建立多個(gè)模型,這樣通過(guò)多個(gè)數(shù)學(xué)模型協(xié)同來(lái)解決一個(gè)問(wèn)題。

3.2數(shù)學(xué)模型的建立

在分析實(shí)際問(wèn)題后,就要用數(shù)學(xué)符號(hào)來(lái)描述要解決的問(wèn)題,這是建立數(shù)學(xué)模型的準(zhǔn)備環(huán)節(jié),要想利用數(shù)學(xué)來(lái)解決實(shí)際問(wèn)題,無(wú)論采用哪種方式,都要轉(zhuǎn)化成數(shù)學(xué)語(yǔ)言,然后才能夠通過(guò)計(jì)算的方式解決,而數(shù)學(xué)模型的過(guò)程,就是在描述完成后,建立相應(yīng)的數(shù)學(xué)表達(dá)式,通常情況下,在分析問(wèn)題時(shí),都能夠發(fā)現(xiàn)某種內(nèi)在的規(guī)律,這個(gè)規(guī)律是數(shù)學(xué)建模的基礎(chǔ)。如果無(wú)法找到這個(gè)規(guī)律,顯然就不能利用現(xiàn)有的一些數(shù)學(xué)定律,從而建立相應(yīng)的表達(dá)式,最后解決相應(yīng)的問(wèn)題,由此可以看出,分析問(wèn)題的內(nèi)在規(guī)律,是影響數(shù)學(xué)建模的重要因素,而這個(gè)規(guī)律的發(fā)現(xiàn),除了在現(xiàn)有的數(shù)學(xué)知識(shí)外,也可以結(jié)合其他學(xué)科的知識(shí),尤其是現(xiàn)在遇到的問(wèn)題越來(lái)越復(fù)雜,對(duì)于以往簡(jiǎn)單的問(wèn)題,只需要建立一個(gè)簡(jiǎn)單的模型即可解決,而現(xiàn)在復(fù)雜的問(wèn)題,經(jīng)常需要建立多個(gè)模型。因此現(xiàn)在數(shù)學(xué)建模的難度越來(lái)越大,從近些年全國(guó)數(shù)學(xué)建模大賽的題目就可以看出,對(duì)于問(wèn)題的描述越來(lái)越模糊,甚至出現(xiàn)了一些歷史上的難題,而不同學(xué)生根據(jù)自己的理解,建立的模型也具有很大的差異,其中一些模型非常新穎,為實(shí)際問(wèn)題的解決提供了良好的參考,目前我國(guó)對(duì)數(shù)學(xué)建模的研究有限,尤其是與西方發(fā)達(dá)國(guó)家相比,實(shí)踐的機(jī)會(huì)還比較少。

3.3數(shù)學(xué)模型的校驗(yàn)

在數(shù)學(xué)模型建立之后,對(duì)于這個(gè)模型是否能夠解決實(shí)際問(wèn)題,具體的執(zhí)行效率如何,都需要進(jìn)行校驗(yàn),因此檢驗(yàn)是數(shù)學(xué)模型建立最后的一個(gè)環(huán)節(jié),也是非常重要的一個(gè)步驟,通常情況下,經(jīng)過(guò)校驗(yàn)都能夠發(fā)現(xiàn)模型中存在的一些問(wèn)題,從而進(jìn)行完善,這樣才能夠保證嚴(yán)謹(jǐn)性,在實(shí)際校驗(yàn)的過(guò)程中,要對(duì)數(shù)學(xué)模型的每個(gè)部分進(jìn)行驗(yàn)證,通過(guò)輸入特定的數(shù)據(jù),看得到的結(jié)果是否符合理論值,如果沒有問(wèn)題,就說(shuō)明該模型可以解決實(shí)際問(wèn)題。除了檢驗(yàn)?zāi)P偷臏?zhǔn)確外,校驗(yàn)還有另外一個(gè)作用,就是優(yōu)化模型,在選定數(shù)據(jù)后,能夠看到數(shù)學(xué)模型計(jì)算的整個(gè)過(guò)程,這時(shí)就可以對(duì)具體的細(xì)節(jié)進(jìn)行優(yōu)化,如哪部分可以減少計(jì)算的步驟,或者簡(jiǎn)化計(jì)算的方式等,這樣可以使整個(gè)模型更加科學(xué)、合理,由此可以看出,校驗(yàn)工作對(duì)于數(shù)學(xué)模型的建立,具有非常重要的意義。

4結(jié)語(yǔ)

通過(guò)全文的分析可以知道,對(duì)于數(shù)學(xué)理論的應(yīng)用,從很久之前就已經(jīng)開始了,但是數(shù)學(xué)建模思想的出現(xiàn),卻是隨著計(jì)算機(jī)技術(shù)的發(fā)展,逐漸形成的一門學(xué)科,電子計(jì)算機(jī)的出現(xiàn),在很大程度上改變了處理事情的方式,利用計(jì)算機(jī)軟件,只要輸入相應(yīng)的參數(shù),就可以直接得到結(jié)果,這正是數(shù)學(xué)模型完成的任務(wù),只是計(jì)算機(jī)的出現(xiàn),省略了中間的計(jì)算過(guò)程,因此計(jì)算機(jī)軟件的方式,是數(shù)學(xué)建模思想最好的應(yīng)用方法,要想解決不同的問(wèn)題,只要建立不同的模型,然后編寫相應(yīng)的程序。

數(shù)學(xué)建模論文心得篇十四

隨著社會(huì)的不斷發(fā)展和科學(xué)技術(shù)的進(jìn)步,數(shù)學(xué)在現(xiàn)實(shí)生活中的應(yīng)用越來(lái)越廣泛,尤其是計(jì)算機(jī)技術(shù)的發(fā)展及廣泛應(yīng)用,使數(shù)學(xué)建模思想在解決社會(huì)各個(gè)領(lǐng)域中的實(shí)際問(wèn)題的應(yīng)用越來(lái)越深入。本文筆者簡(jiǎn)要談?wù)剶?shù)學(xué)建模思想融入大學(xué)數(shù)學(xué)類課程的意義和方法。

所謂數(shù)學(xué)建模就是指構(gòu)造數(shù)學(xué)模型的過(guò)程,也就是說(shuō)用公式、符號(hào)和圖表等數(shù)學(xué)語(yǔ)言來(lái)刻畫和描述一個(gè)實(shí)際問(wèn)題,再經(jīng)過(guò)計(jì)算、迭代等數(shù)學(xué)處理得到定量的結(jié)果,從而供人們分析、預(yù)報(bào)、決策與控制。那么數(shù)學(xué)模型就是利用數(shù)學(xué)術(shù)語(yǔ)對(duì)一部分現(xiàn)實(shí)世界的描述。數(shù)學(xué)建模思想是指理論聯(lián)系實(shí)際,將實(shí)際的事物抽象成數(shù)學(xué)模型,然后利用所學(xué)的理論來(lái)解決問(wèn)題的一種思想。

