教案應(yīng)根據(jù)學(xué)生的學(xué)習(xí)水平和教學(xué)環(huán)境的實(shí)際情況進(jìn)行調(diào)整和修改。教案要根據(jù)學(xué)生的學(xué)習(xí)進(jìn)度和掌握情況進(jìn)行及時(shí)調(diào)整和改進(jìn)。下面是一些經(jīng)典的教案樣本,這些教案設(shè)計(jì)精良,適合不同學(xué)習(xí)階段和課程特點(diǎn)的教學(xué)需求。
新人教版高中數(shù)學(xué)必修一教案篇一
(一)課標(biāo)要求
本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實(shí)在解三角形的應(yīng)用上。通過(guò)本章學(xué)習(xí),學(xué)生應(yīng)當(dāng)達(dá)到以下學(xué)習(xí)目標(biāo):
(1)通過(guò)對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問(wèn)題。
(2)能夠熟練運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的生活實(shí)際問(wèn)題。
(二)編寫(xiě)意圖與特色
1.?dāng)?shù)學(xué)思想方法的重要性
數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識(shí)的理解和掌握。
本章重視與內(nèi)容密切相關(guān)的數(shù)學(xué)思想方法的教學(xué),并且在提出問(wèn)題、思考解決問(wèn)題的策略等方面對(duì)學(xué)生進(jìn)行具體示范、引導(dǎo)。本章的兩個(gè)主要數(shù)學(xué)結(jié)論是正弦定理和余弦定理,它們都是關(guān)于三角形的邊角關(guān)系的結(jié)論。在初中,學(xué)生已經(jīng)學(xué)習(xí)了相關(guān)邊角關(guān)系的定性的知識(shí),就是“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角”,“如果已知兩個(gè)三角形的兩條對(duì)應(yīng)邊及其所夾的角相等,那么這兩個(gè)三角形全”等。
教科書(shū)在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識(shí)出發(fā),提出探究性問(wèn)題:“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問(wèn)題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋?lái)研究這個(gè)問(wèn)題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問(wèn)題?!痹O(shè)置這些問(wèn)題,都是為了加強(qiáng)數(shù)學(xué)思想方法的教學(xué)。
2.注意加強(qiáng)前后知識(shí)的聯(lián)系
加強(qiáng)與前后各章教學(xué)內(nèi)容的聯(lián)系,注意復(fù)習(xí)和應(yīng)用已學(xué)內(nèi)容,并為后續(xù)章節(jié)教學(xué)內(nèi)容做好準(zhǔn)備,能使整套教科書(shū)成為一個(gè)有機(jī)整體,提高教學(xué)效益,并有利于學(xué)生對(duì)于數(shù)學(xué)知識(shí)的學(xué)習(xí)和鞏固。
本章內(nèi)容處理三角形中的邊角關(guān)系,與初中學(xué)習(xí)的三角形的邊與角的基本關(guān)系,已知三角形的邊和角相等判定三角形全等的知識(shí)有著密切聯(lián)系。教科書(shū)在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識(shí)出發(fā),提出探究性問(wèn)題“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問(wèn)題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋?lái)研究這個(gè)問(wèn)題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的`問(wèn)題?!边@樣,從聯(lián)系的觀點(diǎn),從新的角度看過(guò)去的問(wèn)題,使學(xué)生對(duì)于過(guò)去的知識(shí)有了新的認(rèn)識(shí),同時(shí)使新知識(shí)建立在已有知識(shí)的堅(jiān)實(shí)基礎(chǔ)上,形成良好的知識(shí)結(jié)構(gòu)。
《課程標(biāo)準(zhǔn)》和教科書(shū)把“解三角形”這部分內(nèi)容安排在數(shù)學(xué)五的第一部分內(nèi)容,
位置相對(duì)靠后,在此內(nèi)容之前學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、平面向量、直線和圓的方程等與本章知識(shí)聯(lián)系密切的內(nèi)容,這使這部分內(nèi)容的處理有了比較多的工具,某些內(nèi)容可以處理得更加簡(jiǎn)潔。比如對(duì)于余弦定理的證明,常用的方法是借助于三角的方法,需要對(duì)于三角形進(jìn)行討論,方法不夠簡(jiǎn)潔,教科書(shū)則用了向量的方法,發(fā)揮了向量方法在解決問(wèn)題中的威力。
在證明了余弦定理及其推論以后,教科書(shū)從余弦定理與勾股定理的比較中,提出了一個(gè)思考問(wèn)題“勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個(gè)定理之間的關(guān)系?”,并進(jìn)而指出,“從余弦定理以及余弦函數(shù)的性質(zhì)可知,如果一個(gè)三角形兩邊的平方和等于第三邊的平方,那么第三邊所對(duì)的角是直角;如果小于第三邊的平方,那么第三邊所對(duì)的角是鈍角;如果大于第三邊的平方,那么第三邊所對(duì)的角是銳角.從上可知,余弦定理是勾股定理的推廣.”
3.重視加強(qiáng)意識(shí)和數(shù)學(xué)實(shí)踐能力
學(xué)數(shù)學(xué)的最終目的是應(yīng)用數(shù)學(xué),而如今比較突出的兩個(gè)問(wèn)題是,學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)不強(qiáng),創(chuàng)造能力較弱。學(xué)生往往不能把實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題,不能把所學(xué)的數(shù)學(xué)知識(shí)應(yīng)用到實(shí)際問(wèn)題中去,對(duì)所學(xué)數(shù)學(xué)知識(shí)的實(shí)際背景了解不多,雖然學(xué)生機(jī)械地模仿一些常見(jiàn)數(shù)學(xué)問(wèn)題解法的能力較強(qiáng),但當(dāng)面臨一種新的問(wèn)題時(shí)卻辦法不多,對(duì)于諸如觀察、分析、歸納、類(lèi)比、抽象、概括、猜想等發(fā)現(xiàn)問(wèn)題、解決問(wèn)題的科學(xué)思維方法了解不夠。針對(duì)這些實(shí)際情況,本章重視從實(shí)際問(wèn)題出發(fā),引入數(shù)學(xué)課題,最后把數(shù)學(xué)知識(shí)應(yīng)用于實(shí)際問(wèn)題。
(三)教學(xué)內(nèi)容及課時(shí)安排建議
1.1正弦定理和余弦定理(約3課時(shí))
1.2應(yīng)用舉例(約4課時(shí))
1.3實(shí)習(xí)作業(yè)(約1課時(shí))
(四)評(píng)價(jià)建議
1.要在本章的教學(xué)中,應(yīng)該根據(jù)教學(xué)實(shí)際,啟發(fā)學(xué)生不斷提出問(wèn)題,研究問(wèn)題。在對(duì)于正弦定理和余弦定理的證明的探究過(guò)程中,應(yīng)該因勢(shì)利導(dǎo),根據(jù)具體教學(xué)過(guò)程中學(xué)生思考問(wèn)題的方向來(lái)啟發(fā)學(xué)生得到自己對(duì)于定理的證明。如對(duì)于正弦定理,可以啟發(fā)得到有應(yīng)用向量方法的證明,對(duì)于余弦定理則可以啟發(fā)得到三角方法和解析的方法。在應(yīng)用兩個(gè)定理解決有關(guān)的解三角形和測(cè)量問(wèn)題的過(guò)程中,一個(gè)問(wèn)題也常常有多種不同的解決方案,應(yīng)該鼓勵(lì)學(xué)生提出自己的解決辦法,并對(duì)于不同的方法進(jìn)行必要的分析和比較。對(duì)于一些常見(jiàn)的測(cè)量問(wèn)題甚至可以鼓勵(lì)學(xué)生設(shè)計(jì)應(yīng)用的程序,得到在實(shí)際中可以直接應(yīng)用的算法。
