優(yōu)質七年級數(shù)學方案設計題范文(14篇)

格式:DOC 上傳日期:2023-10-27 16:01:12
優(yōu)質七年級數(shù)學方案設計題范文(14篇)
時間:2023-10-27 16:01:12     小編:GZ才子

方案的執(zhí)行過程中需要注意及時跟進和反饋,以保證效果的達成。考慮方案實施過程中可能遇到的風險和挑戰(zhàn)是很重要的。接下來,小編為大家列舉了一些制定方案時應該注意的要素和步驟。

七年級數(shù)學方案設計題篇一

教師在備課時,應充分估計學生在學習時可能提出的問題,確定好重點,難點,疑點,和關鍵。根據(jù)學生的實際改變原先的教學計劃和方法,滿腔熱忱地啟發(fā)學生的思維,針對疑點積極引導。

非常高興,能有機會和同學們共同學習

昨天,老師在七年級三班上課時,把他們分成七個小組,每個小組回答問題的情況以搶答賽的形式記分。你們看(出示投影)這是七年級三班七個小組回答問題的表現(xiàn)情況。答對一題得一分,記作+1分;答錯一題扣一分,記作1分。第幾組最棒?老師還沒來得及計算出每個小組的最后得分,咱們班哪位同學能幫老師算出最后結果?(學生在教師引導下回答)

我們已得出了每個小組的最后分數(shù),那么哪個小組是優(yōu)勝小組?(第一小組),回去以后,老師就把小獎品發(fā)給他們,相信他們一定會很高興。

同學們,這節(jié)課你們愿不愿意也分成幾個小組,看一看那個小組的同學表現(xiàn)得最出色?(原意)那么老師就按座次給同學們分組,每一豎排為一組。老師把組號寫在黑板上,以便記分。

希望各組同學積極思考、踴躍發(fā)言。同學們有沒有信心得到老師的小獎品?(有)同學們加油!

我們已得到了這7個小組的最后得分,那位同學能試著用算式表示?(學生在教師指導下列算式)

以上這些算是都是什么運算?(加法),兩個加數(shù)都是什么數(shù)?(有理數(shù)),這就是我們這節(jié)課要學習的有理數(shù)的加法(板書課題)。

剛才老師說要給七年級三班的優(yōu)勝組發(fā)獎品,老師手里有12本作業(yè)本,優(yōu)勝組共6人,老師將送出的作業(yè)本數(shù)占總數(shù)的幾分之幾?(二分之一)分數(shù)最低的一組共7人,他們每人交給老師一個作業(yè)本,占總數(shù)的幾分之幾?(十二分之七)如果,老師得到的作業(yè)本記為正數(shù),送出的作業(yè)本記為負數(shù),則老師手里的作業(yè)本增加或減少幾分之幾?同學們能列出算式嗎?(學生列式)對于這個算式,同學們還能輕易的感知出結果嗎?(不能)

對于有理數(shù)的加法,有的同學們能直接感知得到結果,有的靠感知是不夠的,這就需要我們共同探索規(guī)律!(出示投影),觀察這7個算式,每一個算式都是怎樣的兩個有理數(shù)相加?(引導學生回答)你們還能舉出不同以上情況的算式嗎?(不能),這說明這幾個算式概括了有理數(shù)加法的不同情況。

前兩個算式的加數(shù)在符號上有什么共同點?(相同),那么我們就可以說這是什么樣的兩數(shù)相加?(同號兩數(shù)相加)同學們還能觀察出那幾個算式可歸為一類嗎?(3、4、5、異號兩數(shù)相加,6、7一個數(shù)同0相加)

同學們已把這7個算式分成了三種情況,下面我們分別探討規(guī)律。

(2) 異號兩數(shù)相加,其和有何規(guī)律呢?大家觀察這三個式子回答問題。(引導學生分成兩類,容易得到絕對值相同情況的結論。再引導學生觀察絕對值不相同的情況,回答問題)哪位同學能概括一下這個規(guī)律?(引導學生得出)

(3) 一個數(shù)同0相加,其和有什么規(guī)律呢?(易得出結論)

同學們經(jīng)過積極思考,探索出了解決有理數(shù)加法的規(guī)律,顧一下(出哪位同學能帶領大家共同回顧一下?(出示投影,學生大聲朗讀)我們把這個規(guī)律稱為有理數(shù)的加法法則。

同學們都很聰明,積極參與探索規(guī)律,每個組都有不錯的成績。個別落后的組不要氣餒,繼續(xù)努力,下面老師就給大家一個得分的機會,看哪一組能[出題制勝]!(出示)

(活動過程1后評價、加分;教師以其中一題為例,講解題格式及過程;活動過程2后:讓每組第三排同學評價加分)

同學們已經(jīng)基本掌握了有理數(shù)的加法法則,并會運用它,但七年級三班有幾位同學對這一內容掌握的不是太好,以致在作業(yè)中出了毛病,他們?yōu)榇撕芸鄲?。希望咱們同學能幫幫他們,看哪位同學能像妙手回春的神醫(yī)華佗一樣藥到病 除!(師生共同治病)

看來同學們對有理數(shù)的加法已經(jīng)掌握得很好了,大家還記得前面那個難倒我們的有理數(shù)的加法題呢?那位同學能解決這個問題呢?(學生口述 師板書)。在大家的努力下,我們終于攻破了這個難關。

通過這節(jié)課的學習,大家有什么收獲?(學生回答)同學們都有很多收獲,老師認為收獲最多的是優(yōu)勝組的同學,因為他們能得到老師的小獎品,大家趕緊看看那一組獲勝?歡迎優(yōu)勝組上臺領獎,大家掌聲鼓勵!

同學們,希望你們在未來的學習和生活中都能積極進取,獲得一個又一個的勝利。

七年級數(shù)學方案設計題篇二

教學內容:

教科書第41~43頁

教學目標:

1、通過生活情景,讓學生初步感知平移和旋轉現(xiàn)象;讓學生通過觀察、分類、對比,初步了解物體的平移和旋轉的變換特征;初步會判斷圖形的平移和旋轉。

2、會在方格紙上平移簡單的圖形。通過觀察、動手操作,培養(yǎng)學生的觀察能力和解決問題的能力。

教學重、難點:能正確說出圖形平移的距離。

教具準備:課件、學具。

教學過程:

一、情景導入

今天我?guī)Т蠹业接螛穲@學習數(shù)學知識—平移和旋轉。(看課本第37頁的彩圖)

營造一種輕松和諧的學習氛圍,拉近和學生的距離。

二、新授課

1、感知平移與旋轉現(xiàn)象

(1)看一看,說一說游樂園里有哪些游樂項目?

