學(xué)習(xí)是人類進步的一種方式,總結(jié)是對學(xué)習(xí)成果的反思和總結(jié)。如何保護自然資源和生物多樣性呢?請注意,以下內(nèi)容是對過去一段時間工作和學(xué)習(xí)的總結(jié),希望能夠給大家一些啟示。
人工智能與未來論文篇一
人工智能(artificialintelligence,ai)一直都處于計算機技術(shù)的最前沿,經(jīng)歷了幾起幾落……----長久以來,人工智能對于普通人來說是那樣的可望而不可及,然而它卻吸引了無數(shù)研究人員為之奉獻才智,從美國的麻省理工學(xué)院(mit)、卡內(nèi)基-梅隆大學(xué)(cmu)到ibm公司,再到日本的本田公司、sony公司以及國內(nèi)的清華大學(xué)、中科院等科研院所,全世界的實驗室都在進行著ai技術(shù)的實驗。不久前,著名導(dǎo)演斯蒂文·斯皮爾伯格還將這一主題搬上了銀幕,科幻片《人工智能》(a.i.)對許多人的頭腦又一次產(chǎn)生了震動,引起了一些人士了解并探索人工智能領(lǐng)域的興趣。
----在本期技術(shù)專題中,中國科學(xué)院計算技術(shù)研究所智能信息處理開放實驗室的幾位研究人員將引領(lǐng)我們走近人工智能這一充滿挑戰(zhàn)與機遇的領(lǐng)域。
計算機與人工智能
----“智能”源于拉丁語legere,字面意思是采集(特別是果實)、收集、匯集,并由此進行選擇,形成一個東西。intelegere是從中進行選擇,進而理解、領(lǐng)悟和認識。正如帕梅拉·麥考達克在《機器思維》(machineswhothinks,1979)中所提出的:在復(fù)雜的機械裝置與智能之間存在長期的聯(lián)系。從幾個世紀(jì)前出現(xiàn)的神話般的巨鐘和機械自動機開始,人們已對機器操作的復(fù)雜性與自身的某些智能活動進行直觀聯(lián)系。經(jīng)過幾個世紀(jì)之后,新技術(shù)已使我們所建立的機器的復(fù)雜性大為提高。1936年,24歲的英國數(shù)學(xué)家圖靈(turing)提出了“自動機”理論,把研究會思維的機器和計算機的工作大大向前推進了一步,他也因此被稱為“人工智能之父”。
----人工智能領(lǐng)域的研究是從1956年正式開始的,這一年在達特茅斯大學(xué)召開的會議上正式使用了“人工智能”(artificialintelligence,ai)這個術(shù)語。隨后的幾十年中,人們從問題求解、邏輯推理與定理證明、自然語言理解、博弈、自動程序設(shè)計、專家系統(tǒng)、學(xué)習(xí)以及機器人學(xué)等多個角度展開了研究,已經(jīng)建立了一些具有不同程度人工智能的計算機系統(tǒng),例如能夠求解微分方程、設(shè)計分析集成電路、合成人類自然語言,而進行情報檢索,提供語音識別、手寫體識別的多模式接口,應(yīng)用于疾病診斷的專家系統(tǒng)以及控制太空飛行器和水下機器人更加貼近我們的生活。我們熟知的ibm的“深藍”在棋盤上擊敗了國際象棋大師卡斯帕羅夫就是比較突出的例子。
----當(dāng)然,人工智能的發(fā)展也并不是一帆風(fēng)順的,也曾因計算機計算能力的限制無法模仿人腦的思考以及與實際需求的差距過遠而走入低谷,但是隨著硬件和軟件的發(fā)展,計算機的運算能力在以指數(shù)級增長,同時網(wǎng)絡(luò)技術(shù)蓬勃興起,確保計算機已經(jīng)具備了足夠的條件來運行一些要求更高的ai軟件,而且現(xiàn)在的ai具備了更多的現(xiàn)實應(yīng)用的基礎(chǔ)。90年代以來,人工智能研究又出現(xiàn)了新的高潮。
----我們有幸采訪了中國科學(xué)院計算技術(shù)研究所智能信息處理開放實驗室史忠植研究員,請他和他的實驗室成員引領(lǐng)我們走近人工智能這個讓普通人感到深奧卻又具有無窮魅力的領(lǐng)域。
----答:ai研究出現(xiàn)了新的高潮,這一方面是因為在人工智能理論方面有了新的進展,另一方面也是因為計算機硬件突飛猛進的發(fā)展。隨著計算機速度的不斷提高、存儲容量的不斷擴大、價格的不斷降低以及網(wǎng)絡(luò)技術(shù)的不斷發(fā)展,許多原來無法完成的工作現(xiàn)在已經(jīng)能夠?qū)崿F(xiàn)。目前人工智能研究的3個熱點是:智能接口、數(shù)據(jù)挖掘、主體及多主體系統(tǒng)。
----智能接口技術(shù)是研究如何使人們能夠方便自然地與計算機交流。為了實現(xiàn)這一目標(biāo),要求計算機能夠看懂文字、聽懂語言、說話表達,甚至能夠進行不同語言之間的翻譯,而這些功能的實現(xiàn)又依賴于知識表示方法的研究。因此,智能接口技術(shù)的研究既有巨大的應(yīng)用價值,又有基礎(chǔ)的理論意義。目前,智能接口技術(shù)已經(jīng)取得了顯著成果,文字識別、語音識別、語音合成、圖像識別、機器翻譯以及自然語言理解等技術(shù)已經(jīng)開始實用化。
----數(shù)據(jù)挖掘就是從大量的、不完全的、有噪聲的、模糊的、隨機的實際應(yīng)用數(shù)據(jù)中提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。數(shù)據(jù)挖掘和知識發(fā)現(xiàn)的研究目前已經(jīng)形成了三根強大的技術(shù)支柱:數(shù)據(jù)庫、人工智能和數(shù)理統(tǒng)計。主要研究內(nèi)容包括基礎(chǔ)理論、發(fā)現(xiàn)算法、數(shù)據(jù)倉庫、可視化技術(shù)、定性定量互換模型、知識表示方法、發(fā)現(xiàn)知識的維護和再利用、半結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)中的知識發(fā)現(xiàn)以及網(wǎng)上數(shù)據(jù)挖掘等。
----主體是具有信念、愿望、意圖、能力、選擇、承諾等心智狀態(tài)的實體,比對象的粒度更大,智能性更高,而且具有一定自主性。主體試圖自治地、獨立地完成任務(wù),而且可以和環(huán)境交互,與其他主體通信,通過規(guī)劃達到目標(biāo)。多主體系統(tǒng)主要研究在邏輯上或物理上分離的多個主體之間進行協(xié)調(diào)智能行為,最終實現(xiàn)問題求解。多主體系統(tǒng)試圖用主體來模擬人的理性行為,主要應(yīng)用在對現(xiàn)實世界和社會的模擬、機器人以及智能機械等領(lǐng)域。目前對主體和多主體系統(tǒng)的研究主要集中在主體和多主體理論、主體的體系結(jié)構(gòu)和組織、主體語言、主體之間的協(xié)作和協(xié)調(diào)、通信和交互技術(shù)、多主體學(xué)習(xí)以及多主體系統(tǒng)應(yīng)用等方面。
----答:我國開始“863計劃“時,正值全世界的人工智能熱潮?!?63-306“主題的名稱是”智能計算機系統(tǒng)“,其任務(wù)就是在充分發(fā)掘現(xiàn)有計算機潛力的基礎(chǔ)上,分析現(xiàn)有計算機在應(yīng)用中的缺陷和”瓶頸”,用人工智能技術(shù)克服這些問題,建立起更為和諧的人-機環(huán)境。經(jīng)過十幾年來的努力,我們縮短了我國人工智能技術(shù)與世界先進水平的差距,也為未來的發(fā)展奠定了技術(shù)和人才基礎(chǔ)。
----但是也應(yīng)該看到目前我國人工智能研究中還存在一些問題,其特點是:課題比較分散,應(yīng)用項目偏多、基礎(chǔ)研究比例略少、理論研究與實際應(yīng)用需求結(jié)合不夠緊密。選題時,容易跟著國外的選題走;立項論證時,慣于考慮國外怎么做;落實項目時,又往往顧及面面俱到,大而全;再加上受研究經(jīng)費的限制,所以很多課題既沒有取得理論上的突破,也沒有太大的實際應(yīng)用價值。
----今后,基礎(chǔ)研究的比例應(yīng)該適當(dāng)提高,同時人工智能研究一定要與應(yīng)用需求相結(jié)合??茖W(xué)研究講創(chuàng)新,而創(chuàng)新必須接受應(yīng)用和市場的檢驗。因此,我們不僅要善于找到解決問題的答案,更重要的是要發(fā)現(xiàn)最迫切需要解決的問題和最迫切需要滿足的市場需求。
----問:請您預(yù)測一下人工智能將來會向哪些方面發(fā)展?
----答:技術(shù)的發(fā)展總是超乎人們的想象,要準(zhǔn)確地預(yù)測人工智能的未來是不可能的。但是,從目前的一些前瞻性研究可以看出未來人工智能可能會向以下幾個方面發(fā)展:模糊處理、并行化、神經(jīng)網(wǎng)絡(luò)和機器情感。
----目前,人工智能的推理功能已獲突破,學(xué)習(xí)及聯(lián)想功能正在研究之中,下一步就是模仿人類右腦的模糊處理功能和整個大腦的并行化處理功能。人工神經(jīng)網(wǎng)絡(luò)是未來人工智能應(yīng)用的新領(lǐng)域,未來智能計算機的構(gòu)成,可能就是作為主機的馮·諾依曼型機與作為智能外圍的人工神經(jīng)網(wǎng)絡(luò)的結(jié)合。研究表明:情感是智能的一部分,而不是與智能相分離的,因此人工智能領(lǐng)域的下一個突破可能在于賦予計算機情感能力。情感能力對于計算機與人的自然交往至關(guān)重要。
----人工智能一直處于計算機技術(shù)的前沿,人工智能研究的理論和發(fā)現(xiàn)在很大程度上將決定計算機技術(shù)的發(fā)展方向。今天,已經(jīng)有很多人工智能研究的成果進入人們的日常生活。將來,人工智能技術(shù)的發(fā)展將會給人們的`生活、工作和教育等帶來更大的影響。
什么是人工智能?
----人工智能也稱機器智能,它是計算機科學(xué)、控制論、信息論、神經(jīng)生理學(xué)、心理學(xué)、語言學(xué)等多種學(xué)科互相滲透而發(fā)展起來的一門綜合性學(xué)科。從計算機應(yīng)用系統(tǒng)的角度出發(fā),人工智能是研究如何制造出人造的智能機器或智能系統(tǒng),來模擬人類智能活動的能力,以延伸人們智能的科學(xué)。
ai理論的實用性
----在一年一度at&t實驗室舉行的機器人足球賽中,每支球隊的“球員”都裝備上了ai軟件和許多感應(yīng)器,它們都很清楚自己該踢什么位置,同時也明白有些情況下不能死守崗位。盡管現(xiàn)在的ai技術(shù)只能使它們大部分時間處于個人盤帶的狀態(tài),但它們傳接配合的能力正在以很快的速度改進。
----這種ai機器人組隊打比賽看似無聊,但是有很強的現(xiàn)實意義。因為通過這類活動可以加強機器之間的協(xié)作能力。我們知道,internet是由無數(shù)臺服務(wù)器和無數(shù)臺路由器組成的,路由器的作用就是為各自的數(shù)據(jù)選擇通道并加以傳送,如果利用一些智能化的路由器很好地協(xié)作,就能分析出傳輸數(shù)據(jù)的最佳路徑,從而可以大大減少網(wǎng)絡(luò)堵塞。
----我國也已經(jīng)在大學(xué)中開展了機器人足球賽,有很多學(xué)校組隊參加,引起了大學(xué)生對人工智能研究的興趣。
未來的ai產(chǎn)品
----安放于加州勞倫斯·利佛摩爾國家實驗室的asciwhite電腦,是ibm制造的世界最快的超級電腦,但其智力能力也僅為人腦的千分之一。現(xiàn)在,ibm正在開發(fā)能力更為強大的新超級電腦--“藍色牛仔”(bluejean)。據(jù)其研究主任保羅·霍恩稱,預(yù)計于4年后誕生的“藍色牛仔”的智力水平將大致與人腦相當(dāng)。
----麻省理工學(xué)院的ai實驗室進行一個的代號為cog的項目。cog計劃意圖賦予機器人以人類的行為。該實驗的一個項目是讓機器人捕捉眼睛的移動和面部表情,另一個項目是讓機器人抓住從它眼前經(jīng)過的東西,還有一個項目則是讓機器人學(xué)會聆聽音樂的節(jié)奏并將其在鼓上演奏出來。
----/報道,比利時的starlab正在制造一個人工貓腦,這個貓腦將有7500萬個人造神經(jīng)細胞。據(jù)稱,移植了人工貓腦的小貓能夠行走,還能玩球。預(yù)計它將于制作完程。
人工智能與未來論文篇二
隨著新型科技的持續(xù)更新,工程中逐漸應(yīng)用新科技,這也是科技朝著應(yīng)用式與開放式方向發(fā)展的開始。電子工程在傳統(tǒng)工程基礎(chǔ)上的革新,隨著人工智能化發(fā)展,逐漸轉(zhuǎn)換為信息化產(chǎn)業(yè)鏈接。這一智能化技術(shù)機械生產(chǎn)明顯減少,經(jīng)濟效益與產(chǎn)量提升,我國逐漸進入到智能化階段。
(一)發(fā)展歷程
在機械電子工程發(fā)展初期,主要體現(xiàn)為手工制作,生產(chǎn)力水平較低,資源技術(shù)等對其發(fā)展產(chǎn)生制約。為了提升生產(chǎn)效率,逐漸朝著機械工業(yè)方向發(fā)展。
在生產(chǎn)線階段,機械工程已逐漸發(fā)展到流水線生產(chǎn),實現(xiàn)標(biāo)準(zhǔn)化大批量生產(chǎn),這一生產(chǎn)模式使勞動力得到解放,生產(chǎn)力水平大大提升,同時生產(chǎn)效率也得到提高。但是仍然存在一些不足,比如,部分生產(chǎn)仍就以進口為主,生產(chǎn)成本較大,在市場方面缺少適應(yīng)力;靈活性較差,難以滿足不斷變化的市場需求。
在機械電子產(chǎn)業(yè)發(fā)展階段中,產(chǎn)品生產(chǎn)能夠適應(yīng)市場的需求,對于不斷變化的產(chǎn)品需求產(chǎn)業(yè)化發(fā)展能夠滿足。
(二)機械電子工程主要特征
機械電子工程是復(fù)雜綜合性學(xué)科,同各類學(xué)科之間都有著密切的聯(lián)系。機械電子工程發(fā)展要以計算機、電子以及機械為基礎(chǔ),結(jié)合其他學(xué)科做出合理、科學(xué)的設(shè)計。在設(shè)計的過程中,要求每一個模塊都能夠?qū)崿F(xiàn)有機結(jié)合,進而使得各個模塊都能將其最大優(yōu)勢發(fā)揮出來。機械電子產(chǎn)品內(nèi)部結(jié)構(gòu)簡單明了,并不復(fù)雜,無需復(fù)雜原件的投入,這樣能在一定程度上使產(chǎn)品性能得到提升,進而擴大消費市場。
人工智能是一門復(fù)雜,并且綜合性較強的學(xué)科,所涉及到的學(xué)科比較多。也可以說,21世紀(jì)人工智能是最偉大學(xué)科之一。人工智能實現(xiàn)了對人的智能模擬,并且能通過計算機使認得智能化得到進一步的延伸,人工智能這門學(xué)科有著較好的發(fā)展?jié)摿?。人工智能在發(fā)展的過程中主要經(jīng)歷下列幾個階段。
初步階段。人工智能在17世紀(jì)開始發(fā)生萌芽,法國在這一階段成功誕生世界上的第一部計算機,這一計算器只是單純的能進行加法簡單運算,但是仍就轟動世界,進而在世界范圍內(nèi),對這項技術(shù)開始進一步研宄。在最初階段,人工智能并沒有明顯的進展,主要是在實踐的過程中積累與總結(jié)知識,這為今后人工智能發(fā)展奠定堅實的基礎(chǔ)。
發(fā)展初始階段。美國人在二十世紀(jì)首次提出人工智能專業(yè)用語。在這個發(fā)展階段,人工智能主要以證明與闡釋為主要體現(xiàn),在這一時期對于人工智能的研宄就是首要任務(wù)。
發(fā)展起伏階段。隨著人們對于人工智能的不斷深入研宄,人工智能也處于持續(xù)的發(fā)展階段,但是在實踐過程中發(fā)現(xiàn),要想使人工智能模仿和人類思維同步是非常困難的。大部分對于人工智能的科學(xué)研宄僅僅是停留于簡單映射層面,對于邏輯思維的研宄仍就沒有突破性進展。不論怎么說,在發(fā)展的起伏階段,人功能智能也在發(fā)展中得到了技術(shù)創(chuàng)新,特別是在系統(tǒng)方面、計算機機器人以及語言掌握方面取得了較大的成就。
起伏階段發(fā)展以后。在這一階段,人工智能的相關(guān)研究得到了發(fā)展,尤其是第五屆國際人工智能聯(lián)合會議的召開,人工智能逐漸朝著知識層面的方向發(fā)展,大部分的人工智能研都會結(jié)合相應(yīng)的知識工程,在這個階段中,人工智能發(fā)展的高度是前所未有的,在一定程度上促進了人工智能應(yīng)用于實際工程中。
穩(wěn)步發(fā)展階段。隨著互聯(lián)網(wǎng)技術(shù)的快速發(fā)展,對于人工智能研宄方向發(fā)生重大轉(zhuǎn)變,由原本的單一主體朝著集中統(tǒng)一主體的方向發(fā)展。關(guān)于人工智能在實際中的運用以及研究,受到了互聯(lián)網(wǎng)技術(shù)的影響。網(wǎng)絡(luò)的普及與快速發(fā)展,在一定程度上促進了信息化的發(fā)展,信息在傳送方面發(fā)生率重大性變革。在人們逐漸進入信息化社會后,在信息有效處理方面人工智能的發(fā)展到了重要的作用,在模擬設(shè)計方面,機械電子工程的發(fā)展需要人工智能的大力支持。
