教案要盡量避免繁瑣和冗長,突出重點和難點,使教學內(nèi)容條理清晰,易于理解和接受。教案的編寫需要關(guān)注學生的個體差異,提供不同層次的學習任務。希望這些教案能夠給教師們提供一些啟示和借鑒,促進教學實踐的不斷創(chuàng)新和發(fā)展。
勾股定理活動課教案篇一
本節(jié)課教學模式主要采用“互動式”教學模式及“類比”的教學方法.通過前面所學的垂直平分線定理及其逆定理,做類比對象,讓學生自己提出問題并解決問題.在課堂教學中營造輕松、活潑的課堂氣氛.通過師生互動、生生互動、學生與教材之間的互動,造成“情意共鳴,溝通信息,反饋流暢,思維活躍”,達到培養(yǎng)學生思維能力的目的.具體說明如下:
(1)讓學生主動提出問題
(2)讓學生自己解決問題
(3)通過實際問題的解決,培養(yǎng)學生的數(shù)學意識.
勾股定理活動課教案篇二
【知識與技能】
理解并掌握勾股定理的逆定理,會應用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。
【過程與方法】
經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。
【情感、態(tài)度與價值觀】
體會事物之間的聯(lián)系,感受幾何的魅力。
【重點】勾股定理的逆定理及其證明。
【難點】勾股定理的逆定理的證明。
(一)導入新課
復習勾股定理,分清其題設和結(jié)論。
提問學生畫直角三角形的方法(可用尺類工具),然后要求不能用繩子以外的工具。
出示古埃及人利用等長的3、4、5個繩結(jié)間距畫直角三角形的方法,以其中蘊含何道理為切入點引出課題。
(二)講解新知
請學生思考3,4,5之間的關(guān)系,結(jié)合勾股定理的學習經(jīng)驗明確
出示數(shù)據(jù)2.5cm,6cm,6.5cm,請學生計算驗證數(shù)據(jù)滿足上述平方和關(guān)系,并畫出相應邊長的三角形檢驗是否為直角三角形。
學生活動:同桌兩人一組,將三邊換成其他滿足上述平方和關(guān)系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應邊長的三角形檢驗是否為直角三角形。
勾股定理活動課教案篇三
勾股定理:如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2.
即直角三角形兩直角的平方和等于斜邊的平方.
因此,在運用勾股定理計算三角形的邊長時,要注意如下三點:
(2)注意分清斜邊和直角邊,避免盲目代入公式致錯;
2.學會用拼圖法驗證勾股定理
如,利用四個如圖1所示的直角三角形三角形,拼出如圖2所示的三個圖形.
請讀者證明.
請同學們自己證明圖(2)、(3).
3.在數(shù)軸上表示無理數(shù)
二、典例精析
解:由勾股定理,得
132-52=144,所以另一條直角邊的長為12.
所以這個直角三角形的面積是×12×5=30(cm2).
例2如圖3(1),一只螞蟻沿棱長為a的正方體表面從頂點a爬到
頂點b,則它走過的最短路程為
a.b.c.3ad.分析:本題顯然與例2屬同種類型,思路相同.但正方體的
各棱長相等,因此只有一種展開圖.
解:將正方體側(cè)面展開
勾股定理活動課教案篇四
學會觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學生的空間觀念。
2、過程與方法。
(1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力。
(2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學建模的思想。
3、情感態(tài)度與價值觀。
(1)通過有趣的問題提高學習數(shù)學的興趣。
(2)在解決實際問題的過程中,體驗數(shù)學學習的實用性。
教學重點:
探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題。
教學難點:
利用數(shù)學中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實際問題。
教學準備:
多媒體。
教學過程:
第一環(huán)節(jié):創(chuàng)設情境,引入新課(3分鐘,學生觀察、猜想)。
情景:
第二環(huán)節(jié):合作探究(15分鐘,學生分組合作探究)。
學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線。讓學生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數(shù)學解決實際問題的方法:建立數(shù)學模型,構(gòu)圖,計算。
第三環(huán)節(jié):做一做(7分鐘,學生合作探究)。
教材23頁。
李叔叔想要檢測雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺。
(1)你能替他想辦法完成任務嗎?
第四環(huán)節(jié):鞏固練習(10分鐘,學生獨立完成)。
2.如圖,臺階a處的螞蟻要爬到b處搬運食物,它怎么走最近?并求出最近距離。
第五環(huán)節(jié)課堂小結(jié)(3分鐘,師生問答)。
內(nèi)容:如何利用勾股定理及逆定理解決最短路程問題?