在新形勢(shì)下,傳統(tǒng)的數(shù)學(xué)教學(xué)方法已經(jīng)無(wú)法適應(yīng)現(xiàn)在大學(xué)數(shù)學(xué)教育改革的需求,數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)類課程教育融合成為目前高等院校數(shù)學(xué)教學(xué)改革的突破口。

(1)數(shù)學(xué)知識(shí)在各個(gè)領(lǐng)域的應(yīng)用越來(lái)越廣泛。如今數(shù)學(xué)知識(shí)在各個(gè)領(lǐng)域的應(yīng)用越來(lái)越廣泛,尤其是在經(jīng)濟(jì)學(xué)中的應(yīng)用最為顯著。自從1969年創(chuàng)設(shè)諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)以來(lái),就有不少理論成果來(lái)自利用數(shù)學(xué)工具分析經(jīng)濟(jì)問(wèn)題。事實(shí)上,從1969年到20xx年這35年中,一共產(chǎn)生了53位獲獎(jiǎng)?wù)?,其中擁有?shù)學(xué)學(xué)位的共有19人,所占比例為35.8%;其中擁有理工學(xué)位的有9人,所占比例為17%;二者共計(jì)占52.8%;其中共有29位諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)的獲得者是以數(shù)學(xué)方法為主要的研究方法,約占總?cè)藬?shù)的63.1%。然而幾乎所有的諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)獲得者都運(yùn)用了數(shù)學(xué)方法來(lái)研究經(jīng)濟(jì)學(xué)理論。除了在經(jīng)濟(jì)領(lǐng)域,數(shù)學(xué)建模思想也廣泛應(yīng)用于生物醫(yī)學(xué),包括超聲波、電磁診斷等方面。同時(shí)數(shù)學(xué)建模還將數(shù)學(xué)與生物學(xué)融合進(jìn)了基因科學(xué),例如基因表達(dá)的定型、基因組測(cè)序、基因分類等等,在生物學(xué)領(lǐng)域需要建立大規(guī)模的模擬以及復(fù)雜的數(shù)學(xué)模型??梢姅?shù)學(xué)建模思想的應(yīng)用是非常廣泛的,并對(duì)其他領(lǐng)域的發(fā)展起著重要的推動(dòng)作用。

(2)有利于激發(fā)學(xué)生的學(xué)習(xí)熱情,豐富大學(xué)數(shù)學(xué)課程。一般的數(shù)學(xué)課,通常只是重視理論知識(shí)的講解和傳授,對(duì)知識(shí)點(diǎn)的推理和思想方法的分析較少。而且多數(shù)學(xué)生為了應(yīng)付考試,也只是以“類型題”的方式去復(fù)習(xí)知識(shí)點(diǎn)。這樣的方式雖然能夠讓學(xué)生掌握一部分?jǐn)?shù)學(xué)知識(shí),可是卻不能提高學(xué)生的數(shù)學(xué)素質(zhì),不能提高學(xué)生對(duì)大學(xué)數(shù)學(xué)的學(xué)習(xí)興趣。而數(shù)學(xué)建模思想運(yùn)用數(shù)學(xué)知識(shí)來(lái)解決生活中的實(shí)際問(wèn)題,這樣就使數(shù)學(xué)活了起來(lái),而不是死的理論知識(shí)。運(yùn)用數(shù)學(xué)建模思想能夠讓學(xué)生在數(shù)學(xué)中感悟生活,在生活中體會(huì)數(shù)學(xué)的價(jià)值,更容易吸引學(xué)生的學(xué)習(xí)興趣。而興趣是學(xué)習(xí)最有效的動(dòng)力,讓學(xué)生主動(dòng)參與學(xué)習(xí)而非被動(dòng)學(xué)習(xí),取得的教學(xué)效果會(huì)更好。

(3)是加強(qiáng)數(shù)學(xué)教學(xué)改革,適應(yīng)時(shí)代發(fā)展的需要。在大學(xué)數(shù)學(xué)教學(xué)活動(dòng)中,許多學(xué)生常常陷入這樣的困惑之中:花費(fèi)了大量的精力,做了很多習(xí)題,但是卻感受不到數(shù)學(xué)的作用和價(jià)值。而教師在教學(xué)中也總是告訴學(xué)生數(shù)學(xué)是一門很有用的課程,但是卻舉不出現(xiàn)實(shí)的例子。并且傳統(tǒng)的教學(xué)方式也只是教會(huì)學(xué)生掌握簡(jiǎn)單的理論知識(shí),并不能提高學(xué)生的數(shù)學(xué)素養(yǎng)和數(shù)學(xué)意識(shí)。而將數(shù)學(xué)建模思想融入到大學(xué)的數(shù)學(xué)類課程之中就能很好地解決這些問(wèn)題。因?yàn)閷?shù)學(xué)建模思想運(yùn)用到數(shù)學(xué)類課程中,就能夠讓學(xué)生在獨(dú)立思考和探索中感受到數(shù)學(xué)在現(xiàn)實(shí)生活中的實(shí)用價(jià)值,提高學(xué)生運(yùn)用數(shù)學(xué)的眼光去觀察、分析以及表示各種事物的空間關(guān)系、數(shù)量關(guān)系和數(shù)學(xué)信息的能力,提高學(xué)生的創(chuàng)造能力和創(chuàng)新意識(shí)。

(1)教師在教學(xué)過(guò)程中較少滲入數(shù)學(xué)建模思想。目前在高校數(shù)學(xué)教學(xué)中數(shù)學(xué)建模的思想應(yīng)用得仍然較少,重視程度不夠。不少高校的教師在開展大學(xué)數(shù)學(xué)類課程時(shí),仍然只是停留在數(shù)學(xué)知識(shí)的教學(xué)方面,并沒有對(duì)學(xué)生進(jìn)行研究性學(xué)習(xí)探索。據(jù)調(diào)查,大多數(shù)高校教師對(duì)日常的教學(xué)工作能夠認(rèn)真完成規(guī)定的教學(xué)任務(wù),但能夠真正創(chuàng)造性地把數(shù)學(xué)建模思想融入到數(shù)學(xué)教學(xué)任務(wù)中的教師較少。大多數(shù)高校數(shù)學(xué)老師都意識(shí)到探索式的數(shù)學(xué)建模教學(xué)很重要,但真正將數(shù)學(xué)建模思想與數(shù)學(xué)教學(xué)融合的嘗試和探索卻很少??梢姸鄶?shù)高校教師雖然明白數(shù)學(xué)建模思想的重要性,但是由于缺乏足夠的數(shù)學(xué)建模教學(xué)的相關(guān)知識(shí)及經(jīng)驗(yàn),在實(shí)際教學(xué)中數(shù)學(xué)建模思想仍未得到充分的運(yùn)用。