隨著我國社會經(jīng)濟的持續(xù)發(fā)展,社會不斷的進步,對于信息人們越來越重視。在21世紀(jì),互聯(lián)網(wǎng)技術(shù)得到快速發(fā)展,同時信息的傳遞也逐漸注入新鮮血液?;ヂ?lián)網(wǎng)應(yīng)用的普及說明人們正朝著信息時代的方向邁進,在社會逐步信息化以后,更加需要有人工智能這一技術(shù)的支持,特別是機械電子工程發(fā)展中有著重要作用,機械電子系統(tǒng)本身缺少一定的穩(wěn)定性,這樣在機械電子工程設(shè)計方面就有著較大阻礙存在。在現(xiàn)代社會中,信息的處理量持續(xù)增大,并且較為復(fù)雜,有些時候需要同時對不同類型的信息進行處理,所以需要采取人工智能的.支持才能完成信息處理。人工智能主要包含模糊推理系統(tǒng)、神經(jīng)網(wǎng)絡(luò)系統(tǒng)這種兩種方法。神經(jīng)網(wǎng)絡(luò)系統(tǒng)傾向于對人腦結(jié)構(gòu)的綜合分析,模糊推理系統(tǒng)更加重視對于語言信號的分析與理解。隨著現(xiàn)代社會的發(fā)展,僅僅采取單一的人工智能方法,明顯已經(jīng)無法適應(yīng)目前社會中不斷變化的市場需求,所以,對于人工智能相關(guān)問題的研宂正逐漸朝著多方位、全面的人工智能方向轉(zhuǎn)變。多方位全面人工智能系統(tǒng)通過模糊推理系統(tǒng)和神經(jīng)網(wǎng)絡(luò)系統(tǒng)相互統(tǒng)一的方式,揚長補短,將二者有效的結(jié)合起來,使得二者的優(yōu)勢得到最大程度的發(fā)揮。
智能同機械電子工程之間在相互影響的過程中,逐漸產(chǎn)生嶄新的行業(yè)。首先通過現(xiàn)代科技逐漸,將人工智能融入到機械電子工程中,使機械工業(yè)發(fā)展?jié)摿Φ玫匠浞滞诰?。其次隨著機械電子工程發(fā)展難度的加大,對于人工智能也就提出來新的要求,這從某種程度上來推動了人工智能發(fā)展。在將機械電子工程與人工智能有效結(jié)合的基礎(chǔ)上,促進社會生產(chǎn)力發(fā)展,同時也能促進有關(guān)經(jīng)濟產(chǎn)業(yè)的快速發(fā)展,這種效應(yīng)將會對整個社會產(chǎn)生一定影響,使我國經(jīng)濟得到全面發(fā)展。
人工智能與未來論文篇三
電氣自動化控制系統(tǒng)是由計算機控制系統(tǒng)對電氣設(shè)備的運行進行自動控制,電氣自動化控制系統(tǒng)的應(yīng)用能夠大大提高電氣設(shè)備的工作效率,提高機械設(shè)備工作的精確性,為企業(yè)帶來了良好的經(jīng)濟效益,但是隨著電氣設(shè)備自動化程度的不斷提高,要求電氣設(shè)備自動化控制系統(tǒng)要實現(xiàn)智能化操作。人工智能技術(shù)是通過計算機系統(tǒng)模擬人的智能,在計算機的控制下,實現(xiàn)電氣設(shè)備控制系統(tǒng)的模擬人的智能,例如進行圖像分析與處理、語音識別以及專家控制系統(tǒng)等等??梢哉f將人工智能技術(shù)應(yīng)用在電氣自動化控制系統(tǒng)中是電氣自動化技術(shù)發(fā)展的必然趨勢。
人工智能技術(shù)是以計算機技術(shù)為基礎(chǔ),融合多門學(xué)科的綜合性科學(xué)技術(shù),其主要是通過計算機模擬構(gòu)建人的智能,并且創(chuàng)建機器人系統(tǒng)和專家系統(tǒng)實現(xiàn)對電氣自動控制系統(tǒng)的智能化操作。人工智能技術(shù)的突出特點是:一是操作性。人工智能技術(shù)主要是依托計算機的控制實現(xiàn)對電氣設(shè)備的控制,因此人工智能技術(shù)具有很強的邏輯性,便于控制人員進行操作;二是價值大。人工智能技術(shù)不僅融合了計算機技術(shù),而且其還實現(xiàn)了對電氣設(shè)備的自動化控制與監(jiān)測,實現(xiàn)了以較小的投入獲得更大的經(jīng)濟效益的目的。比如通過人工智能技術(shù)可以減少人工操作環(huán)節(jié),進而為企業(yè)節(jié)省相當(dāng)多的人力資源成本費用;三是準(zhǔn)確性比較高。人工智能技術(shù)主要是計算機依據(jù)人的智能建立計算機控制系統(tǒng),實現(xiàn)對電氣設(shè)備的精確性操作,比如利用人工智能技術(shù)可以對電氣設(shè)備的運行情況進行智能檢測與處理,避免了人工檢測所存在的弊端。
人工智能技術(shù)的最大優(yōu)勢就是通過對電氣控制系統(tǒng)信息的收集、研究,制定出具體的有效處理措施,從而代替?zhèn)鹘y(tǒng)的依靠人腦進行操作的模式。將人工智能技術(shù)應(yīng)用到電氣自動化控制系統(tǒng)中具有重要的意義:
2.1能夠有效解決電氣自動化控制過程中存在的病態(tài)結(jié)構(gòu)問題
電氣自動化控制過程中因為電氣設(shè)備精密度越來越高,因此在運行過程中所出現(xiàn)的病態(tài)結(jié)構(gòu)很難應(yīng)用傳統(tǒng)的方式表達出來,而人工智能技術(shù)則可以有效解決此類問題,其完全有能力利用定量與定性相結(jié)合的控制方式對控制系統(tǒng)進行計算與分析。
2.2實現(xiàn)自動控制系統(tǒng)的數(shù)據(jù)采集與處理功能
將人工智能技術(shù)應(yīng)用到電氣自動化控制中能夠依托專家系統(tǒng)對電氣設(shè)備進行實時監(jiān)視,并且對相關(guān)信息進行自動收集與儲存,一旦發(fā)現(xiàn)存在潛在故障或者存在事故的事件,人工智能技術(shù)就會自動采取相應(yīng)的.控制方式,對故障進行自動處理,進而避免了電氣系統(tǒng)故障的進一步擴大化。
2.3簡化了人工操作過程,降低了人工操作造成的損失
人工智能技術(shù)通過計算機設(shè)備就可以實現(xiàn)對電氣設(shè)備的自動化控制,比如電氣系統(tǒng)的人工智能化控制系統(tǒng)就可以通過鼠標(biāo)對控制開關(guān)進行自動控制,并且對勵磁電流進行調(diào)整。同時電氣人工智能控制系統(tǒng)還設(shè)定了應(yīng)用管理權(quán)限,限制了相應(yīng)操作人員的權(quán)限,實現(xiàn)了專人專崗制度,細化了操作責(zé)任制度。
3.1人工智能技術(shù)在電氣自動化設(shè)備中的應(yīng)用
我們知道電氣自動化控制系統(tǒng)屬于非常負責(zé)的控制系統(tǒng),其不僅包含復(fù)雜的元件,而且還需要操作人員嚴(yán)格按照自動化控制系統(tǒng)的要求進行操作,而將人工智能技術(shù)應(yīng)用到電氣設(shè)備中可以實現(xiàn)計算機的自動化操作,最重要的就是可以代替?zhèn)鹘y(tǒng)的需要人工進行設(shè)備檢測的落后模式,實現(xiàn)了對電氣設(shè)備的運行狀態(tài)、故障檢測以及維修意見等一體的功能,降低了人工操作的失誤性,提高了電氣設(shè)備的應(yīng)用壽命,為企業(yè)節(jié)省了大量的成本。
3.2人工智能技術(shù)在電氣控制過程中的應(yīng)用
將智能技術(shù)應(yīng)用到電氣自動化控制過程中,是人工智能技術(shù)發(fā)展的重要動力,通過人工智能化的電氣控制系統(tǒng)不僅可以提高電氣設(shè)備的工作效率,而且還可以降低電氣自動化控制中的故障發(fā)生率。人工智能技術(shù)主要師模糊控制、專家控制以及神經(jīng)網(wǎng)絡(luò)控制和集成智能控制。本文以專家控制為例,專家控制就是將專家系統(tǒng)的設(shè)計規(guī)范和運行機制與電氣控制劉楠相結(jié)合實現(xiàn)實時控制系統(tǒng)的設(shè)計,其主要是對自動控制的知識獲取、表示以及推理機制的建立。
3.3在事故和故障診斷中人工智能技術(shù)的應(yīng)用分析
人工智能技術(shù)在電氣設(shè)備故障中的作用是非常大的,尤其是對發(fā)動機的故障檢修是具有重要作用的,我們知道在電氣設(shè)備中由于其結(jié)構(gòu)比較復(fù)雜,依靠人工很難對其進行深入的檢測,因此需要借助人工智能技術(shù)實現(xiàn)對設(shè)備的檢修。我們以變壓器為例,將智能技術(shù)應(yīng)用到變壓器的故障檢修中首先就是先收集電壓器油體中分解的氣體,然后通過對油體氣體的分析,找出故障的原因,進而自動形成解決措施。這樣有效避免了人工檢測所出現(xiàn)的失誤現(xiàn)象。另外人工智能技術(shù)在電氣設(shè)備操作中的應(yīng)用價值也比較大。通過人工智能技術(shù)可以實現(xiàn)電氣自動化控制環(huán)節(jié)的簡單化,比如在機床加工中,如果運用人工智能技術(shù)則能夠有效降低機床操作的復(fù)雜性,并且能夠?qū)C床的運行信息進行收集與儲存,便于日后對相關(guān)信息的查詢。
總之,人工智能技術(shù)在電氣化領(lǐng)域中應(yīng)用,不但能夠最大限度的降低人工參與的程度,提升控制系統(tǒng)的數(shù)字化、智能化程度,還能夠大幅降低企業(yè)運營的成本,提高其利潤空間,并將生產(chǎn)效率提高到一個全新的層面。因此,相關(guān)部門應(yīng)加強對人工智能技術(shù)的研究,使其能夠為企業(yè)的發(fā)展以及社會的進步發(fā)揮出更為突出的作用。
人工智能與未來論文篇四
人工智能是一門交叉性的前沿學(xué)科,也是一門極富挑戰(zhàn)性的科學(xué)。人工智能技術(shù)和理論在一定程度上代表了信息技術(shù)的發(fā)展方向,所以對其人才的培養(yǎng)也是重中之重。
人工智能;信息技術(shù);智能教育
人工智能是多種學(xué)科相互滲透而發(fā)展起來的交叉性學(xué)科,其涉及計算機科學(xué)、信息論、數(shù)學(xué)、哲學(xué)和認知科學(xué)、心理學(xué)、控制論、不定性論、神經(jīng)生理學(xué)、語言學(xué)等多種學(xué)科。隨著科技的飛速發(fā)展和人工智能技術(shù)應(yīng)用的不斷擴延,其涉及的學(xué)科領(lǐng)域?qū)⒂鷣碛?,它已和人們的學(xué)習(xí)、生活息息相關(guān),時代和社會需要此方面的大量人才。在高中信息技術(shù)課中開設(shè)人工智能初步模塊是十分必要的,本文擬從其發(fā)展現(xiàn)狀、存在問題等幾個方面對我國高中信息課程中人工智能教育做一下探討。
(1)人工智能定義
人工智能(ai,artificial intelligence)是計算機科學(xué)的一個分支,己成為一門具有廣泛應(yīng)用的交叉學(xué)科和前沿學(xué)科。它研究如何用計算機模擬人腦所從事的推理、證明、識別、理解、設(shè)計、學(xué)習(xí)、規(guī)劃以及問題求解等思維活動,來解決人類專家才能解決的復(fù)雜問題,例如咨詢、探測、診斷、策劃等。
(2)開設(shè)人工智能課程的意義
現(xiàn)實世界的問題可以按照結(jié)構(gòu)化程度劃分成三個層次:結(jié)構(gòu)化問題,是能用形式化(或稱公式化)方法描述和求解的一類問題;非結(jié)構(gòu)化問題難以用確定的形式來描述,主要根據(jù)經(jīng)驗來求解;半結(jié)構(gòu)化問題則介于上述兩者之間。
將人工智能課程引入到我國現(xiàn)行的教育中,可以讓學(xué)生在了解人工智能基本語言特征、理解智能化問題求解的基本策略過程中,體驗、認識人工智能技術(shù)的同時獲得對非結(jié)構(gòu)化、半結(jié)構(gòu)化問題解決過程的了解,從而使學(xué)生了解計算機解決問題方法的多樣性,培養(yǎng)學(xué)生的多種思維方式,更好的解決現(xiàn)實問題。
目前,該學(xué)科的教育正處于摸索階段,由于中學(xué)信息技術(shù)師資水平、學(xué)校硬軟件設(shè)備等條件的制約,我國尚未在中學(xué)專門開設(shè)獨立的人工智能類課程,internet上與人工智能教育相關(guān)的中文信息資源也十分貧乏,在教學(xué)環(huán)境上大致存在以下問題:
(一)教學(xué)條件參差不齊
開設(shè)好人工智能課程,就要求安排更多的實踐課程和活動來增強課程的趣味性,讓廣大師生切實體會到人工智能對我們生活的影響。這些活動大部分要求上機操作或利用網(wǎng)絡(luò)資源來學(xué)習(xí)交流,這就對教學(xué)條件提出了較高的要求,尤其是一些偏遠農(nóng)村、條件相對落后的中學(xué)在開設(shè)人工智能課程上存在很大困難。
(1)對硬件性能的要求
人工智能課程中有較多的實踐課程需要老師和學(xué)生利用網(wǎng)絡(luò)資源,使用計算機進行操作。這就需要學(xué)校配備計算機網(wǎng)絡(luò)教學(xué)機房,若其性能較差,會延長學(xué)生在線進行人機對話的時間,一旦遇到網(wǎng)絡(luò)堵塞,可能連網(wǎng)頁都打不開,這不僅浪費了僅有的'上課時間,而且大大降低了學(xué)生的學(xué)習(xí)興趣。
(2)對軟件性能的要求
為了降低成本,學(xué)校可以利用互聯(lián)網(wǎng)上提供的免費下載軟件和免費在線教學(xué)網(wǎng)站等進行實踐教學(xué),可大大減少自研開發(fā)軟件和軟件維護的費用。但一旦遇到網(wǎng)絡(luò)不通、網(wǎng)絡(luò)擁擠或在線網(wǎng)站停止服務(wù)等情況,將無法使用網(wǎng)絡(luò)資源進行教學(xué),可見,軟件的依賴性較強也存在很大的問題。
(二)對人工智能科學(xué)的認識不足
(1)學(xué)生的認識誤區(qū)
提及人工智能,給大多數(shù)學(xué)生的感覺是一門神秘、遙不可及的科學(xué)。很多學(xué)生認為人工智能技術(shù)是很高深的科學(xué),離我們現(xiàn)實生活有一定距離,研究和接觸這門科學(xué)是少數(shù)科學(xué)家的事情,從而對該科學(xué)的關(guān)注程度不高。其實,人工智能學(xué)科是一門漸漸成長的科學(xué),它將應(yīng)用在我們生活的方方面面。我們應(yīng)在教學(xué)中讓學(xué)生多去體驗人工智能的魅力所在,吸引更多對該學(xué)科感興趣的人去研究和使用它。
(2)教師對人工智能學(xué)科開設(shè)存在偏見
一些從事該學(xué)科教學(xué)的教師沒有接觸過人工智能方面的知識,在接觸過后被其中深奧難理解的知識所嚇倒,認為即使開設(shè)了這門課程也不易被同學(xué)們所接受;而一些在大學(xué)接觸過人工智能課程的教師則認為,其理論枯燥乏味,知識內(nèi)容艱深,不適合放在高中開設(shè)。
(三)一線教師經(jīng)驗不足
在我國大學(xué)教育中,開展人工智能專業(yè)課程的大學(xué)為數(shù)不多,師范類院校更是少之又少。從事人工智能領(lǐng)域的專業(yè)人才輸出少,所以,缺乏具備一定知識結(jié)構(gòu)、有專業(yè)素養(yǎng)的教師來擔(dān)任高中信息技術(shù)課中人工智能課程的教育工作。絕大多數(shù)的一線教師并沒有接受過人工智能課程的專業(yè)培訓(xùn),在授課內(nèi)容上的著重點掌握不好,教學(xué)目標(biāo)不夠明確;在授課形式上也沒有前人的經(jīng)驗可尋,這就給一線教師帶來了極大的挑戰(zhàn)。
(一)加強軟、硬件建設(shè)
在學(xué)校條件允許的條件下,應(yīng)加大硬件設(shè)施的投入,改善網(wǎng)絡(luò)傳遞信息的效率,同時加強軟件資源建設(shè)。鼓勵師生上網(wǎng)搜索更多適合ai教學(xué)的網(wǎng)站,教師應(yīng)整理出和ai相關(guān)的趣味小故事、電影、光盤等和教材相關(guān)的素材,以便更好的配合硬件教學(xué)。
(二)端正認識,增強支持
作為教師要樹立對高中人工智能選修課程的正確認識。通過對課標(biāo)中規(guī)定的相關(guān)內(nèi)容的深入了解和學(xué)習(xí),克服對人工智能的神秘感或恐懼感,理性而客觀的看待人工智能技術(shù)及其應(yīng)用,明確在高中開設(shè)該課程的目的。同時,教師也不能因為該課程的“選修”性質(zhì),從而輕視該課程的作用。
作為學(xué)生不應(yīng)該僅僅看見這門課程的娛樂趣味性,應(yīng)把一些重要的技術(shù)理論知識重視起來,不能過分的放松自己而偏離了我們的教學(xué)目標(biāo)。家長也應(yīng)該支持和贊同學(xué)生選擇該課程,不能應(yīng)認識不到這門課程的作用、怕耽誤學(xué)生主干課的學(xué)習(xí)而反對學(xué)生積極參與。
校方領(lǐng)導(dǎo)也不應(yīng)條件限制就輕易放棄這門課程的開設(shè),應(yīng)給予積極的配合。社會各界也應(yīng)加強輿論與正確引導(dǎo),讓更多的人們認識人工智能并予以肯定。
總之,人工智能是一門逐漸成長的科學(xué),開設(shè)好該課程需要廣大教育工作者和校方領(lǐng)導(dǎo)不斷努力,互相交流,共同克服困難。
參考文獻:
[1]張劍平.人工智能技術(shù)與“問題解決”[j].中小學(xué)信息技術(shù)教育,2003(10).