2.適當(dāng)安排一些實(shí)習(xí)作業(yè),目的是讓學(xué)生進(jìn)一步鞏固所學(xué)的知識(shí),提高學(xué)生分析問(wèn)題的解決實(shí)際問(wèn)題的能力、動(dòng)手操作的能力以及用數(shù)學(xué)語(yǔ)言表達(dá)實(shí)習(xí)過(guò)程和實(shí)習(xí)結(jié)果能力,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)和數(shù)學(xué)實(shí)踐能力。教師要注意對(duì)于學(xué)生實(shí)習(xí)作業(yè)的指導(dǎo),包括對(duì)于實(shí)際測(cè)量問(wèn)題的選擇,及時(shí)糾正實(shí)際操作中的錯(cuò)誤,解決測(cè)量中出現(xiàn)的一些問(wèn)題。
新人教版高中數(shù)學(xué)必修一教案篇二
初中新課程中數(shù)學(xué)知識(shí)點(diǎn)刪了很多要求,如“立方和、立方差”公式,“韋達(dá)定理”,“十字相乘法分解因式”等。雖然初中新課程對(duì)這些知識(shí)點(diǎn)不作要求,但是從高中數(shù)學(xué)教學(xué)的實(shí)踐來(lái)看,學(xué)生掌握了這些知識(shí)點(diǎn)對(duì)學(xué)習(xí)新的知識(shí)有一定的促進(jìn)作用,因此,建議教師可根據(jù)學(xué)生和教學(xué)的實(shí)際情況,做適當(dāng)?shù)难a(bǔ)充,同時(shí),初中學(xué)習(xí)的有理數(shù)乘方及運(yùn)算性質(zhì)和二次函數(shù),這些知識(shí)也要進(jìn)行必要的復(fù)習(xí)等,這樣有利于后期的教學(xué)。
2、思維能力和運(yùn)算能力的進(jìn)一步強(qiáng)化
初中新課程的內(nèi)容傾向于基礎(chǔ)性、普及性、應(yīng)用性和直觀性,學(xué)生的實(shí)踐能力很強(qiáng),但學(xué)生的數(shù)學(xué)思維能力有所欠缺,尤其是抽象思維能力較弱,這對(duì)高中數(shù)學(xué)學(xué)習(xí)的影響很大。因此,教師要逐漸培養(yǎng)學(xué)生的抽象思維能力。同時(shí),由于初中大量使用計(jì)算器,學(xué)生的計(jì)算能力很弱,這與高中數(shù)學(xué)要求學(xué)生要有較強(qiáng)的化簡(jiǎn)、變形、推理及運(yùn)算能力有一定的差距,從教學(xué)的實(shí)踐來(lái)看,學(xué)生作業(yè)中出現(xiàn)的大量錯(cuò)誤與計(jì)算能力較弱有很大關(guān)系。因此,建議教師可根據(jù)學(xué)生的實(shí)際情況,從高一開(kāi)始就要切實(shí)提高學(xué)生的運(yùn)算能力。
3、抓住學(xué)科特點(diǎn),做好順利過(guò)渡
高中數(shù)學(xué)知識(shí)量大,理論性、綜合性強(qiáng),同時(shí)高中課時(shí)少,學(xué)生基礎(chǔ)差等,知識(shí)的難度和對(duì)學(xué)生能力的要求和初中相比都有較大的提高(如“集合”、“映射”、“函數(shù)”等都比較抽象,難度大,“函數(shù)”等知識(shí)綜合性較強(qiáng))。學(xué)好高中數(shù)學(xué)需要學(xué)生具有較強(qiáng)的閱讀能力、運(yùn)算能力、邏輯推理能力、抽象思維能力及分析問(wèn)題、解決問(wèn)題的綜合能力,這與初中數(shù)學(xué)知識(shí)點(diǎn)較少,難度較低,形成較大的差距。因此,教師要能夠根據(jù)實(shí)際情況及時(shí)調(diào)整教學(xué)方法和教學(xué)過(guò)程,使學(xué)生能順利進(jìn)入高中并能盡快適應(yīng)高中的數(shù)學(xué)學(xué)習(xí)。
新人教版高中數(shù)學(xué)必修一教案篇三
>高中必修一數(shù)學(xué)教案有哪些本節(jié)課的主要任務(wù)是探究二分法基本原理,給出用二分法求方程近似解的基本步驟,使學(xué)生學(xué)會(huì)借助計(jì)算器用二分法求給定精確度的方程的近似解。通過(guò)探究讓學(xué)生體驗(yàn)從特殊到一般的認(rèn)識(shí)過(guò)程,滲透逐步逼近和無(wú)限逼近思想(極限思想),體會(huì)“近似是普遍的、精確則是特殊的”辯證唯物主義觀點(diǎn)。引導(dǎo)學(xué)生用聯(lián)系的觀點(diǎn)理解有關(guān)內(nèi)容,通過(guò)求方程的近似解感受函數(shù)、方程、不等式以及算法等內(nèi)容的有機(jī)結(jié)合,使學(xué)生體會(huì)知識(shí)之間的聯(lián)系。
所以本節(jié)課的本質(zhì)是讓學(xué)生體會(huì)函數(shù)與方程的思想、近似的思想、逼近的思想和初步感受程序化地處理問(wèn)題的算法思想。
二、本節(jié)課內(nèi)容的地位、作用
“二分法”的理論依據(jù)是“函數(shù)零點(diǎn)的存在性(定理)”,本節(jié)課是上節(jié)學(xué)習(xí)內(nèi)容《方程的根與函數(shù)的零點(diǎn)》的自然延伸;是數(shù)學(xué)必修3算法教學(xué)的一個(gè)前奏和準(zhǔn)備;同時(shí)滲透數(shù)形結(jié)合思想、近似思想、逼近思想和算法思想等。
三、學(xué)生情況分析
學(xué)生已初步理解了函數(shù)圖象與方程的根之間的`關(guān)系,具備一定的用數(shù)形結(jié)合思想解決問(wèn)題的能力,這為理解函數(shù)零點(diǎn)附近的函數(shù)值符號(hào)提供了知識(shí)準(zhǔn)備。但學(xué)生僅是比較熟悉一元二次方程解與函數(shù)零點(diǎn)的關(guān)系,對(duì)于高次方程、超越方程與對(duì)應(yīng)函數(shù)零點(diǎn)之間的聯(lián)系的認(rèn)識(shí)比較模糊,計(jì)算器的使用不夠熟練,這些都給學(xué)生學(xué)習(xí)本節(jié)內(nèi)容造成一定困難。
四、教學(xué)目標(biāo)定位
根據(jù)教材內(nèi)容和學(xué)生的實(shí)際情況,本節(jié)課的教學(xué)目標(biāo)設(shè)定如下:
通過(guò)具體實(shí)例理解二分法的概念及其適用條件,了解二分法是求方程近似解的一種方法,會(huì)用二分法求某些具體方程的近似解,從中體會(huì)函數(shù)與方程之間的聯(lián)系,體會(huì)程序化解決問(wèn)題的思想。
借助計(jì)算器用二分法求方程的近似解,讓學(xué)生充分體驗(yàn)近似的思想、逼近的思想和程序化地處理問(wèn)題的思想及其重要作用,并為下一步學(xué)習(xí)算法做知識(shí)準(zhǔn)備。
通過(guò)探究、展示、交流,養(yǎng)成良好的學(xué)習(xí)品質(zhì),增強(qiáng)合作意識(shí)。
通過(guò)具體問(wèn)題體會(huì)逼近過(guò)程,感受精確與近似的相對(duì)統(tǒng)一。
五、教學(xué)診斷分析
“二分法”的思想方法簡(jiǎn)便而又應(yīng)用廣泛,所需的數(shù)學(xué)知識(shí)較少,算法流程比較簡(jiǎn)潔,便于編寫(xiě)計(jì)算機(jī)程序;利用計(jì)算器和多媒體輔助教學(xué),直觀明了;學(xué)生在生活中也有相關(guān)體驗(yàn),所以易于被學(xué)生理解和掌握。但“二分法”不能用于求方程偶次重根的近似解,精確度概念不易理解。
六、教學(xué)方法和特點(diǎn)
本節(jié)課采用的是問(wèn)題驅(qū)動(dòng)、啟發(fā)探究的教學(xué)方法。
通過(guò)分組合作、互動(dòng)探究、搭建平臺(tái)、分散難點(diǎn)的學(xué)習(xí)指導(dǎo)方法把問(wèn)題逐步推進(jìn)、拾級(jí)而上,并輔以多媒體教學(xué)手段,使學(xué)生自主探究二分法的原理。
本節(jié)課特點(diǎn)主要有以下幾方面:
1、以問(wèn)題驅(qū)動(dòng)教學(xué),激發(fā)學(xué)生的求知欲,體現(xiàn)了以學(xué)生為主的教學(xué)理念。