(2)開設(shè)的有關(guān)數(shù)學(xué)建模的課程和活動(dòng)較少。雖然數(shù)學(xué)建模思想得到了越來(lái)越廣泛的應(yīng)用,但是在高校中實(shí)際開設(shè)的有關(guān)數(shù)學(xué)建模的課程并不多,尤其是應(yīng)用數(shù)學(xué)、數(shù)學(xué)實(shí)驗(yàn)以及計(jì)算機(jī)應(yīng)用等一些需要滲入數(shù)學(xué)建模思想的課程在實(shí)際的教學(xué)過(guò)程中并沒有創(chuàng)造性地運(yùn)用數(shù)學(xué)建模思想。另一方面,校內(nèi)自主開展的有關(guān)數(shù)學(xué)建模競(jìng)賽和活動(dòng)并不多,宣傳力度也不夠,無(wú)法讓更多的學(xué)生了解數(shù)學(xué)建模的意義和價(jià)值,更無(wú)法參與到數(shù)學(xué)建模活動(dòng)中去。

(3)學(xué)生對(duì)數(shù)學(xué)的態(tài)度和觀念還未改變,對(duì)數(shù)學(xué)建模缺乏深入的了解。大學(xué)數(shù)學(xué)是一門較為抽象的學(xué)科,其概念、定理和性質(zhì)都不容易掌握,由于其具有一定的難度,所以不少學(xué)生對(duì)大學(xué)數(shù)學(xué)類課程以及數(shù)學(xué)建模沒有興趣。并且這些學(xué)生在初中和高中階段也學(xué)習(xí)數(shù)學(xué),但是不少學(xué)生是為了應(yīng)付考試,并沒有見識(shí)到數(shù)學(xué)的應(yīng)用性,覺得數(shù)學(xué)是一門純理論的課程,沒有實(shí)用價(jià)值。同時(shí)很多學(xué)生對(duì)數(shù)學(xué)建模思想的運(yùn)用并不夠了解,不知道如何將數(shù)學(xué)知識(shí)和數(shù)學(xué)方法應(yīng)用到實(shí)際的生活中去,覺得數(shù)學(xué)沒有用,也沒有深入學(xué)習(xí)的意義。

(1)提高課堂教學(xué)質(zhì)量,創(chuàng)造性地運(yùn)用數(shù)學(xué)建模思想。大學(xué)的數(shù)學(xué)類課程主要有“線性代數(shù)”、“高等數(shù)學(xué)”、“運(yùn)籌學(xué)”、“數(shù)學(xué)建?!薄ⅰ案怕收撆c數(shù)理統(tǒng)計(jì)”等,這些課程的核心部分都跟高等數(shù)學(xué)有關(guān),所以要注重提高數(shù)學(xué)類課程的教學(xué)質(zhì)量關(guān)鍵就在于高等數(shù)學(xué),而要提高高等數(shù)學(xué)的教學(xué)質(zhì)量就必須在教學(xué)過(guò)程中創(chuàng)造性地應(yīng)用數(shù)學(xué)建模思想。對(duì)于主修數(shù)學(xué)的學(xué)生,要加強(qiáng)對(duì)計(jì)算機(jī)軟件和語(yǔ)言的學(xué)習(xí),系統(tǒng)性地對(duì)數(shù)學(xué)原理進(jìn)行剖解和分析,合理運(yùn)用數(shù)學(xué)知識(shí)和數(shù)學(xué)方法解決社會(huì)實(shí)際問(wèn)題。在教學(xué)中多引導(dǎo)、啟發(fā)學(xué)生利用對(duì)生活問(wèn)題和科學(xué)問(wèn)題的深入研究,主動(dòng)結(jié)合自己的課程理論知識(shí)和數(shù)學(xué)建模,使數(shù)學(xué)建模思想融入到學(xué)生的整個(gè)學(xué)習(xí)過(guò)程中去。對(duì)于非數(shù)學(xué)領(lǐng)域的問(wèn)題,要啟發(fā)學(xué)生運(yùn)用計(jì)算機(jī)軟件建模,從而解決不同領(lǐng)域中的數(shù)學(xué)建模問(wèn)題。

(2)多開設(shè)跟數(shù)學(xué)建模有關(guān)的數(shù)學(xué)類課程。例如除了開設(shè)跟數(shù)學(xué)建模有關(guān)的必修課,還可以開設(shè)一些跟數(shù)學(xué)建模有關(guān)的選修課,為其他專業(yè)的學(xué)生提供接觸和了解數(shù)學(xué)建模思想的機(jī)會(huì),為學(xué)生拓展知識(shí)領(lǐng)域,為其解決該領(lǐng)域的問(wèn)題提供有效的方法。例如,經(jīng)濟(jì)學(xué)有關(guān)專業(yè)的學(xué)生就可以通過(guò)選修跟數(shù)學(xué)建模有關(guān)的課程,解決其在經(jīng)濟(jì)學(xué)中遇到的問(wèn)題,因?yàn)楹芏喔?jīng)濟(jì)學(xué)有關(guān)的問(wèn)題僅僅靠經(jīng)濟(jì)學(xué)的知識(shí)是無(wú)法解決的,像貸款計(jì)算這樣的問(wèn)題就要將數(shù)學(xué)與經(jīng)濟(jì)學(xué)聯(lián)系起來(lái)才能解決實(shí)際問(wèn)題。

(3)廣泛宣傳,讓學(xué)生了解數(shù)學(xué)建模的意義和價(jià)值。學(xué)生是教學(xué)過(guò)程中的主體,目前,大學(xué)數(shù)學(xué)建模課程開設(shè)效果不佳,學(xué)生參與度低的主要原因就是學(xué)生缺乏對(duì)數(shù)學(xué)建模的深入了解。那么,要提高學(xué)生的參與性,促進(jìn)數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)類課程的融合就必須加強(qiáng)宣傳,讓學(xué)生深入了解什么是數(shù)學(xué)建模。同時(shí),在課堂上就是也要轉(zhuǎn)變傳統(tǒng)枯燥的教學(xué)方式,多使用啟發(fā)式教學(xué)和探索式教學(xué),吸引學(xué)生的學(xué)習(xí)興趣,讓他們發(fā)現(xiàn)數(shù)學(xué)對(duì)社會(huì)實(shí)際生活的重要作用,轉(zhuǎn)變他們對(duì)數(shù)學(xué)的態(tài)度,并引導(dǎo)學(xué)生對(duì)數(shù)學(xué)建模和數(shù)學(xué)課程感興趣。

(4)轉(zhuǎn)變數(shù)學(xué)教育理念及教育方式。要轉(zhuǎn)變傳統(tǒng)的教育方式,將教學(xué)的重點(diǎn)放在數(shù)學(xué)知識(shí)在生活中的應(yīng)用問(wèn)題上,而不是將知識(shí)與實(shí)際生活割裂開來(lái)。同時(shí)在教學(xué)中要注重證明和推理,加強(qiáng)學(xué)生對(duì)數(shù)學(xué)方法的掌握注重培養(yǎng)學(xué)生對(duì)實(shí)際問(wèn)題的邏輯分析、簡(jiǎn)化、抽象并運(yùn)用數(shù)學(xué)語(yǔ)言表達(dá)的能力。也就是說(shuō)教學(xué)的重點(diǎn)在于提高學(xué)生的數(shù)學(xué)學(xué)習(xí)能力和加強(qiáng)數(shù)學(xué)意識(shí)和數(shù)學(xué)方法的應(yīng)用,這樣才能夠培養(yǎng)出具有創(chuàng)新能力和創(chuàng)新意識(shí)的人才。