[2]段東輝.淺談信息技術(shù)課程中人工智能教育[j].新鄉(xiāng)教育學(xué)院學(xué)報,第19卷第二期2006,6.
[3]教育部.普通高中技術(shù)課程標(biāo)準(zhǔn)(實驗稿).人民教育出版社,2003年4月.
[4]張家華,張劍平.開展高中人工智能教學(xué)存在的問題及對策[j].
人工智能與未來論文篇五
如今人工智能,發(fā)展的迅速,引起了全世界的關(guān)注,比如申城的中國國際工業(yè)博覽會上,人工智能專區(qū)才看次設(shè)立開放,便擁有極其火爆的人氣。人們驚奇于那一個個小機器人里的精密構(gòu)造和其中所蘊含的先進人工智能技術(shù)。現(xiàn)實中,人工智能也逐步走入了我們的生活,許多人覺得人工智能給人類帶來了前所未有的巨大便利,提倡大肆發(fā)展,而有的人則認為人工智能的發(fā)展,如果過猶不及,將會給人們帶來麻煩,我也認為,人工智能的發(fā)展并不是一件很好的事。
確實,如今的人工智能,給人們帶來的便利生活,車上的自動停車技術(shù)讓人免費享受停車倒車時的麻煩。掃地機器人,能減少人們打掃整個屋子的勞累,但隨著技術(shù)的不斷發(fā)展,人工智能的.危害也逐漸進入了人們的生活,出租車司機被自動駕駛車代替亞馬遜擁有機械手臂,減少了物流員工財務(wù)機器人比會計好用得多,這意味著會計也將要卷鋪蓋走人。
在我看來,人工智能在工作方面對人的危害掩飾過了,他給人,便利生活的功勞。它可以為人類停車,不打掃衛(wèi)生,人類一樣做到的這些事情,而他搶占人們的工作,就直接影響到了人們的經(jīng)濟來源,可見人工智能帶來的還是麻煩。
人工智能與未來論文篇六
多位學(xué)者在當(dāng)天的發(fā)言中認為,至少在短期內(nèi),人工智能仍無法取代教師。
中國科學(xué)院院士、華東師范大學(xué)信息科學(xué)技術(shù)學(xué)院院長褚君浩相信,機器人教師可以匯聚好老師經(jīng)驗,在未來完全可以承擔(dān)具體的教師工作。
但他也指出,現(xiàn)階段機器人耗能大,且無法融入情感等,無法替代教師的很多工作?!叭擞芯駚眚?qū)動,有哲學(xué)來指導(dǎo)他,所以能夠做出很好的成績?!?/p>
華東師范大學(xué)計算機科學(xué)與軟件工程學(xué)院副院長蒲戈光認為,當(dāng)下人工智能革命的本質(zhì),是機器對知識的處理取得巨大進步。“但是人類的優(yōu)勢,就在于破壞知識和創(chuàng)造知識。”
滬江網(wǎng)創(chuàng)始人伏彩瑞也對人工智能完全取代教師持有懷疑態(tài)度?!拔疫€是琢磨著,一直到最后它也不如人聰明?!彼f。
伏彩瑞提出,未來十年會是人工智能和人的智能并舉的時代,機器人能承擔(dān)很多重復(fù)性的枯燥工作,而教師的工作重點,會是機器做不到的`事,包括培養(yǎng)孩子的綜合素質(zhì)、情商等。
不過,也有多名技術(shù)領(lǐng)域的專家指出,人工智能發(fā)展迅猛,未來完全可能勝任創(chuàng)造性工作,甚至具備情感能力。
機器學(xué)習(xí)與量化金融專家鄒昊表示,人工智能神經(jīng)元的數(shù)量增長是指數(shù)式的,認知技術(shù)、情感技術(shù)都是發(fā)展重點。未來,機器人在和學(xué)生的溝通當(dāng)中,完全有可能習(xí)得如何了解他們的情感和需求。
他表示,未來幾十年,人工智能完全可能勝任創(chuàng)造性工作。
人工智能與未來論文篇七
5月13日,一場探討“人工智能與未來教育”的高峰論壇在華東師范大學(xué)舉行。十余名專家作了主題演講,探討人工智能將如何影響教育、改變教育等問題。
多名學(xué)者認為,目前看來,因為情感能力、認知能力等方面的局限,人工智能尚無法取代教師,但憑借數(shù)據(jù)處理等方面的優(yōu)勢,人工智能在教育領(lǐng)域大有可為。
也有專家指出,人工智能神經(jīng)元呈指數(shù)型成長,未來完全可以承擔(dān)創(chuàng)造性工作,甚至獲得情感能力。
人工智能與未來論文篇八
智能交通系統(tǒng)(intelligent transportation systems,簡稱its)是將先進的信息技術(shù)、數(shù)據(jù)通訊傳輸技術(shù)、電子傳感技術(shù)、電子控制技術(shù)及計算機處理技術(shù)等有效地集成運用于整個地面交通管理系統(tǒng)而建立的一種在大范圍內(nèi)、全方位發(fā)揮作用的,實時、準(zhǔn)確、高效的綜合交通運輸管理系統(tǒng)。its能有效地利用現(xiàn)有交通設(shè)施、減少交通負荷和環(huán)境污染、保證交通安全、提高運輸效率、促進社會經(jīng)濟發(fā)展、提高人民生活質(zhì)量,并以推動社會信息化及形成新產(chǎn)業(yè)而受到各國的重視。目前已形成世界二十一世紀(jì)的發(fā)展方向。
交通仿真是智能交通領(lǐng)域的重要分支,它是利用最先進的計算機技術(shù),通過仿真模擬的方法來分析交通問題,輔助交通管理人員做決策。傳統(tǒng)上,數(shù)學(xué)推導(dǎo)、科學(xué)實驗是進行科學(xué)研究、解決科學(xué)問題的主要方法。對于交通問題來說,由于參與交通的人很多,影響交通出行的因素也很多,人們很難、甚至無法對交通問題建立精確的數(shù)學(xué)模型。同時,由于安全、法規(guī),以及開銷方面的原因,進行現(xiàn)場交通實驗通常也是不可行的。而交通仿真恰恰能夠有效地解決上述兩個方面的困難。
然而,傳統(tǒng)的交通仿真由于設(shè)計理念上的原因,并不能從根本上有效地解決交通問題。這是因為,交通系統(tǒng)是一個龐大的復(fù)雜系統(tǒng),必須用對付復(fù)雜系統(tǒng)的方法來處理,也就是要用綜合的方法,而不是還原分解的方法來處理。
1)城市交通系統(tǒng)是由經(jīng)濟、環(huán)境、人口等因素綜合作用的結(jié)果,必須全面綜合地考慮城市交通和這些系統(tǒng)之間的關(guān)系。例如,不能為例城市交通問題的解決,而導(dǎo)致城市生態(tài)惡化,危害人居環(huán)境;不能為了城市交通的暢通,阻礙城市社會經(jīng)濟活動的健康發(fā)展。我們必須在已有工作的基礎(chǔ)上,突破傳統(tǒng)思維,探索研究此類復(fù)雜系統(tǒng)的新途徑,而基于人工系統(tǒng)的研究方法正是這種有效途徑之一。
2)城市交通問題不存在“一勞永逸”的解決方案。城市交通系統(tǒng)涉及人與社會的動態(tài)變化,本身也在不斷變化和發(fā)展之中,不可避免地需要一個不斷深化地認識過程,這類系統(tǒng)實際上不存在精確完備的整體解析模型。因此,無法“一勞永逸”地解決城市交通問題,我們需要基于“不斷探索和改善”的'原則,研究建立有效可行的計算實驗方法體系,為不斷地完善城市交通系統(tǒng)的綜合可持續(xù)發(fā)展方案提供科學(xué)依據(jù)。
3)城市交通問題不存在一般意義下的最優(yōu)解,更不存在唯一的最優(yōu)解。首先,基于解析模型的最優(yōu)解與假設(shè)條件直接相關(guān),具有條件敏感性,但對于城市交通這樣的問題,假設(shè)條件與實際情況往往存在很大差別。其次,解決這些問題一般不存在單一的優(yōu)化指標(biāo),而多層次多目標(biāo)優(yōu)化往往導(dǎo)致多個甚至無數(shù)個解決方案,就連采用近似模型的多目標(biāo)優(yōu)化也是如此。再者,對于這類復(fù)雜系統(tǒng),有時甚至連確定一個量化的綜合優(yōu)化指標(biāo)也有困難,特別是由于復(fù)雜系統(tǒng)長期行為的不可預(yù)測性,試圖求解其某一最優(yōu)化解決方案本身就是不可行的。因此,我們應(yīng)當(dāng)接受有效解決方案的概念,而且還要接受一般情況下存在多個有效解決方案的事實。在這種情況下,我們應(yīng)該利用平行系統(tǒng)方法,追求具有動態(tài)適應(yīng)能力的有效解決方案。
基于以上分析,中國科學(xué)研自動化所王飛躍研究員提出了人工交通系統(tǒng)的概念。其基本思想是利用人工社會的理論與方法,把交通仿真推向更高的層次、獲得更廣的視野。它利用基于代理的建模、面向?qū)ο蟮木幊毯筒⑿蟹植际接嬎愕确椒ê图夹g(shù),“生長”和“培育”交通系統(tǒng),即“人工交通系統(tǒng)”。
利用人工交通系統(tǒng)解決問題的思路跟改革開放摸著石頭過河差不多,不斷探索和改善,使過程、方法更科學(xué)化、系統(tǒng)化、綜合化,不斷改善探索建立城市交通、物流、生態(tài)綜合發(fā)展的理論和方法體系。
三是平行管理運行,虛擬交通系統(tǒng)與實際交通系統(tǒng)相結(jié)合,直接采集現(xiàn)實交通數(shù)據(jù),進行超前運算,以判斷可能發(fā)生的交通事件,提前采取預(yù)防措施,為交通的高效暢通提供保障。
1)在宏觀認識上,人工交通系統(tǒng)不是單純的討論交通自身的問題。相反,人工交通系統(tǒng)將交通看作社會整體的一個子系統(tǒng),與經(jīng)濟、人口、環(huán)境、氣候等子系統(tǒng)具有平等的地位,并將各個子系統(tǒng)之間的相互銜接、相互聯(lián)系、相互作用和相互影響作為研究的重點之一。
2)在仿真方法上,人工交通系統(tǒng)屬于微觀仿真的范疇,但是不局限于研究局部的交通問題。人工交通系統(tǒng)面向大區(qū)域的仿真研究,采用復(fù)雜性科學(xué)中“涌現(xiàn)”的原理,在底層建立單個交通出行元素的代理模型,通過大交通區(qū)域內(nèi)單個代理模型之間的相互作用,“涌現(xiàn)”出宏觀的交通現(xiàn)象。
3)在實現(xiàn)手段上,人工交通系統(tǒng)不能在單一、孤立的計算機上進行仿真,要使人工交通系統(tǒng)具備真實交通系統(tǒng)的分散性和社會性,必須采用先進的分布式計算方法,如網(wǎng)格和p2p等,在互聯(lián)網(wǎng)上建立結(jié)構(gòu)化、分散化的虛擬交通路網(wǎng)系統(tǒng),并且通過終端界面將網(wǎng)絡(luò)中的真實人吸引到人工交通系統(tǒng)的運行中來,以使每一個代理模型具有逼近現(xiàn)實的社會屬性。
4)在仿真目的上,人工交通系統(tǒng)不是一味的追求逼近現(xiàn)實交通環(huán)境和狀態(tài)。除此之外,人工交通系統(tǒng)可以通過調(diào)整參數(shù)、添加隨機事件等方法產(chǎn)生現(xiàn)實交通系統(tǒng)可能但尚未發(fā)生的交通現(xiàn)象,用以制定突發(fā)事故的緊急預(yù)案、交通控制方案的預(yù)評估以及交通參與人員的培訓(xùn)等等。
人工系統(tǒng)說起來有一點抽象,其實說穿了很簡單。第一是充分利用計算機技術(shù)的發(fā)展,第二是仿真與模擬的常態(tài)化。仿真不再是一個項目立項前跑一跑看看行不行的手段,仿真要秒秒在、分分在、永遠在。它是經(jīng)驗與知識的數(shù)字化、動態(tài)化和即時化,使人工影響現(xiàn)實,虛擬影響實在。
人工交通系統(tǒng)完善之后,人們可以像玩網(wǎng)絡(luò)游戲一樣,作為一個行人或司機加入到系統(tǒng)中,不必出門即可體驗交通;交警同志可以在人工交通系統(tǒng)中學(xué)習(xí)指揮交通,而不必擔(dān)心造成擁堵;交通分析人員可以利用人工交通系統(tǒng)研究各種突發(fā)事故對交通的影響,而不必擔(dān)心人民的生命財產(chǎn)受到威脅;交通管理和決策人員可以在人工交通系統(tǒng)試驗交通政策和方案,而不必承擔(dān)決策失敗的風(fēng)險。
人工智能與未來論文篇九
隨著數(shù)字智能技術(shù)的不斷進步,人工智能技術(shù)在電氣自動化控制系統(tǒng)中的應(yīng)用也日益廣泛。因此,在電氣自動化控制系統(tǒng)中,為提高生產(chǎn)力水平、方便人們?nèi)粘I?,需要加大對人工智能技術(shù)的應(yīng)用研究,實現(xiàn)自動化體系的升級和發(fā)展需要。本文主要以人工智能技術(shù)的應(yīng)用理論和現(xiàn)狀入手,具體介紹了電氣自動化控制中人工智能技術(shù)的應(yīng)用對策,最終提高經(jīng)濟效益和社會效益。
電氣自動化是一門實踐性較強的應(yīng)用性科學(xué),主要研究電氣系統(tǒng)的運行控制和研發(fā)。人類社會文明發(fā)展至今在科學(xué)技術(shù)方面的最大進步,主要是實現(xiàn)了系統(tǒng)中機械設(shè)備運行和控制的自動化和智能化。研究人工智能技術(shù)在電氣自動化控制中的應(yīng)用,有助于推動電氣系統(tǒng)自動化的進一步發(fā)展,實現(xiàn)系統(tǒng)運行的智能化,使得其更加安全穩(wěn)定,最終提高企業(yè)的生產(chǎn)效率,提高市場競爭力。
人工智能是一門新型的計算機科學(xué),介于自然科學(xué)和社會科學(xué)邊緣之間,研究對象主要是智能搜索、邏輯程序設(shè)計、自然語言問題和感知問題等。人工智能技術(shù)的本質(zhì)就是模擬人類思維進行信息編碼的過程,主要是結(jié)構(gòu)模仿和功能模擬兩種思維模擬方式。前者模擬形式主要是對人類大腦機制進行模擬,制造出類似人腦的機器設(shè)備;后者模擬主要是從人腦的功能角度出發(fā),對人類大腦思維功能進行模擬。較為成功的典型事件就是現(xiàn)代的電子信息計算機,順利地模擬人類大腦思維進行信息編碼。
人工智能不是人的智能,更不是對人的智力功能的超越,其不同于人類大腦運行的顯著特征主要有四個方面:是機械的無意識的物理過程;無社會性;不具備人類意識的創(chuàng)造力;功能是在人類大腦思維之后產(chǎn)生的。應(yīng)用人工智能技術(shù)在電氣自動化控制系統(tǒng)中,可以極大地節(jié)省人力資源,降低成本。同時,不控制目標(biāo)模型就可以提高操作的準(zhǔn)確度,降低誤差。此外,這樣還能保證產(chǎn)品的規(guī)范,提高性能。
近年來,人工智能技術(shù)得到了公眾的高度重視,大多數(shù)的專業(yè)性高校和科研單位都對其在電氣自動化系統(tǒng)中的應(yīng)用開展了眾多工作,現(xiàn)下的人工智能技術(shù)主要應(yīng)用在電氣設(shè)備的設(shè)計、事故及故障診斷和電氣控制過程中的監(jiān)控預(yù)警等工作。首先,在電氣自動化系統(tǒng)中電氣設(shè)備的設(shè)計方面,設(shè)備的結(jié)構(gòu)設(shè)計較為繁瑣復(fù)雜,涉及面較廣,要求操作設(shè)計人員具備較多的實踐經(jīng)驗。其次,在事故及故障診斷方面,人工智能技術(shù)可以利用模糊邏輯和神經(jīng)網(wǎng)絡(luò)等發(fā)揮優(yōu)勢,做好預(yù)警監(jiān)控工作。最后,在電氣控制過程中應(yīng)用人工智能技術(shù),主要依靠神經(jīng)網(wǎng)絡(luò)、模糊控制和專家系統(tǒng)三種方式,其中模糊控制應(yīng)用較為普遍,以ai控制為主。
