專業(yè)中職數(shù)學(xué)一元二次方程教案(案例14篇)

格式:DOC 上傳日期:2023-10-28 09:08:03
專業(yè)中職數(shù)學(xué)一元二次方程教案(案例14篇)
時間:2023-10-28 09:08:03     小編:筆舞

教案可以幫助教師更好地組織和管理課堂教學(xué),提高教學(xué)的條理性和系統(tǒng)性。教案的教學(xué)內(nèi)容應(yīng)該符合學(xué)生的認(rèn)知能力和知識水平,保證學(xué)生的學(xué)習(xí)效果和興趣。下面是一些優(yōu)秀教案的案例分析和解讀,供大家深入了解教案編寫的技巧和要點。

中職數(shù)學(xué)一元二次方程教案篇一

一元二次方程是一種數(shù)學(xué)建模的方法,它有著廣泛的實際背景,可以作為許多實際問題的數(shù)學(xué)模型。它體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想,學(xué)好一元二次方程是學(xué)好二次函數(shù)不可或缺的,一元二次方程是高中數(shù)學(xué)的奠基工程。是本書的重點內(nèi)容,為后續(xù)學(xué)習(xí)打下良好的基礎(chǔ)。

學(xué)情分析

1、經(jīng)過兩年的合作,我們班的學(xué)生已比較配合我上課,同時初三學(xué)生觀察、類比、概括、歸納能力也都比較強,不過對應(yīng)用題的分析他們還是覺得很頭疼,在今后應(yīng)用題的教學(xué)中需進(jìn)一步加強。

2、一元二次方程是在學(xué)習(xí)《一元一次方程》、《二元一次方程》、分式方程等基礎(chǔ)之上學(xué)習(xí)的,一元二次方程是一次方程向二次方程的轉(zhuǎn)化,是低次方程轉(zhuǎn)向高次方程求解方法的階梯。一元二次方程又是二次函數(shù)的特例。

教學(xué)目標(biāo)

一、知識目標(biāo)

1、在分析、揭示實際問題的數(shù)量關(guān)系并把實際問題轉(zhuǎn)化為數(shù)學(xué)模型(一元二次方程)的過程中,使學(xué)生感受方程是刻畫現(xiàn)實世界數(shù)量關(guān)系的工具,,增加對一元二次方程的感性認(rèn)識.

2、理解一元二次方程的概念.

3、掌握一元二次方程的一般形式,正確認(rèn)識二次項系數(shù)、一次項系數(shù)及常數(shù)項.

二、能力目標(biāo)

1、通過一元二次方程的引入,培養(yǎng)學(xué)生建模思想,歸納、分析問題及解決問題的能力.

2、由知識來源于實際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)、列方程向?qū)W生滲透方程的思想,進(jìn)一步提高學(xué)生分析問題、解決問題的能力.

四、情感目標(biāo)

1、培養(yǎng)學(xué)生主動探究知識、自主學(xué)習(xí)和合作交流的意識.

2、激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識

教學(xué)重點和難點

教學(xué)重點:一元二次方程的概念和它的一般形式

難點:1、從實際問題中抽象出一元二次方程。2、正確識別一般式中的“項”及“系數(shù)”

中職數(shù)學(xué)一元二次方程教案篇二

在日常生活中,許多問題都可以通過建立一元二次方程這個模型進(jìn)行求解,然后回到實踐問題中進(jìn)行解釋和檢驗,從而體會數(shù)學(xué)建模的思想方法,解決這類問題的關(guān)鍵是弄清實際問題中所包含的數(shù)量關(guān)系。

本節(jié)內(nèi)容教材提供了與生活密切相關(guān),且有一定思考和探究性的問題,所以在教學(xué)中我讓學(xué)生綜合已有的知識,經(jīng)過自主探索和合作交流嘗試解決,提高學(xué)生的思維品質(zhì)和進(jìn)行探究學(xué)習(xí)的能力。主要有以下幾個成功之處:

1、讓學(xué)生自主交流方法,充分展示學(xué)生不同層次的思維,互相學(xué)習(xí),互相促進(jìn),從而創(chuàng)建平等、輕松的學(xué)習(xí)氛圍。