(5)多開展數(shù)學(xué)建?;顒?dòng)和競(jìng)賽,提高學(xué)生參與性。在高校內(nèi)部要多開展跟數(shù)學(xué)有關(guān)的活動(dòng)和競(jìng)賽以及專家講座等,一方面加強(qiáng)學(xué)生對(duì)數(shù)學(xué)建模的認(rèn)識(shí),另一方面也提高了學(xué)生的參與性。通過(guò)專家講座,不僅可以讓學(xué)生更深入地了解數(shù)學(xué)建模的價(jià)值,也加強(qiáng)了學(xué)術(shù)交流,提高學(xué)生的數(shù)學(xué)建模應(yīng)用能力。通過(guò)數(shù)學(xué)建模競(jìng)賽,為學(xué)生提供展示自己智慧、充分發(fā)揮其能力的平臺(tái)。同時(shí),競(jìng)賽也可以讓學(xué)生在競(jìng)賽中發(fā)現(xiàn)自己的不足,在交流中不斷完善自己的缺陷,拓展學(xué)生的思維。而且,在數(shù)學(xué)建模比賽中,通過(guò)讓學(xué)生探究跟生活實(shí)際有關(guān)的例子,提高學(xué)生對(duì)數(shù)學(xué)建模的興趣,加強(qiáng)學(xué)生對(duì)模型應(yīng)用的直觀性認(rèn)識(shí),促進(jìn)學(xué)校應(yīng)用型人才的培養(yǎng)。

總之,數(shù)學(xué)建模思想和高校數(shù)學(xué)類課程的融合,對(duì)于高等數(shù)學(xué)教學(xué)改革具有非常重要的意義。把數(shù)學(xué)建模思想融入到高等數(shù)學(xué)教學(xué)中,可以更好地提高學(xué)生的數(shù)學(xué)學(xué)習(xí)能力,提高他們運(yùn)用數(shù)學(xué)思想和數(shù)學(xué)方法分析問(wèn)題、解決問(wèn)題和抽象思維的能力。高校教師要加強(qiáng)數(shù)學(xué)建模思想的應(yīng)用,讓學(xué)生初步掌握從實(shí)際問(wèn)題中總結(jié)數(shù)學(xué)內(nèi)涵的方法,提高學(xué)生的數(shù)學(xué)學(xué)習(xí)興趣,為高校學(xué)生專業(yè)課的學(xué)習(xí)奠定堅(jiān)實(shí)的數(shù)學(xué)基礎(chǔ)。

數(shù)學(xué)建模論文心得篇十五

大量的應(yīng)用型技能型人才,有效滿足了社會(huì)各行各業(yè)的用工需求。隨著國(guó)家對(duì)高職教育的重視和不斷投入,提高教育的教學(xué)質(zhì)量勢(shì)在必行[1]。數(shù)學(xué)建模的核心是以數(shù)學(xué)模型為基礎(chǔ)的實(shí)際運(yùn)用,鑒于數(shù)學(xué)建模的這種特點(diǎn),國(guó)內(nèi)高職數(shù)學(xué)教育逐步把數(shù)學(xué)建模理念融入到課題教學(xué)中,提高學(xué)生的應(yīng)用能力。以數(shù)學(xué)建模理念的告知書明確教學(xué)改革要求學(xué)生結(jié)合計(jì)算機(jī)技術(shù),靈活運(yùn)用數(shù)學(xué)的思想和方法獨(dú)立地分析和解決問(wèn)題,不僅能培養(yǎng)學(xué)生的探索精神和創(chuàng)新意識(shí),而且能培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作、不怕困難、求實(shí)嚴(yán)謹(jǐn)?shù)淖黠L(fēng)[2]。筆者結(jié)合自身的教學(xué)工作經(jīng)驗(yàn),對(duì)基于數(shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革進(jìn)行了探索,對(duì)教學(xué)實(shí)踐中出現(xiàn)的問(wèn)題進(jìn)行了分析梳理,以期為高職數(shù)學(xué)教學(xué)改革提供新思路,推動(dòng)高職數(shù)學(xué)教學(xué)水平的不斷提高,培養(yǎng)出具有良好數(shù)學(xué)素養(yǎng)和專業(yè)技能的新型高職人才。

近年來(lái),隨著國(guó)內(nèi)產(chǎn)業(yè)結(jié)構(gòu)的不斷調(diào)整,對(duì)于高等職業(yè)技術(shù)人才需求不斷增大,社會(huì)對(duì)高等職業(yè)技術(shù)教育寄予厚望。但是傳統(tǒng)的高職教育由于專業(yè)設(shè)置不合理,使用教材落后,實(shí)訓(xùn)實(shí)踐場(chǎng)地不足,培養(yǎng)出的學(xué)生動(dòng)手能力差、專業(yè)能力不足,面對(duì)社會(huì)發(fā)展的新形勢(shì),高職教育必須進(jìn)行教學(xué)改革,提高學(xué)生的職業(yè)能力和就業(yè)競(jìng)爭(zhēng)力。高職教育不同于普通本科教育,它有以下幾方面的特點(diǎn)。

1人才培養(yǎng)目標(biāo)不同

高職教育和本科教育人才培養(yǎng)目標(biāo)不同,高職教育是以技術(shù)應(yīng)用型高技能人才為培養(yǎng)目標(biāo),所有的教學(xué)課程設(shè)計(jì)和人才培養(yǎng)體系設(shè)計(jì)都是基于此目標(biāo)展開的,高職教育主要是為了向產(chǎn)業(yè)發(fā)展提供生產(chǎn)、服務(wù)、管理等一線工作的高級(jí)技術(shù)應(yīng)用型人才,專業(yè)能力培養(yǎng)和目標(biāo)職業(yè)匹配度高,所以高職教育教學(xué)成果最直接的評(píng)價(jià)就是畢業(yè)生的就業(yè)競(jìng)爭(zhēng)力和上崗后的適應(yīng)能力。

2兩者的教學(xué)內(nèi)容不同

高職教育的教學(xué)重點(diǎn)是學(xué)生要掌握與實(shí)踐工作關(guān)系較為密切的業(yè)務(wù)處理能力、動(dòng)手能力與交流能力,把學(xué)生的職業(yè)能力建設(shè)列為教學(xué)重點(diǎn),課程設(shè)計(jì)專業(yè)性強(qiáng),一旦就業(yè)能為企業(yè)創(chuàng)造明顯的效益,高職教育各專業(yè)課程差別較大。