根據(jù)上部分分析的人工智能技術(shù)在電氣自動化控制系統(tǒng)的應(yīng)用現(xiàn)狀,可知為實現(xiàn)電氣自動化控制系統(tǒng)運行的高效性、提高人工智能技術(shù)的應(yīng)用性,對策主要有以下三個方面:應(yīng)用于電氣設(shè)備設(shè)計、應(yīng)用于事故及故障診斷和應(yīng)用于電氣控制過程。
3.1 應(yīng)用于電氣設(shè)備設(shè)計
根據(jù)諸多電氣工程的實踐證明,只有具備各相關(guān)專業(yè)的學(xué)科知識和技藝才能真正實現(xiàn)電氣自動化控制系統(tǒng)的高效性,使其穩(wěn)定運行。在電氣設(shè)備的設(shè)計中應(yīng)用人工智能技術(shù),可以簡化工作,降低人力成本。因此,企業(yè)擁有一批素質(zhì)高的設(shè)計團隊,這是電氣自動化控制系統(tǒng)實現(xiàn)高效性的關(guān)鍵之一。此外,企業(yè)需要采取先進的人工智能技術(shù)進行電氣設(shè)備的設(shè)計工作,尤其是結(jié)構(gòu)設(shè)計工作。具體來說,人工智能技術(shù)在進行電氣設(shè)備設(shè)計時主要是采用遺傳算法升級計算機系統(tǒng),全面提高產(chǎn)品的研發(fā)、設(shè)計和生產(chǎn),優(yōu)化設(shè)計產(chǎn)品。
3.2 應(yīng)用于事故及故障診斷
電氣故障診斷,指的是對電氣自動化控制系統(tǒng)中機械設(shè)備的先關(guān)信息進行確定,判斷技術(shù)和運行狀況是否正常,如果出現(xiàn)異常,可以及時確定故障的具體內(nèi)容和性質(zhì)部位,找出故障原因并提出解決對策。而在電氣設(shè)備運行時,不確定因素較多,使得系統(tǒng)容易出現(xiàn)各種類型的故障和事故,如果無法及時確定故障的性質(zhì)和部位,將會給員工的人身安全帶來威脅,企業(yè)也會承受較大的經(jīng)濟損失。因此,及時判斷分析事故并做好故障診斷工作,是一項至關(guān)重要的工作??梢栽趥鹘y(tǒng)的電氣控制系統(tǒng)中,采取一些新型的.人工智能技術(shù)進行診斷。比如說,在診斷變壓器的故障中,我們可以引入人工智能技術(shù)進行診斷,在節(jié)省人力物力的同時保證診斷的精確性,也可以在對發(fā)動機和發(fā)電機等電氣機械設(shè)備進行事故診斷時引入人工智能技術(shù),提高精確度,以達到良好的工作效果,實現(xiàn)企業(yè)的經(jīng)濟效益。
3.3 應(yīng)用于電氣控制過程
人工智能技術(shù)在電氣自動化控制系統(tǒng)中起著關(guān)鍵性作用,是電氣行業(yè)中的重要部分。實現(xiàn)電氣自動化控制的人工智能化,有助于降低工作成本,提高工作效率,實現(xiàn)資源優(yōu)化和最佳配置。在傳統(tǒng)的電氣自動化控制過程中,由于過程的繁瑣復(fù)雜操作人員容易出現(xiàn)錯誤,而采取人工智能化技術(shù)則可以避免這些人為錯誤。人工智能技術(shù)主要采取神經(jīng)系統(tǒng)的控制、專家系統(tǒng)的高效控制和模糊控制。現(xiàn)在最常用的技術(shù)方式是模糊控制,通過模糊控制借助直流電和交流電的傳動最終實現(xiàn)電氣自動化控制系統(tǒng)的智能化控制。模糊控制可以具體分為surgeno和mamdan兩種表現(xiàn)形式,前者是后者的特殊情況,兩者均用來調(diào)速控制。
在電氣領(lǐng)域里,人工智能技術(shù)可以運用到日常操作中。我們可以利用家庭電腦實現(xiàn)對電氣自動化控制系統(tǒng)的遠程操作控制。具體來說,是通過采用人工智能技術(shù)預(yù)先設(shè)計好的既定程序控制操作過程,實現(xiàn)設(shè)備智能化,及時掌控全局。
綜上所述,電氣自動化控制中的人工智能技術(shù)的應(yīng)用研究,既能實現(xiàn)工作效率的提高,還能降低運行成本,更好地實現(xiàn)電氣系統(tǒng)的自動化智能化控制。此外,隨著科學(xué)技術(shù)的飛速發(fā)展,人工智能技術(shù)在電氣自動化控制中的應(yīng)用面臨著巨大的機遇和挑戰(zhàn),需要學(xué)者們不斷研究和完善,使其得到更好的應(yīng)用。
人工智能與未來論文篇十
簡要地介紹了人工智能科技技術(shù)的基本概念。對專家系統(tǒng)、人工神經(jīng)網(wǎng)絡(luò)、模糊理論、遺傳算法等人工智能技術(shù)的含義進行了介紹,并對這些技術(shù)在電力系統(tǒng)中的應(yīng)用和存在問題進行了分析。
人工智能技術(shù)(ai artificial intelligence)是一項將人類知識轉(zhuǎn)化為機器智能的技術(shù)。它研究的是怎樣用機器模仿人腦從事推理、規(guī)劃、設(shè)計、思考和學(xué)習(xí)等思維活動,解決需要由專家才能處理好的復(fù)雜問題。在應(yīng)用方面,以專家系統(tǒng)、人工神經(jīng)網(wǎng)絡(luò)、遺傳算法等最為普遍 。
1.1 專家系統(tǒng)(es)
專家系統(tǒng)是利用知識和推理來解決專家不能解決的問題。傳統(tǒng)程序需要固定程序和復(fù)雜算法,輸入數(shù)據(jù)并得出結(jié)果。專家系統(tǒng)集中大量的符號處理,采用啟發(fā)式方法模擬專家的推理過程,通過推理,利用知識解決問題。它具有邏輯思維和符號處理能力,能修改原來知識,適合于電力系統(tǒng)問題的分析。
1.2 人工神經(jīng)網(wǎng)絡(luò)(ann)
人工神經(jīng)網(wǎng)絡(luò)是大量處理單元廣泛互聯(lián)而成的網(wǎng)絡(luò),是一種模擬動物神經(jīng)系統(tǒng)的技術(shù)。神經(jīng)網(wǎng)絡(luò)具有自適應(yīng)和自學(xué)習(xí)的能力,能并行處理分布信息。電力系統(tǒng)應(yīng)用人工神經(jīng)網(wǎng)絡(luò)可以進行實時控制、狀態(tài)評估等。
1.3 遺傳算法(ga)
遺傳算法是一種進化論的數(shù)學(xué)模型,借鑒自然遺傳機制的隨機搜索算法。它的主要特征是群體搜索和群體中個體之間的信息交換。該方法適用于處理傳統(tǒng)搜索方法難以解決的非線性問題。
1.4 模糊邏輯(fl)
當(dāng)輸入是離散的變量,難以建立數(shù)學(xué)模型。而模糊邏輯則成功地應(yīng)用在潮流計算、系統(tǒng)規(guī)劃、故障診斷等電力系統(tǒng)問題。
1.5 混合技術(shù)
以上各種智能控制方法各有局限性,有些甚至難以處理電力系統(tǒng)實際問題。因此需要結(jié)合各個算法的優(yōu)勢,采用人工智能混合技術(shù)。其中包括:模糊專家系統(tǒng)、神經(jīng)網(wǎng)絡(luò)模糊系統(tǒng)、神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)等技術(shù)。
2.1在電能質(zhì)量研究中的應(yīng)用
人工智能技術(shù)可以對電壓波動、電壓不平衡、電網(wǎng)諧波等電能質(zhì)量參數(shù)進行在線監(jiān)測和分析。在檢測和識別電能質(zhì)量擾動時能克服傳統(tǒng)方法的缺陷。專家系統(tǒng)隨著經(jīng)驗的積累、擾動類型變化而不斷擴充和修改,便于用戶的.掌握[3] 。
此外,專家系統(tǒng)和模糊邏輯可用于培訓(xùn)變電站工作人員。智能軟件可以模擬故障情形,有利于提高運行人員的操作技能。
2.2 變壓器狀態(tài)監(jiān)測與故障診斷專家系統(tǒng)
變壓器事故原因判斷起來十分復(fù)雜。判斷過程中,必須通過內(nèi)外部的檢測等各種方法綜合分析作出判斷。變壓器監(jiān)測和診斷專家系統(tǒng)首先對油中氣體進行分析。異常時,根據(jù)異常程度結(jié)合試驗進行分析,決定變壓器的停運檢查。若經(jīng)分析發(fā)現(xiàn)變壓器已嚴(yán)重故障,需立即退出運行,則要結(jié)合電氣試驗手段對變壓器的故障性質(zhì)及部位做出確診。
變壓器監(jiān)測和診斷專家系統(tǒng)通過診斷模塊和推理機制,能診斷出變壓器的故障并提出相應(yīng)對策,提高了變壓器內(nèi)部故障的診斷水平,實現(xiàn)了電力變壓器狀態(tài)檢修和在線監(jiān)測。
2.3 人工智能技術(shù)在低壓電器中的應(yīng)用
低壓電器的設(shè)計以實驗為基礎(chǔ),需要分析靜態(tài)模型和動態(tài)過程。人工智能技術(shù)能進行分段過程的動態(tài)設(shè)計,對變化規(guī)律進行曲線擬合并進行人工神經(jīng)網(wǎng)絡(luò)訓(xùn)練,建立變化規(guī)律預(yù)測模型,降低了開發(fā)成本。
低壓電器需要通過試驗進行性能認證。而低壓電器的壽命很難進行評價。模糊識別方法,從考慮產(chǎn)品性能的角度出發(fā),將動態(tài)測得的反映性能的特性指標(biāo)作為模糊識別的變量特征值,能夠建立評估電器性能的模糊識別模型。
2.4 人工智能在電力系統(tǒng)無功優(yōu)化中的應(yīng)用
無功優(yōu)化是保證電力系統(tǒng)安全,提高運行經(jīng)濟性的手段之一。通過無功優(yōu)化,可以使各個性能指標(biāo)達到最優(yōu)。但是無功優(yōu)化是一個復(fù)雜的非線性問題 。
人工智能算法能應(yīng)用于電力系統(tǒng)無功優(yōu)化。如改進的模擬退火算法,在求解高中壓配電網(wǎng)的無功優(yōu)化問題中,采用了記憶指導(dǎo)搜索方法來加快搜索速度。模式法進行局部尋優(yōu)以增加獲得全局最優(yōu)解的可能性,能夠以較大概率獲得全局最優(yōu)解,提高了收斂穩(wěn)定性。禁忌搜索方法尋優(yōu)速度較快,在跳出局部最優(yōu)解方面有較大優(yōu)勢。遺傳算法在解決多變量、非線性、離散性的問題時有極大的優(yōu)勢。要求較少的求解信息的,模型簡單,適用范圍廣。
2.5 人工智能在電力系統(tǒng)繼電保護中應(yīng)用
自適應(yīng)型繼電保護裝置能地適應(yīng)各種變化,改善保護的性能,使之適應(yīng)各種運行方式和故障類型。它能夠有效地處理各種故障信息,獲得可靠的保護。
借助于人工智能技術(shù)不但能夠提取故障信息,還能利用其自學(xué)習(xí)和自適應(yīng)能力,根據(jù)不同運行工況,自適應(yīng)地調(diào)整保護定值和動作特性。
2.6 人工智能在抑制電力系統(tǒng)低頻振蕩的應(yīng)用
大規(guī)模電網(wǎng)互聯(lián)易產(chǎn)生低頻振蕩,嚴(yán)重威脅著電力系統(tǒng)的安全。人工智能為電力系統(tǒng)低頻振蕩的控制提供了技術(shù)支持。神經(jīng)網(wǎng)絡(luò)、模糊理論、ga等人工智能技術(shù)應(yīng)用于facts控制器和自適應(yīng)pss的研究,為抑制電力系統(tǒng)低頻振蕩提供了新的手段。
作為一門交叉學(xué)科,人工智能將隨著其他理論的發(fā)展而進入新的發(fā)展階段。應(yīng)用新方法解決問題,或促進各種方法的融合,保持簡單的數(shù)學(xué)模型和全局尋優(yōu)情況下,尋求到更少的運算量,提高算法效率,將是未來發(fā)展的趨勢。
隨著電力系統(tǒng)的發(fā)展,電力系統(tǒng)的復(fù)雜性不斷增加,不確定因素越來越多。隨著人工智能技術(shù)的不斷發(fā)展和提高,利用人工智能技術(shù)來解決電力系統(tǒng)的問題將會受到越來越多的重視。
隨著我國電力系統(tǒng)的持續(xù)穩(wěn)步發(fā)展,電力系統(tǒng)數(shù)據(jù)量不斷增加,管理上復(fù)雜程度大幅度增長,市場競爭的加大,為人工智能技術(shù)在電力系統(tǒng)的應(yīng)用提供了廣闊前景。
但人工智能技術(shù)的基本理論還不成熟,只是停留在仿真和實驗階段。人工智能的開發(fā)是一個長期的過程,需要不斷改進和完善,并在實際應(yīng)用中接受檢驗。
人工智能與未來論文篇十一
人工智能和數(shù)字地球是計算機科學(xué)及信息科學(xué)發(fā)展中的重要領(lǐng)域。本文簡述了人工智能的概念及其在計算機上的實現(xiàn)方式,并提出了人工智能技術(shù)在數(shù)字地球發(fā)展中幾個方面的應(yīng)用,最后總結(jié)了人工智能技術(shù)為數(shù)字地球的發(fā)展帶來的好處。
1前言
,美國副總統(tǒng)阿爾.戈爾在加利福尼亞科學(xué)中心作的演講中提出了“數(shù)字地球”這一新概念,并對其作了比較全面和通俗的說明[1]。演講中戈爾總統(tǒng)給出數(shù)字地球可能的無比廣闊的應(yīng)用前景,人們可以通過數(shù)字地球技術(shù)指導(dǎo)仿真外交,打擊和監(jiān)測犯罪,保護生態(tài)多樣性,預(yù)測氣候變化,增加作物產(chǎn)量等。
在數(shù)字地球中非常重要的一點是如何使海量的地理空間數(shù)據(jù)變得有意義,即讓它們能過被人們所理解。但是,在面對這些海量的數(shù)據(jù)時,我們處理的手段卻是有限的。而且這些數(shù)據(jù)都是由計算機來處理的,在面對大量數(shù)據(jù)中的無用數(shù)據(jù)時,計算機是很難將其識別出來的。所以我們需要讓計算機具有人類一樣的智慧,將這些數(shù)據(jù)進行有效的處理。如今,人工智能技術(shù)在數(shù)字地球中有著廣泛的應(yīng)用。通過這一技術(shù),人們可以高效的處理和分析這些海量數(shù)據(jù)。
2人工智能的實現(xiàn)方式
人工智能在計算機上有兩種不同的實現(xiàn)方式。一種是采用傳統(tǒng)的編碼技術(shù),使系統(tǒng)呈現(xiàn)智能的效果,而不考慮所用的方法是否與人或動物機體所用的方法相同。另一種是模擬法(modelingapproach),它要求實現(xiàn)方法也和人或動物機體所用的方法相同或相似。模擬法有兩種實現(xiàn)的算法:遺傳算法和神經(jīng)網(wǎng)絡(luò)算法。
遺傳算法借鑒生物進化論,將要解決的問題模擬成一個生物體,通過復(fù)制、交叉、突變等操作產(chǎn)生下一代解空間[3],并通過適應(yīng)函數(shù)度來淘汰那些不良的個體,這樣迭代進化幾代之后就很有可能得到適應(yīng)度函數(shù)值較高的個體。遺傳算法通常用在求解問題最優(yōu)解的情況下,如函數(shù)優(yōu)化、組合優(yōu)化等。