2、注重與現(xiàn)實(shí)生活中案例相結(jié)合,讓學(xué)生體會(huì)數(shù)學(xué)來(lái)源于現(xiàn)實(shí)生活又可以解決現(xiàn)實(shí)生活中的問(wèn)題。
以李詠主持的幸運(yùn)52猜商品價(jià)格來(lái)創(chuàng)設(shè)情境,不僅激發(fā)學(xué)生學(xué)習(xí)興趣,學(xué)生也在猜測(cè)的過(guò)程中體會(huì)二分法思想。
3、注重學(xué)生參與知識(shí)的形成過(guò)程,使他們“聽(tīng)”有所思,“學(xué)”有所獲。
本節(jié)課中的每一個(gè)問(wèn)題都是在師生交流中產(chǎn)生,在學(xué)生合作探究中解決,使學(xué)生經(jīng)歷了完整的學(xué)習(xí)過(guò)程,培養(yǎng)合作交流意識(shí)。
4、恰當(dāng)?shù)乩矛F(xiàn)代信息技術(shù),幫助學(xué)生揭示數(shù)學(xué)本質(zhì)。
程序求方程的近似解,界畫(huà)活潑,充分體現(xiàn)了信息技術(shù)與數(shù)學(xué)課程有機(jī)整合。
七、預(yù)期效果分析
以方程的根與函數(shù)的零點(diǎn)知識(shí)作基礎(chǔ),通過(guò)對(duì)求方程近似解的探究討論,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng);采用多媒體技術(shù),大容量信息的呈現(xiàn)和生動(dòng)形象的演示,激發(fā)學(xué)生學(xué)習(xí)興趣、激活學(xué)生思維,掌握二分法的本質(zhì),完成教學(xué)目標(biāo)。
另外盡管使用了科學(xué)計(jì)算器,但求一個(gè)方程的近似解也是很費(fèi)時(shí)的,學(xué)生容易出現(xiàn)計(jì)算錯(cuò)誤和產(chǎn)生急躁情緒;況且問(wèn)題探究式教學(xué)跟學(xué)生的學(xué)習(xí)程度有很大關(guān)系,各小組的探究時(shí)間存在差異,教師要適時(shí)指導(dǎo)。
新人教版高中數(shù)學(xué)必修一教案篇四
函數(shù)思想在解題中的應(yīng)用主要表現(xiàn)在兩個(gè)方面:一是借助有關(guān)初等函數(shù)的性質(zhì),解有關(guān)求值、解(證)不等式、解方程以及討論參數(shù)的取值范圍等問(wèn)題:二是在問(wèn)題的研究中,通過(guò)建立函數(shù)關(guān)系式或構(gòu)造中間函數(shù),把所研究的問(wèn)題轉(zhuǎn)化為討論函數(shù)的有關(guān)性質(zhì),達(dá)到化難為易,化繁為簡(jiǎn)的目的。函數(shù)與方程的思想是中學(xué)數(shù)學(xué)的基本思想,也是歷年高考的重點(diǎn)。
1.函數(shù)的思想,是用運(yùn)動(dòng)和變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù),運(yùn)用函數(shù)的圖像和性質(zhì)去分析問(wèn)題、轉(zhuǎn)化問(wèn)題,從而使問(wèn)題獲得解決。
3.函數(shù)方程思想的幾種重要形式
(1)函數(shù)和方程是密切相關(guān)的,對(duì)于函數(shù)y=f(x),當(dāng)y=0時(shí),就轉(zhuǎn)化為方程f(x)=0,也可以把函數(shù)式y(tǒng)=f(x)看做二元方程y-f(x)=0。
(6)立體幾何中有關(guān)線段、角、面積、體積的計(jì)算,經(jīng)常需要運(yùn)用布列方程或建立函數(shù)表達(dá)式的方法加以解決。
新人教版高中數(shù)學(xué)必修一教案篇五
一)、課內(nèi)重視聽(tīng)講,課后及時(shí)復(fù)習(xí)。
新知識(shí)的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行,所以要特點(diǎn)重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時(shí)要緊跟老師的思路,積極展開(kāi)思維預(yù)測(cè)下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識(shí)和基本技能的學(xué)習(xí),課后要及時(shí)復(fù)習(xí)不留疑點(diǎn)。首先要在做各種習(xí)題之前將老師所講的知識(shí)點(diǎn)回憶一遍,正確掌握各類(lèi)公式的推理過(guò)程,應(yīng)盡量回憶而不采用不清楚立即翻書(shū)之舉。認(rèn)真獨(dú)立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問(wèn)的學(xué)習(xí)作風(fēng),對(duì)于有些題目由于自己的思路不清,一時(shí)難以解出,應(yīng)讓自己冷靜下來(lái)認(rèn)真分析題目,盡量自己解決。在每個(gè)階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識(shí)的點(diǎn)、線、面結(jié)合起來(lái)交織成知識(shí)網(wǎng)絡(luò),納入自己的知識(shí)體系。
二)、適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。
要想學(xué)好數(shù)學(xué),多做題是難免的,熟悉掌握各種題型的解題思路。剛開(kāi)始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開(kāi)拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對(duì)于一些易錯(cuò)題,可備有錯(cuò)題集,寫(xiě)出自己的解題思路和正確的解題過(guò)程兩者一起比較找出自己的錯(cuò)誤所在,以便及時(shí)更正。在平時(shí)要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現(xiàn)的解題習(xí)慣與平時(shí)練習(xí)無(wú)異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養(yǎng)成良好的解題習(xí)慣是非常重要的。
三)、調(diào)整心態(tài),正確對(duì)待考試。
首先,應(yīng)把主要精力放在基礎(chǔ)知識(shí)、基本技能、基本方法這三個(gè)方面上,因?yàn)槊看慰荚囌冀^大部分的也是基礎(chǔ)性的題目,而對(duì)于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時(shí)候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對(duì)自己要有信心,永遠(yuǎn)鼓勵(lì)自己,除了自己,誰(shuí)也不能把我打倒,要有自己不垮,誰(shuí)也不能打垮我的自豪感。
在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開(kāi),切忌考前去在保證正確率的前提下提高解題速度。對(duì)于一些容易的基礎(chǔ)題要有十二分把握拿全分;對(duì)于一些難題,也要盡量拿分,考試中要學(xué)會(huì)嘗試得分,使自己的水平正常甚至超常發(fā)揮。
新人教版高中數(shù)學(xué)必修一教案篇六
b城市綠地具有吸煙除塵、過(guò)濾空氣、降低噪音及美化環(huán)境的作用
生物對(duì)環(huán)境的指示作用
駱駝刺——干旱環(huán)境;荷花——水濕環(huán)境;
“棗發(fā)芽,種棉花”——植物對(duì)氣候的指示;
矮牽牛葉片受損——二氧化硫污染的指示
11、土壤的形成及其在地理環(huán)境中的作用
形成過(guò)程:
風(fēng)化低等生物著生高等植物著生
巖石成土母質(zhì)原始土壤成熟土壤
生物在土壤形成過(guò)程起著主導(dǎo)作用
低等植物和微生物在母質(zhì)上著生,標(biāo)志成土的開(kāi)始
生物的出現(xiàn),使巖體風(fēng)化加快,母質(zhì)肥力不斷發(fā)展;
生物對(duì)母質(zhì)的改造:一是有機(jī)質(zhì)的積累過(guò)程;二是養(yǎng)分元素的富集過(guò)程
選擇性吸收光合作用
礦物養(yǎng)分植物有機(jī)質(zhì)
土壤肥力腐殖質(zhì)
土壤在地理環(huán)境中的作用