(2)這些游樂項目是怎樣運動的?

(3)根據(jù)游樂項目不同的運動,可以分幾類類?怎么分的?

(4)自己先分一分,有什么困難再在四人小組里交流一下。

2、初步了解平移和旋轉的特征。

(1)說一說分類的理由

(2)舉生活中的實例,進一步了解平移、旋轉特征。

(3)用學具在桌面做平移和旋轉運動。

小結:通過觀察,舉生活中例子,初步感知物體平移現(xiàn)象和旋轉現(xiàn)象,了解平移和旋轉的特征。

結合學生親身經(jīng)歷,建立對平移的多角度感知,建立比較豐滿的表象基礎,為揭示概念做好準備。

3、練習(課件出示p41頁方格圖)

(1)要把小房子向上平移1格,怎么移呢?(學生動手在學具上移)

(2)如果把它向上平移5格,會移嗎?

(3)如果把它向右平移7格,你們會移嗎?(學生動手在學具上移)

(4)教師演示,學生回答。(你是怎樣看出來的)

(5)教師演示,學生回答。(你是怎樣看出來的)

(6)如果把它先向右平移4格,再向下平移3格,你們會移嗎?

(7)判斷哪一條小船是向右平移4格后得到的?(課件出示課本p43頁第一題)

(8)哪幾條魚可以通過平移與紅色小魚重合?(課件出示課本p44頁第4題)

通過操作并說一說,比一比,這樣手腦并用,學生效果就更明顯。

二、綜合練習

1、下列現(xiàn)象哪些是平移?哪些是旋轉?(課本p43頁第三題)

2、欣賞生活中的平移和旋轉現(xiàn)象。

全課總結:今天這節(jié)課你學會哪些新知識?還有什么問題?用哪些方法學會的這些新知識。

鼓勵多種形式的學習,在先前學習的基礎上開拓學生的思路,鍛煉學生的自學能力。

三、課后活動 應用平移和旋轉做運動。

加深對新課的理解,用實踐來感知平移、旋轉的奇妙。

教學反思:

七年級數(shù)學方案設計題篇三

知識與能力

從簡單的轉盤游戲開始,使學生在生活經(jīng)驗和試驗的基礎上,進一步體驗不確定事件的特點及事件發(fā)生的可能性大小。

能用實驗對數(shù)學猜想做出檢驗,從而增加猜想的可信度。 解決問題

在轉盤游戲過程中,經(jīng)歷猜測結果,實驗驗證,分析試驗結果等數(shù)學活動,增加數(shù)學活動經(jīng)驗。

情感態(tài)度與價值觀

在合作與交流過程中,體驗小組合作更有利于探究數(shù)學知識,敢于發(fā)表自己觀點,提高個人認識。

在實驗中,體會不確定事件的特點及事件發(fā)生可能性大小;使每個學生都能積極認真參與課堂設計中的實驗,真正在實驗中獲得知識上的認識。

創(chuàng)設情境,切入標題

請同學們猜測,當我自由轉動轉盤時,指針會落在什么顏域呢?

請各小組分別派一名代表,看哪組能轉出紅色。

結果,8小組有6組轉出了紅色。

為什么會出現(xiàn)這樣的結果呢?

因為,在這個轉盤中,紅域的面積大,白域的面積小,因此,當轉盤停上轉動時,指針落到紅域的可能性大。

大家同意這種看法嗎?下面我們親自動手感受一下。

學生按照題目要求進行實驗。

請各組組長把你組的實驗數(shù)據(jù)匯報一下(教師把數(shù)據(jù)填寫在表格里) 實驗結果:六個小組每組實驗16次,全班共實驗96次,指針落在紅域的次數(shù)分別如下9,6,10,5,8,12。共計50次。

請同學們對我們的實驗結果進行分析交流,談談你在試驗中有哪些心得。

根據(jù)觀察,轉盤上紅域的面積為總面積的一半,指針落在紅域的可能性也應該是一半。通過對我們全班的實驗結果分析,指針落在紅域的比例是50∶96,結果接近百分之五十。

在小組內實驗結果不明顯,實驗次數(shù)越多越能說明問題。

通過實驗,我們確定感受到,轉盤游戲中各區(qū)域的面積的可能性大小與指針落在什么區(qū)域的可能性大小有直接關系。以后在生活中再遇到轉盤游戲問題可要想想今天的實驗結論。

下面我們利用轉盤做一下數(shù)學游戲(出示幻燈片),學生按教學設計中要求進行游戲,教師巡回指導。

每組每人游戲一次,全班共游戲48次。其游戲結果是,平均數(shù)增大1的,共35次,平均數(shù)減小1的,共13次。

請同學們對下列問題進行交流(幻燈片出示教材206頁4個問題)。 這個轉盤轉到“平均數(shù)增大1”區(qū)域的可能性大,從面積大小就可以看出。

如果平均數(shù)增大1,我是在卡片上增加一個數(shù),這個數(shù)等于卡片上數(shù)字的個數(shù)加1,如果是平均數(shù)減小1,我就在每個數(shù)上都減去1。

同學們說出很多種方法,不一一列舉。

“平均數(shù)增大1”的次數(shù)占總次數(shù)的百分之七十三,“平均數(shù)減小1”占百分之二十七。

如果將這個實驗繼續(xù)做下去,卡片上所有數(shù)的平均數(shù)會增大。

同學們說的都很好,課后能不能自己也利用轉盤設計一個新的游戲,感興趣的同學可以在課下與我交流。

以下過程同教學設計,略去。

指導學生完成教材第206頁習題。

學生可從各個方面加以小結。 布置作業(yè)

仿照課堂游戲,自編一個新的游戲。 能否利用撲克牌設計本節(jié)轉盤游戲。

七年級數(shù)學方案設計題篇四

1.了解公式的意義,使學生能用公式解決簡單的實際問題;

2.初步培養(yǎng)學生觀察、分析及概括的能力;

3.通過本節(jié)課的教學,使學生初步了解公式來源于實踐又反作用于實踐。

教學建議

一、教學重點、難點

重點:通過具體例子了解公式、應用公式.