3生源情況不同

在當(dāng)前的教育教學(xué)體系下,高職教育的生源普遍較差,大多是沒有希望考上大學(xué),轉(zhuǎn)而進(jìn)入高職學(xué)習(xí),希望通過(guò)掌握一定的技術(shù)來(lái)實(shí)現(xiàn)就業(yè),所以高職學(xué)生的基礎(chǔ)知識(shí)普遍較差,學(xué)習(xí)興趣不高。數(shù)學(xué)建模給高職數(shù)學(xué)教學(xué)改革開辟了新思路,數(shù)學(xué)建模為數(shù)學(xué)理論學(xué)習(xí)和工程實(shí)踐應(yīng)用搭建了橋梁,在工學(xué)結(jié)合的基本原則下,采取數(shù)學(xué)建模教學(xué)理念,培養(yǎng)學(xué)生的數(shù)學(xué)素養(yǎng)及動(dòng)手應(yīng)用能力是一個(gè)非常有效的手段[3]。

1數(shù)學(xué)建模的概念數(shù)學(xué)建模是將數(shù)學(xué)理論和現(xiàn)實(shí)問(wèn)題相結(jié)合的一門科學(xué),它將實(shí)際問(wèn)題抽象、歸納成為相應(yīng)的數(shù)學(xué)模型,在此基礎(chǔ)上應(yīng)用數(shù)學(xué)概念、數(shù)學(xué)定理、數(shù)學(xué)方法等手段研究處理實(shí)際問(wèn)題,從定性或者定理的角度給出科學(xué)的結(jié)果[4]。數(shù)學(xué)建模的發(fā)展為數(shù)學(xué)知識(shí)的應(yīng)用提供了途徑,對(duì)于現(xiàn)實(shí)中的特點(diǎn)問(wèn)題,可以用數(shù)學(xué)語(yǔ)言來(lái)描述其內(nèi)在規(guī)律和問(wèn)題,運(yùn)用數(shù)學(xué)研究的成果,結(jié)合計(jì)算機(jī)專業(yè)軟件,通過(guò)抽象、簡(jiǎn)化、假設(shè)、引進(jìn)變量等處理過(guò)程后,將實(shí)際問(wèn)題用數(shù)學(xué)方式表達(dá),轉(zhuǎn)化成為數(shù)學(xué)問(wèn)題,借助數(shù)學(xué)思想建立起數(shù)學(xué)模型,從而解決實(shí)際問(wèn)題。2基于數(shù)學(xué)建模思想的教學(xué)理念基于數(shù)學(xué)建模的這種學(xué)科特點(diǎn),可以把數(shù)學(xué)知識(shí)應(yīng)用化,因此,基于數(shù)學(xué)建模思想的教學(xué)理念可以概括為三個(gè)層次:首先,確立提高學(xué)生數(shù)學(xué)應(yīng)用能力為目標(biāo),以提高學(xué)生數(shù)學(xué)學(xué)習(xí)興趣為手段,以學(xué)習(xí)數(shù)學(xué)建模為途徑;其次,結(jié)合教學(xué)內(nèi)容,開發(fā)相應(yīng)的數(shù)學(xué)建模案例,因地制宜、因生制宜,根據(jù)專業(yè)不同編寫相應(yīng)的校本教材;最后,改進(jìn)教學(xué)方法,創(chuàng)新課堂教學(xué)模式,建立課外數(shù)學(xué)建模學(xué)習(xí)興趣小組,帶領(lǐng)學(xué)生進(jìn)行數(shù)學(xué)應(yīng)用實(shí)踐活動(dòng),鼓勵(lì)學(xué)生參加各種數(shù)學(xué)建模競(jìng)賽[5]。

傳統(tǒng)的數(shù)學(xué)教學(xué)模式以教師課堂講授為中心,學(xué)生只能被動(dòng)的接受,由于學(xué)生的基礎(chǔ)知識(shí)水平不同,掌握新知識(shí)的能力也不同,這種沒有區(qū)分的教學(xué)模式教學(xué)效果差,往往帶來(lái)的結(jié)果是造成基礎(chǔ)差的學(xué)生跟不上,對(duì)數(shù)學(xué)感興趣的學(xué)生失去興趣。基于數(shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革,是以學(xué)生數(shù)學(xué)應(yīng)用能力提高為目標(biāo),以數(shù)學(xué)學(xué)習(xí)興趣培養(yǎng)為出發(fā)點(diǎn),以數(shù)學(xué)建模為途徑,以教學(xué)方式改革為保障,打造高職數(shù)學(xué)教學(xué)改革新模式,全面提高高職教育應(yīng)用型人才培養(yǎng)水平。

1結(jié)合專業(yè)特色,突出數(shù)學(xué)教育的應(yīng)用性

數(shù)學(xué)作為高職教育的基礎(chǔ)性學(xué)科,理論性強(qiáng),體系性強(qiáng),對(duì)于基礎(chǔ)知識(shí)薄弱、學(xué)習(xí)興趣差的高職生來(lái)說(shuō)感覺難學(xué)、枯燥,這是因?yàn)楦呗殧?shù)學(xué)教育沒有教會(huì)學(xué)生如何在專業(yè)學(xué)習(xí)中和以后的工作中如何去用學(xué)到的數(shù)學(xué)知識(shí),學(xué)生感覺知識(shí)無(wú)用自然也就不會(huì)主動(dòng)去學(xué),之所以引入數(shù)學(xué)建模的思想就是為了讓學(xué)生利用學(xué)到的數(shù)學(xué)知識(shí)去解決實(shí)際問(wèn)題,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)不只是紙面上的寫寫算算,數(shù)學(xué)可以把實(shí)際問(wèn)題抽象化,變成數(shù)學(xué)問(wèn)題,利用數(shù)學(xué)的研究方法給實(shí)際問(wèn)題進(jìn)行科學(xué)的指導(dǎo),這樣高職數(shù)學(xué)教育就不再是課堂上的照本宣科,課下的演算作業(yè),將基礎(chǔ)數(shù)學(xué)教育和學(xué)生的專業(yè)教育相結(jié)合,帶來(lái)學(xué)生用數(shù)學(xué)解決專業(yè)問(wèn)題是大幅度提高學(xué)生專業(yè)能力的有效途徑。

2結(jié)合學(xué)生能力,因材施教、因地制宜

高職學(xué)校的生源不如普通高校,一般學(xué)習(xí)基礎(chǔ)較差,對(duì)于專業(yè)實(shí)訓(xùn)課并不明顯,但是在基礎(chǔ)學(xué)科教學(xué)過(guò)程特別突出,很多基礎(chǔ)知識(shí)掌握不牢,甚至一點(diǎn)印象都沒有,教師在上課時(shí)要充分考慮到這種情況,在課堂授課時(shí)給予實(shí)時(shí)的補(bǔ)充,以助于知識(shí)的過(guò)渡。因材施教是我國(guó)傳統(tǒng)的教育思想,在掌握學(xué)生知識(shí)水平的基礎(chǔ)上,教師要根據(jù)不同學(xué)習(xí)層次學(xué)生的具體情況,安排教學(xué)內(nèi)容和設(shè)置教學(xué)目標(biāo),對(duì)于基礎(chǔ)知識(shí)水平不高、學(xué)習(xí)興趣較差、學(xué)習(xí)能力較弱的學(xué)生要進(jìn)行課外輔導(dǎo)。高職基礎(chǔ)課教育是專業(yè)課學(xué)習(xí)的基礎(chǔ),授課教師要根據(jù)學(xué)生的專業(yè)學(xué)習(xí)情況和專業(yè)特點(diǎn),把遷移知識(shí)運(yùn)用能力在課堂上結(jié)合學(xué)生的專業(yè)背景進(jìn)行輔導(dǎo),高職數(shù)學(xué)教育不僅僅是為了學(xué)習(xí)數(shù)學(xué),更多的是發(fā)揮數(shù)學(xué)知識(shí)在其專業(yè)能力培養(yǎng)中的作用。