土壤是地表物質(zhì)循環(huán)和能量轉(zhuǎn)化非?;钴S的場(chǎng)所,是聯(lián)系有機(jī)界和無(wú)機(jī)界的中心環(huán)節(jié);
土壤具有能夠生長(zhǎng)植物的肥力特性,為植物生長(zhǎng)提供條件,從而使地表面貌發(fā)生了根本變化
12、自然資源與人類(lèi)活動(dòng)的相互關(guān)系(待查)
自然資源能為人類(lèi)生產(chǎn)和生活提供原料、能源和必不可少的物質(zhì)條件;
開(kāi)發(fā)利用自然資源需要一定的技術(shù)條件和資金投入
13、土地資源、氣候資源、海洋資源、水資源、生物資源、礦物資源的特征和組成
(1)陸地自然資源
自然資源屬性組成共性特征
氣候資源可再生光、熱量、降水、風(fēng)等
水資源可再生
生物資源可再生
礦物資源非可再生
(2)海洋資源
類(lèi)型組成特征
海洋化學(xué)資源食鹽、鎂、溴、淡水等
海洋生物資源魚(yú)、蝦、貝、藻等海洋漁業(yè)資源主要集中在沿海大陸架海域
海洋礦產(chǎn)資源大陸架:油、氣等濱海帶:砂礦海盆:錳結(jié)核
海洋能源潮汐發(fā)電和波浪發(fā)電等可再生、能量密度小、無(wú)污染目前工程投資大、效益不高
海洋空間資源生產(chǎn)空間、通信空間、電力輸送、儲(chǔ)藏空間、文化娛樂(lè)空間、交通運(yùn)輸空間
14、人們?cè)陂_(kāi)發(fā)利用自然資源的過(guò)程中可能出現(xiàn)的問(wèn)題,以及采取的措施(待查)
15、氣象災(zāi)害、地質(zhì)地貌災(zāi)害的危害,自然災(zāi)害的監(jiān)測(cè)和防災(zāi)減災(zāi)措施
氣象災(zāi)害
類(lèi)別危害監(jiān)測(cè)和防減災(zāi)措施
暴雨洪澇暴雨會(huì)造成嚴(yán)重的洪澇災(zāi)害
干旱糧食減產(chǎn)、人畜飲水困難,影響經(jīng)濟(jì)發(fā)展和社會(huì)安定
無(wú)有效的防御手段,提前發(fā)布準(zhǔn)確的寒潮警報(bào)可減少一定損失
地質(zhì)災(zāi)害
類(lèi)別危害監(jiān)測(cè)和防減災(zāi)措施地質(zhì)災(zāi)害的關(guān)聯(lián)性
地震危害和影響最大的地質(zhì)災(zāi)害
新人教版高中數(shù)學(xué)必修一教案篇七
一)、課內(nèi)重視聽(tīng)講,課后及時(shí)復(fù)習(xí)。
新知識(shí)的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行,所以要特點(diǎn)重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時(shí)要緊跟老師的思路,積極展開(kāi)思維預(yù)測(cè)下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識(shí)和基本技能的學(xué)習(xí),課后要及時(shí)復(fù)習(xí)不留疑點(diǎn)。首先要在做各種習(xí)題之前將老師所講的知識(shí)點(diǎn)回憶一遍,正確掌握各類(lèi)公式的推理過(guò)程,應(yīng)盡量回憶而不采用不清楚立即翻書(shū)之舉。認(rèn)真獨(dú)立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問(wèn)的學(xué)習(xí)作風(fēng),對(duì)于有些題目由于自己的思路不清,一時(shí)難以解出,應(yīng)讓自己冷靜下來(lái)認(rèn)真分析題目,盡量自己解決。在每個(gè)階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識(shí)的點(diǎn)、線、面結(jié)合起來(lái)交織成知識(shí)網(wǎng)絡(luò),納入自己的知識(shí)體系。
二)、適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。
要想學(xué)好數(shù)學(xué),多做題是難免的,熟悉掌握各種題型的解題思路。剛開(kāi)始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開(kāi)拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對(duì)于一些易錯(cuò)題,可備有錯(cuò)題集,寫(xiě)出自己的解題思路和正確的解題過(guò)程兩者一起比較找出自己的錯(cuò)誤所在,以便及時(shí)更正。在平時(shí)要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現(xiàn)的解題習(xí)慣與平時(shí)練習(xí)無(wú)異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養(yǎng)成良好的解題習(xí)慣是非常重要的。
三)、調(diào)整心態(tài),正確對(duì)待考試。
首先,應(yīng)把主要精力放在基礎(chǔ)知識(shí)、基本技能、基本方法這三個(gè)方面上,因?yàn)槊看慰荚囌冀^大部分的也是基礎(chǔ)性的題目,而對(duì)于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時(shí)候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對(duì)自己要有信心,永遠(yuǎn)鼓勵(lì)自己,除了自己,誰(shuí)也不能把我打倒,要有自己不垮,誰(shuí)也不能打垮我的自豪感。
在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開(kāi),切忌考前去在保證正確率的前提下提高解題速度。對(duì)于一些容易的基礎(chǔ)題要有十二分把握拿全分;對(duì)于一些難題,也要盡量拿分,考試中要學(xué)會(huì)嘗試得分,使自己的水平正常甚至超常發(fā)揮。
由此可見(jiàn),要把數(shù)學(xué)學(xué)好就得找到適合自己的學(xué)習(xí)方法,了解數(shù)學(xué)學(xué)科的特點(diǎn),使自己進(jìn)入數(shù)學(xué)的廣闊天地中去
新人教版高中數(shù)學(xué)必修一教案篇八
(1)掌握與()型的絕對(duì)值不等式的解法.
(2)掌握與()型的絕對(duì)值不等式的解法.
(3)通過(guò)用數(shù)軸來(lái)表示含絕對(duì)值不等式的解集,培養(yǎng)學(xué)生數(shù)形結(jié)合的能力;
教學(xué)重點(diǎn):型的不等式的解法;
教學(xué)難點(diǎn):利用絕對(duì)值的意義分析、解決問(wèn)題.
教學(xué)過(guò)程設(shè)計(jì)
教師活動(dòng)
學(xué)生活動(dòng)
設(shè)計(jì)意圖
一、導(dǎo)入新課
【提問(wèn)】正數(shù)的絕對(duì)值什么?負(fù)數(shù)的絕對(duì)值是什么?零的絕對(duì)值是什么?舉例說(shuō)明?
【概括】
口答
絕對(duì)值的概念是解與()型絕對(duì)值不等值的概念,為解這種類(lèi)型的絕對(duì)值不等式做好鋪墊.
二、新課
【提問(wèn)】如何解絕對(duì)值方程.
【質(zhì)疑】的解集有幾部分?為什么也是它的解集?
【練習(xí)】解下列不等式:
(1);
(2)
【設(shè)問(wèn)】如果在中的,也就是怎樣解?
【點(diǎn)撥】可以把看成一個(gè)整體,也就是把看成,按照的解法來(lái)解.
所以,原不等式的解集是
【設(shè)問(wèn)】如果中的是,也就是怎樣解?
【點(diǎn)撥】可以把看成一個(gè)整體,也就是把看成,按照的解法來(lái)解.
,或,
由得
由得
所以,原不等式的解集是
口答.畫(huà)出數(shù)軸后在數(shù)軸上表示絕對(duì)值等于2的數(shù).
畫(huà)出數(shù)軸,思考答案
不等式的解集表示為
畫(huà)出數(shù)軸
思考答案
不等式的解集為
或表示為,或
筆答
(1)
(2),或
筆答
筆答
根據(jù)絕對(duì)值的意義自然引出絕對(duì)值方程()的解法.
由淺入深,循序漸進(jìn),在型絕對(duì)值方程的基礎(chǔ)上引出()型絕對(duì)值方程的解法.
針對(duì)解()絕對(duì)值不等式學(xué)生常出現(xiàn)的情況,運(yùn)用數(shù)軸質(zhì)疑、解惑.
落實(shí)會(huì)正確解出與()絕對(duì)值不等式的教學(xué)目標(biāo).
在將看成一個(gè)整體的關(guān)鍵處點(diǎn)撥、啟發(fā),使學(xué)生主動(dòng)地進(jìn)行練習(xí).