難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。

二、重點、難點分析

人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。

三、知識結構

本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節(jié)內容滲透了由一般到特殊、再由特殊到一般的辨證思想。

四、教法建議

1.對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創(chuàng)設情境,引導學生清晰地認識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。

2.在教學過程中,應使學生認識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學生自己嘗試探求數(shù)量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。

3.在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。

教學設計示例

公式

五、教具學具準備

投影儀,自制膠片。

六、師生互動活動設計

教者投影顯示推導梯形面積計算公式的圖形,學生思考,師生共同完成例1解答;教者啟發(fā)學生求圖形的面積,師生總結求圖形面積的公式.

七年級數(shù)學方案設計題篇五

學生活動:思考,交流

師:以前學過的數(shù),實際上主要有兩大類,分別是整數(shù)和分數(shù)(包括小數(shù)).

問題2:在生活中,僅有整數(shù)和分數(shù)夠用了嗎?

請同學們看書(觀察本節(jié)前面的幾幅圖中用到了什么數(shù),讓學生感受引入負數(shù)的必要性)并思考討論,然后進行交流。

(也可以出示氣象預報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)

學生交流后,教師歸納:以前學過的數(shù)已經(jīng)不夠用了,有時候需要一種前面帶有-的新數(shù)。

七年級數(shù)學方案設計題篇六

1。2有理數(shù)1。2。2數(shù)軸。這一節(jié)是初中數(shù)學中非常重要的內容,從知識上講,數(shù)軸是數(shù)學學習和研究的重要工具,它主要應用于絕對值概念的理解,有理數(shù)運算法則的推導,及不等式的求解。同時,也是學習直角坐標系的基礎,從思想方法上講,數(shù)軸是數(shù)形結合的起點,而數(shù)形結合是學生理解數(shù)學、學好數(shù)學的方法。日常生活中帶見的用溫度計度量溫度,已為學習數(shù)軸概念打下了一定的基礎。通過問題情境類比得到數(shù)軸的概念,是這節(jié)課的主要學習方法。同時,數(shù)軸又能將數(shù)的分類直觀的表現(xiàn)出來,是學生領悟分類思想的基礎。

(3)由于七年級學生的理解能力和思維特征和生理特征,學生的好動性,注意力容易分散,愛發(fā)表見解,希望得到老師的表揚等特點,所以在教學中應抓住學生這一生理心理特點,一方面要運用直觀生動的形象,一發(fā)學生的興趣,使他們的注意力始終集中在課堂上;另一方面要創(chuàng)造條件和機會,讓學生發(fā)表見解,發(fā)揮學生的主動性。

從學生已有知識、經(jīng)驗出發(fā)研究新問題,是我們組織教學的一個重要原則。小學里曾學過利用射線上的點來表示數(shù),為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數(shù)?伴以溫度計為模型,引出數(shù)軸的概念。教學中,數(shù)軸的三要素中的每一要素都要認真分析它的作用,使學生從直觀認識上升到理性認識。直線、數(shù)軸都是非常抽象的數(shù)學概念,當然對初學者不宜講的過多,但適當引導學生進行抽象的思維活動還是可行的。例如,向學生提問:在數(shù)軸上對應一億萬分之一的點,你能畫出來嗎?它是不是存在等。

(一)知識與技能

1、掌握數(shù)軸的三要素,能正確畫出數(shù)軸。

2、能將已知數(shù)在數(shù)軸上表示出來,能說出數(shù)軸上已知點所表示的數(shù)。

(二)過程與方法

1、使學生受到把實際問題抽象成數(shù)學問題的訓練,逐步形成應用數(shù)學的意識。

2、對學生滲透數(shù)形結合的思想方法。

(三)情感、態(tài)度與價值觀

1、使學生初步了解數(shù)學來源于實踐,反過來又服務于實踐的辯證唯物主義觀點。

2、通過畫數(shù)軸,給學生以圖形美的教育,同時由于數(shù)形的結合,學生會得到和諧美的享受。

1、重點:正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù)。

2、難點:有理數(shù)和數(shù)軸上的點的對應關系。

1、重點、難點分析

本節(jié)的重點是初步理解數(shù)形結合的思想方法,正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù),并會比較有理數(shù)的大小。難點是正確理解有理數(shù)與數(shù)軸上點的對應關系。數(shù)軸的概念包含兩個內容,一是數(shù)軸的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規(guī)定的。另外應該明確的是,所有的'有理數(shù)都可用數(shù)軸上的點表示,但數(shù)軸上的點所表示的數(shù)并不都是有理數(shù)。通過學習,使學生初步掌握用數(shù)軸解決問題的方法,為今后充分利用“數(shù)軸”這個工具打下基礎。

2、知識結構

有了數(shù)軸,數(shù)和形得到了初步結合,這有利于對數(shù)學問題的研究,數(shù)形結合是理解數(shù)學、學好數(shù)學的方法,本課知識要點如下:

定義規(guī)定了原點、正方向、單位長度的直線叫數(shù)軸

三要素原點正方向單位長度

應用數(shù)形結合

1、教學方法:根據(jù)教師為主導,學生為主體的原則,始終貫穿“激發(fā)情趣—手腦并用—啟發(fā)誘導—反饋矯正”的教學方法。

2、學生學法:動手畫數(shù)軸,動腦概括數(shù)軸的三要素,動手、動腦做練習。

1課時

電腦、投影儀、三角板

講授新課

(出示投影1)

問題1:三個溫度計。其中一個溫度計的液面在0上2個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度。

師:三個溫度計所表示的溫度是多少?

生:2℃,—5℃,0℃。

問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3m和7。5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4。8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境。(小組討論,交流合作,動手操作)

師:我們能否用類似的圖形表示有理數(shù)呢?