3培養(yǎng)學(xué)生學(xué)習(xí)興趣,促進(jìn)整體教學(xué)質(zhì)量提高

高職學(xué)校的學(xué)生學(xué)習(xí)興趣普遍不高,尤其是對(duì)于學(xué)了十幾年都感覺頭痛的數(shù)學(xué),要想提高數(shù)學(xué)的教學(xué)質(zhì)量,首先必須要培養(yǎng)學(xué)生的學(xué)習(xí)興趣,長(zhǎng)期以來(lái)學(xué)生在數(shù)學(xué)學(xué)習(xí)上已經(jīng)有了根深蒂固的認(rèn)識(shí),培養(yǎng)數(shù)學(xué)學(xué)習(xí)興趣很難,但是如果學(xué)生沒有學(xué)習(xí)興趣,教師授課內(nèi)容、授課方式改革都起不了太大的作用,學(xué)生對(duì)于數(shù)學(xué)學(xué)習(xí)興趣低由于低年級(jí)學(xué)習(xí)時(shí)受到的挫敗感,因此要讓學(xué)生建立學(xué)習(xí)數(shù)學(xué)的自信心,讓他們體驗(yàn)學(xué)會(huì)數(shù)學(xué)的成就感,這樣才能逐步培養(yǎng)他們的學(xué)習(xí)興趣。教師可以采取以點(diǎn)帶面的方式,先選擇有一定基礎(chǔ)的學(xué)生,再?gòu)娜空n程學(xué)習(xí)中發(fā)現(xiàn)表現(xiàn)優(yōu)秀的個(gè)體,組織參加建模競(jìng)賽,進(jìn)行單獨(dú)賽前加強(qiáng)指導(dǎo),用這些榜樣的力量提高全體同學(xué)的學(xué)習(xí)積極性。數(shù)學(xué)建模作為提高高職數(shù)學(xué)教育教學(xué)水平的“點(diǎn)”,能夠以其趣味性強(qiáng),帶動(dòng)學(xué)生的學(xué)習(xí)興趣,促進(jìn)高職數(shù)學(xué)教育教學(xué)水平的全面提高。

4改革教學(xué)及評(píng)價(jià)方式,建立面向應(yīng)用的數(shù)學(xué)教育體系

由于基于數(shù)學(xué)建模思想的高職數(shù)學(xué)教學(xué)改革打破了以往的課堂教學(xué)方式和考核方式,學(xué)生面對(duì)的不再是期末的一張?jiān)嚲恚且粋€(gè)個(gè)數(shù)學(xué)建模案例,需要學(xué)生運(yùn)用本學(xué)期學(xué)到的數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題,教師根據(jù)學(xué)生對(duì)案例的理解程度,數(shù)學(xué)模型運(yùn)用能力,實(shí)際過(guò)程分析和解題技巧等多方面給出評(píng)價(jià),同時(shí)積極評(píng)價(jià)、鼓勵(lì)學(xué)生的創(chuàng)新思維,并將其納入到考核體系當(dāng)中。通過(guò)以上各個(gè)方面評(píng)價(jià)的加權(quán)作為最后的評(píng)價(jià)指標(biāo)。這種以數(shù)學(xué)知識(shí)應(yīng)用為基礎(chǔ),直接面向應(yīng)用的高職數(shù)學(xué)教育模式能極大的激發(fā)學(xué)生的學(xué)習(xí)積極性和知識(shí)應(yīng)用能力,符合高職應(yīng)用型人才培養(yǎng)理念,對(duì)提高高職學(xué)生的專業(yè)能力也打下了堅(jiān)實(shí)的基礎(chǔ)?;跀?shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革是推動(dòng)高職應(yīng)用型人才培養(yǎng)體系建設(shè)的新舉措,也是推動(dòng)高職基礎(chǔ)課教學(xué)水平的重要內(nèi)容,能有效解決學(xué)生學(xué)習(xí)興趣低,基礎(chǔ)知識(shí)掌握不牢,數(shù)學(xué)知識(shí)應(yīng)用能力低等問(wèn)題,通過(guò)“案例驅(qū)動(dòng)法+討論法”,引導(dǎo)學(xué)生再次對(duì)課本知識(shí)進(jìn)行思考和應(yīng)用,有利于培養(yǎng)學(xué)生的創(chuàng)新思維和應(yīng)用能力。引入數(shù)學(xué)建模理念教學(xué),把課堂學(xué)習(xí)的主動(dòng)權(quán)交回給學(xué)生,既保證了高等數(shù)學(xué)原有的知識(shí)體系的完整,也可以提高教學(xué)效率。通過(guò)教學(xué)方式和評(píng)價(jià)方式改革,學(xué)生的學(xué)習(xí)主動(dòng)性增強(qiáng),也改變了以往對(duì)于數(shù)學(xué)學(xué)習(xí)的學(xué)習(xí)態(tài)度。高等數(shù)學(xué)作為高職教育學(xué)生必修的基礎(chǔ)課,在培養(yǎng)學(xué)生基本數(shù)學(xué)素養(yǎng)上具有重要作用,是理工類專業(yè)課程體系的重要組成部分,基于數(shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革也為同類基礎(chǔ)理論課改革提供了新思路和范例。

[1]孫麗.在高職數(shù)學(xué)教學(xué)改革中應(yīng)注重?cái)?shù)學(xué)建模思想的滲透[j].科技資訊,20xx(22):188.

