初中數(shù)學(xué)勾股定理教案(優(yōu)質(zhì)8篇)

格式:DOC 上傳日期:2023-10-29 06:29:02
初中數(shù)學(xué)勾股定理教案(優(yōu)質(zhì)8篇)
時(shí)間:2023-10-29 06:29:02     小編:飛雪

作為一名教職工,就不得不需要編寫教案,編寫教案有利于我們科學(xué)、合理地支配課堂時(shí)間。既然教案這么重要,那到底該怎么寫一篇優(yōu)質(zhì)的教案呢?這里我給大家分享一些最新的教案范文,方便大家學(xué)習(xí)。

初中數(shù)學(xué)勾股定理教案篇一

教學(xué)方法葉圣陶說過“教師之為教,不在全盤授予,而在相機(jī)誘導(dǎo)?!币虼私處熇脦缀沃庇^提出問題,引導(dǎo)學(xué)生由淺入深的探索,設(shè)計(jì)實(shí)驗(yàn)讓學(xué)生進(jìn)行驗(yàn)證,感悟其中所蘊(yùn)涵的思想方法。

學(xué)法指導(dǎo)為把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,教師鼓勵(lì)學(xué)生采用動(dòng)手實(shí)踐,自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生親自感知體驗(yàn)知識(shí)的形成過程。

初中數(shù)學(xué)勾股定理教案篇二

勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時(shí)在實(shí)際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際操作,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應(yīng)用。

本節(jié)教科書從畢達(dá)哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學(xué)生通過觀察計(jì)算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時(shí)教科書以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個(gè)探究欄目,研究了勾股定理在解決實(shí)際問題和解決數(shù)學(xué)問題中的應(yīng)用,使學(xué)生對(duì)勾股定理的作用有一定的認(rèn)識(shí)。

一、知識(shí)與技能

1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。

2、應(yīng)用勾股定理解決簡單的實(shí)際問題

3學(xué)會(huì)簡單的合情推理與數(shù)學(xué)說理

二、過程與方法

引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過動(dòng)手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進(jìn)一步發(fā)展合作交流能力和數(shù)學(xué)表達(dá)能力,并感受勾股定理的應(yīng)用知識(shí)。

三、情感與態(tài)度目標(biāo)

通過對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動(dòng)中,學(xué)生親自動(dòng)手對(duì)勾股定理進(jìn)行探索與驗(yàn)證,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,以及自主學(xué)習(xí)的能力。

四、重點(diǎn)與難點(diǎn)

1、探索和證明勾股定理

2、熟練運(yùn)用勾股定理

一、創(chuàng)設(shè)情景,揭示課題

1、教師展示圖片并介紹第一情景

以中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請(qǐng)教數(shù)學(xué)知識(shí)時(shí)的對(duì)話,為勾股定理的出現(xiàn)埋下伏筆。

周公問:“竊聞乎大夫善數(shù)也,請(qǐng)問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請(qǐng)問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也?!?/p>

2、教師展示圖片并介紹第二情景

畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。

二、師生協(xié)作,探究問題

1、現(xiàn)在請(qǐng)你也動(dòng)手?jǐn)?shù)一下格子,你能有什么發(fā)現(xiàn)嗎?

2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點(diǎn)呢?

3、你能得到什么結(jié)論嗎?

三、得出命題

勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋:由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。

四、勾股定理的證明

第一種方法:邊長為 的正方形可以看作是由4個(gè)直角邊分別為 、,斜邊為 的直角三角形圍在外面形成的。因?yàn)檫呴L為 的正方形面積加上4個(gè)直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡得 。

第二種方法:邊長為 的正方形可以看作是由4個(gè)直角邊分別為 、,斜邊為 的

角三角形拼接形成的(虛線表示),不過中間缺出一個(gè)邊長為 的正方形“小洞”。

因?yàn)檫呴L為 的正方形面積等于4個(gè)直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡得 。

這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學(xué)家趙爽高超的證題思想和對(duì)數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。

五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。

勾股定理的靈活運(yùn)用勾股定理在實(shí)際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運(yùn)用勾股定理解決一些問題,你可以嗎?試一試。

六、歸納總結(jié)