師:這種表示數(shù)的圖形就是今天我們要學的內容—數(shù)軸(板書課題)。

師:與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀

數(shù),用直線上的點表示正數(shù)、負數(shù)和零。具體方法如下

(邊說邊畫):

師問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個數(shù))

讓學生觀察畫好的直線,思考以下問題:

(出示投影2)

(1)原點表示什么數(shù)?

(2)原點右方表示什么數(shù)?原點左方表示什么數(shù)?

(3)表示+2的點在什么位置?表示—1的點在什么位置?

(4)原點向右0。5個單位長度的a點表示什么數(shù)?

原點向左1。5個單位長度的b點表示什么數(shù)?

根據(jù)老師畫圖的步驟,學生思考在一條水平的直線上都畫出什么?然后歸納出數(shù)軸的定義。

師:在此基礎上,給出數(shù)軸的定義,即規(guī)定了原點、正方向和單

位長度的直線叫做數(shù)軸。

通過上述提問,向學生指出:數(shù)軸的三要素——原點、正方向和單位長度,缺一不可。

【教法說明】通過“觀察—類比—思考—概括—表達”展現(xiàn)知識的形成是從感性認識上升到理性認識的過程,讓學生在獲取知識的過程中,領會數(shù)學思想和思維方法,并有意識地訓練學生歸納概括和口頭表達能力。

師生同步畫數(shù)軸,學生概括數(shù)軸三要素,師出示投影,生動手動腦練習

嘗試反饋,鞏固練習

(出示投影3)。畫出數(shù)軸并表示下列有理數(shù):

1、1。5,—2。2,—2。5,,,0。

2。寫出數(shù)軸上點a,b,c,d,e所表示的數(shù):

請大家回答下列問題:

(出示投影4)

(1)有人說一條直線是一條數(shù)軸,對不對?為什么?

(2)下列所畫數(shù)軸對不對?如果不對,指出錯在哪里?

【教法說明】此組練習的目的是鞏固數(shù)軸的概念。

十一、小結

本節(jié)課要求同學們能掌握數(shù)軸的三要素,正確地畫出數(shù)軸,在此還要提醒同學們,所有的有理數(shù)都可用數(shù)軸上的點來表示,但是反過來不成立,即數(shù)軸上的點并不是都表示有理數(shù),至于數(shù)軸上的哪些點不能表示有理數(shù),這個問題以后再研究。

十二、課后練習習題1。2第2題

十三、教學反思

1、數(shù)軸是數(shù)形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經(jīng)歷和體驗數(shù)軸的形成過程,加深對數(shù)軸概念的理解,同時培養(yǎng)學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規(guī)律。

2、教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數(shù)形結合的數(shù)學思想方法。

3、注意從學生的知識經(jīng)驗出發(fā),充分發(fā)揮學生的主體意識,讓學生主動參與學習活,并引導學生在課堂上感悟知識的生成,發(fā)展與變化,培養(yǎng)學生自主探索的學習方法。

七年級數(shù)學方案設計題篇七

堅持教育為學生服務的宗旨,著眼于學生的終身發(fā)展,切實做到從學生實際出發(fā),挖掘學生的學習潛能,以突出學生的個性及特點,創(chuàng)設有助于學生自主學習的問題情境,努力引導學生通過實踐、思考、探索、交流,獲得知識,形成技能,發(fā)展思維,學會學習,促使學生在教師指導下生動地、主動地、富有個性的學習。關注學生的個體差異,有效的實施有差異的教學使每個學生都得到充分地發(fā)展。在教師間實現(xiàn)資源共享,促進教師的創(chuàng)新意識,開展個性化教學,提高課堂效率。

1.以學生為本。備課組以學生的實際為切入點,集體探討一種學生易接受、易掌握的教學方法,努力使絕大部分同學都理解并掌握,力爭使每個學生都學有所獲。

2. 組織各位教師認真學習新課標,以適應新形勢的需要,同時抓好平時的課堂教學,課后作業(yè)的批改,學生的學習跟蹤,備課組活動和集體備課。每個星期二,定時進行七年級數(shù)學備課組的集體備課活動,大家一起討論如何處理教材中的重點和難點及細節(jié)問題。如何備好、上好每一節(jié)課是我們討論的重點,如何提高我們七年級的數(shù)學成績上我們討論的最終目的。

3.認真學習“教學六認真”和教師考核條例。

4.群策群力各盡所能且分工合作,鼓勵老師根據(jù)本班實際情況自編題??平M活動時安排一定時間讓經(jīng)驗較豐富的各位老師介紹經(jīng)驗,指導教學工作,相互虛心學習,借鑒有效的措施提高整體的教學和管理水平,并強調二次備課,提高課堂教學效率。

5. 組織好同級組互相聽課、互相學習、每位老師一學期至少聽20節(jié),工作不滿三年的新教師至少聽40節(jié),鼓勵隨堂聽課,尤其是對新教師的聽課指導。科組根據(jù)情況積極開展示范課,讓老師有機會學習、提高。

6.發(fā)揮集體智慧,實現(xiàn)資源共享,并保持集體備課的持久性,以達到提高課堂教學效率的目的。

總之,這個學期,七年級數(shù)學備課組要按照學校的要求,認真?zhèn)湔n,認真上課,認真批改作業(yè),認真培優(yōu)扶差,在教學上有比較大的進步,出色地完成學校的工作任務。

1.注重學生的活動、學習過程,知識的形成過程,即重心前移。注意評價的方式方法。

2.在教學活動中,鼓勵學生思維的多樣性,避免評價的統(tǒng)一性。

3.注重教學素材及呈現(xiàn)方式多樣化以及數(shù)據(jù)的真實科學性。

4.關注學生對知識技能的理解與應用;

5. 鼓勵學生使用計算器處理復雜數(shù)據(jù),注重其他課程資源的開發(fā)與利用。

6. 認真做好鎮(zhèn)江市督導室對我校調研的準備工作。

七年級數(shù)學方案設計題篇八

1.了解公式的意義,使學生能用公式解決簡單的實際問題;

2.初步培養(yǎng)學生觀察、分析及概括的能力;

3.通過本節(jié)課的教學,使學生初步了解公式來源于實踐又反作用于實踐。

重點:通過具體例子了解公式、應用公式.