神經(jīng)網(wǎng)絡(luò)算法通過模擬人或動物的神經(jīng)網(wǎng)絡(luò)傳遞和處理信息的行為特征,進行分布式并行信息處理的算法數(shù)學(xué)模型[4]。使用神經(jīng)網(wǎng)絡(luò)算法使系統(tǒng)具有像人一樣學(xué)習(xí)的特征。初始時,系統(tǒng)模塊跟初生嬰兒一樣什么也不懂,而且會經(jīng)常犯錯,但是它可用通過學(xué)習(xí),從錯誤中吸取教訓(xùn),下一次運行時就可能改正。
3人工智能技術(shù)在數(shù)字地球中的應(yīng)用
人工智能能夠使我們的計算機具有人能解決問題的能力,使得計算機工作起來更加的高效。而且通過人工智能的學(xué)習(xí)機制,降低其出錯的幾率。人工智能在數(shù)字地球中可以有以下幾個方面的應(yīng)用:
3.1智能導(dǎo)航
當(dāng)前我們主要使用gps技術(shù)來做定位和導(dǎo)航的。但是gps只能在室外及衛(wèi)星信號不被遮擋或反射的地方才能使用。因此,在室內(nèi)、茂密的樹木覆蓋處和高層建筑地下gps就很難使用了[5]。
使用人工智能技術(shù)進行智能導(dǎo)航,當(dāng)不能獲得gps衛(wèi)星信號時,系統(tǒng)會智能的使用基于通信基站定位、互聯(lián)網(wǎng)定位等來提供導(dǎo)航。同時,人工智能系統(tǒng)還可以實現(xiàn)最優(yōu)路徑規(guī)劃,周邊信息搜索等功能。
3.2智能的人機交互
數(shù)字地球的建設(shè)依賴于互聯(lián)網(wǎng)、虛擬現(xiàn)實等技術(shù),但是現(xiàn)在我們能做的僅僅是通過這些技術(shù)將我們所獲得的海量數(shù)據(jù)展現(xiàn)在人們面前。而顯示信息的形式主要是以瀏覽器、虛擬頭盔等,這些工具存在著不能與人友好交互的問題。我們通常是通過人肢體來交互,而不能像現(xiàn)實生活中人們通過對話的形式交互。
3.3專家系統(tǒng)
計算機較人強的地方在于它的計算速度快,將計算機的高運算速度和人的智慧集成起來構(gòu)成專家系統(tǒng)。專家系統(tǒng)使用人類專家推理的模型來處理現(xiàn)實世界中需要專家作出解釋的復(fù)雜問題,并得出與專家相同的結(jié)論[6]。
在氣象預(yù)測中,我們要處理大量的氣象數(shù)據(jù)。使用傳統(tǒng)的計算機處理方式,我們還要對計算機的處理結(jié)果做大量的分析。但是通過專家系統(tǒng),不僅給出處理的數(shù)據(jù)結(jié)果,還可以給出分析的結(jié)果,以便研究人員輔助研究使用。這樣可以減少大量的人力耗費。
總結(jié)
戈爾總統(tǒng)所提出的數(shù)字地球,不僅僅是數(shù)字化的地球,其未來的發(fā)展跟應(yīng)該是在數(shù)字化的基礎(chǔ)之上的智慧地球,正如20xx年ibm所提出的“智慧地球”。未來,電子設(shè)備將會更加智能化,人機交互將會更友好化。
同時在面對海量的地理空間數(shù)據(jù)時,使用人工智能技術(shù)可以拓寬我們隊這些數(shù)據(jù)的處理能力。加快數(shù)據(jù)的處理速度、精確性等。通過智能搜索,可以快速精準(zhǔn)的找到我們所需要的信息。就像google公司所做的智能周邊搜索一樣,當(dāng)人們走在城市街道上的時候,系統(tǒng)可以搜索并顯示周邊我們感興趣的一些商店、景觀、飯店等信息。并且人工智能技術(shù)還能提供智能導(dǎo)航、人機自然語言交互、專家系統(tǒng)等。未來人工智能技術(shù)將在數(shù)字地球的發(fā)展中起到更大的作用。
人工智能與未來論文篇十二
智能交通系統(tǒng)(intelligenttransportationsystems,簡稱its)是將先進的信息技術(shù)、數(shù)據(jù)通訊傳輸技術(shù)、電子傳感技術(shù)、電子控制技術(shù)及計算機處理技術(shù)等有效地集成運用于整個地面交通管理系統(tǒng)而建立的一種在大范圍內(nèi)、全方位發(fā)揮作用的,實時、準(zhǔn)確、高效的綜合交通運輸管理系統(tǒng)。its能有效地利用現(xiàn)有交通設(shè)施、減少交通負荷和環(huán)境污染、保證交通安全、提高運輸效率、促進社會經(jīng)濟發(fā)展、提高人民生活質(zhì)量,并以推動社會信息化及形成新產(chǎn)業(yè)而受到各國的重視。目前已形成世界二十一世紀(jì)的發(fā)展方向。
交通仿真是智能交通領(lǐng)域的重要分支,它是利用最先進的計算機技術(shù),通過仿真模擬的方法來分析交通問題,輔助交通管理人員做決策。傳統(tǒng)上,數(shù)學(xué)推導(dǎo)、科學(xué)實驗是進行科學(xué)研究、解決科學(xué)問題的主要方法。對于交通問題來說,由于參與交通的人很多,影響交通出行的因素也很多,人們很難、甚至無法對交通問題建立精確的數(shù)學(xué)模型。同時,由于安全、法規(guī),以及開銷方面的原因,進行現(xiàn)場交通實驗通常也是不可行的。而交通仿真恰恰能夠有效地解決上述兩個方面的困難。
然而,傳統(tǒng)的交通仿真由于設(shè)計理念上的原因,并不能從根本上有效地解決交通問題。這是因為,交通系統(tǒng)是一個龐大的復(fù)雜系統(tǒng),必須用對付復(fù)雜系統(tǒng)的方法來處理,也就是要用綜合的方法,而不是還原分解的方法來處理。
城市交通系統(tǒng)是一個典型的復(fù)雜系統(tǒng):
1)城市交通系統(tǒng)是由經(jīng)濟、環(huán)境、人口等因素綜合作用的結(jié)果,必須全面綜合地考慮城市交通和這些系統(tǒng)之間的關(guān)系。例如,不能為例城市交通問題的解決,而導(dǎo)致城市生態(tài)惡化,危害人居環(huán)境;不能為了城市交通的暢通,阻礙城市社會經(jīng)濟活動的健康發(fā)展。我們必須在已有工作的基礎(chǔ)上,突破傳統(tǒng)思維,探索研究此類復(fù)雜系統(tǒng)的新途徑,而基于人工系統(tǒng)的研究方法正是這種有效途徑之一。
2)城市交通問題不存在“一勞永逸”的解決方案。城市交通系統(tǒng)涉及人與社會的動態(tài)變化,本身也在不斷變化和發(fā)展之中,不可避免地需要一個不斷深化地認識過程,這類系統(tǒng)實際上不存在精確完備的整體解析模型。因此,無法“一勞永逸”地解決城市交通問題,我們需要基于“不斷探索和改善”的原則,研究建立有效可行的計算實驗方法體系,為不斷地完善城市交通系統(tǒng)的綜合可持續(xù)發(fā)展方案提供科學(xué)依據(jù)。
3)城市交通問題不存在一般意義下的最優(yōu)解,更不存在唯一的最優(yōu)解。首先,基于解析模型的最優(yōu)解與假設(shè)條件直接相關(guān),具有條件敏感性,但對于城市交通這樣的問題,假設(shè)條件與實際情況往往存在很大差別。其次,解決這些問題一般不存在單一的優(yōu)化指標(biāo),而多層次多目標(biāo)優(yōu)化往往導(dǎo)致多個甚至無數(shù)個解決方案,就連采用近似模型的多目標(biāo)優(yōu)化也是如此。再者,對于這類復(fù)雜系統(tǒng),有時甚至連確定一個量化的綜合優(yōu)化指標(biāo)也有困難,特別是由于復(fù)雜系統(tǒng)長期行為的不可預(yù)測性,試圖求解其某一最優(yōu)化解決方案本身就是不可行的。因此,我們應(yīng)當(dāng)接受有效解決方案的概念,而且還要接受一般情況下存在多個有效解決方案的事實。在這種情況下,我們應(yīng)該利用平行系統(tǒng)方法,追求具有動態(tài)適應(yīng)能力的有效解決方案。
基于以上分析,中國科學(xué)研自動化所王飛躍研究員提出了人工交通系統(tǒng)的概念。其基本思想是利用人工社會的理論與方法,把交通仿真推向更高的層次、獲得更廣的視野。它利用基于代理的建模、面向?qū)ο蟮木幊毯筒⑿蟹植际接嬎愕确椒ê图夹g(shù),“生長”和“培育”交通系統(tǒng),即“人工交通系統(tǒng)”。
利用人工交通系統(tǒng)解決問題的思路跟改革開放摸著石頭過河差不多,不斷探索和改善,使過程、方法更科學(xué)化、系統(tǒng)化、綜合化,不斷改善探索建立城市交通、物流、生態(tài)綜合發(fā)展的理論和方法體系。
人工交通系統(tǒng)有三個核心組成部分:
三是平行管理運行,虛擬交通系統(tǒng)與實際交通系統(tǒng)相結(jié)合,直接采集現(xiàn)實交通數(shù)據(jù),進行超前運算,以判斷可能發(fā)生的交通事件,提前采取預(yù)防措施,為交通的高效暢通提供保障。
人工交通系統(tǒng)具有以下特點:
1)在宏觀認識上,人工交通系統(tǒng)不是單純的討論交通自身的問題。相反,人工交通系統(tǒng)將交通看作社會整體的一個子系統(tǒng),與經(jīng)濟、人口、環(huán)境、氣候等子系統(tǒng)具有平等的地位,并將各個子系統(tǒng)之間的相互銜接、相互聯(lián)系、相互作用和相互影響作為研究的重點之一。
2)在仿真方法上,人工交通系統(tǒng)屬于微觀仿真的范疇,但是不局限于研究局部的交通問題。人工交通系統(tǒng)面向大區(qū)域的仿真研究,采用復(fù)雜性科學(xué)中“涌現(xiàn)”的原理,在底層建立單個交通出行元素的代理模型,通過大交通區(qū)域內(nèi)單個代理模型之間的相互作用,“涌現(xiàn)”出宏觀的交通現(xiàn)象。
3)在實現(xiàn)手段上,人工交通系統(tǒng)不能在單一、孤立的計算機上進行仿真,要使人工交通系統(tǒng)具備真實交通系統(tǒng)的分散性和社會性,必須采用先進的分布式計算方法,如網(wǎng)格和p2p等,在互聯(lián)網(wǎng)上建立結(jié)構(gòu)化、分散化的虛擬交通路網(wǎng)系統(tǒng),并且通過終端界面將網(wǎng)絡(luò)中的真實人吸引到人工交通系統(tǒng)的運行中來,以使每一個代理模型具有逼近現(xiàn)實的社會屬性。
4)在仿真目的上,人工交通系統(tǒng)不是一味的追求逼近現(xiàn)實交通環(huán)境和狀態(tài)。除此之外,人工交通系統(tǒng)可以通過調(diào)整參數(shù)、添加隨機事件等方法產(chǎn)生現(xiàn)實交通系統(tǒng)可能但尚未發(fā)生的交通現(xiàn)象,用以制定突發(fā)事故的緊急預(yù)案、交通控制方案的預(yù)評估以及交通參與人員的培訓(xùn)等等。
人工系統(tǒng)說起來有一點抽象,其實說穿了很簡單。第一是充分利用計算機技術(shù)的發(fā)展,第二是仿真與模擬的常態(tài)化。仿真不再是一個項目立項前跑一跑看看行不行的手段,仿真要秒秒在、分分在、永遠在。它是經(jīng)驗與知識的數(shù)字化、動態(tài)化和即時化,使人工影響現(xiàn)實,虛擬影響實在。
人工交通系統(tǒng)完善之后,人們可以像玩網(wǎng)絡(luò)游戲一樣,作為一個行人或司機加入到系統(tǒng)中,不必出門即可體驗交通;交警同志可以在人工交通系統(tǒng)中學(xué)習(xí)指揮交通,而不必擔(dān)心造成擁堵;交通分析人員可以利用人工交通系統(tǒng)研究各種突發(fā)事故對交通的影響,而不必擔(dān)心人民的生命財產(chǎn)受到威脅;交通管理和決策人員可以在人工交通系統(tǒng)試驗交通政策和方案,而不必承擔(dān)決策失敗的風(fēng)險。
人工智能與未來論文篇十三
圖像識別技術(shù)是信息時代的一門重要的技術(shù),其產(chǎn)生目的是為了讓計算機代替人類去處理大量的物理信息。隨著計算機技術(shù)的發(fā)展,人類對圖像識別技術(shù)的認識越來越深刻。圖像識別技術(shù)的過程分為信息的獲取、預(yù)處理、特征抽取和選擇、分類器設(shè)計和分類決策。文章簡單分析了圖像識別技術(shù)的引入、其技術(shù)原理以及模式識別等,之后介紹了神經(jīng)網(wǎng)絡(luò)的圖像識別技術(shù)和非線性降維的圖像識別技術(shù)及圖像識別技術(shù)的應(yīng)用。從中可以總結(jié)出圖像處理技術(shù)的應(yīng)用廣泛,人類的生活將無法離開圖像識別技術(shù),研究圖像識別技術(shù)具有重大意義。
1圖像識別技術(shù)的引入
圖像識別是人工智能科技的一個重要領(lǐng)域。圖像識別的發(fā)展經(jīng)歷了三個階段:文字識別、數(shù)字圖像處理與識別、物體識別。圖像識別,顧名思義,就是對圖像做出各種處理、分析,最終識別我們所要研究的目標(biāo)。今天所指的圖像識別并不僅僅是用人類的肉眼,而是借助計算機技術(shù)進行識別。雖然人類的識別能力很強大,但是對于高速發(fā)展的社會,人類自身識別能力已經(jīng)滿足不了我們的需求,于是就產(chǎn)生了基于計算機的圖像識別技術(shù)。這就像人類研究生物細胞,完全靠肉眼觀察細胞是不現(xiàn)實的,這樣自然就產(chǎn)生了顯微鏡等用于精確觀測的儀器。通常一個領(lǐng)域有固有技術(shù)無法解決的需求時,就會產(chǎn)生相應(yīng)的新技術(shù)。圖像識別技術(shù)也是如此,此技術(shù)的產(chǎn)生就是為了讓計算機代替人類去處理大量的物理信息,解決人類無法識別或者識別率特別低的信息。
1.1圖像識別技術(shù)原理
其實,圖像識別技術(shù)背后的原理并不是很難,只是其要處理的信息比較繁瑣。計算機的任何處理技術(shù)都不是憑空產(chǎn)生的,它都是學(xué)者們從生活實踐中得到啟發(fā)而利用程序?qū)⑵淠M實現(xiàn)的。計算機的圖像識別技術(shù)和人類的圖像識別在原理上并沒有本質(zhì)的區(qū)別,只是機器缺少人類在感覺與視覺差上的影響罷了。人類的圖像識別也不單單是憑借整個圖像存儲在腦海中的記憶來識別的,我們識別圖像都是依靠圖像所具有的本身特征而先將這些圖像分了類,然后通過各個類別所具有的特征將圖像識別出來的,只是很多時候我們沒有意識到這一點。當(dāng)看到一張圖片時,我們的大腦會迅速感應(yīng)到是否見過此圖片或與其相似的圖片。其實在“看到”與“感應(yīng)到”的中間經(jīng)歷了一個迅速識別過程,這個識別的過程和搜索有些類似。在這個過程中,我們的大腦會根據(jù)存儲記憶中已經(jīng)分好的類別進行識別,查看是否有與該圖像具有相同或類似特征的存儲記憶,從而識別出是否見過該圖像。機器的圖像識別技術(shù)也是如此,通過分類并提取重要特征而排除多余的信息來識別圖像。機器所提取出的這些特征有時會非常明顯,有時又是很普通,這在很大的程度上影響了機器識別的速率??傊?,在計算機的視覺識別中,圖像的內(nèi)容通常是用圖像特征進行描述。
1.2模式識別
模式識別是人工智能和信息科學(xué)的重要組成部分。模式識別是指對表示事物或現(xiàn)象的不同形式的信息做分析和處理從而得到一個對事物或現(xiàn)象做出描述、辨認和分類等的過程。