第六環(huán)節(jié):布置作業(yè)(2分鐘,學生分別記錄)。
作業(yè):1.課本習題1.5第1,2,3題.。
要求:a組(學優(yōu)生):1、2、3。
b組(中等生):1、2。
c組(后三分之一生):1。
勾股定理活動課教案篇五
思路點撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關(guān)系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)
勾股定理活動課教案篇六
1、知識與技能目標
學會觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學生的空間觀念。
2、過程與方法
(1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力。
(2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學建模的思想。
3、情感態(tài)度與價值觀
(1)通過有趣的問題提高學習數(shù)學的興趣。
(2)在解決實際問題的過程中,體驗數(shù)學學習的實用性。
教學重點:
探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題。
教學難點:
利用數(shù)學中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實際問題。
教學準備:
多媒體
教學過程:
第一環(huán)節(jié):創(chuàng)設情境,引入新課(3分鐘,學生觀察、猜想)
情景:
第二環(huán)節(jié):合作探究(15分鐘,學生分組合作探究)
學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線。讓學生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數(shù)學解決實際問題的方法:建立數(shù)學模型,構(gòu)圖,計算。
第三環(huán)節(jié):做一做(7分鐘,學生合作探究)
教材23頁
李叔叔想要檢測雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺。
(1)你能替他想辦法完成任務嗎?
第四環(huán)節(jié):鞏固練習(10分鐘,學生獨立完成)
2.如圖,臺階a處的螞蟻要爬到b處搬運食物,它怎么走最近?并求出最近距離。
第五環(huán)節(jié)課堂小結(jié)(3分鐘,師生問答)
內(nèi)容:如何利用勾股定理及逆定理解決最短路程問題?
第六環(huán)節(jié):布置作業(yè)(2分鐘,學生分別記錄)
作業(yè):1.課本習題1.5第1,2,3題.
要求:a組(學優(yōu)生):1、2、3
b組(中等生):1、2
c組(后三分之一生):1
勾股定理活動課教案篇七
1、通過拼圖,用面積的方法說明勾股定理的正確性.
2、通過實例應用勾股定理,培養(yǎng)學生的知識應用技能.
1.用面積的方法說明勾股定理的正確.
2.勾股定理的應用.
勾股定理的應用.
一、學前準備:
1、閱讀課本第46頁到第47頁,完成下列問題:
2、剪四個完全相同的直角三角形,然后將它們拼成如圖所示的'圖形。大正方形的面積可以表示為_________________________,又可以表示為__________________________.對比兩種表示方法,看看能不能得到勾股定理的結(jié)論。用上面得到的完全相同的四個直角三角形,還可以拼成如下圖所示的圖形,與上面的方法類似,也能說明勾股定理是正確的方法(請逐一說明)
二、合作探究:
(一)自學、相信自己:
(二)思索、交流:
(三)應用、探究:
(四)鞏固練習:
1、如圖,64、400分別為所在正方形的面積,則圖中字
母a所代表的正方形面積是_________。
三.學習體會:
本節(jié)課我們進一步認識了勾股定理,并用兩種方法證明了這個定理,在應用此定理解決問題時,應注意只有直角三角形的三邊才有這樣的關(guān)系,如果不是直角三角形應該構(gòu)造直角三角形來解決。
2②圖
四.自我測試:
五.自我提高:
勾股定理活動課教案篇八
1、知識目標:
(2)會應用勾股定理的逆定理判定一個三角形是否為直角三角形;
(3)知道什么叫勾股數(shù),記住一些覺見的勾股數(shù).
2、能力目標:
(1)通過勾股定理與其逆定理的比較,提高學生的辨析能力;
(2)通過勾股定理及以前的知識聯(lián)合起來綜合運用,提高綜合運用知識的能力.
3、情感目標:
(1)通過自主學習的發(fā)展體驗獲取數(shù)學知識的感受;
(2)通過知識的縱橫遷移感受數(shù)學的辯證特征.。
教學用具:直尺,微機。
教學方法:以學生為主體的討論探索法。
勾股定理活動課教案篇九
教學方法葉圣陶說過“教師之為教,不在全盤授予,而在相機誘導?!币虼私處熇脦缀沃庇^提出問題,引導學生由淺入深的探索,設計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。
學法指導為把學習的主動權(quán)還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。
勾股定理活動課教案篇十
1、知識與技能目標:探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,通過探究能夠發(fā)現(xiàn)直角三角形中兩個直角邊的平方和等于斜邊的平方和。
2、過程與方法目標:經(jīng)歷用測量和數(shù)格子的辦法探索勾股定理的過程,進一步發(fā)展學生的合情推理能力。
3、情感態(tài)度與價值觀目標:通過本節(jié)課的學習,培養(yǎng)主動探究的習慣,并進一步體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系。
勾股定理活動課教案篇十一
教學目標:
1、知識與技能目標:理解和掌握勾股定理的內(nèi)容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
2、過程與方法目標:通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。
3、情感、態(tài)度與價值觀目標:了解中國古代的數(shù)學成就,激發(fā)學生愛國熱情;學生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學的美感,從而了解數(shù)學,喜歡幾何。
教學重點:
引導學生經(jīng)歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題。
教學難點:
用面積法方法證明勾股定理
課前準備:
多媒體ppt,相關(guān)圖片
教學過程:
(一)情境導入
1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀念郵票,美麗的勾股樹,國際數(shù)學大會會標等。通過圖形欣賞,感受數(shù)學之美,感受勾股定理的文化價值。
已知一直角三角形的兩邊,如何求第三邊?