難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。

人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。

本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節(jié)內容滲透了由一般到特殊、再由特殊到一般的辨證思想。

1.對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創(chuàng)設情境,引導學生清晰地認識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。

2.在教學過程中,應使學生認識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學生自己嘗試探求數(shù)量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。

3.在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。

教學設計示例

公式

投影儀,自制膠片。

教者投影顯示推導梯形面積計算公式的圖形,學生思考,師生共同完成例1解答;教者啟發(fā)學生求圖形的面積,師生總結求圖形面積的公式。

七年級數(shù)學方案設計題篇九

1,掌握相反數(shù)的概念,進一步理解數(shù)軸上的點與數(shù)的對應關系;

2,通過歸納相反數(shù)在數(shù)軸上所表示的點的特征,培養(yǎng)歸納能力;

3,體驗數(shù)形結合的思想。

教學難點歸納相反數(shù)在數(shù)軸上表示的點的特征

知識重點相反數(shù)的概念

教學過程(師生活動)設計理念

設置情境

引入課題問題1:請將下列4個數(shù)分成兩類,并說出為什么要這樣分類

4,-2,-5,+2

允許學生有不同的分法,只要能說出道理,都要難予鼓勵,但教師要做適當?shù)囊龑?,逐漸得出5和-5,+2和-2分別歸類是具有較特征的分法。

(引導學生觀察與原點的距離)

思考結論:教科書第13頁的思考

再換2個類似的數(shù)試一試。

培養(yǎng)學生的觀察與歸納能力,滲透數(shù)形思想

深化主題提煉定義給出相反數(shù)的定義

學生思考討論交流,教師歸納總結。

規(guī)律:一般地,數(shù)a的相反數(shù)可以表示為-a

思考:數(shù)軸上表示相反數(shù)的兩個點和原點有什么關系?

練一練:教科書第14頁第一個練習體驗對稱的圖形的特點,為相反數(shù)在數(shù)軸上的特征做準備。

深化相反數(shù)的概念;“零的相反數(shù)是零”是相反數(shù)定義的一部分。

強化互為相反數(shù)的數(shù)在數(shù)軸上表示的點的幾何意義

給出規(guī)律

解決問題問題3:-(+5)和-(-5)分別表示什么意思?你能化簡它們嗎?

學生交流。

分別表示+5和-5的相反數(shù)是-5和+5

練一練:教科書第14頁第二個練習利用相反數(shù)的概念得出求一個數(shù)的相反數(shù)的方法

小結與作業(yè)

1、相反數(shù)的定義

2、互為相反數(shù)的數(shù)在數(shù)軸上表示的點的特征

3、怎樣求一個數(shù)的相反數(shù)?怎樣表示一個數(shù)的相反數(shù)?

本課作業(yè)

1、必做題教科書第18頁習題1.2第3題

2、選做題教師自行安排

本課教育評注(課堂設計理念,實際教學效果及改進設想)

1、相反數(shù)的概念使有理數(shù)的各個運算法則容易表述,也揭示了兩個特殊數(shù)的特征.這兩個特殊數(shù)在數(shù)量上具有相同的絕對值,它們的和為零,在數(shù)軸上表示時,離開原點的距離相等等性質均有廣泛的應用.所以本教學設計圍繞數(shù)量和幾何意義展開,滲透數(shù)形結合的思想.

2、教學引人以開放式的問題人手,培養(yǎng)學生的分類和發(fā)散思維的能力;把數(shù)在數(shù)軸上表示出來并觀察它們的特征,在復習數(shù)軸知識的同時,滲透了數(shù)形結合的數(shù)學方法,數(shù)與形的相互轉化也能加深對相反數(shù)概念的理解;問題2能幫助學生準確把握相反數(shù)的概念;問題3實際上給出了求一個數(shù)的相反數(shù)的方法.

3、本教學設計體現(xiàn)了新課標的教學理念,學生在教師的引導下進行自主學習,自主探究,觀察歸納,重視學生的思維過程,并給學生留有發(fā)揮的余地。

七年級數(shù)學方案設計題篇十

1、在了解相反意義量的`基礎上,使學生了解正負數(shù)的概念和學習正負數(shù)的意義。

2、使學生能正確判斷一個數(shù)是正數(shù)還是負數(shù),明確零既不是正數(shù)也不是負數(shù)。

3、學會用正負數(shù)表示實際問題中具有相反意義的量。

重點:正負數(shù)的概念

難點:負數(shù)的概念

投影片、實物投影儀

(一)引入

生:自然數(shù)

師:為了表示“沒有”,又引入了一個什么數(shù)?

生:自然數(shù)0

師:當測量和計算的結果不是整數(shù)時,又引進了什么數(shù)?

生:分數(shù)(小數(shù))

師:可見數(shù)的概念是隨著生產和生活的需要而不斷發(fā)展的。請同學們想一想,在現(xiàn)實生活中是否還存在著別類型的數(shù)呢?如吐魯番盆地最低處低于海平面155米,世界最高峰珠穆朗瑪高出海平面8848.13米,我市某天最高氣溫是零上8攝氏度。

請學生用數(shù)表示這些量,遭遇表示困難。

(二)新課教學

1、相反意義的量

師:在現(xiàn)實生活中,我們常常遇到一些具有相反意義的量,比如:(投影片顯示)

(1)汽車向東行駛2.5千米和向西行駛1.5千米;

(2)氣溫從零上6攝氏度下降到零下6攝氏度;

(3)風箏上升10米或下降5米。

引導學生明確具有相反意義的量的特征:(1)有兩個量(2)有相反的意義

請學生舉出一些相反意義的量的實例。

教師歸結:相反意義中的一些常用詞有:盈利與虧損,存入與支出,增加與減少,運進與運出,上升與下降等。

2、正數(shù)與負數(shù)

師:用小學里學過的數(shù)能表示這些具有相反意義的量嗎?如何來表示具有相反意義的量呢?