計算機的圖像識別技術(shù)就是模擬人類的圖像識別過程。在圖像識別的過程中進行模式識別是必不可少的。模式識別原本是人類的一項基本智能。但隨著計算機的發(fā)展和人工智能的興起,人類本身的模式識別已經(jīng)滿足不了生活的需要,于是人類就希望用計算機來代替或擴展人類的部分腦力勞動。這樣計算機的模式識別就產(chǎn)生了。簡單地說,模式識別就是對數(shù)據(jù)進行分類,它是一門與數(shù)學(xué)緊密結(jié)合的科學(xué),其中所用的思想大部分是概率與統(tǒng)計。模式識別主要分為三種:統(tǒng)計模式識別、句法模式識別、模糊模式識別。
2圖像識別技術(shù)的過程
既然計算機的圖像識別技術(shù)與人類的圖像識別原理相同,那它們的過程也是大同小異的。圖像識別技術(shù)的過程分以下幾步:信息的獲取、預(yù)處理、特征抽取和選擇、分類器設(shè)計和分類決策。
信息的獲取是指通過傳感器,將光或聲音等信息轉(zhuǎn)化為電信息。也就是獲取研究對象的基本信息并通過某種方法將其轉(zhuǎn)變?yōu)闄C器能夠認識的信息。
預(yù)處理主要是指圖像處理中的去噪、平滑、變換等的操作,從而加強圖像的重要特征。
特征抽取和選擇是指在模式識別中,需要進行特征的抽取和選擇。簡單的理解就是我們所研究的圖像是各式各樣的,如果要利用某種方法將它們區(qū)分開,就要通過這些圖像所具有的本身特征來識別,而獲取這些特征的過程就是特征抽取。在特征抽取中所得到的特征也許對此次識別并不都是有用的,這個時候就要提取有用的特征,這就是特征的選擇。特征抽取和選擇在圖像識別過程中是非常關(guān)鍵的技術(shù)之一,所以對這一步的理解是圖像識別的重點。
分類器設(shè)計是指通過訓(xùn)練而得到一種識別規(guī)則,通過此識別規(guī)則可以得到一種特征分類,使圖像識別技術(shù)能夠得到高識別率。分類決策是指在特征空間中對被識別對象進行分類,從而更好地識別所研究的對象具體屬于哪一類。
3圖像識別技術(shù)的分析
隨著計算機技術(shù)的迅速發(fā)展和科技的不斷進步,圖像識別技術(shù)已經(jīng)在眾多領(lǐng)域中得到了應(yīng)用。20xx年2月15日新浪科技發(fā)布一條新聞:“微軟最近公布了一篇關(guān)于圖像識別的研究論文,在一項圖像識別的基準(zhǔn)測試中,電腦系統(tǒng)識別能力已經(jīng)超越了人類。人類在歸類數(shù)據(jù)庫imagenet中的圖像識別錯誤率為5.1%,而微軟研究小組的這個深度學(xué)習(xí)系統(tǒng)可以達到4.94%的錯誤率?!睆倪@則新聞中我們可以看出圖像識別技術(shù)在圖像識別方面已經(jīng)有要超越人類的圖像識別能力的趨勢。這也說明未來圖像識別技術(shù)有更大的研究意義與潛力。而且,計算機在很多方面確實具有人類所無法超越的優(yōu)勢,也正是因為這樣,圖像識別技術(shù)才能為人類社會帶來更多的應(yīng)用。
3.1神經(jīng)網(wǎng)絡(luò)的圖像識別技術(shù)
神經(jīng)網(wǎng)絡(luò)圖像識別技術(shù)是一種比較新型的圖像識別技術(shù),是在傳統(tǒng)的圖像識別方法和基礎(chǔ)上融合神經(jīng)網(wǎng)絡(luò)算法的一種圖像識別方法。這里的神經(jīng)網(wǎng)絡(luò)是指人工神經(jīng)網(wǎng)絡(luò),也就是說這種神經(jīng)網(wǎng)絡(luò)并不是動物本身所具有的真正的神經(jīng)網(wǎng)絡(luò),而是人類模仿動物神經(jīng)網(wǎng)絡(luò)后人工生成的。在神經(jīng)網(wǎng)絡(luò)圖像識別技術(shù)中,遺傳算法與bp網(wǎng)絡(luò)相融合的神經(jīng)網(wǎng)絡(luò)圖像識別模型是非常經(jīng)典的,在很多領(lǐng)域都有它的應(yīng)用。在圖像識別系統(tǒng)中利用神經(jīng)網(wǎng)絡(luò)系統(tǒng),一般會先提取圖像的特征,再利用圖像所具有的特征映射到神經(jīng)網(wǎng)絡(luò)進行圖像識別分類。以汽車拍照自動識別技術(shù)為例,當(dāng)汽車通過的時候,汽車自身具有的檢測設(shè)備會有所感應(yīng)。此時檢測設(shè)備就會啟用圖像采集裝置來獲取汽車正反面的圖像。獲取了圖像后必須將圖像上傳到計算機進行保存以便識別。最后車牌定位模塊就會提取車牌信息,對車牌上的字符進行識別并顯示最終的結(jié)果。在對車牌上的字符進行識別的過程中就用到了基于模板匹配算法和基于人工神經(jīng)網(wǎng)絡(luò)算法。
3.2非線性降維的圖像識別技術(shù)
計算機的圖像識別技術(shù)是一個異常高維的識別技術(shù)。不管圖像本身的分辨率如何,其產(chǎn)生的數(shù)據(jù)經(jīng)常是多維性的,這給計算機的識別帶來了非常大的困難。想讓計算機具有高效地識別能力,最直接有效的方法就是降維。降維分為線性降維和非線性降維。例如主成分分析(pca)和線性奇異分析(lda)等就是常見的線性降維方法,它們的特點是簡單、易于理解。但是通過線性降維處理的是整體的數(shù)據(jù)集合,所求的是整個數(shù)據(jù)集合的最優(yōu)低維投影。經(jīng)過驗證,這種線性的降維策略計算復(fù)雜度高而且占用相對較多的時間和空間,因此就產(chǎn)生了基于非線性降維的圖像識別技術(shù),它是一種極其有效的非線性特征提取方法。此技術(shù)可以發(fā)現(xiàn)圖像的非線性結(jié)構(gòu)而且可以在不破壞其本征結(jié)構(gòu)的基礎(chǔ)上對其進行降維,使計算機的圖像識別在盡量低的維度上進行,這樣就提高了識別速率。例如人臉圖像識別系統(tǒng)所需的維數(shù)通常很高,其復(fù)雜度之高對計算機來說無疑是巨大的“災(zāi)難”。由于在高維度空間中人臉圖像的不均勻分布,使得人類可以通過非線性降維技術(shù)來得到分布緊湊的人臉圖像,從而提高人臉識別技術(shù)的高效性。
3.3圖像識別技術(shù)的應(yīng)用及前景
計算機的圖像識別技術(shù)在公共安全、生物、工業(yè)、農(nóng)業(yè)、交通、醫(yī)療等很多領(lǐng)域都有應(yīng)用。例如交通方面的車牌識別系統(tǒng);公共安全方面的人臉識別技術(shù)、指紋識別技術(shù);農(nóng)業(yè)方面的種子識別技術(shù)、食品品質(zhì)檢測技術(shù);醫(yī)學(xué)方面的心電圖識別技術(shù)等。隨著計算機技術(shù)的不斷發(fā)展,圖像識別技術(shù)也在不斷地優(yōu)化,其算法也在不斷地改進。圖像是人類獲取和交換信息的主要來源,因此與圖像相關(guān)的圖像識別技術(shù)必定也是未來的研究重點。以后計算機的圖像識別技術(shù)很有可能在更多的領(lǐng)域嶄露頭角,它的應(yīng)用前景也是不可限量的,人類的生活也將更加離不開圖像識別技術(shù)。
4總結(jié)
圖像識別技術(shù)雖然是剛興起的技術(shù),但其應(yīng)用已是相當(dāng)廣泛。并且,圖像識別技術(shù)也在不斷地成長,隨著科技的不斷進步,人類對圖像識別技術(shù)的認識也會更加深刻。未來圖像識別技術(shù)將會更加強大,更加智能地出現(xiàn)在我們的生活中,為人類社會的更多領(lǐng)域帶來重大的應(yīng)用。在21世紀(jì)這個信息化的時代,我們無法想象離開了圖像識別技術(shù)以后我們的生活會變成什么樣。圖像識別技術(shù)是人類現(xiàn)在以及未來生活必不可少的一項技術(shù)。
人工智能與未來論文篇十四
摘要:隨著工業(yè)領(lǐng)域的迅猛發(fā)展,自動化、智能化被當(dāng)做是電氣控制領(lǐng)域的重點發(fā)展趨勢。為了讓電氣自動化控制中人工智能技術(shù)發(fā)揮更大的作用,本文概括了人工智能技術(shù),闡述了人工智能技術(shù)在電氣自動化領(lǐng)域的使用實例,以此期望對有關(guān)工作人員能有幫助。
關(guān)鍵詞:電氣控制;自動化控制;人工智能
近年來隨著國內(nèi)外人工智能研究的興起與發(fā)展,越來越多的傳統(tǒng)領(lǐng)域開始思考能否在自己的產(chǎn)品生產(chǎn)線上使用人工智能技術(shù),所以它的實際使用領(lǐng)域廣泛?,F(xiàn)代社會的發(fā)展離不開人工智能技術(shù)的使用,特別是在現(xiàn)代工業(yè)的領(lǐng)域,在方法上需要依靠最新的人工智能技術(shù)為支持,但要做到讓人工智能技術(shù)在電氣自動化控制中更好的發(fā)揮作用,我們先要知道人工智能技術(shù)到底是什么樣的技術(shù)[1]。
1人工智能技術(shù)的概述
國內(nèi)的創(chuàng)新熱潮近幾年正在蓬勃的發(fā)展,各種新技術(shù)競相展現(xiàn),人工智能技術(shù)也逐漸成熟了,而且它在當(dāng)今社會中的使用也更加寬泛。人工智能技術(shù)的建立,不僅要有計算機技術(shù)知識進行有效支持,還與其他學(xué)科知識息息相關(guān),人工智能技術(shù)通俗上講就是生產(chǎn)出可以替代人類來工作的智能化機器人,將來許多崗位都可以由機器來替代人類工作[2]。隨著科技的日新月異,科學(xué)家們已經(jīng)成功地生產(chǎn)出了類似于人腦一樣思考的人工大腦芯片,并將這種新技術(shù)命名為人工智能技術(shù)。在人們平常的生產(chǎn)活動中,已有非常多的范圍都使用了人工智能技術(shù),而且它們的現(xiàn)實使用效率非常高。
2人工智能技術(shù)在電氣自動化中的應(yīng)用廣闊前景
電氣自動化中應(yīng)用人工智能技術(shù),不僅在極大程度上讓工人更好的操控電氣自動化設(shè)備,還極大地減少了電氣自動化的使用成本,這說明發(fā)展人工智能技術(shù)的前景是非常有利的。
2.1電氣自動化控制中加入人工智能技術(shù)的重要性
人工智能技術(shù)同人類的工作方式相比有許多人類不能替代的優(yōu)勢,例如人工智能對于數(shù)字和程式非常敏感,可以長時間的集中于處理同一個問題,這些優(yōu)勢可以幫助人類解決一些繁復(fù)的工作,所以電氣自動化控制中應(yīng)用人工智能技術(shù)后,它一定可以為人類創(chuàng)造更大的價值[3]。
2.2人工智能技術(shù)在電氣自動化控制中的應(yīng)用優(yōu)勢
因為電氣設(shè)備的復(fù)雜性和連貫性的要求,所以對電氣設(shè)備的設(shè)計人員就提出了非常高的專業(yè)要求,除了具備非常扎實的專業(yè)知識以外,還要求他們的設(shè)計最好可以結(jié)合最新的科學(xué)技術(shù)。在電氣自動化控制中使用人工智能技術(shù)之后,會帶來很多便利性,具體表現(xiàn)為下面這4點:(1)數(shù)據(jù)的收集與運算都能利用人工智能技術(shù)來實現(xiàn),因為擁有了這一作用,以此一來就能對電氣設(shè)備的每樣數(shù)值開展收集,還可立即對數(shù)據(jù)進行運算,因此能讓電氣自動化的現(xiàn)實管控效果得以大范圍提高。(2)人工智能技術(shù)可實現(xiàn)連續(xù)的監(jiān)管并實現(xiàn)必要的報警。人工智能技術(shù)能同步監(jiān)控電氣系統(tǒng)中主要設(shè)備的模擬數(shù)據(jù)值。(3)人工智能管控的操縱監(jiān)控系統(tǒng)較高效。能夠通過鼠標(biāo)、鍵盤來對電氣設(shè)備實行自動化管控,因為使用管控流程就能夠?qū)崿F(xiàn)同步并網(wǎng)帶負荷操縱,以此以來不僅能夠大范圍減少工作人員的勞動時間,還能讓控制效率得以提升,這同目前工業(yè)發(fā)展的`現(xiàn)實需要非常符合[4]。(4)差錯記載功能也是人工智能技術(shù)擁有的獨特特點,人類可以更好的運用這個技術(shù)來監(jiān)測每一個運行環(huán)節(jié)中出現(xiàn)的點滴差池,以此來調(diào)試設(shè)備使其達到最佳的狀態(tài),這從根本上提高了電氣設(shè)備的運行效率和使用安全度,使其更好的為人類服務(wù)。
3人工智能技術(shù)在電氣自動化中的應(yīng)用分析
因為目前從根本上升級了人工智能技術(shù),加上它技術(shù)的逐漸完備,越來越多的電氣設(shè)備開始同人工智能技術(shù)掛鉤,為了更加直觀的介紹人工智能設(shè)備的特點與技術(shù)屬性,筆者主要對電氣自動化設(shè)備中人工智能技術(shù)的使用和電氣管控流程中人工智能技術(shù)的使用開展了辨析。
3.1人工智能技術(shù)在電氣自動化設(shè)備中的應(yīng)用
電氣自動化系統(tǒng)有極大的繁雜性,它主要牽扯到許多范圍與科目,這就對操控電氣自動化設(shè)備的員工提出了很高的要求,他們應(yīng)該擁有很高的職業(yè)素養(yǎng),而且還要有充足的知識儲備。因為電氣自動化體系相當(dāng)繁雜,所以在現(xiàn)實操控中的效率性要加強,這樣才能極大程度地降低因為不合理使用,導(dǎo)致出現(xiàn)非常規(guī)錯誤,有時更可能導(dǎo)致安全事故等。這些問題的解決都可憑借人工智能技術(shù)來達成,就人工智能技術(shù)自身來看,其系統(tǒng)中心主要是計算機系統(tǒng),經(jīng)由編輯每種操控系統(tǒng),能夠使計算機控制中的智能管控得以更好的施行[5]。
3.2人工智能技術(shù)在電氣控制過程中的應(yīng)用
就電氣自動化的管控流程來看,人工智能可以幫助人類更好的控制電氣設(shè)備。在電氣設(shè)備的控制系統(tǒng)中,引入人工智能的現(xiàn)金技術(shù)后,能讓實際工作操作效果在很大范圍上得以提升,還能使得整個操作過程實現(xiàn)無人化監(jiān)管,這樣一來達到了企業(yè)節(jié)約成本的目的,尤其是不用再去花費大筆的人工費用。除此之外就從整個控制過程來看,人工智能技術(shù)可以實現(xiàn)同多臺設(shè)備的同時控制,專家體系、模擬操控和神經(jīng)網(wǎng)絡(luò)操控是其首要應(yīng)用的人工智能系統(tǒng)[6]。
4總結(jié)
科技的發(fā)展讓人類的生活更加便利與美好,人工智能技術(shù)的發(fā)揮在那越來越推進了現(xiàn)代工業(yè)的更好發(fā)展。因為人工智能技術(shù)具備相當(dāng)多的優(yōu)點,它是這些年來發(fā)展起來的一門新興高科技技術(shù),它在實際應(yīng)用中有巨大的使用效率,不僅在電氣自動化控制中,加入人工智能技術(shù)后,極大程度上提高了電氣設(shè)備的控制度,讓它能更好的的服務(wù)人類生產(chǎn)活動;同時電氣設(shè)備上結(jié)合了人工智能技術(shù),讓電氣自動化設(shè)備的操控系統(tǒng)變得更加簡潔,提高了員工操控效率;降低了企業(yè)的人力物力成本,使得生產(chǎn)流程更加科學(xué)、連貫,所以大力發(fā)展人工智能技術(shù)與電氣自動化的結(jié)合是非常有必要的研究。
參考文獻:
[5]黃開平.高級項目中自動化系統(tǒng)的應(yīng)用[j].電氣時代,20xx(02).