在出示了例7后,我提示學(xué)生解決此類問題可以自己畫出草圖,分析題目中的等量關(guān)系,學(xué)生根據(jù)題意很快可以畫出圖形,然后,我讓他們找出題目中可以寫等量關(guān)系的條件,根據(jù)條件寫出文字的等量關(guān)系。在這個環(huán)節(jié)有的學(xué)生遇到了困難,于是,我就讓他們互相討論,通過討論,大部分學(xué)生可以寫出等量關(guān)系,我再讓會的學(xué)生說出理由。在這個教學(xué)過程中,學(xué)生互相學(xué)習(xí),互相促進(jìn),輕松地學(xué)會了知識。

2、讓學(xué)生自主歸納,總結(jié)方法,尊重學(xué)生的個性選擇,學(xué)生的集體智慧更符合學(xué)生自己的口味,比教師說教更易于被學(xué)生接受。

例7的解答還有一種更簡單的方法,我讓學(xué)生觀察圖形,在圖形上做文章,還是讓他們自主探索,討論,很快有一部分學(xué)生想到了把圖形中的道路平移到一邊的方法,這樣就把種植面積集中起來,方程就好列了。這時,我就讓學(xué)生上來講述方法。學(xué)生用自己的語言講述,這樣其他人接受起來更快一些。并且,學(xué)生還總結(jié)此類問題的解決方法――將圖形平移,在以下練習(xí)的幾道題中都能得心應(yīng)手的解答了。由此可見,通過自己思考學(xué)到的知識能夠靈活應(yīng)用,且掌握的好。

在這節(jié)課的教學(xué)中也存在一些不足之處,教材中在例題之前設(shè)計了一個應(yīng)用,在解決這個問題上耽誤了時間,延誤了下面的教學(xué),導(dǎo)致設(shè)計的練習(xí)題沒有做完,所以在下次教學(xué)時,這個應(yīng)用問題只讓學(xué)生列出方程即可,不必在解答上花費時間。另外,練習(xí)設(shè)計過于單一,只涉及到了例題這種類型的練習(xí),變式練習(xí)題少,所以,在下次教學(xué)時,要設(shè)計兩道不同題型的題目。

由這節(jié)課的教學(xué)我領(lǐng)悟到,數(shù)學(xué)學(xué)習(xí)是學(xué)生自己建構(gòu)數(shù)學(xué)知識的活動,學(xué)生應(yīng)該主動探索知識的建構(gòu)者,而不是模仿者,教學(xué)應(yīng)促進(jìn)學(xué)生主體的主動建構(gòu),離開了學(xué)生積極主動的學(xué)習(xí),教師講得再好,也會經(jīng)常出現(xiàn)“教師講完了,學(xué)生仍不會”的現(xiàn)象。所以,在以后的教學(xué)中,我要更有意識的多給學(xué)生自主探索、合作交流的機會,更加激發(fā)學(xué)生的學(xué)習(xí)積極性,使學(xué)生在他們的最近發(fā)展區(qū)發(fā)展。

中職數(shù)學(xué)一元二次方程教案篇三

一、出示學(xué)習(xí)目標(biāo):

1.繼續(xù)感受用一元二次方程解決實際問題的過程;

2.通過自學(xué)探究掌握裁邊分割問題。

二、自學(xué)指導(dǎo):(閱讀課本p47頁,思考下列問題)

1.閱讀探究3并進(jìn)行填空;

2.完成p48的思考并掌握裁邊分割問題的特點;

設(shè)上、下邊襯的寬均為9xcm,左、右邊襯的寬均為7xcm,則:

由中下層學(xué)生口答書中填空,老師再給予補充。

思考:如果換一種設(shè)法,是否可以更簡單?

設(shè)正中央的長方形長為9acm,寬為7acm,依題意得

9a·7a=(可讓上層學(xué)生在自學(xué)時,先上來板演)

效果檢測時,由同座的同學(xué)給予點評與糾正

9.如圖,要設(shè)計一幅寬20m,長30m的圖案,兩橫兩豎寬度之比為3∶2,若使彩條面積是圖案面積的四分之一,應(yīng)怎樣設(shè)計彩條的寬帶?(討論用多種方法列方程比較)

注意點:要善于利用圖形的平移把問題簡單化!