由師生討論后得出:我們把一種意義的量規(guī)定為正的,用“+”(讀作正)號來表示,同時把另一種與它相反意義的量規(guī)定為負的,用“-”(讀作負)號來表示。

師:例如,如果零上6℃記作+6℃(讀作正6攝氏度),那么零下6℃記作-6℃(讀作負6攝氏度),請同學們用同樣的方法表示(1)、(2)兩題。

生:(1)如果向東行駛2.5千米記作+2.5千米(讀作正2.5千米),那么向西行駛1.5千米記作-1.5千米(讀作負1.5千米);(2)如果上升10米記作+10米(讀作正10米),那么下降5米記作-5米(讀作負5米)。

生:(討論后得出)不能。

師:(以溫度計為例)溫度計中的0不是表示沒有溫度,它通常表示水結成冰時的溫度,是零上溫度與零下溫度的分界點,因此得出:零既不是正數(shù)也不是負數(shù)。

(三)、練習

1、學生完成課本第4頁練習1,2,3

2、補充練習

(1)在-2,+2.5,0,,-0.35,11中,正數(shù)是,負數(shù)是;

(3)歐洲人以地面一層記為0,那么1樓、2樓、3樓……就表示為0,1,2……那么地下第二層表示為。

(四)小結

1、引入負數(shù)可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數(shù)表示,那么另一種量可以用負數(shù)表示。

2、在表示具有相反意義的量時,把哪一種意義的量規(guī)定為正,可根據(jù)實際情況決定。

3、要特別注意零既不是正數(shù)也不是負數(shù),建立正負數(shù)概念后,當考慮一個數(shù)時,一定要考慮它的符號,這與小學里學過的數(shù)有很大的區(qū)別。

(五)作業(yè)

見作業(yè)1.1節(jié)作業(yè)。

七年級數(shù)學方案設計題篇十一

知識與能力:

1、敦煌藝術由石窟建筑、彩塑、壁畫共同組成的藝術寶庫。

2、敦煌彩塑和壁畫藝術是人類四大文明交匯的產物,是中外文化交流的見證。

3、對石窟藝術幾個主要時期彩塑及壁畫的特點有所了解。

4、對佛教傳入我國及四大洞窟藝術概況有初步的認識。過程與方法:

1、通過講解、視頻、討論的教學方式使學生基本了解佛教的傳入與敦煌石窟的興建過程。

2、能對敦煌歷史上各個時期的彩塑與壁畫的形象與藝術效果進行分析。

情感與態(tài)度、價值觀:

1、了解敦煌莫高窟彩塑與壁畫藝術的偉大成就。

2、了解藏經(jīng)洞的發(fā)現(xiàn)與敦煌文物的散失過程,汲取歷史教訓,體會到保護民族文化遺產的使命感。

分析敦煌莫高窟彩塑和壁畫的主要藝術特色。

對不同時期莫高窟佛教藝術與時代之間的聯(lián)系,佛教的相關知識。

(一)、播放《九色鹿》動畫片

穩(wěn)定學生情緒,逐步導向課題內容。針對學生的年齡特點,提高他們的興趣,營造好的課堂氛圍。

(二)、導入新課

1、提問:同學們看過這部動畫片嗎?

2、你知道這部片子中的故事是來自哪里?

3、播放《九色鹿本生》視頻。

《九色鹿》。根據(jù)敦煌莫高窟佛教壁畫故事改編的。教導人們要誠信、向善。學生談對敦煌的了解。壁畫,彩塑、藏經(jīng)洞、王道士。學生的回答不足的地方教師予以補充。

4、敦煌最有名的是什么?

(三)、敦煌的歷史

1、板書:《敦煌莫高窟——石窟藝術的寶庫》引用佛教的術語,我們今天就來了解敦煌的'前世、今生。

2、結合ppt課件展示

3、板書:敦煌的地理位置

請同學們觀看這幅《絲綢之路》地圖為例講述絲綢之路與敦煌莫高窟的關系。使學生了解敦煌特殊的地理位置和石窟藝術產生的背景之相關知識,建立歷史大坐標,把政治、經(jīng)濟、軍事、文化、宗教等知識點相關聯(lián),更好地理解敦煌藝術產生的歷史必然性。

學生利用已有的歷史常識講解絲綢之路與敦煌莫高窟的關系。學生觀看視頻了解相關知識。

?。ㄟx擇敦煌藝術中比較有鮮明時代特點,故事性、趣味性較強的故事,是學生易于比較易于接受。)

1、板書:莫高窟彩塑藝術優(yōu)秀作品賞析(ppt)

2、板書:莫高窟壁畫藝術優(yōu)秀作品賞析

(承上啟下,引出莫高窟國寶流失的話題。)

板書:莫高窟的藏經(jīng)洞的來歷:

請學生講述藏經(jīng)洞的發(fā)現(xiàn)過程與被盜經(jīng)過。

從對雕塑、壁畫藝術的欣賞,引申到對當時社會歷史,文化的了解,對宗教文化的了解;同時通過對敦煌石窟藏經(jīng)洞遭遇國外所謂探險家的掠奪,致使大批國寶四處流散的事實,激發(fā)學生的愛國主義熱情,懂得藝術珍品的價值。

1、四大洞窟簡介:(ppt圖示)

(了解中國石窟藝術最有代表性的四大石窟不僅增加了對石窟藝術的了解更有利于學生們對比觀察研究我國各地石窟藝術的不同藝術特色)。

 

七年級數(shù)學方案設計題篇十二

1.使學生掌握有理數(shù)減法法則并熟練地進行有理數(shù)減法運算;

2.培養(yǎng)學生觀察、分析、歸納及運算能力。

有理數(shù)減法法則。

有理數(shù)的減法轉化為加法時符號的改變。

電腦、投影儀

一、從學生原有認知結構提出問題

二、師生共同研究有理數(shù)減法法則

問題1(1)4-(-3)=______;(2)4+(+3)=______.

教師引導學生發(fā)現(xiàn):兩式的.結果相同,即4-(-3)=4+(+3).

思考:減法可以轉化成加法運算.但是,這是否具有一般性?

歸納出有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù).

強調運用時注意“兩變”:一是減法變?yōu)榧臃?;二是減數(shù)變?yōu)槠湎喾磾?shù).

