數(shù)學(xué)中考知識(shí)點(diǎn)占比 數(shù)學(xué)中考知識(shí)點(diǎn)歸納公式(匯總六篇)

格式:DOC 上傳日期:2023-06-06 17:00:10
數(shù)學(xué)中考知識(shí)點(diǎn)占比 數(shù)學(xué)中考知識(shí)點(diǎn)歸納公式(匯總六篇)
時(shí)間:2023-06-06 17:00:10     小編:zdfb

在日常的學(xué)習(xí)、工作、生活中,肯定對(duì)各類范文都很熟悉吧。范文書寫有哪些要求呢?我們?cè)鯓硬拍軐懞靡黄段哪兀窟@里我整理了一些優(yōu)秀的范文,希望對(duì)大家有所幫助,下面我們就來(lái)了解一下吧。

數(shù)學(xué)知識(shí)點(diǎn)占比數(shù)學(xué)知識(shí)點(diǎn)歸納公式篇一

其次,對(duì)其他的整個(gè)知識(shí)體系的版塊有一個(gè)基本認(rèn)識(shí),可分為以下板塊:函數(shù)的基本題型、函數(shù)與導(dǎo)數(shù)、三角函數(shù)相關(guān)內(nèi)容、平面向量和空間向量、立體幾何、數(shù)列、不等式、解析幾何初步、圓錐曲線、統(tǒng)計(jì)與概率,選修內(nèi)容不同省份安排不一樣:極坐標(biāo)、不等式、平面幾何等。

知道了整個(gè)知識(shí)體系框架,就可以考慮在這一個(gè)學(xué)期里把哪些板塊安排在哪一個(gè)月、哪一周,同時(shí)參考老師帶領(lǐng)復(fù)習(xí)的進(jìn)度,互為補(bǔ)充。每一周上課前,可以把老師上一周帶動(dòng)復(fù)習(xí)的內(nèi)容再給自己計(jì)劃一下,計(jì)劃這一周在以前老師講過(guò)的基礎(chǔ)上再給自己添加哪些內(nèi)容,無(wú)論是做新題,還是整理做過(guò)的題型來(lái)尋找考試方向,都要提前安排好,六天(可能高三時(shí)期周六都要拿出一些時(shí)間給學(xué)習(xí)吧)時(shí)間每天給自己規(guī)定額外的幾個(gè)小時(shí)的自習(xí)時(shí)間來(lái)完成自己的數(shù)學(xué)計(jì)劃。比如說(shuō),老師上周帶我們復(fù)習(xí)了三角函數(shù)中與解三角形有關(guān)的內(nèi)容,如果發(fā)現(xiàn)自己這些方面還有一些不會(huì)做的題或者不熟練的方法或者題型,就在資料上尋找相關(guān)的題目來(lái)試試,并且按時(shí)總結(jié),找出這些題型的共同點(diǎn),摸索高考命題方式。如果覺(jué)得自己在解三角形這些方面比較熟練了,就可以考慮趕在老師前面,把老師接下來(lái)要帶著復(fù)習(xí)的方面先復(fù)習(xí)一遍??傊褪且箖蓚€(gè)進(jìn)度互為補(bǔ)充,這樣才會(huì)一直有一個(gè)合理的順序,不至于到了某一個(gè)星期就覺(jué)得亂了。最后的結(jié)果就是,別人是復(fù)習(xí)了一輪,而自己在同樣的時(shí)間可以使自己的知識(shí)掌握更加牢固。

另一方面,給自己準(zhǔn)備幾個(gè)筆記本。對(duì)于理科生來(lái)說(shuō),尤其又是數(shù)學(xué)這種學(xué)科,在筆記本上整理總結(jié)題型是很有用的。一輪復(fù)習(xí)做到的一些錯(cuò)題可能是很有代表性的,自己要學(xué)會(huì)分章節(jié)把錯(cuò)題或者自己覺(jué)得經(jīng)典的題目記錄下來(lái),這些可能就是高考的某一些思路。不過(guò),這些經(jīng)典的題目并不一定是那些怪題偏題,高考范圍內(nèi)的數(shù)學(xué)還是比較中規(guī)中矩的,除了壓軸題會(huì)有一些特殊的思路或者靈感之外,大多數(shù)題目都是常規(guī)題型。

同時(shí),說(shuō)到做題,一輪復(fù)習(xí)是可以嘗試開始做一些綜合題或者高考題的??蛇x擇本省前幾年的題目來(lái)做,不必求數(shù)量,嘗試一下高考題即可,建議周末的時(shí)候找兩個(gè)小時(shí)的時(shí)間按照高考的感覺(jué)來(lái)做一套題。記住,不求做太多,只是看一看高考題的難度和綜合性,給自己一個(gè)參考。