繼續(xù)強(qiáng)化將看成一個(gè)整體繼續(xù)強(qiáng)化解不等式時(shí)不要犯丟掉這部分解的錯(cuò)誤.
三、課堂練習(xí)
解下列不等式:
(1);
(2)
筆答
(1);
(2)
檢查教學(xué)目標(biāo)落實(shí)情況.
四、小結(jié)
的解集是;的解集是
解絕對(duì)值不等式注意不要丟掉這部分解集.
五、作業(yè)
1.閱讀課本含絕對(duì)值不等式解法.
2.習(xí)題2、3、4
課堂教學(xué)設(shè)計(jì)說(shuō)明
1.抓住解型絕對(duì)值不等式的關(guān)鍵是絕對(duì)值的意義,為此首先通過(guò)復(fù)習(xí)讓學(xué)生掌握好絕對(duì)值的意義,為解絕對(duì)值不等式打下牢固的基礎(chǔ).
2.在解與絕對(duì)值不等式中的關(guān)鍵處設(shè)問(wèn)、質(zhì)疑、點(diǎn)撥,讓學(xué)生融會(huì)貫通的掌握它們解法之間的內(nèi)在聯(lián)系,以達(dá)到提高學(xué)生解題能力的目的.
3.針對(duì)學(xué)生解()絕對(duì)值不等式容易出現(xiàn)丟掉這部分解集的錯(cuò)誤,在教學(xué)中應(yīng)根據(jù)絕對(duì)值的意義從數(shù)軸進(jìn)行突破,并在練習(xí)中糾正這個(gè)錯(cuò)誤,以提高學(xué)生的運(yùn)算能力.
新人教版高中數(shù)學(xué)必修一教案篇九
【知識(shí)與能力】
1. 掌握數(shù)軸的三要素,能正確畫(huà)出數(shù)軸。
2、會(huì)用數(shù)軸上的點(diǎn)表示有理數(shù);;會(huì)求一個(gè)有理數(shù)的相反數(shù);能利用數(shù)軸比較有理數(shù)的大小。
【過(guò)程與方法】 經(jīng)歷從現(xiàn)實(shí)情景抽象出數(shù)軸的過(guò)程,體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系
【情感態(tài)度與價(jià)值觀】 感受數(shù)形結(jié)合的思想方法;
【教學(xué)重點(diǎn)】會(huì)說(shuō)出數(shù)軸上已知點(diǎn)所表示的數(shù),能將已知數(shù)在數(shù)軸上表示出來(lái)。
【教學(xué)難點(diǎn)】利用數(shù)軸比較有理數(shù)的大小。
(一)創(chuàng)設(shè)情境,引入課題
(1)(出示投影1)問(wèn)題:三個(gè)溫度計(jì)所表示的溫度是多少?
學(xué)生回答.
(2)在一條東西向的馬路上,有一個(gè)汽車(chē)站,汽車(chē)站東3m和7.5m處分別有一棵柳樹(shù)和一棵楊樹(shù),汽車(chē)站西3m和4.8m處分別有一棵槐樹(shù)和一根電線桿,試畫(huà)圖表示這一情境.
這種表示數(shù)的圖形就是今天我們要學(xué)的內(nèi)容―數(shù)軸(板書(shū)課題)
(二)得出定義,揭示內(nèi)涵
與溫度計(jì)類(lèi)似,我們也可以在一條直線上畫(huà)出刻度,標(biāo)上讀數(shù),用直線上的點(diǎn)表示正數(shù)、負(fù)數(shù)和零.具體方法如下(教師示范畫(huà)數(shù)軸,邊說(shuō)邊畫(huà)):
(1)畫(huà)直線,取原點(diǎn)
(2)標(biāo)正方向
(3)選取單位長(zhǎng)度,標(biāo)數(shù)(強(qiáng)調(diào):負(fù)數(shù)從0向左寫(xiě)起)。
概念:規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線叫做數(shù)軸。
(三)強(qiáng)化概念,深入理解
1、下列圖形哪些是數(shù)軸,哪些不是,為什么?
學(xué)生回答,相互糾正,理解數(shù)軸三要素,鞏固數(shù)軸概念。
2、學(xué)生自己在練習(xí)本上畫(huà)一個(gè)數(shù)軸。教師在黑板上畫(huà)
(四)動(dòng)手練習(xí),歸納總結(jié)
1、在數(shù)軸上的點(diǎn)表示有理數(shù)。
一個(gè)學(xué)生在黑板上完成,其他同學(xué)在自己所畫(huà)數(shù)軸上完成。
明確“任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示”
2.指出數(shù)軸上a,b,c,d各點(diǎn)分別表示什么數(shù)。@師愿教育
3、通過(guò)數(shù)軸比較有理數(shù)的大小。觀察類(lèi)比溫度計(jì)回答問(wèn)題
(1)在數(shù)軸上表示的兩個(gè)數(shù),(右 ) 邊的數(shù)總比 ( 左)邊的數(shù)大;
(2)正數(shù)都(大于 )0,負(fù)數(shù)都(小于)0;正數(shù)(大于)一切負(fù)數(shù)。
例1、比較下列各數(shù)的.大小: -1.5 , 0.6, -3, -2
鞏固所學(xué)知識(shí)
(五)、歸納小結(jié),強(qiáng)化思想
師生總結(jié)本課內(nèi)容。
1、數(shù)軸的概念,數(shù)軸的三要素
2、數(shù)軸上兩個(gè)不同的點(diǎn)所表示的兩個(gè)有理數(shù)大小關(guān)系
3、所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)來(lái)表示
師:你感到自己今天的表現(xiàn)怎樣?
習(xí)題2.2 1、2、3
選作第4題
新人教版高中數(shù)學(xué)必修一教案篇十
1.把握寫(xiě)景抒情散文情景交融的特點(diǎn),提高對(duì)情景交融意境的鑒賞能力。
2.學(xué)習(xí)作者運(yùn)用語(yǔ)言的技巧:比喻、通感的巧妙運(yùn)用,動(dòng)詞、疊詞的精心選用。
3.訓(xùn)練整體感知、揣摩語(yǔ)言的能力。
過(guò)程與方法
1.本文語(yǔ)言精美,寫(xiě)景狀物傳神,應(yīng)加強(qiáng)朗讀訓(xùn)練,讓學(xué)生自然地受到感染,體會(huì)文章的韻味。
2.理解關(guān)鍵語(yǔ)句,提高對(duì)作者在文中表達(dá)的思想感情的領(lǐng)悟能力。
情感態(tài)度與價(jià)值觀
1.引導(dǎo)學(xué)生關(guān)注社會(huì),追求理想。
2.培養(yǎng)學(xué)生健康的審美情趣。教學(xué)重點(diǎn)體味作品寫(xiě)景語(yǔ)言精練、優(yōu)美的特點(diǎn)及其表達(dá)效果。教學(xué)難點(diǎn)品味、領(lǐng)悟課文情景交融,“景語(yǔ)”“情語(yǔ)”渾然一體的寫(xiě)作特點(diǎn)。
教學(xué)方法誦讀法、感知法、品味法
教具準(zhǔn)備課文錄音帶、多媒體課件
教學(xué)時(shí)間安排二個(gè)課時(shí)
第一課時(shí)
一、導(dǎo)語(yǔ)設(shè)計(jì)
李白在《月下獨(dú)酌》里說(shuō):“花間一壺酒,獨(dú)酌無(wú)相親。舉杯邀明月,對(duì)影成三人?!薄谶@里,“月”成了詩(shī)人排遣內(nèi)心深處孤獨(dú)寂寞的一種載體。