三、運用舉例變式練習

例1計算:(1)9-(-5);(2)0-8.(3)(-3)-1;(4)(-5)-0(5)(-3)-[6-(-2)];(6)15-(6-9)

例3p63例3

例415℃比5℃高多少?15℃比-5℃高多少?

(5)0-6;(6)6-0;(7)0-(-6);(8)(-6)-0.

4.當a=11,b=-5,c=-3時,求下列代數(shù)式的值:

(1)a-c;(2)b-c;(3)a-b-c;(4)c-a-b.

四、反思小結

1.由于把減數(shù)變?yōu)樗南喾磾?shù),從而減法轉化為加法.有理數(shù)的加法和減法,當引進負數(shù)后就可以統(tǒng)一用加法來解決。

2.不論減數(shù)是正數(shù)、負數(shù)或是零,都符合有理數(shù)減法法則.在使用法則時,注意被減數(shù)是永不變的。習題2.6知識技能1、3、4題。

本節(jié)課內容較為簡單,學生掌握良好,課上反應熱烈。

將本文的word文檔下載到電腦,方便收藏和打印

推薦度:

點擊下載文檔

搜索文檔

七年級數(shù)學方案設計題篇十三

比較正數(shù)和負數(shù)的大小。

1、借助數(shù)軸初步學會比較正數(shù)、0和負數(shù)之間的大小。

2、初步體會數(shù)軸上數(shù)的順序,完成對數(shù)的結構的初步構建。

負數(shù)與負數(shù)的比較。

一、復習:

1、讀數(shù),指出哪些是正數(shù),哪些是負數(shù)?

—85。6+0。9—+0—82

2、如果+20%表示增加20%,那么—6%表示。

二、新授:

(一)教學例3:

1、怎樣在數(shù)軸上表示數(shù)?(1、2、3、4、5、6、7)

2、出示例3:

(1)提問你能在一條直線上表示他們運動后的情況嗎?

(2)讓學生確定好起點(原點)、方向和單位長度。學生畫完交流。

(3)教師在黑板上話好直線,在相應的點上用小圖片代表大樹和學生,在問怎樣用數(shù)表示這些學生和大樹的相對位置關系?(讓學生把直線上的點和正負數(shù)對應起來。

(4)學生回答,教師在相應點的下方標出對應的數(shù),再讓學生說說直線上其他幾個點代表的數(shù),讓學生對數(shù)軸上的點表示的正負數(shù)形成相對完整的認識。

(5)總結:我們可以像這樣在直線上表示出正數(shù)、0和負數(shù),像這樣的直線我們叫數(shù)軸。

(6)引導學生觀察:

a、從0起往右依次是?從0起往左依次是?你發(fā)現(xiàn)什么規(guī)律?

(7)練習:做一做的第1、2題。

(二)教學例4:

1、出示未來一周的天氣情況,讓學生把未來一周每天的最低氣溫在數(shù)軸上表示出來,并比較他們的大小。

2、學生交流比較的方法。

3、通過小精靈的話,引出利用數(shù)軸比較數(shù)的大小規(guī)定:在數(shù)軸上,從左到右的順序就是數(shù)從小到大的順序。

4、再讓學生進行比較,利用學生的具體比較來說明“—8在—6的左邊,所以—8〈—6”

5、再通過讓另一學生比較“8〉6,但是—8〈—6”,使學生初步體會兩負數(shù)比較大小時,絕對值大的負數(shù)反而小。

6、總結:負數(shù)比0小,所有的負數(shù)都在0的'左邊,也就是負數(shù)都比0小,而正數(shù)比0大,負數(shù)比正數(shù)小。

7、練習:做一做第3題。

三、鞏固練習

1、練習一第4、5題。

2、練習一第6題。

3、某日傍晚,黃山的氣溫由上午的零上2攝氏度下降了7攝氏度,這天傍晚黃山的氣溫是攝氏度。

四、全課總結

(1)在數(shù)軸上,從左到右的順序就是數(shù)從小到大的順序。

(2)負數(shù)比0小,正數(shù)比0大,負數(shù)比正數(shù)小。

第二課教學反思:

許多教師認為“負數(shù)”這個單元的內容很簡單,不需要花過多精力學生就能基本能掌握??扇绻钊脬@研教材,其實會發(fā)現(xiàn)還有不少值得挖掘的內容可以向學生補充介紹。

例3——兩個不同層面的拓展:

1、在數(shù)軸上表示數(shù)要求的拓展。

數(shù)軸除了可以表示整數(shù),還可以表示小數(shù)和分數(shù)。教材例3只表示出正、負整數(shù),最后一個自然段要求學生表示出—1。5。建議此處教師補充要求學生表示出“+1。5”的位置,因為這樣便于對比發(fā)現(xiàn)兩個數(shù)離原點的距離相等,只不過分別在0的左右兩端,滲透+1。5和—1。5絕對值相等。同時,還應補充在數(shù)軸上表示分數(shù),如—1/3、—3/2等,提升學生數(shù)形結合能力,為例4的教學打下夯實的基礎。

2、滲透負數(shù)加減法

教材中所呈現(xiàn)的數(shù)軸可以充分加以應用,如可補充提問:在“—2”位置的同學如果接著向西走1米,將會到達數(shù)軸什么位置?如果是向東走1米呢?如果他從“—2”的位置要走到“—4”,應該如何運動?如果他想從“—2”的位置到達“+3”,又該如何運動?其實,這些問題就是解決—2—1;2+1;—4—(—2);3—(—2)等于幾,這樣的設計對于學生初中進一步學習代數(shù)知識是極為有利的。

例4——薄書讀厚、厚書讀薄。

薄書讀厚——負數(shù)大小比較的三種類型(正數(shù)和負數(shù)、0和負數(shù)、負數(shù)和負數(shù))

例4教材只提出一個大的問題“比較它們的大小”,這些數(shù)的大小比較可以分為幾類?每類比較又有什么方法,教材則沒有明確標明。所以教學中,當學生明確數(shù)軸從左到右的順序就是數(shù)從小到大的順序基礎上,我還挖掘了三種不同類型,一一請學生介紹比較方法,將薄書讀厚。

將厚書讀薄——無論哪種類型,比較方法萬變不離其宗。

無論哪種比較方法,最終都可回歸到“數(shù)軸上左邊的數(shù)比右邊的數(shù)小。”即使有學生在比較—8和—6大小時是用“86,所以—8—6”來闡述其原因,其實也與數(shù)軸相關。因為當絕對值越大時,表示離原點的距離越遠,那么在數(shù)軸上表示的點也就在原點左邊越遠,數(shù)也就越小。所以,抓住精髓就能以不變應萬變。

在此,我還補充了—3/7和—2/5比較大小的練習,提升學生靈活應用知識解決實際問題的能力。

七年級數(shù)學方案設計題篇十四

1.使學生在了解代數(shù)式概念的基礎上,能把簡單的與數(shù)量有關的詞語用代數(shù)式表示出來;

2.初步培養(yǎng)學生觀察、分析和抽象思維的能力.