人工智能與未來論文篇十五
趁著alphago掀起的熱潮,這周看完了《人工智能的未來》,一本談?wù)撊斯ぶ悄荜P(guān)于計算機技術(shù)原理、神經(jīng)學(xué)、哲學(xué)的書籍。
關(guān)于人工智能的定義,技術(shù)上和哲學(xué)上都頗具爭議。
圖靈測試提供了一種技術(shù)的、可衡量的手段;但在哲學(xué)上,人工智能永遠回避不了關(guān)于意識或自由意志的問題。
關(guān)于自由意志,叔本華提出:“你可以做你想做的,但在生活中任何給定的時刻,你只能想做一件確定的事情,除此之外,絕對沒有任何其它事情?!边@種決定論的思想,和我們認為我們可以選擇我所愛、做我所選大相徑庭。
而作者認為,當(dāng)機器說出它們的感受和感知經(jīng)驗,而我們相信它們所說的是真的時,它們就真正成了有意識的人。
作者通過思維模式識別理論、隱馬爾可夫?qū)蛹壞P汀⑦z傳算法等人工智能技術(shù),闡述了人工職能領(lǐng)域的進展,同時基于信息科技遵循指數(shù)增長的規(guī)律,提出了加速回報定律,樂觀預(yù)計智能機器人在未來幾十年內(nèi)會出現(xiàn)。
從最初的人工耳蝸、人工眼球到人工大腦的擴展,非生物系統(tǒng)的引入(特別是人工大腦技術(shù)),是否會產(chǎn)生另外的我,而我們大部分思想(甚至全部)存在云端,是否就可以得到“永生”。
數(shù)學(xué)家斯坦·烏拉姆說過:“技術(shù)的加速發(fā)展和對人類生活模式的改變的進展在朝著人類歷史上某種類似奇點的方向發(fā)展,在這個奇點之后,我們現(xiàn)在熟知的社會將不復(fù)存在”。
人工智能與未來論文篇十六
摘要:
隨著科學(xué)技術(shù)的不斷創(chuàng)新與完善,人工智能化發(fā)展得到了質(zhì)的飛躍。人工智能技術(shù)應(yīng)用作為電氣工程自動化過程的重中之重,是一個不可或缺的關(guān)鍵部分,直接關(guān)系到電氣工自動化的穩(wěn)定持續(xù)發(fā)展。人工智能領(lǐng)域涵蓋的內(nèi)容主要包括了圖像識別、機器學(xué)習(xí)、智能搜索、語言識別以及專家系統(tǒng)等。為了推動我國電氣自動化控制的創(chuàng)新發(fā)展,相關(guān)企業(yè)要加強對人工智能的研究開發(fā)工作,為社會創(chuàng)造出更多的價值效益。本文將進一步對人工智能在電氣工程自動化中的應(yīng)用展開分析與探討。
關(guān)鍵詞:
人工智能;電氣工程;自動化控制;應(yīng)用
當(dāng)前是一個科學(xué)技術(shù)時代,電氣工程發(fā)展要與時俱進,跟上時代前進的腳步。電氣工程行業(yè)要想有效實現(xiàn)電氣自動化控制和管理,就必須充分發(fā)揮出人工智能技術(shù)的作用。人工智能的研究范圍不僅涵蓋了圖像語言識別和自動化控制,還包括了專家系統(tǒng)和人工神經(jīng)網(wǎng)絡(luò)等內(nèi)容。因此,電力企業(yè)必須通過合理利用人工智能技術(shù),才能有效實現(xiàn)對各項機械設(shè)備的自動化控制,從而大大降低企業(yè)的人工成本,保障企業(yè)創(chuàng)造出更多的經(jīng)濟效益和社會效益。
一、人工智能簡述
二、電氣工程自動化過程應(yīng)用人工智能的主要優(yōu)勢
(一)利于參數(shù)的優(yōu)化調(diào)節(jié)。
相比較傳統(tǒng)的控制器,通過利用人工智能技術(shù)控制有利于各項參數(shù)的科學(xué)優(yōu)化調(diào)節(jié),同時還較為簡單易學(xué),具備了良好的適應(yīng)能力。合理調(diào)整人工智能的相關(guān)參數(shù),能夠最大限度提升智能函數(shù)的各項性能。此外,人工智能控制器無需專家的現(xiàn)場指導(dǎo)幫助,其能夠根據(jù)計算機事先設(shè)置好的合理數(shù)據(jù),正確運用反饋的信息與語言進行設(shè)定,此外設(shè)置好的參數(shù)能夠進一步完成修改和擴展作業(yè),具有快捷方便的特征。
(二)受相關(guān)因素影響較小。
電力企業(yè)在傳統(tǒng)電氣工程建設(shè)中所應(yīng)用的人工控制器會受到各種不確定因素的影響,導(dǎo)致在工作過程中出現(xiàn)各種問題,不利于企業(yè)安全穩(wěn)定的持續(xù)發(fā)展。而通過在電氣工程自動化中應(yīng)用人工智能技術(shù),能夠有效省去獲取精確動態(tài)模型的步驟,適應(yīng)能力較強,無需為其提供固定不變的工作環(huán)境和參數(shù)設(shè)置,總體來說受到外界的因素影響較小,能夠保障各項機械設(shè)備安全可靠的運行生產(chǎn)。
(三)自動化控制過程中產(chǎn)生誤差小。
由于在電氣工程自動化中有效融合了人工智能技術(shù),該項技術(shù)的運行不會過多受到外界因素的干擾,造成嚴(yán)重的運行故障問題,從而確保機器事先設(shè)置好的參數(shù)在實際操作過程中不會發(fā)生任何變動,從而有效避免了實際值與理論值出現(xiàn)很大偏差的問題,充分保障了電氣工程自動化的高效控制管理。
(四)具備良好的一致性。
(五)降低企業(yè)人力物力。
成本通過在電氣工程自動化控制中應(yīng)用人工智能技術(shù),能夠有效減少各項電力機器設(shè)備對變壓器與線路的需求,企業(yè)也無需再專門調(diào)度安排更多的工作人員對設(shè)備進行管理維護,從而最大限度降低了企業(yè)在人力和物力上的投資成本,有利于企業(yè)更好地發(fā)展。
三、人工智能在電氣工程自動化中的實踐應(yīng)用
(一)完善電氣自動化性能,提高產(chǎn)品質(zhì)量。
眾所周知,人工智能技術(shù)最為顯著的特征就是模擬人類大腦思維,設(shè)計人員通過將人工智能技術(shù)中的遺傳算法有效融入到各項電器設(shè)備中,不僅僅能夠完善優(yōu)化各項產(chǎn)品的具體性能,還能夠最大限度提升電子自動化性能,從而有效提高各項電氣設(shè)備的工作質(zhì)量和效率,充分保障了電氣工程自動化控制過程的科學(xué)準(zhǔn)確性。此外,人工智能技術(shù)在電氣工程自動化領(lǐng)域的應(yīng)用,能夠降低企業(yè)人力成本的支出,推動我國電氣工程高速穩(wěn)定地發(fā)展進步。電力企業(yè)基于人工智能技術(shù)的輔助下,187頁)能夠?qū)ad應(yīng)用到任何電器產(chǎn)品設(shè)計工作中,從而大大縮減了各種電力產(chǎn)品的開發(fā)設(shè)計周期,并且拓寬了cad技術(shù)的研究應(yīng)用程度,降低了設(shè)計人員的工作難度和任務(wù)量,在保障電器產(chǎn)品高質(zhì)量的前提下,創(chuàng)造出更大的經(jīng)濟效益。
(二)實現(xiàn)智能化控制,提高工作效率。
人工智能技術(shù)所使用的智能化控制器,通過將人工智能與電氣工程自動化控制有效結(jié)合在一起,能夠最大化發(fā)揮出智能化控制器的作用。例如,智能化控制器能夠科學(xué)根據(jù)下降和響應(yīng)的具體時間完成對調(diào)節(jié)控制程度的合理控制,基于這種情況下,人工智能能夠大大改善電氣自動化控制管理的相關(guān)性能[3],為電氣工程自動化建設(shè)工作打下扎實的基礎(chǔ)。與此同時,電力企業(yè)通過引進應(yīng)用先進的智能化控制器,能夠?qū)崿F(xiàn)電氣工程自動化控制相關(guān)數(shù)據(jù)的實時分析調(diào)節(jié),無需專門安排專家技術(shù)人員在現(xiàn)場進行指導(dǎo)和監(jiān)督,相關(guān)工作人員在控制室通過計算機就能夠?qū)崿F(xiàn)遠程控制操作,從而有效提高自動化控制管理的工作效率。
(三)改善故障診斷技術(shù),提高診斷水平。
電力企業(yè)在電力工程自動化控制過程中,會遇到各種運行故障問題。例如,常見的發(fā)電機斷電、變壓器過熱等事故,對于這些運行故障,傳統(tǒng)的診斷方法是通過收集相關(guān)氣體樣本,并對其進行科學(xué)分析判斷,最終得出發(fā)生該故障的具體結(jié)論,有針對性地采取解決措施。傳統(tǒng)故障診斷方法除了需要維護檢修人員花費較多的時間與精力,電力企業(yè)還必須安排管理人員對各項設(shè)備進行實時監(jiān)控,這無疑加大了企業(yè)的人力支出成本。而通過利用人工智能診斷技術(shù),在故障診斷過程中有效融入模糊理論、專家技術(shù)以及神經(jīng)網(wǎng)絡(luò),能夠大大提高電氣設(shè)備故障的診斷效率,在第一時間發(fā)現(xiàn)問題并解決問題,從而降低了企業(yè)在人力成本上的支出,保障企業(yè)各項電力設(shè)備安全可靠地持續(xù)運行,滿足社會對于高質(zhì)量電力的需求。
四、結(jié)語
綜上所述,為了推動我國電氣工程自動化的穩(wěn)定持續(xù)發(fā)展,政府相關(guān)部門要加強與社會企業(yè)的聯(lián)系與合作,共同大力推廣應(yīng)用人工智能技術(shù),不斷提高電氣工程自動化技術(shù)水平。通過在各項機器設(shè)備中加入智能化控制器,從而有效實現(xiàn)各個控制環(huán)節(jié)的自動化,方便企業(yè)內(nèi)部人員的管理和維護,充分保障產(chǎn)品生產(chǎn)的高質(zhì)量,滿足社會用戶的各項需求,為國民經(jīng)濟發(fā)展貢獻最大的力量。
參考文獻:
人工智能與未來論文篇十七
如何創(chuàng)造意識、思維,也許是人類認識自然的最后難題,是意識對自己的回歸。作為著名發(fā)明家、作家、未來主義者,庫茲韋爾關(guān)于思維的研究和觀點獨特而驚人。他認為不久的未來,計算機可以實現(xiàn)人類大腦新皮質(zhì)功能并超越人類,人類將與機器結(jié)合成為全新的物種。
庫茲韋爾只是把“奇點”當(dāng)作一個絕佳的“隱喻”。這個隱喻就是,當(dāng)智能機器的能力跨越這一臨界點之后,人類的知識單元、連接數(shù)目、思考能力,將旋即步入令人暈眩的加速噴發(fā)狀態(tài)――一切傳統(tǒng)的和習(xí)以為常的認識、理念、常識,將統(tǒng)統(tǒng)不復(fù)存在,所有的智能裝置、新的人機復(fù)合體將進入“蘇醒”狀態(tài)。
在庫茲韋爾看來,人工智能的關(guān)鍵,并非通過物理手段制造出媲美、超越人腦的“非生物性智能機器”。這條路行不通。他給出的方法簡單有效:將人腦與電腦“嫁接”起來。
在本書中,庫茲韋爾用4章的篇幅(第3章:大腦新皮質(zhì)模型;第4章:人類的大腦新皮質(zhì);第5章:舊腦;第6章:卓越的能力),精心構(gòu)筑了支撐他偉大預(yù)言的第一塊基石。這塊基石的目的,就是試圖將大腦新皮質(zhì)作為“新腦”的重要組成部分,與舊腦區(qū)別開來。
智能可以超越自然的局限,并依照自身的意志改變世界,這恐怕是世間最了不起的奇跡了。人類智能可以幫助我們克服生物遺傳的局限,并在這一進程中改變自我。唯有人類能夠做到這一點。
人類智能之所以能夠產(chǎn)生與發(fā)展,源于這是一個可以對信息進行編碼的世界。物理學(xué)的標(biāo)準(zhǔn)模型[3]會有數(shù)十個常量需要被精準(zhǔn)限定,否則無法產(chǎn)生原子,也就不會有所謂的恒星、行星、大腦,更不會有關(guān)于大腦的書籍。讓人不可思議的是,物理學(xué)定律及常數(shù)能夠精確到如此程度,以至于允許信息自身得以演化發(fā)展。
我們的第一個發(fā)明是口語,它使我們能夠用不同的話語來表達想法。隨后發(fā)明的書面語言,使我們能夠用不同形式來表達我們的想法。書面語言庫極大地擴展了我們無外力援助的大腦的能力,使我們能夠維持并擴充我們的認知基礎(chǔ),這是一種遞歸結(jié)構(gòu)化的思想。
我們還開發(fā)了其他工具,通過利用這些工具,我們現(xiàn)在能用精確的信息術(shù)語來理解我們所屬的生物群落。我們正以極快的速度利用逆向工程法分析生物群落的構(gòu)成信息,包括大腦結(jié)構(gòu)的信息。我們現(xiàn)在擁有以人類基因組形式存在的生命目標(biāo)代碼,這項成就本身也是指數(shù)級發(fā)展的一個突出實例。
現(xiàn)在有一項涉及成千上萬個科學(xué)家和工程師的宏偉工程正在進行中,他們正致力于理解智能程序的最好范例――人類大腦。這項工程的目標(biāo)是精確理解人類大腦的工作機制,然后通過這些已知的方法來更好地了解我們自身,并在必要的時候修復(fù)大腦,而與本書最密切相關(guān)的,就是創(chuàng)造出更加智能的機器。以前專屬于人類智能的許多任務(wù)以及活動,現(xiàn)在能完全由電腦控制,更加精確,范圍也擴大了。