三、當(dāng)堂訓(xùn)練:

(只要求設(shè)元、列方程)

中職數(shù)學(xué)一元二次方程教案篇四

1.了解整式方程和一元二次方程的概念;

2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。

3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

教學(xué)重點和難點:

重點:一元二次方程的概念和它的一般形式。

難點:對一元二次方程的一般形式的正確理解及其各項系數(shù)的確定。

教學(xué)建議:

1.教材分析:

1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。

2)重點、難點分析

理解一元二次方程的定義:

是一元二次方程的重要組成部分。方程,只有當(dāng)時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:

(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。

(2)條件是用“關(guān)于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。

(3)方程中含有字母系數(shù)的項,且出現(xiàn)“關(guān)于的方程”這樣的語句,就要對方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時,它是一元一次方程;當(dāng)時,它是一元二次方程,解題時就會有不同的結(jié)果。

中職數(shù)學(xué)一元二次方程教案篇五

一元二次方程概念及一元二次方程一般式及有關(guān)概念、

1、通過設(shè)置問題,建立數(shù)學(xué)模型,模仿一元一次方程概念給一元二次方程下定義、

2、一元二次方程的一般形式及其有關(guān)概念、

3、解決一些概念性的題目、

4、態(tài)度、情感、價值觀

4、通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問題來激發(fā)學(xué)生的學(xué)習(xí)熱情、

一、復(fù)習(xí)引入

學(xué)生活動:列方程、

問題(1)《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”

整理、化簡,得:__________、

問題(2)如圖,如果,那么點c叫做線段ab的黃金分割點、

整理,得:________、

老師點評并分析如何建立一元二次方程的數(shù)學(xué)模型,并整理、

二、探索新知

學(xué)生活動:請口答下面問題、

(1)上面三個方程整理后含有幾個未知數(shù)?

(2)按照整式中的'多項式的規(guī)定,它們最高次數(shù)是幾次?

(3)有等號嗎?或與以前多項式一樣只有式子?

解:去括號,得:

移項,得:4x2-26x+22=0

其中二次項系數(shù)為4,一次項系數(shù)為-26,常數(shù)項為22、

解:去括號,得:

x2+2x+1+x2-4=1

移項,合并得:2x2+2x-4=0

其中:二次項2x2,二次項系數(shù)2;一次項2x,一次項系數(shù)2;常數(shù)項-4、

三、鞏固練習(xí)

教材p32練習(xí)1、2

四、應(yīng)用拓展

分析:要證明不論取何值,該方程都是一元二次方程,只要證明2-8+17≠0即可、

證明:2-8+17=(-4)2+1

∵(-4)2≥0

∴(-4)2+10,即(-4)2+1≠0

∴不論取何值,該方程都是一元二次方程、

五、歸納小結(jié)(學(xué)生總結(jié),老師點評)

本節(jié)課要掌握:

六、布置作業(yè)

中職數(shù)學(xué)一元二次方程教案篇六

學(xué)情分析

九年級的學(xué)生,在講本節(jié)課之前,已經(jīng)系統(tǒng)的學(xué)習(xí)了一元一次方程及相關(guān)概念,學(xué)習(xí)了整式、分式和二次根式,從知識結(jié)構(gòu)上看他們已經(jīng)具備了繼續(xù)探究一元二次方程的基礎(chǔ)。這個階段的學(xué)生自主探究和合作交流的能力很強,并且他們比較、分析、抽象和概括的能力也有很大提高。由于他們有強烈的求知欲,當(dāng)遇到新的問題時,會自然的產(chǎn)生進(jìn)一步探究的欲望。而我所教(11)班是年級中一個普通班,學(xué)生數(shù)學(xué)底子薄,基礎(chǔ)差,學(xué)生由于學(xué)習(xí)困難,基礎(chǔ)差,沒有自信,也就對數(shù)學(xué)的學(xué)習(xí)興趣越來越弱,有人甚至要放棄對數(shù)學(xué)的學(xué)習(xí),作為他們的老師,首先培養(yǎng)他們自信心,啟發(fā)他們對數(shù)學(xué)的喜愛,慢慢培養(yǎng)他們的自信心,使數(shù)學(xué)基本概念、基本運算方法悄然走進(jìn)學(xué)生的生活、走進(jìn)他們對知識的運用中去。

教學(xué)目標(biāo)

一、知識與技能:

1.理解并掌握一元二次方程的概念,知道一元二次方程的一般形式;

2.會把一個一元二次方程化為一般形式,會正確地判斷一元二次方程的項與系數(shù);