學習了今天的這節(jié)課后,同學們就會有辦法解決了
(二)學習新課
勾股定理活動課教案篇十二
教學目標:
1、知識與技能目標:理解和掌握勾股定理的內(nèi)容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
2、過程與方法目標:通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。
3、情感、態(tài)度與價值觀目標:了解中國古代的數(shù)學成就,激發(fā)學生愛國熱情;學生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學的美感,從而了解數(shù)學,喜歡幾何。
教學重點:
引導學生經(jīng)歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題。
教學難點:
用面積法方法證明勾股定理
課前準備:
多媒體ppt,相關(guān)圖片
教學過程:
(一)情境導入
1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀念郵票,美麗的勾股樹,國際數(shù)學大會會標等。通過圖形欣賞,感受數(shù)學之美,感受勾股定理的文化價值。
勾股定理活動課教案篇十三
一、整個課堂設計完整、結(jié)構(gòu)緊湊、邏輯嚴密、前后呼應,準備得比較充分,能引導學生循序漸進,思路很清晰,講解也很到位。
二、不搞題海戰(zhàn)術(shù),精講精練,舉一反三、觸類旁通。題型設計選題有針對性、典型性、層次性,亦有梯度,兩位老師都設計了分層練習,作業(yè)分層設計精巧,適合滿足不同層次學生的要求。
三、兩位老師引入新課都很自然,兩位老師都能從學生的實際水平出發(fā),面向全體學生,因材施教,分層次開展教學工作,全面提高學習效率。
教師在整個教學過程中老師敢于讓學生探索、體驗,給了學生以最大的自由運用和探索規(guī)律的開闊的地帶。特別是新塘三中的曾老師在教學中,通過教師有序的導、學生積極的學習參與、體驗、討論與交流,培養(yǎng)學生具有主動、負責、開拓、創(chuàng)新的個性特征和科學的思維方式。將知識與技能,過程與方法,情感態(tài)度和價值觀完美結(jié)合。在整個教學活動中始終面對全體學生,讓每一個學生都有收獲,都得到成功的體驗,充分體現(xiàn)了全面育人的新課標精神。建議新塘二中老師盡量少講,讓學生多思,多想,多做。......
勾股定理活動課教案篇十四
從知識結(jié)構(gòu)上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學習解直角三角形提供重要的理論依據(jù),在現(xiàn)實生活中有著廣泛的應用。
從學生認知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;
勾股定理又是對學生進行愛國主義教育的良好素材,因此具有相當重要的地位和作用。
根據(jù)數(shù)學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數(shù)學思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數(shù)學文化為主線,激發(fā)學生熱愛祖國悠久文化的情感。
(二)重點與難點
為變被動接受為主動探究,我確定本節(jié)課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點,我將引導學生動手實驗突出重點,合作交流突破難點。
勾股定理活動課教案篇十五
(一)知識與技能目標:
1、掌握勾股定理及其證明
2、會利用勾股定理進行直角三角形的簡單計算。
3、了解有關(guān)勾股定理的歷史知識
(二)過程與方法目標
經(jīng)歷課前預習和課上觀察、分析、歸納、猜想、驗證并運用實踐的過程,了解數(shù)學知識的生成與發(fā)展過程。通過了解勾股定理的幾個著名證法(趙爽證法、歐幾里得證法等),使學生感受數(shù)學證明的靈活、優(yōu)美與精巧,感受勾股定理的豐富文化內(nèi)涵。使學生自主學習能力和分析問題解決問題的能力得到提高。培養(yǎng)與人合作的意識。
(三)情感、態(tài)度和價值觀
1、通過自主學習培養(yǎng)學生探究、發(fā)現(xiàn)問題的能力,體驗獲取數(shù)學知識的過程。
2、通過小組合作、探索培養(yǎng)學生的團隊精神,以及不畏艱難,實事求是的學習態(tài)度和嚴謹?shù)臄?shù)學學習習慣。
3、通過了解有關(guān)勾股定理的中西歷史知識,激發(fā)學生的愛國熱情,培養(yǎng)學生的民族自豪感。
【本文地址:http://www.mlvmservice.com/zuowen/7567629.html】