二、文本解讀
(一)知識(shí)積累
1、朱自清的生平和創(chuàng)作。朱自清,原名自華,字佩弦,號(hào)秋實(shí)。祖籍浙江紹興,1898年生于江蘇東海。1903年隨家定居揚(yáng)州。1916年中學(xué)畢業(yè)后,考入北京大學(xué)預(yù)科班,次年更名“自清”,考入本科哲學(xué)系。畢業(yè)后在江蘇、浙江等地的中學(xué)任教。上大學(xué)時(shí),朱自清開(kāi)始創(chuàng)作新詩(shī),1923年發(fā)表的長(zhǎng)詩(shī)《毀滅》,震動(dòng)了當(dāng)時(shí)的詩(shī)壇。1924年出版詩(shī)與散文集《蹤跡》,1925年任清華大學(xué)教授,創(chuàng)作轉(zhuǎn)向散文,同時(shí)開(kāi)始研究古典。1928年出版散文集《背影》,成了著名的散文家。1948年8月病逝于北京。他是詩(shī)人、散文家、學(xué)者,又是民主戰(zhàn)士、愛(ài)國(guó)知識(shí)分子。毛澤東稱(chēng)他“表現(xiàn)了我們民族的英雄氣概”。著作有《朱自清全集》。
3、借助注解和詞典讀懂《采蓮賦》。
(二)信息篩選播放錄音(或教師朗讀)
1、學(xué)生邊聽(tīng)邊思考如何劃分層次,并歸納大意。
明確:全文分三部分:
第一部分(1):月夜漫步荷塘的緣由。(點(diǎn)明題旨)
第二部分(2-6):荷塘月色的恬靜迷人。(主體)
第三部分(7-10):荷塘月色的美景引動(dòng)鄉(xiāng)思。(偏重抒情)
(三)合作探究
師生共同解析第四段,看作者是怎樣從多角度來(lái)描摹荷塘美景的?明確:先寫(xiě)滿(mǎn)眼茂密的荷葉,次寫(xiě)多姿多態(tài)的荷花、荷香,最后寫(xiě)葉子和花的一絲顫動(dòng)以及流水。層次井然,形象精確?!@是按觀察的角度,視線由近及遠(yuǎn)、由上而下的空間順序來(lái)寫(xiě)的。以上是順序特點(diǎn),細(xì)分析,還可以看出作者的匠心:a.抓靜態(tài)與動(dòng)態(tài)的結(jié)合,把荷塘寫(xiě)“活”。而且,作者筆下的景物都是“動(dòng)”的,“靜”不過(guò)是“動(dòng)”的瞬間表現(xiàn),揚(yáng)靜而情動(dòng)。
b.抓可見(jiàn)與可想的結(jié)合,寫(xiě)出了散文的神韻。所謂“可想”,是指由“可見(jiàn)”引起的合理聯(lián)想,把不可見(jiàn)的景物寫(xiě)得很有風(fēng)采。
(四)能力提升
學(xué)生自己閱讀第五段,合作討論作者在這里是如何描寫(xiě)月色的。
明確:作者把荷葉和荷花放在月光下面,一個(gè)“瀉”字,給人一種乳白色而又鮮艷欲滴的實(shí)感;一個(gè)“浮”字又表現(xiàn)出月光下荷葉、荷花那種縹緲輕柔的姿容。文章似乎仍在寫(xiě)荷葉、荷花,其實(shí)不然,作者是通過(guò)寫(xiě)葉、花的安謐、恬靜,襯托出月色的朦朧柔和。又如文章寫(xiě)“黑影”和“倩影”,也是寫(xiě)月色,因?yàn)橛笆窃鹿庹丈湓谖矬w上產(chǎn)生的。樹(shù)影明暗掩映,錯(cuò)落有致,反襯月光輕盈蕩漾。月色本是難以描摹的',所以作者透過(guò)不同的景物,從不同的角度去寫(xiě)月色,使難狀之景如在眼前。
(五)分析鑒賞
1、第五段“酣眠”“小睡”各指什么?有無(wú)深層含義?
明確:“酣眠”比喻朗照,“小睡”比喻被一層淡淡的云遮住的月光。至于它的深層含義應(yīng)該聯(lián)系作者的心態(tài)來(lái)看,他不希望過(guò)于激烈的行為,他喜歡一種平和的心態(tài),正如我們前面分析的那樣,他做不到投筆從戎,他要尋找安寧平和的生活。對(duì)景物的喜好折射出作者的心態(tài)。
2、課文第五段,寫(xiě)月光用“瀉”不用“照”“鋪”,其好處是什么?(解答這個(gè)問(wèn)題,不妨請(qǐng)學(xué)生把“照”和“鋪”字代入句中讀一遍,學(xué)生就知道了。
明確:“瀉”是承上面比喻句“如流水一般”而來(lái)的,“瀉”字有向下傾的勢(shì)態(tài)。“照”字和“鋪”字就沒(méi)有這個(gè)效果。
3、作者為什么會(huì)由光和影聯(lián)想到名曲?
明確:這是使用通感的修辭手法,光與影是視覺(jué)形象,作者卻用聽(tīng)覺(jué)形象來(lái)比喻,這就是通感的一種,其相似點(diǎn)就是和諧。第四段寫(xiě)荷花的縷縷清香,微風(fēng)傳送,像遠(yuǎn)方飄來(lái)歌聲一樣動(dòng)人心懷,這幽雅淡遠(yuǎn)的感受也只有在月夜獨(dú)處時(shí)才會(huì)有,這也是通感,把嗅覺(jué)形象轉(zhuǎn)化為聽(tīng)覺(jué)形象,它們之間的相似點(diǎn)就是似有似無(wú)、時(shí)斷時(shí)續(xù)、捉摸不定。
三、課堂小結(jié)
所謂“意境”,指的是外界的人事景物(客觀)與人的思想感情(主觀)相融合而形成的一種天人合一、情景交融的境界。這種天人合一、情景交融越是天衣無(wú)縫、水乳交融,散文就越具有美感?!逗商猎律纷龅搅诉@一點(diǎn),所以它具有一種意境美。
四、作業(yè)設(shè)計(jì)
背誦第四、五、六段。
第二課時(shí)
一、導(dǎo)語(yǔ)設(shè)計(jì)
二、文本解讀
(一)合作探究指導(dǎo)學(xué)生理解“通感”的特點(diǎn)及其作用。明確:通感:就是人的各種感覺(jué)之間的交流、溝通、轉(zhuǎn)移。錢(qián)鐘書(shū)先生說(shuō)過(guò),“在日常經(jīng)驗(yàn)里,視覺(jué)、聽(tīng)覺(jué)、觸覺(jué)、嗅覺(jué)、味覺(jué)往往可以彼此打通或交通,眼、耳、舌、鼻、身,各個(gè)官能的領(lǐng)域可以不分界限。顏色似乎會(huì)有溫度,聲音似乎會(huì)有形象,冷暖似乎會(huì)有重量,氣味似乎會(huì)有鋒芒……”(《通感》。)例如:“微風(fēng)過(guò)處,送來(lái)縷縷清香,仿佛遠(yuǎn)處高樓上渺茫的歌聲似的?!?/p>
a.本體——花香(嗅覺(jué))喻體——渺茫的歌聲(聽(tīng)覺(jué))b.作用:把花香的特點(diǎn)寫(xiě)清了,生動(dòng)形象。
c.相似點(diǎn):立于微風(fēng)中嗅馨香(時(shí)有時(shí)無(wú))——聽(tīng)遠(yuǎn)處高樓傳來(lái)的歌聲(時(shí)斷時(shí)續(xù))再如:“但光與影有著和諧的旋律,如梵婀玲上奏著的名曲?!?/p>
(二)能力提升
1、文章抒情的語(yǔ)句主要有哪些?
明確:第一段:這幾天心里頗不寧?kù)o。
第二段:沒(méi)有月光的晚上,這路上陰森森的,有些怕人。今晚卻很好,雖然月光也還是淡淡的。
第三段:我也像超出了平常的自己,到了另一世界里。我愛(ài)熱鬧,也愛(ài)冷靜;愛(ài)群居,也愛(ài)獨(dú)處……便覺(jué)是個(gè)自由的人?!仪沂苡眠@無(wú)邊的荷香月色好了。
第六段:但熱鬧是它們的,我什么也沒(méi)有。
第八段:這真是有趣的事,可惜我們現(xiàn)在早已無(wú)福消受了。
第十段:這令我到底惦著江南了。
2、作者的思想感情在文中是怎樣變化的?