3.通過本節(jié)課的學(xué)習(xí),培養(yǎng)學(xué)生觀察、比較、分析、探究和歸納的能力。

二、過程與方法

三、情感態(tài)度與價值觀

2. 通過本節(jié)知識的學(xué)習(xí),使學(xué)生認(rèn)識到知識的產(chǎn)生、變化和發(fā)展的過程。

教學(xué)重點和難點

重點:一元二次方程的概念及一般形式。

難點:1.由實際問題向數(shù)學(xué)問題的轉(zhuǎn)化過程。2.正確識別一般式中的“項”及“系數(shù)”。

中職數(shù)學(xué)一元二次方程教案篇七

利用求根公式解一元二次方程的一般步驟:

1、找出a,b,c的相應(yīng)的'數(shù)值

2、驗判別式是否大于等于0

3、當(dāng)判別式的數(shù)值符合條件,可以利用公式求根。

在講解過程中,我讓學(xué)生直接用公式求根,第一次接觸求根公式,學(xué)生可以說非常陌生,由于過高估計學(xué)生的能力,結(jié)果出現(xiàn)錯誤較多:

2、求根公式本身就很難,形式復(fù)雜,代入數(shù)值后出錯很多、其實在做題過程中檢驗一下判別式著一步單獨挑出來做并不麻煩,直接用公式求值也要進(jìn)行,提前做著一步在到求根公式時可以把數(shù)值直接代入。在今后的教學(xué)中注意詳略得當(dāng),不該省的地方一定不能省,力求收到更好的教學(xué)效果。

中職數(shù)學(xué)一元二次方程教案篇八

1.繼續(xù)感受用一元二次方程解決實際問題的過程;

2.通過自學(xué)探究掌握裁邊分割問題。

(閱讀課本p47頁,思考下列問題)

1.閱讀探究3并進(jìn)行填空;

2.完成p48的思考并掌握裁邊分割問題的特點;

設(shè)上、下邊襯的寬均為9xcm,左、右邊襯的寬均為7xcm,則:

由中下層學(xué)生口答書中填空,老師再給予補充。

思考:如果換一種設(shè)法,是否可以更簡單?

設(shè)正中央的長方形長為9acm,寬為7acm,依題意得

9a·7a=(可讓上層學(xué)生在自學(xué)時,先上來板演)

效果檢測時,由同座的同學(xué)給予點評與糾正

9.如圖,要設(shè)計一幅寬20m,長30m的圖案,兩橫兩豎寬度之比為3∶2,若使彩條面積是圖案面積的四分之一,應(yīng)怎樣設(shè)計彩條的寬帶?(討論用多種方法列方程比較)

注意點:要善于利用圖形的平移把問題簡單化!

(只要求設(shè)元、列方程)

中職數(shù)學(xué)一元二次方程教案篇九

學(xué)習(xí)目標(biāo):

1、使學(xué)生會用列一元二次方程的方法解決有關(guān)增長率的應(yīng)用題;

2、進(jìn)一步培養(yǎng)學(xué)生分析問題、解決問題的能力。

學(xué)習(xí)重點:

會列一元二次方程解關(guān)于增長率問題的應(yīng)用題。

學(xué)習(xí)難點:

如何分析題意,找出等量關(guān)系,列方程。

學(xué)習(xí)過程:

一、復(fù)習(xí)提問:

列一元二次方程解應(yīng)用題的一般步驟是什么?

二、探索新知

1、情境導(dǎo)入

2、合作探究、師生互動

教師引導(dǎo)學(xué)生運用方程解決問題:

三、例題學(xué)習(xí)

說明:題目中求平均每月增長的百分率,直接設(shè)增長的百分率為x,好處在于計算簡便且直接得出所求。

(小組合作交流教師點撥)

時間基數(shù)降價降價后價錢

第一次600600x600(1―x)

第二次600(1―x)600(1―x)x600(1―x)2

(由學(xué)生寫出解答過程)

四、鞏固練習(xí)

五、課堂總結(jié):

1、善于將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,嚴(yán)格審題,弄清各數(shù)據(jù)間相互關(guān)系,正確列出方程。