列代數(shù)式.

弄清楚語句中各數(shù)量的意義及相互關系.

1?用代數(shù)式表示乙數(shù):(投影)

(1)乙數(shù)比x大5;(x+5)

(2)乙數(shù)比x的2倍小3;(2x-3)

(3)乙數(shù)比x的倒數(shù)小7;(-7)

(4)乙數(shù)比x大16%?((1+16%)x)

(應用引導的方法啟發(fā)學生解答本題)

例1用代數(shù)式表示乙數(shù):

(1)乙數(shù)比甲數(shù)大5;(2)乙數(shù)比甲數(shù)的2倍小3;

(3)乙數(shù)比甲數(shù)的倒數(shù)小7;(4)乙數(shù)比甲數(shù)大16%?

解:設甲數(shù)為x,則乙數(shù)的代數(shù)式為

(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x?

(本題應由學生口答,教師板書完成)

最后,教師需指出:第4小題的答案也可寫成x+16%x?

例2用代數(shù)式表示:

(1)甲乙兩數(shù)和的2倍;

(2)甲數(shù)的與乙數(shù)的的差;

(3)甲乙兩數(shù)的平方和;

(4)甲乙兩數(shù)的和與甲乙兩數(shù)的差的積;

(5)乙甲兩數(shù)之和與乙甲兩數(shù)的差的積?

分析:本題應首先把甲乙兩數(shù)具體設出來,然后依條件寫出代數(shù)式?

解:設甲數(shù)為a,乙數(shù)為b,則

(1)2(a+b);(2)a-b;(3)a2+b2;

(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)?

(本題應由學生口答,教師板書完成)

例3用代數(shù)式表示:

(1)被3整除得n的數(shù);

(2)被5除商m余2的數(shù)?

分析本題時,可提出以下問題:

(1)被3整除得2的數(shù)是幾?被3整除得3的數(shù)是幾?被3整除得n的數(shù)如何表示?

(2)被5除商1余2的數(shù)是幾?如何表示這個數(shù)?商2余2的數(shù)呢?商m余2的數(shù)呢?

解:(1)3n;(2)5m+2?

(這個例子直接為以后讓學生用代數(shù)式表示任意一個偶數(shù)或奇數(shù)做準備)?

例4設字母a表示一個數(shù),用代數(shù)式表示:

(1)這個數(shù)與5的和的3倍;(2)這個數(shù)與1的差的;

(3)這個數(shù)的5倍與7的和的一半;(4)這個數(shù)的平方與這個數(shù)的的和?

解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a?

(通過本例的講解,應使學生逐步掌握把較復雜的數(shù)量關系分解為幾個基本的數(shù)量關系,培養(yǎng)學生分析問題和解決問題的能力?)

例5設教室里座位的行數(shù)是m,用代數(shù)式表示:

(1)教室里每行的座位數(shù)比座位的行數(shù)多6,教室里總共有多少個座位?

(2)教室里座位的行數(shù)是每行座位數(shù)的,教室里總共有多少個座位?

分析本題時,可提出如下問題:

(1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

(2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

(3)通過上述問題的解答結果,你能找出其中的規(guī)律嗎?(總座位數(shù)=每行的座位數(shù)×行數(shù))

解:(1)m(m+6)個;(2)(m)m個?

1?設甲數(shù)為x,乙數(shù)為y,用代數(shù)式表示:(投影)

(1)甲數(shù)的2倍,與乙數(shù)的的'和;(2)甲數(shù)的與乙數(shù)的3倍的差;

(3)甲乙兩數(shù)之積與甲乙兩數(shù)之和的差;(4)甲乙的差除以甲乙兩數(shù)的積的商?

2?用代數(shù)式表示:

(1)比a與b的和小3的數(shù);(2)比a與b的差的一半大1的數(shù);

(3)比a除以b的商的3倍大8的數(shù);(4)比a除b的商的3倍大8的數(shù)?

3?用代數(shù)式表示:

(1)與a-1的和是25的數(shù);(2)與2b+1的積是9的數(shù);

(3)與2x2的差是x的數(shù);(4)除以(y+3)的商是y的數(shù)?

〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)?〕

首先,請學生回答:

1?怎樣列代數(shù)式?2?列代數(shù)式的關鍵是什么?

其次,教師在學生回答上述問題的基礎上,指出:對于較復雜的數(shù)量關系,應按下述規(guī)律列代數(shù)式:

(1)列代數(shù)式,要以不改變原題敘述的數(shù)量關系為準(代數(shù)式的形式不唯一);

(2)要善于把較復雜的數(shù)量關系,分解成幾個基本的數(shù)量關系;

1?用代數(shù)式表示:

(1)體校里男生人數(shù)占學生總數(shù)的60%,女生人數(shù)是a,學生總數(shù)是多少?

2?已知一個長方形的周長是24厘米,一邊是a厘米,

求:(1)這個長方形另一邊的長;(2)這個長方形的面積.

學法探究

分析:先深入研究一下比較簡單的情形,比如三個圓環(huán)接在一起的情形,看有沒有規(guī)律.

當圓環(huán)為三個的時候,如圖:

此時鏈長為,這個結論可以繼續(xù)推廣到四個環(huán)、五個環(huán)、…直至100個環(huán),答案不難得到:

解:

=99a+b(cm)

【本文地址:http://www.mlvmservice.com/zuowen/3882711.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