還有一個(gè)小小的建議,可以為自己準(zhǔn)備一個(gè)小本子,用來(lái)寫一些任務(wù)。因?yàn)楦呷刻於紩?huì)有各種繁雜的學(xué)習(xí)任務(wù),可能有時(shí)候自己一時(shí)會(huì)忙得忘了某個(gè)任務(wù),直到第二天老師提起來(lái)的時(shí)候才想起,哇,我這個(gè)作業(yè)竟然沒(méi)做。所以每次出現(xiàn)任務(wù)時(shí)就記錄下來(lái),完成之后就劃去,既可以作為任務(wù)提醒,也可以作為任務(wù)計(jì)劃小冊(cè)子。有時(shí)候在高三的時(shí)候會(huì)覺(jué)得自己有很多任務(wù)但是又不知道從什么開始,這是一種很常見(jiàn)但是必須要改變的現(xiàn)象,所以有一個(gè)小本子就會(huì)立刻知道自己要做什么,會(huì)有效利用高三的時(shí)間。

最后,在給學(xué)弟學(xué)妹帶來(lái)一點(diǎn)感性一點(diǎn)的內(nèi)容吧。高三是一場(chǎng)持久戰(zhàn),當(dāng)你走過(guò)來(lái)了,才發(fā)現(xiàn)高三真的好快。同時(shí),你會(huì)感激高三這一段奮斗的時(shí)光,十二年寒窗苦讀這是第一次在學(xué)習(xí)上心無(wú)旁騖、花如此重大的精力沖刺一個(gè)目標(biāo),最后無(wú)論如何,不要讓自己高考之后后悔。

數(shù)學(xué)知識(shí)點(diǎn)占比數(shù)學(xué)知識(shí)點(diǎn)歸納公式篇二

【軌跡方程】就是與幾何軌跡對(duì)應(yīng)的代數(shù)描述。

⒈建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)m的坐標(biāo);

⒉寫出點(diǎn)m的集合;

⒊列出方程=0;

⒋化簡(jiǎn)方程為最簡(jiǎn)形式;

⒌檢驗(yàn)。

⒈直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

⒉定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

⒊相關(guān)點(diǎn)法:用動(dòng)點(diǎn)q的坐標(biāo)x,y表示相關(guān)點(diǎn)p的坐標(biāo)x0、y0,然后代入點(diǎn)p的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。

⒋參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

⒌交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。

直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟

①建系——建立適當(dāng)?shù)淖鴺?biāo)系;

②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)p(x,y);

③列式——列出動(dòng)點(diǎn)p所滿足的關(guān)系式;

⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。

三角函數(shù)。注意歸一公式、誘導(dǎo)公式的正確性

立體幾何題1.證明線面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單;2.求異面直線所成的角、線面角、二面角、存在性問(wèn)題、幾何體的高、表面積、體積等問(wèn)題時(shí),要建系;3.注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。

數(shù)列是高中數(shù)學(xué)的重要內(nèi)容,又是學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。高考對(duì)本章的考查比較全面,等差數(shù)列,等比數(shù)列的考查每年都不會(huì)遺漏。有關(guān)數(shù)列的試題經(jīng)常是綜合題,經(jīng)常把數(shù)列知識(shí)和指數(shù)函數(shù)、對(duì)數(shù)函數(shù)和不等式的知識(shí)綜合起來(lái),試題也常把等差數(shù)列、等比數(shù)列,求極限和數(shù)學(xué)歸納法綜合在一起。

探索性問(wèn)題是高考的熱點(diǎn),常在數(shù)列解答題中出現(xiàn)。本章中還蘊(yùn)含著豐富的數(shù)學(xué)思想,在主觀題中著重考查函數(shù)與方程、轉(zhuǎn)化與化歸、分類討論等重要思想,以及配方法、換元法、待定系數(shù)法等基本數(shù)學(xué)方法。

近幾年來(lái),高考關(guān)于數(shù)列方面的命題主要有以下三個(gè)方面;

(1)數(shù)列本身的有關(guān)知識(shí),其中有等差數(shù)列與等比數(shù)列的概念、性質(zhì)、通項(xiàng)公式及求和公式。

(2)數(shù)列與其它知識(shí)的結(jié)合,其中有數(shù)列與函數(shù)、方程、不等式、三角、幾何的結(jié)合。

(3)數(shù)列的應(yīng)用問(wèn)題,其中主要是以增長(zhǎng)率問(wèn)題為主。試題的難度有三個(gè)層次,小題大都以基礎(chǔ)題為主,解答題大都以基礎(chǔ)題和中檔題為主,只有個(gè)別地方用數(shù)列與幾何的綜合與函數(shù)、不等式的綜合作為最后一題難度較大。