2、注意解方程中的巧算和方程兩個根的取舍問題。

六、反饋練習(xí):

a、x+(1+x)x=20%b、(1+x)2=20%

c、(1+x)2=1、2d、(1+x%)2=1+20%

2、某工廠計劃兩年內(nèi)降低成本36%,則平均每年降低成本的百分率是()

中職數(shù)學(xué)一元二次方程教案篇十

今天,在教務(wù)處的組織下,我參加了柏老師的九年級數(shù)學(xué)課——《用因式分解法解一元二次方程》的公開課活動。

這節(jié)課,柏老師運用了“先學(xué)后導(dǎo),分層推進(jìn)”的教學(xué)模式開展教學(xué)活動。教學(xué)設(shè)計科學(xué)、嚴(yán)謹(jǐn)、合理。能對教材內(nèi)容進(jìn)行取舍,不照本宣科。習(xí)題設(shè)計典型,有梯度。整個教學(xué)過程環(huán)環(huán)相扣,層層推進(jìn),最終教學(xué)效果理想。但是我個人認(rèn)為在具體細(xì)節(jié)上還有有待改進(jìn)的地方:

1、知識性錯誤。因式分解是指把一個多項式分解成幾個整式相乘的形式。柏老師說成了分解成單項式相乘的形式。整式既包含單項式也有多項式。

2、整個教學(xué)過程中,還是沒有把學(xué)習(xí)的主動權(quán)交給學(xué)生,牽著學(xué)生走。不讓學(xué)生大膽的進(jìn)行自主嘗試。其實,我們從后面的課堂檢測環(huán)節(jié)中可以看出學(xué)生的自主學(xué)習(xí)能力是非常強的。那幾個比較難的解方程學(xué)生都能用最簡單的方法求解。

3、從新課前的復(fù)習(xí)環(huán)節(jié)可以看出學(xué)生對已經(jīng)學(xué)過的概念記憶不清楚,對每節(jié)課所學(xué)的知識點不清。我們每節(jié)課的教學(xué)環(huán)節(jié)里基本都有“學(xué)習(xí)目標(biāo)”出示和“歸納小結(jié)”的環(huán)節(jié)。這兩個環(huán)節(jié)看似不起眼,但細(xì)細(xì)推敲來,它們的作用就是讓學(xué)生清楚到底學(xué)什么和學(xué)到了什么,這兩個環(huán)節(jié)教學(xué)到位了,學(xué)生對所學(xué)知識也就是茶壺里煮餃子——心中有數(shù)了。

4、在“后導(dǎo)”環(huán)節(jié)要注重發(fā)揮學(xué)生的.自主、合作學(xué)習(xí)能力。因為學(xué)生在先學(xué)環(huán)節(jié)已經(jīng)掌握的一定的知識和能力,這時候教師適時的放手,讓學(xué)生通過自主學(xué)習(xí),掌握知識,從而才能水到渠成的對知識進(jìn)行歸納總結(jié)。就不會像本節(jié)課在歸納小結(jié)時這么牽強。

5、教師對教材鉆研不透徹。后面的六個解方程練習(xí)題是本節(jié)課的課后練習(xí)題,必然是都可以因式分解法來求解的。但是老師在個別輔導(dǎo)時強調(diào)用其他解法。

中職數(shù)學(xué)一元二次方程教案篇十一

本兩周繼續(xù)學(xué)習(xí)一元二次方程的解法及應(yīng)用,我現(xiàn)從方程的應(yīng)用來反思如下:

新課程要求培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識與能力,作為數(shù)學(xué)教師,我們要充分利用已有的生活經(jīng)驗,把所學(xué)的數(shù)學(xué)知識用到現(xiàn)實中去,體會數(shù)學(xué)在現(xiàn)實中應(yīng)用價值。

本章節(jié)的應(yīng)用基本上是以學(xué)生熟悉的'現(xiàn)實生活為問題的背景,讓學(xué)生從具體的問題情境中抽象出數(shù)量關(guān)系,歸納出變化規(guī)律,并能用數(shù)學(xué)符號表示,最終解決實際問題。這類注重聯(lián)系實際考查學(xué)生數(shù)學(xué)應(yīng)用能力的問題,體現(xiàn)時代性,并且結(jié)合社會熱點、焦點問題,引導(dǎo)學(xué)生關(guān)注國家、人類和世界的命運。既有強烈的德育功能,又可以讓學(xué)生從數(shù)學(xué)的角度分析社會現(xiàn)象,體會數(shù)學(xué)在現(xiàn)實生活中的作用。