數(shù)學(xué)建模論文心得篇十六

第一條,論文用白色a4紙打印(單面、雙面均可);上下左右各留出至少2.5厘米的頁(yè)邊距;從左側(cè)裝訂。

第二條,論文第一頁(yè)為承諾書,第二頁(yè)為編號(hào)專用頁(yè),具體內(nèi)容見本規(guī)范第3、4頁(yè)。

第三條,論文第三頁(yè)為摘要專用頁(yè)(含標(biāo)題和關(guān)鍵詞,但不需要翻譯成英文),從此頁(yè)開始編寫頁(yè)碼;頁(yè)碼必須位于每頁(yè)頁(yè)腳中部,用阿拉伯?dāng)?shù)字從“1”開始連續(xù)編號(hào)。摘要專用頁(yè)必須單獨(dú)一頁(yè),且篇幅不能超過(guò)一頁(yè)。

第四條,從第四頁(yè)開始是論文正文(不要目錄,盡量控制在20頁(yè)以內(nèi));正文之后是論文附錄(頁(yè)數(shù)不限)。

第五條,論文附錄至少應(yīng)包括參賽論文的所有源程序代碼,如實(shí)際使用的軟件名稱、命令和編寫的全部可運(yùn)行的源程序(含excel、spss等軟件的交互命令);通常還應(yīng)包括自主查閱使用的數(shù)據(jù)等資料。賽題中提供的數(shù)據(jù)不要放在附錄。如果缺少必要的源程序或程序不能運(yùn)行,可能會(huì)被取消評(píng)獎(jiǎng)資格。論文附錄必須打印裝訂在論文紙質(zhì)版中。如果確實(shí)沒有需要以附錄形式提供的信息,論文可以沒有附錄。

第六條,論文正文和附錄不能有任何可能顯示答題人身份和所在學(xué)校及賽區(qū)的信息。

第七條,引用別人的成果或其他公開的資料(包括網(wǎng)上資料)必須按照科技論文寫作的規(guī)范格式列出參考文獻(xiàn),并在正文引用處予以標(biāo)注。

第八條,本規(guī)范中未作規(guī)定的,如排版格式(字號(hào)、字體、行距、顏色等)不做統(tǒng)一要求,可由賽區(qū)自行決定。在不違反本規(guī)范的前提下,各賽區(qū)可以對(duì)論文增加其他要求。

第九條,參賽隊(duì)?wèi)?yīng)按照《全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽報(bào)名和參賽須知》的要求命名和提交以下兩個(gè)電子文件,分別對(duì)應(yīng)于參賽論文和相關(guān)的支撐材料。

第十條,參賽論文的電子版不能包含承諾書和編號(hào)專用頁(yè)(即電子版論文第一頁(yè)為摘要頁(yè))。除此之外,其內(nèi)容及格式必須與紙質(zhì)版完全一致(包括正文及附錄),且必須是一個(gè)單獨(dú)的文件,文件格式只能為pdf或者word格式之一(建議使用pdf格式),不要壓縮,文件大小不要超過(guò)20mb。

第十一條,支撐材料(不超過(guò)20mb)包括用于支撐論文模型、結(jié)果、結(jié)論的所有必要文件,至少應(yīng)包含參賽論文的所有源程序,通常還應(yīng)包含參賽論文使用的`數(shù)據(jù)(賽題中提供的原始數(shù)據(jù)除外)、較大篇幅的中間結(jié)果的圖形或表格、難以從公開渠道找到的相關(guān)資料等。所有支撐材料使用winrar軟件壓縮在一個(gè)文件中(后綴為rar);如果支撐材料與論文內(nèi)容不相符,該論文可能會(huì)被取消評(píng)獎(jiǎng)資格。支撐材料中不能包含承諾書和編號(hào)專用頁(yè),不能有任何可能顯示答題人身份和所在學(xué)校及賽區(qū)的信息。如果確實(shí)沒有需要提供的支撐材料,可以不提供支撐材料。

第十二條,不符合本格式規(guī)范的論文將被視為違反競(jìng)賽規(guī)則,可能被取消評(píng)獎(jiǎng)資格。

第十三條,本規(guī)范的解釋權(quán)屬于全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽組委會(huì)。

說(shuō)明:

(1)本科組參賽隊(duì)從a、b題中任選一題,專科組參賽隊(duì)從c、d題中任選一題。

(2)賽區(qū)可自行決定是否在競(jìng)賽結(jié)束時(shí)收集參賽論文的紙質(zhì)版,但對(duì)于送全國(guó)評(píng)閱的論文,賽區(qū)必須提供符合本規(guī)范要求的紙質(zhì)版論文(承諾書由賽區(qū)組委會(huì)保存,不必提交給全國(guó)組委會(huì))。

(3)賽區(qū)評(píng)閱前將紙質(zhì)版論文第一頁(yè)(承諾書)取下保存,同時(shí)在第一頁(yè)和第二頁(yè)建立“賽區(qū)評(píng)閱編號(hào)”(由各賽區(qū)規(guī)定編號(hào)方式),“賽區(qū)評(píng)閱紀(jì)錄”表格可供賽區(qū)評(píng)閱時(shí)使用(由各賽區(qū)自行決定是否使用)。評(píng)閱后,賽區(qū)對(duì)送全國(guó)評(píng)閱的論文在第二頁(yè)建立“送全國(guó)評(píng)閱統(tǒng)一編號(hào)”(編號(hào)方式由全國(guó)組委會(huì)規(guī)定),然后送全國(guó)評(píng)閱。

數(shù)學(xué)建模論文心得篇十七

信息化時(shí)代,數(shù)學(xué)科學(xué)與其他學(xué)科交叉融合,使得數(shù)學(xué)技術(shù)變成了一種普適性的關(guān)鍵技術(shù)。大學(xué)加強(qiáng)數(shù)學(xué)課程的應(yīng)用功能,不但可以為學(xué)生提供解決問(wèn)題的思想和方法,而且更為重要的是可以培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)科學(xué)進(jìn)行定量化、精確化思維的意識(shí),學(xué)會(huì)創(chuàng)造性地解決問(wèn)題的應(yīng)用能力。數(shù)學(xué)建模課程將數(shù)學(xué)的基本原理、現(xiàn)代優(yōu)化算法以及程序設(shè)計(jì)知識(shí)很好地融合在一起,有助于培養(yǎng)學(xué)生綜合應(yīng)用數(shù)學(xué)知識(shí)將現(xiàn)實(shí)問(wèn)題化為數(shù)學(xué)問(wèn)題,并進(jìn)行求解運(yùn)算的能力,激發(fā)學(xué)生對(duì)解決現(xiàn)實(shí)問(wèn)題的探索欲望,強(qiáng)化數(shù)學(xué)課程本身的應(yīng)用功能,凸顯數(shù)學(xué)課程的教育價(jià)值,適應(yīng)大學(xué)數(shù)學(xué)課程以培養(yǎng)學(xué)生創(chuàng)新意識(shí)為宗旨的教育改革需要。

大學(xué)傳統(tǒng)的數(shù)學(xué)主干課程,如高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)在奠定學(xué)生的數(shù)學(xué)基礎(chǔ)、培養(yǎng)自學(xué)能力以及為后續(xù)課程的學(xué)習(xí)在基礎(chǔ)方面發(fā)揮奠基作用。但是,這種原有的教學(xué)模式重在突出培養(yǎng)學(xué)生嚴(yán)格的邏輯思維能力,而對(duì)數(shù)學(xué)的應(yīng)用重視不夠,這使得學(xué)生即使掌握了較為高深的數(shù)學(xué)理論,卻并不能將其靈活應(yīng)用于現(xiàn)實(shí)生活解決實(shí)際問(wèn)題,更是缺乏將數(shù)學(xué)應(yīng)用于專業(yè)研究和軍事工程的能力,與創(chuàng)新教育的基本要求差距甚遠(yuǎn)。教育轉(zhuǎn)型要求數(shù)學(xué)教學(xué)模式從傳統(tǒng)的傳授知識(shí)為主向以培養(yǎng)能力素質(zhì)為主轉(zhuǎn)變,特別是將數(shù)學(xué)建模的思想方法融入到數(shù)學(xué)主干課程之中,在教學(xué)過(guò)程中引導(dǎo)學(xué)生將數(shù)學(xué)知識(shí)內(nèi)化為學(xué)生的應(yīng)用能力,充分發(fā)揮數(shù)學(xué)建模思想在數(shù)學(xué)教學(xué)過(guò)程中的引領(lǐng)作用。數(shù)學(xué)課程教學(xué)改革要適應(yīng)這一教學(xué)模式轉(zhuǎn)型需要,深入探究融入式教學(xué)模式的理論與方式,是推進(jìn)數(shù)學(xué)教育改革的重要舉措。