2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個(gè)直角三角形表示正方形面積,再次驗(yàn)證自己的發(fā)現(xiàn)。

七、討論交流

讓學(xué)生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個(gè)梳理知識(shí)的機(jī)會(huì),通過提示性的引導(dǎo),讓學(xué)生對(duì)勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。

我們班的同學(xué)很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請(qǐng)同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。

初中數(shù)學(xué)勾股定理教案篇三

了解勾股定理的一些證明方法,會(huì)簡單應(yīng)用勾股定理解決問題

在充分觀察、歸納、猜想的基礎(chǔ)上,探究勾股定理,在探究的過程中,發(fā)展合情推理,體會(huì)數(shù)形結(jié)合、從特殊到一般等數(shù)學(xué)思想。

通過對(duì)我國古代研究勾股定理的成就介紹,培養(yǎng)學(xué)生的民族自豪感。

1、創(chuàng)設(shè)情境

師生活動(dòng):教師引導(dǎo)學(xué)生尋找圖形中的直角三角形和正方形等,并引導(dǎo)學(xué)生發(fā)現(xiàn)直角三角形的全等關(guān)系,指出通過今天的學(xué)習(xí),就能理解會(huì)徽?qǐng)D案的含義。

設(shè)計(jì)意圖:本節(jié)課是本章的起始課,重視引言教學(xué),從國際數(shù)學(xué)家大會(huì)的會(huì)徽說起,設(shè)置懸念,引入課題。

2、探究勾股定理

觀看洋蔥數(shù)學(xué)中關(guān)于勾股定理引入的視頻,讓我們一起走進(jìn)神奇的數(shù)學(xué)世界

追問:由這三個(gè)正方形的邊長構(gòu)成的等腰直角三角形三條邊長之間又有怎么樣的關(guān)系?

師生活動(dòng):教師引導(dǎo)學(xué)生發(fā)現(xiàn)正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。

設(shè)計(jì)意圖:從最特殊的等腰直角三角形入手,便于學(xué)生觀察得到結(jié)論

問題3:數(shù)學(xué)研究遵循從特殊到一般的數(shù)學(xué)思想,既然我們得到了等腰直角三角形三邊的這種特殊的數(shù)量關(guān)系,那我們不妨大膽猜測(cè)在一般的直角三角形(在下圖的方格紙中,每個(gè)方格的面積是1)中,這種特殊的數(shù)量關(guān)系也同樣成立。

師生活動(dòng):學(xué)生獨(dú)立思考后小組討論,難點(diǎn)是如何證明求以斜邊為邊長的正方形的面積,可由師生共同總結(jié)得出可以通過割、補(bǔ)兩種方法,求出其面積。

初中數(shù)學(xué)勾股定理教案篇四

教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個(gè)直角的"形"的特點(diǎn),轉(zhuǎn)化為三邊之間的"數(shù)"的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計(jì)算問題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點(diǎn)之一。本節(jié)課的重點(diǎn)是發(fā)現(xiàn)勾股定理,難點(diǎn)是說明勾股定理的正確性。

學(xué)生分析:

1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細(xì)研究過三角尺的同學(xué)并不多,通過這樣的情景設(shè)計(jì),能非常簡單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。

2、以與勾股定理有關(guān)的人文歷史知識(shí)為背景展開對(duì)直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。

設(shè)計(jì)理念:本教案以學(xué)生手中舞動(dòng)的三角尺為知識(shí)背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學(xué)生對(duì)勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗(yàn)勾股定理的探索和運(yùn)用過程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過向?qū)W生介紹我國古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。

教學(xué)目標(biāo):

1、經(jīng)歷用面積割、補(bǔ)法探索勾股定理的過程,培養(yǎng)學(xué)生主動(dòng)探究意識(shí),發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。

2、經(jīng)歷用多種割、補(bǔ)圖形的方法驗(yàn)證勾股定理的過程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)世界和有條理地思考能力以及語言表達(dá)能力等,感受勾股定理的文化價(jià)值。

3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛國熱情。

4、欣賞設(shè)計(jì)圖形美。

教學(xué)準(zhǔn)備階段:

學(xué)生準(zhǔn)備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。

老師準(zhǔn)備:畢達(dá)哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。

(一)引入

同學(xué)們,當(dāng)你每天手握三角尺繪制自己的宏偉藍(lán)圖時(shí),你是否想過:他們的邊有什么關(guān)系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關(guān)系)

(二)實(shí)驗(yàn)探究

設(shè)網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b ,斜邊為c ,觀察并計(jì)算每個(gè)正方形的面積,以四人小組為單位填寫下表:

(討論難點(diǎn):以斜邊為邊的正方形的面積找法)

交流后得出一般結(jié)論: (用關(guān)于a、b、c的式子表示)

(三)探索所得結(jié)論的正確性

當(dāng)直角三角形的直角邊分別為a 、b,斜邊為c時(shí), 是否一定成立?

1、指導(dǎo)學(xué)生運(yùn)用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計(jì)合理分割(或補(bǔ)全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進(jìn)行)

在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補(bǔ)圖,展示出來交流講解,并引導(dǎo)學(xué)生進(jìn)行說理:

如圖2(用補(bǔ)的方法說明)

師介紹:(出示圖片)畢達(dá)哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進(jìn)朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對(duì)角線為邊向形外作正方形的面積。于是他回到家里立刻對(duì)他的這一發(fā)現(xiàn)進(jìn)行了探究證明……,終獲成功。后來西方人們?yōu)榱思o(jì)念他的這一發(fā)現(xiàn),將這一定理命名為"畢達(dá)哥拉斯定理"。1952年,希臘政府為了紀(jì)念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計(jì)的這種圖形為主圖發(fā)行了一枚紀(jì)念郵票。(見課本52頁彩圖2—1,欣賞圖片)

如圖3(用割的方法去探索)

師介紹: (出示圖片) 中國古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運(yùn)用這個(gè)結(jié)論。早在公元前2000年左右,大禹治水時(shí)期,就曾經(jīng)用過此方法測(cè)量土地的`等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用"勾三、股四、弦五"測(cè)量土地,他們對(duì)這一結(jié)論的運(yùn)用至少比古希臘人早500多年。公元200年左右,三國時(shí)期吳國數(shù)學(xué)家趙爽曾構(gòu)造此圖驗(yàn)證了這一結(jié)論的正確性。他的這個(gè)證明,可謂別具匠心,極富創(chuàng)新意識(shí),他用幾何圖形的割、來證明代數(shù)式之間的相等關(guān)系,既嚴(yán)密,又直觀,為中國古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨(dú)特風(fēng)格樹立了一個(gè)典范。他是我國有記載以來第一個(gè)證明這一結(jié)論的數(shù)學(xué)家。我國數(shù)學(xué)家們?yōu)榱思o(jì)念我國在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為"勾股定理"。(點(diǎn)題)

20xx年,世界數(shù)學(xué)家大會(huì)在中國北京召開,當(dāng)時(shí)選用這個(gè)圖案作為會(huì)場主圖,它標(biāo)志著我國古代數(shù)學(xué)的輝煌成就。(見課本50頁彩圖,欣賞圖片)

如圖4(構(gòu)造新圖形的方法去探索)

本節(jié)課學(xué)習(xí)的勾股定理用語言敘說為:

1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問題并交流。

2、探索勾股定理的運(yùn)用。

初中數(shù)學(xué)勾股定理教案篇五

【知識(shí)與技能】

理解并掌握勾股定理的逆定理,會(huì)應(yīng)用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。

【過程與方法】

經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。

【情感、態(tài)度與價(jià)值觀】

體會(huì)事物之間的聯(lián)系,感受幾何的魅力。

【重點(diǎn)】勾股定理的逆定理及其證明。

【難點(diǎn)】勾股定理的逆定理的證明。

(一)導(dǎo)入新課

復(fù)習(xí)勾股定理,分清其題設(shè)和結(jié)論。

提問學(xué)生畫直角三角形的方法(可用尺類工具),然后要求不能用繩子以外的工具。

出示古埃及人利用等長的3、4、5個(gè)繩結(jié)間距畫直角三角形的方法,以其中蘊(yùn)含何道理為切入點(diǎn)引出課題。

(二)講解新知

請(qǐng)學(xué)生思考3,4,5之間的關(guān)系,結(jié)合勾股定理的學(xué)習(xí)經(jīng)驗(yàn)明確

出示數(shù)據(jù)2.5cm,6cm,6.5cm,請(qǐng)學(xué)生計(jì)算驗(yàn)證數(shù)據(jù)滿足上述平方和關(guān)系,并畫出相應(yīng)邊長的三角形檢驗(yàn)是否為直角三角形。