對教學(xué)過程進(jìn)行反思,既有成功的一面,又有不足之處。需改進(jìn)的方面有:

1、由于怕完不成任務(wù),給學(xué)生獨立思考時間安排有些不合理,這樣容易讓思維活躍的學(xué)生的回答代替了其他學(xué)生的思考,掩蓋了其他學(xué)生的疑問。例如p46有多種解法,課后一些學(xué)生與老師交流,但課上沒有得到充分的展示。

2、只考慮捕捉學(xué)生的思維亮點,一生列錯了方程,老師沒有給予及時糾正。導(dǎo)致使一些同學(xué)陷入誤區(qū)。3、有些問題講的過于快,理解較慢的同學(xué)跟不上。

中職數(shù)學(xué)一元二次方程教案篇十二

一元二次方程的應(yīng)用是在學(xué)習(xí)了前面的一元二次方程的解法的基礎(chǔ)上,結(jié)合實際問題,討論了如何分析數(shù)量關(guān)系,利用相等關(guān)系來列方程,以及如何解答。

列方程解決實際問題,最重要的是審題,審題是列方程的基礎(chǔ),而列方程是解題的關(guān)鍵,只有在透徹理解題意的基礎(chǔ)上,才能恰當(dāng)?shù)卦O(shè)出未知數(shù),準(zhǔn)確找出已知量與未知量之間的等量關(guān)系,正確地列出方程。

在本章教學(xué)中我注意分散教學(xué)難點,比如說,在學(xué)習(xí)增長率問題時,我先設(shè)計了這樣一組練習(xí):一個車間二月份生產(chǎn)零件500個,三月份比二月份增產(chǎn)10%,三月份生產(chǎn)xx個零件,如果四月份想再增產(chǎn)10%,四月份生產(chǎn)零件xx個。如果增產(chǎn)的百分率是x,那三月份和四月份各能生產(chǎn)零件多少個?通過分散教學(xué)難點,引導(dǎo)學(xué)生理解題意,從而達(dá)到滿意的教學(xué)效果。

在本章教學(xué)中我還注意對學(xué)生進(jìn)行學(xué)法的指導(dǎo)。比如說,在做習(xí)題7.12第2題時,有的同學(xué)想象不出圖形,就應(yīng)引導(dǎo)他們畫出示意圖;在比如學(xué)習(xí)最后一個例題時,面對那么多的量,并且是運動中的量,許多學(xué)生無從下手,此時就要引導(dǎo)學(xué)生把量在圖形中先標(biāo)示出來,在慢慢分析題中的數(shù)量關(guān)系。在分析問題時,要強調(diào)當(dāng)設(shè)完未知數(shù),那它就是已知數(shù),參與量的標(biāo)示。

總之,在教學(xué)中通過學(xué)生的自主探究、小組間的合作交流、教師的及時點撥,進(jìn)一步提高學(xué)生分析問題、解決問題的能力。

數(shù)學(xué)教案-

將本文的word文檔下載到電腦,方便收藏和打印

推薦度:

點擊下載文檔

搜索文檔

中職數(shù)學(xué)一元二次方程教案篇十三

1.了解整式方程和一元二次方程的概念;

2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。

3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

重點:一元二次方程的概念和它的一般形式。

難點:對一元二次方程的一般形式的正確理解及其各項系數(shù)的確定。

1.教材分析:

1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。

2)重點、難點分析

理解一元二次方程的定義:

是一元二次方程的重要組成部分。方程,只有當(dāng)時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:

(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。

(2)條件是用“關(guān)于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。

(3)方程中含有字母系數(shù)的項,且出現(xiàn)“關(guān)于的方程”這樣的語句,就要對方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時,它是一元一次方程;當(dāng)時,它是一元二次方程,解題時就會有不同的結(jié)果。

中職數(shù)學(xué)一元二次方程教案篇十四

1.了解整式方程和一元二次方程的概念;

2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。

3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

教學(xué)重點和難點:

重點:一元二次方程的概念和它的一般形式。

難點:對一元二次方程的一般形式的正確理解及其各項系數(shù)的確定。

教學(xué)建議:

1.教材分析:

1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。

2)重點、難點分析

【本文地址:http://www.mlvmservice.com/zuowen/4228982.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