2.1理清數(shù)學(xué)建模思想方法與數(shù)學(xué)主干課程的關(guān)系。數(shù)學(xué)主干課程提供了大學(xué)數(shù)學(xué)的基礎(chǔ)理論與基本原理,將數(shù)學(xué)建模的思想方法有機(jī)地融入到數(shù)學(xué)主干課程中,不但可以有效地提升數(shù)學(xué)課程的應(yīng)用功能,而且有利于深化學(xué)生對(duì)數(shù)學(xué)本原知識(shí)的理解,培養(yǎng)學(xué)生的綜合應(yīng)用能力。深入研究數(shù)學(xué)主干課程的功能定位,主要從課程目標(biāo)上的一致性、課程內(nèi)容上的互補(bǔ)性、學(xué)習(xí)形式上的互促性、功能上的整體優(yōu)化性等方面,研究數(shù)學(xué)建模本身所承載的思想、方法與數(shù)學(xué)主干課程的內(nèi)容與邏輯關(guān)系,闡述數(shù)學(xué)建模思想方法對(duì)提高學(xué)生創(chuàng)新能力和對(duì)數(shù)學(xué)教育改革的重要意義,探索開展融入式教學(xué)及創(chuàng)新數(shù)學(xué)課程教學(xué)模式的有效途徑。

2.2探索融入式教學(xué)模式提升數(shù)學(xué)主干課程應(yīng)用功能的方式。融入式教學(xué)主要有輕度融入、中度融入和完全融入三種方式。根據(jù)主干課程的基本特點(diǎn),對(duì)課程體系進(jìn)行調(diào)整,在問(wèn)題解決過(guò)程中安排需要融入的知識(shí)體系,按照三種方式融入數(shù)學(xué)建模的思想與方法。以學(xué)生能力訓(xùn)練為主導(dǎo),在培養(yǎng)深厚的數(shù)學(xué)基礎(chǔ)和嚴(yán)格的邏輯思維能力的基礎(chǔ)上,充分發(fā)揮數(shù)學(xué)建模思想方法對(duì)學(xué)生思維方式的培養(yǎng)功能和引導(dǎo)作用,培養(yǎng)學(xué)生敏銳的分析能力、深刻的'歸納演繹能力以及將數(shù)學(xué)知識(shí)應(yīng)用于工程問(wèn)題的創(chuàng)新能力。

2.3建立數(shù)學(xué)建模思想方法融入數(shù)學(xué)主干課程的評(píng)價(jià)方式。融入式教學(xué)是處于探索中的教學(xué)模式,教學(xué)成效有待于實(shí)踐檢驗(yàn)。選取開展融入式教學(xué)的實(shí)驗(yàn)班級(jí),對(duì)數(shù)學(xué)建模思想方法融入主干課程進(jìn)行教學(xué)效果實(shí)踐驗(yàn)證。設(shè)計(jì)相應(yīng)的考察量表,從運(yùn)用直覺思維深入理解背景知識(shí)、符號(hào)翻譯開展邏輯思維、依托圖表理順數(shù)量關(guān)系、大膽嘗試進(jìn)行建模求解等多方面對(duì)實(shí)驗(yàn)課程的教學(xué)效果進(jìn)行檢驗(yàn),深入分析融入式教學(xué)模式的成效與不足,為探索有效的教學(xué)模式提出改進(jìn)的對(duì)策。

3.1改革課程教學(xué)內(nèi)容,滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)主干課程教學(xué)內(nèi)容,將數(shù)學(xué)看作嚴(yán)謹(jǐn)?shù)难堇[體系,教學(xué)過(guò)程中著力于對(duì)學(xué)生傳授大學(xué)數(shù)學(xué)的基礎(chǔ)知識(shí),而對(duì)應(yīng)用能力的培養(yǎng)卻重視不夠。使得本應(yīng)能夠發(fā)揮應(yīng)用功能的數(shù)學(xué)知識(shí)則淪為僵死的教條性數(shù)學(xué)原理,這失去了教學(xué)的活力。學(xué)生即使掌握了再高深的數(shù)學(xué)知識(shí),仍難以學(xué)會(huì)用數(shù)學(xué)的基本方法解決現(xiàn)實(shí)問(wèn)題。現(xiàn)行的大學(xué)數(shù)學(xué)課程教學(xué)內(nèi)容中,適當(dāng)?shù)貪B透一些應(yīng)用性比較廣泛的數(shù)學(xué)方法,如微元法、迭代法及最佳逼近等方法,有利于促進(jìn)學(xué)生對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的掌握,同時(shí)理解數(shù)學(xué)原理所蘊(yùn)涵的思想與方法。

這樣,在解決實(shí)際問(wèn)題的時(shí)候,學(xué)生就會(huì)有意識(shí)地從數(shù)學(xué)的角度進(jìn)行思考,嘗試建立相應(yīng)的數(shù)學(xué)模型并進(jìn)行求解,拓展了數(shù)學(xué)知識(shí)的深度與廣度,提升了學(xué)生的數(shù)學(xué)應(yīng)用能力四、結(jié)語(yǔ)數(shù)學(xué)建模是數(shù)學(xué)科學(xué)在科技、經(jīng)濟(jì)、軍事等領(lǐng)域廣泛應(yīng)用的接口,是數(shù)學(xué)科學(xué)轉(zhuǎn)化成科學(xué)技術(shù)的重要途徑。在數(shù)學(xué)主干課程中融入數(shù)學(xué)建模的思想與方法,可以推動(dòng)大學(xué)數(shù)學(xué)教育改革的深入發(fā)展,加深學(xué)生對(duì)相關(guān)知識(shí)的理解和掌握,有助于從思維方式上培養(yǎng)學(xué)生的創(chuàng)新意識(shí)與創(chuàng)新能力。

此外,數(shù)學(xué)建模思想方法融入教學(xué)主干課程還涉及到許多問(wèn)題,比如數(shù)學(xué)建模與計(jì)算技術(shù)如何有效結(jié)合以進(jìn)行模擬仿真、融入式教學(xué)模式的基本理論、構(gòu)建新的課程體系等問(wèn)題,仍將有待于更深入的研究。

【本文地址:http://www.mlvmservice.com/zuowen/8316618.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