理解、建模和模擬人類大腦的關(guān)鍵是對大腦新皮質(zhì)實施逆向工程,而大腦新皮質(zhì)是我們進行循環(huán)分層思維的地方。
大腦也是這樣。它有一個類似的巨大的冗余組織,尤其是在新皮質(zhì)結(jié)構(gòu)中。化繁為簡,揭開人腦最基本的力量,包括其基本智力系統(tǒng)如何進行辨識、記憶、預(yù)測。這些行為在新皮質(zhì)里不斷重復(fù),產(chǎn)生了各種不同的想法。
人工智能與未來論文篇十八
機器人技術(shù)從本質(zhì)上來說是一門多學(xué)科交叉的科學(xué)。例如自主導(dǎo)航的研究融合了物理學(xué)、電子學(xué)、力學(xué)和計算機科學(xué)的知識。對于交通行業(yè)來說,發(fā)展無人駕駛汽車是為了提高道路安全,改善交通管理,以及提高能源使用效率。然而隨著技術(shù)的進步,未來自主導(dǎo)航的研究在其他領(lǐng)域也會起到重要作用。
就硬件來說,自主導(dǎo)航涉及高運算能力,測距法,傳感技術(shù)(譬如:全球定位系統(tǒng),激光測距儀,超聲波,紅外傳感技術(shù))和3d地圖。從軟件的角度看,自主導(dǎo)航涉及圖像識別、色彩、特征、形狀、障礙物信息收集以及為判斷制定提供持續(xù)的統(tǒng)計分析。而這種技術(shù)未來在醫(yī)療、制造、能源、農(nóng)業(yè)、環(huán)境或空間探索等領(lǐng)域都將起到主要作用。
在醫(yī)療領(lǐng)域,人工智能和圖像處理會成為醫(yī)療診斷和外科手術(shù)的關(guān)鍵工具。計算算法能幫助識別受損的組織器官,并預(yù)測在一個生命周期中可能會出現(xiàn)什么情況。機器在處理大量的信息時表現(xiàn)會更好,在健康醫(yī)療領(lǐng)域提供多一種診斷方法可能會成為“實際上的標(biāo)準(zhǔn)”。隨著機器人的敏捷度和準(zhǔn)確性的'提高,及其在高難度手術(shù)中可以輔助外科醫(yī)生,未來手術(shù)治療的效果將變得更好。
在制造業(yè),圖像處理技術(shù)將會重新構(gòu)造現(xiàn)有的生產(chǎn)方案。隨著計算機視覺的敏捷度變得更高,有望誕生新的生產(chǎn)模式和組裝線/拆卸線。這些新的模式很可能補足工廠的勞動力,對于工廠的工作內(nèi)容,機器人更適合從事生產(chǎn)類的工作,而人類更適合做質(zhì)量檢驗、管理、產(chǎn)品設(shè)計和創(chuàng)新。
在能源領(lǐng)域,計算機技術(shù)也能發(fā)揮很多作用。隨著可再生能源成為現(xiàn)實,我們同樣需要在全球范圍內(nèi)為發(fā)電/能源轉(zhuǎn)換和配電網(wǎng)建設(shè)基礎(chǔ)設(shè)施。這里應(yīng)用的概念是分散化(從更多不同的來源收集更多不同種類的能源)。我們將應(yīng)用人工智能,模式識別和決策算法控制能量流,并解決發(fā)電商和用戶之間信息不對等的問題。這種高效的能源管理方式(智能電網(wǎng))有可能擴大能源的來源,最終降低發(fā)電/能源轉(zhuǎn)換/用電的成本。
農(nóng)業(yè)是另一個受人工智能影響很大的領(lǐng)域。隨著世界人口的不斷增加,我們需要尋找新的食物生產(chǎn)方式。舉個例子,自動駕駛車輛的技術(shù)可以轉(zhuǎn)化為能應(yīng)用在農(nóng)業(yè)領(lǐng)域的自動行走車。人工智能和圖像處理技術(shù)能幫助實現(xiàn)拖拉機的自動控制,令其不間歇地在農(nóng)場根據(jù)農(nóng)作物生產(chǎn)情況執(zhí)行灌溉、施肥、投放農(nóng)藥等任務(wù)。播種和灌溉將會成為自動農(nóng)用機器的日常工作,同理,無人飛行器(uavs)將在未來應(yīng)用于農(nóng)業(yè)檢查、處理和制圖。這些技術(shù)進步將促使農(nóng)業(yè)的成本下降,從而降低糧食價格。
在航天機器人方面,太空探索的自動化程度將提高,這將使軌道機器人得以協(xié)助宇航員完成更多任務(wù),譬如發(fā)射衛(wèi)星,開啟/關(guān)閉艙門或設(shè)備清洗等。
同樣,機器人也可能成為廢料收集和回收利用的重要工具。應(yīng)用機器人和人工智能技術(shù)將使公園、甚至是海洋或其他區(qū)域的清潔成為現(xiàn)實,這樣的功能會對環(huán)境產(chǎn)生積極影響。
看到這里,大家應(yīng)該知道,當(dāng)我們進行自主導(dǎo)航的研究時,受益的不僅是自動駕駛汽車,實際上,也在推動機器人和人工智能技術(shù)延伸到人類生活的其他方面。
人工智能與未來論文篇十九
以前我們談科技進步,談網(wǎng)絡(luò)應(yīng)用,總說是一把雙刃劍,有利有弊。現(xiàn)在,面對日益發(fā)達的人工智能,我想說:現(xiàn)在,擺在我們面前的任務(wù)是把它變成一把單刃的劍。
把人工智能變成一把雙刃劍,需要我們以正確的態(tài)度去面對。就像一局險勝阿爾法狗的李世石一樣,他說:人機大戰(zhàn)并沒有讓我感受到失敗的痛苦,反而讓我更好地理解了象棋,這讓我很開心。連續(xù)輸三局的天才棋手柯潔說:阿爾法狗讓我更好地理解圍棋的奧秘。面對人工智能的快速發(fā)展,我們應(yīng)該有更積極的態(tài)度和更清晰的認識。不能一味的夸。人工智能有多優(yōu)秀,多無敵,不能一味貶低人類來看人類。我們需要知道的是,阿爾法狗只是一臺機器,是人類創(chuàng)造的玩具。他沒有頭腦,沒有情感,甚至沒有——的智商。只是我們在研發(fā)過程中輸入的一堆冷冰冰的代碼,不需要自大,也不需要妄自菲薄。我們和人工智能是平等的,有時候它們可以成為我們的工具。
要把人工智能變成一把單刃劍,我們需要了解它。俗話說知己知彼百戰(zhàn)不殆。網(wǎng)上有人說,如果人工智能獲得了人類的意識,那么他們就會反過來奴役人類。未來將是人工智能的世界,讓人恐慌。首先,人類還沒有能夠讓一臺機器擁有意識,很多人還沒有意識到意識的起源。做出這種無用的猜測,沒有實際意義。現(xiàn)在我們能做的就是找出它的運行規(guī)律,了解它的優(yōu)缺點。掌握使用人工智能的方法。帶上她神秘的面紗,而不是看著他的面紗漫天要價。
要把人工智能變成一把單刃劍,最重要的是揚長避短。是的,任何事情都有兩面性。就像之前關(guān)于學(xué)生是否應(yīng)該使用手機的爭論一樣,在自律性差的人手里,手機是用不好的,而在頭腦清醒、自律性強的人手里,才能充分發(fā)揮自己的優(yōu)勢。而且不會讓劣勢影響自己,人工智能也是一樣?,F(xiàn)在要注意的是提高自己應(yīng)用人工智能的能力。讓這些過于智能的機器在我們手里得到合理的利用,讓它們的缺點得到融化,優(yōu)勢得到彰顯。只有這樣,人工智能才能得到它的天賦,并充分利用它們。
問:如何讓人工智能成為一把雙刃劍?回答:以正確的態(tài)度面對他,以積極的方式認識他,然后揚長避短,是運用人工智能的好方法。
人工智能與未來論文篇二十
因為我本人碩士畢業(yè)論文用到的就是bp神經(jīng)網(wǎng)絡(luò),所以我也是對人工智能的底層邏輯大體上了解一些皮毛。我個人覺得人工智能就是機器或者系統(tǒng)可以像人一樣進行學(xué)習(xí)經(jīng)驗、思考判斷,通過輸入層,中間層,輸出層來最終做出決策。而其中中間層是一個設(shè)定好規(guī)則的黑箱,里面具體運算方式其實很復(fù)雜,就像人類大腦,思考了哪些、信號怎么傳遞的,其實一般人也是不知道的,但就是能做出決策來。
這本書介紹了人工智能的歷史,基本原理,需要關(guān)注的地方,對人類社會的挑戰(zhàn),以及各國做出的策略。
但是我認為本書最大的作用是讓我對于人工智能開拓了視野,原來只是去考慮機器怎么思考,是有形的機器還是無形的系統(tǒng)。實際上人工智能的安全問題(戰(zhàn)爭機器人的出現(xiàn)、阿西莫夫機器人三定律),倫理問題(是否要給機器人以人的地位),道德問題(由于設(shè)計人員或多或少的原因?qū)е聶C器識別黑人為黑猩猩這種道德問題),法律問題(無人騎車撞人事件是處罰研發(fā)人還是擁有者還是機器本身),對人類工作的挑戰(zhàn),可能會導(dǎo)致大多數(shù)人失業(yè)等問題。
我覺得對于人工智能的時代,目前來看還是炒概念,不可否認隨著阿爾法狗的出現(xiàn)代表著新時代的人工智能算法層級的一大進步,但是人工智能如果想進入到目前各行各業(yè)還是要走很長時間的。但是很多專業(yè)領(lǐng)域可以操作使用,尤其在僅僅靠系統(tǒng)判斷的領(lǐng)域,比如預(yù)測,投資等。因為真正需要作業(yè)的工作,不僅僅要系統(tǒng)智能還要硬件上可以配套。但是人工智能的時代可期,十年后應(yīng)該可以滲透到人的身邊。還有上面談的法律倫理道德等問題。這些問題的拋出者一般是政府方面,我認為如果對于新興事物政府要是全想到了社會的前面就不會有什么創(chuàng)新了。等發(fā)展起來再說,就是我的想法,當(dāng)然政府需要制定個像機器人三定律的類似憲法底線的東西就行了。就像說無法判斷無人車撞人是誰的錯,有人駕駛的車能判斷出來誰的責(zé)任,但是該撞還是撞了,汽車出現(xiàn)了100多年了,規(guī)則還是在修改和變動的。還有機器取代人工作的問題,很多人找不到工作的事情,這是肯定的,就像以前一艘不到1萬噸的船上要有幾十上百人,現(xiàn)在20萬噸的船都不需要超過20人。那些船員干啥去了?時代會進步的,有些崗位自然會被取代,但是人作為可以適應(yīng)不同環(huán)境的智慧生物,肯定可以適應(yīng)新時代的。
總之科技的進步是無人可以阻擋的,為了不被時代的車輪壓死就只能推著時代走。
人工智能與未來論文篇二十一
盡管它是一本20xx年老教科書,從目錄上看,其歸納總結(jié)有特色,例如,ai歷史性里程碑事件及概念總結(jié)。真想了解一個行業(yè),不是只當(dāng)磚家,還需要挖根刨底,飲水思源,觀全局,足以為謀。
對于ai非專業(yè)讀者,顯然,它值得一試,就當(dāng)看小說,不喜歡情節(jié)就練三級跳,反正不是靠其謀生。手中有書卡,走馬觀花,騎馬看碼農(nóng)干啥活,試一下ai的水有多深,能否隨便書海撈一把?呵呵,拭目以待。
這本書的最大優(yōu)點是知識內(nèi)容高度集中,都是干貨。讀一章勝讀許多書,特別是它總結(jié)ai歷史,數(shù)理邏輯學(xué)應(yīng)用等部分,絕不拖泥帶水。例如,介紹很多實際問題都可以抽象轉(zhuǎn)化成最優(yōu)化問題,然后從數(shù)學(xué)的角度求解其最優(yōu)解。即對于給出的實際問題,從眾多的選擇中選出符合條件的最優(yōu)方案。另外,像還有高級知識表示和知識推理技術(shù)部分,包括模糊邏輯、模態(tài)邏輯、非單調(diào)邏輯、時間與空間推理、定性推理、描述邏輯等部分文字介紹都像非常專業(yè),是書的重點核心內(nèi)容之一。另外,就是有關(guān)于agent有關(guān)介紹。例如,“計算機和人工智能領(lǐng)域中,agent可以看做是一個實體,它通過傳感器感知環(huán)境,通過執(zhí)行器作用于環(huán)境。對于人類agent,眼睛、耳朵等器官如同傳感器,手、腳和嘴等如同執(zhí)行器”......它介紹了“規(guī)劃技術(shù)基本概念”......
當(dāng)然,它介紹了自然語言,機器學(xué)習(xí)理解。nl一直是人工智能界所關(guān)注的核心課題之一。意外收獲是了解到喬姆斯基體系在nl及機器翻譯中的應(yīng)用。怪不得他名氣如此之大,mit書店與他有關(guān)系書有幾排。
當(dāng)然書中會是有些難明白的地方,例如,它介紹“人工生命致力于通過試圖在生物學(xué)現(xiàn)象中抽取基本的動力學(xué)原理來理解生命,并把這些原理用到其他的物理媒體上,如計算機,使它們成為新的實驗操作和測試對象。蟻群優(yōu)化算法模擬螞蟻的行為,向螞蟻的協(xié)作方式學(xué)習(xí)。粒群優(yōu)化算法基于鳥群捕食行為的研究。免疫計算是模仿生物免疫學(xué)和基因進化機理,通過人工方式構(gòu)造優(yōu)化搜索算法。”
問題是其中各種算法能夠解決什么樣問題?為什么要用此法或者用這些算法的局限性是什么?這些好像是黑箱作業(yè),如此等等…。因為,吃瓜讀者不僅僅想知其然,而且想知其所以然。
【本文地址:http://www.mlvmservice.com/zuowen/5377099.html】