明確:因?yàn)檫@幾天心里頗不寧?kù)o,忽然想起日日走過(guò)的荷塘,在滿(mǎn)月的光里,總該另有一番樣子,于是就想去看看,沿荷塘的路平常是有些怕人的,但今晚卻很好,我可以享受這無(wú)邊的荷香月色。荷塘月色的確很美,月光下的荷塘美景清幽淡雅,荷塘上的迷人月色朦朧和諧,令人心醉。荷塘四周非常幽靜,只有樹(shù)上的蟬聲和水里的蛙聲最熱鬧,而我什么也沒(méi)有。忽然又想起采蓮的事情來(lái)了,那真是有趣的事,可惜我們現(xiàn)在早已無(wú)福消受了。采蓮令我惦著江南了,這樣想著回到了家里。有人把這篇文章所表現(xiàn)的思想感情概括為“淡淡的喜悅,淡淡的哀愁”,是很貼切的,但作者的感情底色是“不寧?kù)o”。
(三)分析鑒賞
1、第六段寫(xiě)“熱鬧是它們的,我什么也沒(méi)有”,作者為什么會(huì)如此傷感?
明確:作者想尋找美景,使自己寧?kù)o,平息自己矛盾的心情而不得,當(dāng)然傷感。
2、第七段采蓮與文章主體有什么關(guān)系?為什么會(huì)想起采蓮的事情?
明確:以采蓮的熱鬧襯托自己的孤寂,且荷蓮?fù)?,作者又是揚(yáng)州人,對(duì)江南習(xí)俗很了解。
明確:一方面有照應(yīng)文章開(kāi)頭的作用,但主要目的還是以靜寫(xiě)動(dòng),以靜來(lái)反襯自己心里的極不寧?kù)o。心里的不寧?kù)o,是社會(huì)現(xiàn)實(shí)的劇烈動(dòng)蕩在作者心中引起的波瀾。全篇充滿(mǎn)著動(dòng)與靜的對(duì)立統(tǒng)一:社會(huì)的動(dòng)蕩與荷塘一隅的寂靜,內(nèi)心的動(dòng)蕩與內(nèi)心的寧?kù)o形成對(duì)立統(tǒng)一,文章開(kāi)頭心里不寧?kù)o,在月夜荷塘幽美的景色的感染下趨于心靜,走出荷塘又回到不寧?kù)o的現(xiàn)實(shí)中來(lái),也形成對(duì)立、轉(zhuǎn)化。
三、課堂小結(jié)
這篇作品獲得人們特別贊賞的原因,就在于它寫(xiě)景特別工細(xì)。朱自清在表現(xiàn)月色下的荷塘和荷塘上的月色這兩個(gè)組成部分的時(shí)候,還進(jìn)一步作更精細(xì)的分解剖析,把這兩個(gè)部分再分解剖析成許多更小的部分,然后逐一描寫(xiě)并且從景物觀賞者的視覺(jué)、嗅覺(jué)、聽(tīng)覺(jué),以及景物的靜態(tài)、動(dòng)態(tài)等角度,寫(xiě)出它們的種種性狀,從而把景物表現(xiàn)得格外細(xì)膩。
四、作業(yè)設(shè)計(jì)
研究性學(xué)習(xí)參考論題。請(qǐng)你就以下論題中的一個(gè)或另擬論題,從網(wǎng)絡(luò)上尋找有關(guān)資料,寫(xiě)出你的研究結(jié)果。
1、走近朱自清
2、朱自清為什么“不寧?kù)o”?
3、談《荷塘月色》的寫(xiě)景藝術(shù)
4、談《荷塘月色》的感情線索
新人教版高中數(shù)學(xué)必修一教案篇十一
1.教材內(nèi)容及地位
2.教學(xué)重點(diǎn)
函數(shù)單調(diào)性的概念,判斷和證明簡(jiǎn)單函數(shù)的單調(diào)性.
3.教學(xué)難點(diǎn)
函數(shù)單調(diào)性概念的生成,證明單調(diào)性的代數(shù)推理論證.
1.教學(xué)有利因素
2.教學(xué)不利因素
1.理解函數(shù)單調(diào)性的相關(guān)概念.掌握證明簡(jiǎn)單函數(shù)單調(diào)性的方法.
為達(dá)成課堂教學(xué)目標(biāo),突出重點(diǎn),突破難點(diǎn),我們主要采取以下形式組織學(xué)習(xí)材料:
(一)創(chuàng)設(shè)情境,引入課題
問(wèn)題1:觀察下列函數(shù)圖象,請(qǐng)你說(shuō)說(shuō)這些函數(shù)有什么變化趨勢(shì)?
設(shè)函數(shù)的定義域?yàn)?,區(qū)間.在區(qū)間上,若函數(shù)的圖象(從左向右)總是上升的,即隨的增大而增大,則稱(chēng)函數(shù)在區(qū)間上是遞增的,區(qū)間稱(chēng)為函數(shù)的單調(diào)增區(qū)間(學(xué)生類(lèi)比定義“遞減”,接著推出下圖,讓學(xué)生準(zhǔn)確回答單調(diào)性.)
(二)引導(dǎo)探索,生成概念
問(wèn)題2:(1)下圖是函數(shù)的圖象(以為例),它在定義域r上是遞增的嗎?
(2)函數(shù)在區(qū)間上有何單調(diào)性?
預(yù)設(shè):學(xué)生會(huì)不置可否,或者憑感覺(jué)猜測(cè),可追問(wèn)判定依據(jù).
問(wèn)題3:(1)如何用數(shù)學(xué)符號(hào)描述函數(shù)圖象的“上升”特征,即“隨的增大而增大”?
(2)已知,若有.能保證函數(shù)在區(qū)間上遞增嗎?
拖動(dòng)“拖動(dòng)點(diǎn)”改變函數(shù)在區(qū)間上的圖象,可以遞增,可以先增后減,也可以先減后增.
(3)已知,若有,能保證函數(shù)在區(qū)間上遞增嗎?
拖動(dòng)“拖動(dòng)點(diǎn)”,觀察函數(shù)在區(qū)間上的圖象變化.
(4)已知,若有
能保證函數(shù)在區(qū)間上遞增嗎?
設(shè)計(jì)說(shuō)明:可先請(qǐng)持贊同觀點(diǎn)的同學(xué)說(shuō)明理由,再請(qǐng)持反對(duì)意見(jiàn)的學(xué)生畫(huà)出反駁,然后追問(wèn):無(wú)數(shù)個(gè)也不能保證函數(shù)遞增,那該怎么辦呢?若學(xué)生回答全部取完或任取,追問(wèn)“總不能一個(gè)一個(gè)驗(yàn)證吧?”
問(wèn)題4:如何用數(shù)學(xué)語(yǔ)言準(zhǔn)確刻畫(huà)函數(shù)在區(qū)間上遞增呢?
問(wèn)題5:請(qǐng)你試著用數(shù)學(xué)語(yǔ)言定義函數(shù)在區(qū)間上是遞減的.
(三)學(xué)以致用,理解感悟
判斷題:你認(rèn)為下列說(shuō)法是否正確,請(qǐng)說(shuō)明理由.(舉例或者畫(huà)圖)
(1)設(shè)函數(shù)的定義域?yàn)?,若?duì)任意,都有,則在區(qū)間上遞增;
(2)設(shè)函數(shù)的定義域?yàn)閞,若對(duì)任意,且,都有,則是遞增的;
(3)反比例函數(shù)的單調(diào)遞減區(qū)間是.
例題:判斷并證明函數(shù)的單調(diào)性.