學(xué)生活動(dòng):同桌兩人一組,將三邊換成其他滿足上述平方和關(guān)系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應(yīng)邊長的三角形檢驗(yàn)是否為直角三角形。

初中數(shù)學(xué)勾股定理教案篇六

1、知識(shí)與技能目標(biāo):探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,通過探究能夠發(fā)現(xiàn)直角三角形中兩個(gè)直角邊的平方和等于斜邊的平方和。

2、過程與方法目標(biāo):經(jīng)歷用測(cè)量和數(shù)格子的辦法探索勾股定理的過程,進(jìn)一步發(fā)展學(xué)生的合情推理能力。

3、情感態(tài)度與價(jià)值觀目標(biāo):通過本節(jié)課的學(xué)習(xí),培養(yǎng)主動(dòng)探究的習(xí)慣,并進(jìn)一步體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系。

初中數(shù)學(xué)勾股定理教案篇七

教學(xué)目標(biāo):

1、知識(shí)與技能目標(biāo):理解和掌握勾股定理的內(nèi)容,能夠靈活運(yùn)用勾股定理進(jìn)行計(jì)算,并解決一些簡單的實(shí)際問題。

2、過程與方法目標(biāo):通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。

3、情感、態(tài)度與價(jià)值觀目標(biāo):了解中國古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國熱情;學(xué)生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時(shí)體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。

教學(xué)重點(diǎn):

引導(dǎo)學(xué)生經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能運(yùn)用勾股定理解決一些簡單的實(shí)際問題。

教學(xué)難點(diǎn):

用面積法方法證明勾股定理

課前準(zhǔn)備:

多媒體ppt,相關(guān)圖片

教學(xué)過程:

(一)情境導(dǎo)入

1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹,國際數(shù)學(xué)大會(huì)會(huì)標(biāo)等。通過圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價(jià)值。

已知一直角三角形的兩邊,如何求第三邊?

學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會(huì)有辦法解決了

(二)學(xué)習(xí)新課

初中數(shù)學(xué)勾股定理教案篇八

1、知識(shí)與技能目標(biāo)

學(xué)會(huì)觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念。

2、過程與方法

(1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力。

(2)在將實(shí)際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想。

3、情感態(tài)度與價(jià)值觀

(1)通過有趣的問題提高學(xué)習(xí)數(shù)學(xué)的興趣。

(2)在解決實(shí)際問題的過程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性。

教學(xué)重點(diǎn):

探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實(shí)際問題。

教學(xué)難點(diǎn):

利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問題。

教學(xué)準(zhǔn)備:

多媒體

教學(xué)過程:

第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學(xué)生觀察、猜想)

情景:

第二環(huán)節(jié):合作探究(15分鐘,學(xué)生分組合作探究)

學(xué)生分為4人活動(dòng)小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計(jì)算方法,通過具體計(jì)算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點(diǎn)連線最短問題,引導(dǎo)學(xué)生體會(huì)利用數(shù)學(xué)解決實(shí)際問題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計(jì)算。

第三環(huán)節(jié):做一做(7分鐘,學(xué)生合作探究)

教材23頁

李叔叔想要檢測(cè)雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺。

(1)你能替他想辦法完成任務(wù)嗎?

第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生獨(dú)立完成)

2.如圖,臺(tái)階a處的螞蟻要爬到b處搬運(yùn)食物,它怎么走最近?并求出最近距離。

第五環(huán)節(jié)課堂小結(jié)(3分鐘,師生問答)

內(nèi)容:如何利用勾股定理及逆定理解決最短路程問題?

第六環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)

作業(yè):1.課本習(xí)題1.5第1,2,3題.

要求:a組(學(xué)優(yōu)生):1、2、3

b組(中等生):1、2

c組(后三分之一生):1

【本文地址:http://www.mlvmservice.com/zuowen/4663012.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