新人教版高中數(shù)學(xué)必修一教案篇十二
本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實(shí)在解三角形的應(yīng)用上。通過(guò)本章學(xué)習(xí),學(xué)生應(yīng)當(dāng)達(dá)到以下學(xué)習(xí)目標(biāo):
(1)通過(guò)對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問(wèn)題。
(2)能夠熟練運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的生活實(shí)際問(wèn)題。
數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識(shí)的理解和掌握。
本章重視與內(nèi)容密切相關(guān)的數(shù)學(xué)思想方法的教學(xué),并且在提出問(wèn)題、思考解決問(wèn)題的策略等方面對(duì)學(xué)生進(jìn)行具體示范、引導(dǎo)。本章的兩個(gè)主要數(shù)學(xué)結(jié)論是正弦定理和余弦定理,它們都是關(guān)于三角形的邊角關(guān)系的結(jié)論。在初中,學(xué)生已經(jīng)學(xué)習(xí)了相關(guān)邊角關(guān)系的定性的知識(shí),就是“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角”,“如果已知兩個(gè)三角形的兩條對(duì)應(yīng)邊及其所夾的角相等,那么這兩個(gè)三角形全”等。
教科書(shū)在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識(shí)出發(fā),提出探究性問(wèn)題:“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問(wèn)題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋?lái)研究這個(gè)問(wèn)題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問(wèn)題。”設(shè)置這些問(wèn)題,都是為了加強(qiáng)數(shù)學(xué)思想方法的教學(xué)。
加強(qiáng)與前后各章教學(xué)內(nèi)容的聯(lián)系,注意復(fù)習(xí)和應(yīng)用已學(xué)內(nèi)容,并為后續(xù)章節(jié)教學(xué)內(nèi)容做好準(zhǔn)備,能使整套教科書(shū)成為一個(gè)有機(jī)整體,提高教學(xué)效益,并有利于學(xué)生對(duì)于數(shù)學(xué)知識(shí)的學(xué)習(xí)和鞏固。
本章內(nèi)容處理三角形中的邊角關(guān)系,與初中學(xué)習(xí)的三角形的邊與角的基本關(guān)系,已知三角形的邊和角相等判定三角形全等的知識(shí)有著密切聯(lián)系。教科書(shū)在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識(shí)出發(fā),提出探究性問(wèn)題“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問(wèn)題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋?lái)研究這個(gè)問(wèn)題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問(wèn)題。”這樣,從聯(lián)系的觀點(diǎn),從新的角度看過(guò)去的問(wèn)題,使學(xué)生對(duì)于過(guò)去的知識(shí)有了新的認(rèn)識(shí),同時(shí)使新知識(shí)建立在已有知識(shí)的堅(jiān)實(shí)基礎(chǔ)上,形成良好的知識(shí)結(jié)構(gòu)。
《課程標(biāo)準(zhǔn)》和教科書(shū)把“解三角形”這部分內(nèi)容安排在數(shù)學(xué)五的第一部分內(nèi)容,
位置相對(duì)靠后,在此內(nèi)容之前學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、平面向量、直線和圓的方程等與本章知識(shí)聯(lián)系密切的內(nèi)容,這使這部分內(nèi)容的處理有了比較多的工具,某些內(nèi)容可以處理得更加簡(jiǎn)潔。比如對(duì)于余弦定理的證明,常用的方法是借助于三角的方法,需要對(duì)于三角形進(jìn)行討論,方法不夠簡(jiǎn)潔,教科書(shū)則用了向量的方法,發(fā)揮了向量方法在解決問(wèn)題中的威力。
在證明了余弦定理及其推論以后,教科書(shū)從余弦定理與勾股定理的比較中,提出了一個(gè)思考問(wèn)題“勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個(gè)定理之間的'關(guān)系?”,并進(jìn)而指出,“從余弦定理以及余弦函數(shù)的性質(zhì)可知,如果一個(gè)三角形兩邊的平方和等于第三邊的平方,那么第三邊所對(duì)的角是直角;如果小于第三邊的平方,那么第三邊所對(duì)的角是鈍角;如果大于第三邊的平方,那么第三邊所對(duì)的角是銳角.從上可知,余弦定理是勾股定理的推廣.”
學(xué)數(shù)學(xué)的最終目的是應(yīng)用數(shù)學(xué),而如今比較突出的兩個(gè)問(wèn)題是,學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)不強(qiáng),創(chuàng)造能力較弱。學(xué)生往往不能把實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題,不能把所學(xué)的數(shù)學(xué)知識(shí)應(yīng)用到實(shí)際問(wèn)題中去,對(duì)所學(xué)數(shù)學(xué)知識(shí)的實(shí)際背景了解不多,雖然學(xué)生機(jī)械地模仿一些常見(jiàn)數(shù)學(xué)問(wèn)題解法的能力較強(qiáng),但當(dāng)面臨一種新的問(wèn)題時(shí)卻辦法不多,對(duì)于諸如觀察、分析、歸納、類(lèi)比、抽象、概括、猜想等發(fā)現(xiàn)問(wèn)題、解決問(wèn)題的科學(xué)思維方法了解不夠。針對(duì)這些實(shí)際情況,本章重視從實(shí)際問(wèn)題出發(fā),引入數(shù)學(xué)課題,最后把數(shù)學(xué)知識(shí)應(yīng)用于實(shí)際問(wèn)題。
1.1正弦定理和余弦定理(約3課時(shí))
1.2應(yīng)用舉例(約4課時(shí))
1.3實(shí)習(xí)作業(yè)(約1課時(shí))
1.要在本章的教學(xué)中,應(yīng)該根據(jù)教學(xué)實(shí)際,啟發(fā)學(xué)生不斷提出問(wèn)題,研究問(wèn)題。在對(duì)于正弦定理和余弦定理的證明的探究過(guò)程中,應(yīng)該因勢(shì)利導(dǎo),根據(jù)具體教學(xué)過(guò)程中學(xué)生思考問(wèn)題的方向來(lái)啟發(fā)學(xué)生得到自己對(duì)于定理的證明。如對(duì)于正弦定理,可以啟發(fā)得到有應(yīng)用向量方法的證明,對(duì)于余弦定理則可以啟發(fā)得到三角方法和解析的方法。在應(yīng)用兩個(gè)定理解決有關(guān)的解三角形和測(cè)量問(wèn)題的過(guò)程中,一個(gè)問(wèn)題也常常有多種不同的解決方案,應(yīng)該鼓勵(lì)學(xué)生提出自己的解決辦法,并對(duì)于不同的方法進(jìn)行必要的分析和比較。對(duì)于一些常見(jiàn)的測(cè)量問(wèn)題甚至可以鼓勵(lì)學(xué)生設(shè)計(jì)應(yīng)用的程序,得到在實(shí)際中可以直接應(yīng)用的算法。
2.適當(dāng)安排一些實(shí)習(xí)作業(yè),目的是讓學(xué)生進(jìn)一步鞏固所學(xué)的知識(shí),提高學(xué)生分析問(wèn)題的解決實(shí)際問(wèn)題的能力、動(dòng)手操作的能力以及用數(shù)學(xué)語(yǔ)言表達(dá)實(shí)習(xí)過(guò)程和實(shí)習(xí)結(jié)果能力,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)和數(shù)學(xué)實(shí)踐能力。教師要注意對(duì)于學(xué)生實(shí)習(xí)作業(yè)的指導(dǎo),包括對(duì)于實(shí)際測(cè)量問(wèn)題的選擇,及時(shí)糾正實(shí)際操作中的錯(cuò)誤,解決測(cè)量中出現(xiàn)的一些問(wèn)題。
新人教版高中數(shù)學(xué)必修一教案篇十三
(一)兩角和與差公式
(二)倍角公式
2cos2α=1+cos2α2sin2α=1-cos2α
注意:倍角公式揭示了具有倍數(shù)關(guān)系的兩個(gè)角的三角函數(shù)的運(yùn)算規(guī)律,可實(shí)現(xiàn)函數(shù)式的降冪的變化。
注:(1)兩角和與差的三角函數(shù)公式能夠解答的三類(lèi)基本題型:求值題,化簡(jiǎn)題,證明題。
(2)對(duì)公式會(huì)“正用”,“逆用”,“變形使用”;
(3)掌握“角的演變”規(guī)律,
(4)將公式和其它知識(shí)銜接起來(lái)使用。
重點(diǎn)難點(diǎn)
重點(diǎn):幾組三角恒等式的應(yīng)用
難點(diǎn):靈活應(yīng)用和、差、倍角等公式進(jìn)行三角式化簡(jiǎn)、求值、證明恒等式
【本文地址:http://www.mlvmservice.com/zuowen/6331691.html】