進(jìn)一步培養(yǎng)學(xué)生閱讀理解和創(chuàng)新能力,綜合運(yùn)用數(shù)學(xué)思想方法分析問(wèn)題與解決問(wèn)題的能力。

②與底面平行的截面是與底面對(duì)應(yīng)邊互相平行的全等多邊形;

③過(guò)棱柱不相鄰的兩條側(cè)棱的截面都是平行四邊形。

棱柱:

①在同一平面內(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。垂直一定會(huì)出現(xiàn)90°。

②連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。

簡(jiǎn)單說(shuō)成:垂線段最短。

③點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度,叫做點(diǎn)到直線的距離。

兩條直線相交成四個(gè)角,如果有一個(gè)角是直角,那么稱這兩條直線互相垂直,其中的一條直線叫做另一條直線的垂線,它們的交點(diǎn)叫做垂足?!读x務(wù)教育課程實(shí)驗(yàn)教科書上海版數(shù)學(xué)四年級(jí)下冊(cè)》(20xx年審定新版)

兩條直線成直角,那么這兩條直線互相垂直。

數(shù)學(xué)知識(shí)點(diǎn)占比數(shù)學(xué)知識(shí)點(diǎn)歸納公式篇三

(一)導(dǎo)數(shù)第一定義

(二)導(dǎo)數(shù)第二定義

(三)導(dǎo)函數(shù)與導(dǎo)數(shù)

如果函數(shù)y = f(x)在開區(qū)間i內(nèi)每一點(diǎn)都可導(dǎo),就稱函數(shù)f(x)在區(qū)間i內(nèi)可導(dǎo)。這時(shí)函數(shù)y = f(x)對(duì)于區(qū)間i內(nèi)的每一個(gè)確定的x值,都對(duì)應(yīng)著一個(gè)確定的導(dǎo)數(shù),這就構(gòu)成一個(gè)新的函數(shù),稱這個(gè)函數(shù)為原來(lái)函數(shù)y = f(x)的導(dǎo)函數(shù),記作y,f(x),dy/dx,df(x)/dx。導(dǎo)函數(shù)簡(jiǎn)稱導(dǎo)數(shù)。

(四)單調(diào)性及其應(yīng)用

1。利用導(dǎo)數(shù)研究多項(xiàng)式函數(shù)單調(diào)性的一般步驟

(1)求f¢(x)

2。用導(dǎo)數(shù)求多項(xiàng)式函數(shù)單調(diào)區(qū)間的一般步驟

(1)求f¢(x)

高中數(shù)學(xué)包含5本必修、2本選修,(理)包含5本必修、3本選修,每學(xué)期學(xué)習(xí)兩本書。

必修一:1、集合與函數(shù)的概念(這部分知識(shí)抽象,較難理解)2、基本的初等函數(shù)(指數(shù)函數(shù)、對(duì)數(shù)函數(shù))3、函數(shù)的性質(zhì)及應(yīng)用(比較抽象,較難理解)

2、直線方程:高考時(shí)不單獨(dú)命題,易和圓錐曲線結(jié)合命題

3、圓方程:

必修五:1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學(xué)占到13分左右2、數(shù)列:高考必考,17———22分3、不等式:(線性規(guī)劃,聽課時(shí)易理解,但做題較復(fù)雜,應(yīng)掌握技巧。高考必考5分)不等式不單獨(dú)命題,一般和函數(shù)結(jié)合求最值、解集。

一、集合與簡(jiǎn)易邏輯

1、集合的元素具有確定性、無(wú)序性和互異性。

2、對(duì)集合,時(shí),必須注意到“極端”情況:或;求集合的子集時(shí)是否注意到是任何集合的子集、是任何非空集合的真子集。

3、判斷命題的真假關(guān)鍵是“抓住關(guān)聯(lián)字詞”;注意:“不‘或’即‘且’,不‘且’即‘或’”。

4、“或命題”的真假特點(diǎn)是“一真即真,要假全假”;“且命題”的真假特點(diǎn)是“一假即假,要真全真”;“非命題”的真假特點(diǎn)是“一真一假”。

5、四種命題中“‘逆’者‘交換’也”、“‘否’者‘否定’也”。

原命題等價(jià)于逆否命題,但原命題與逆命題、否命題都不等價(jià)。反證法分為三步:假設(shè)、推矛、得果。

6、充要條件

二、函數(shù)

1、指數(shù)式、對(duì)數(shù)式,

2、(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一個(gè)集合中的元素必有像,但第二個(gè)集合中的元素不一定有原像(中元素的像有且僅有下一個(gè),但中元素的原像可能沒(méi)有,也可任意個(gè));函數(shù)是“非空數(shù)集上的映射”,其中“值域是映射中像集的子集”。

(2)函數(shù)圖像與軸垂線至多一個(gè)公共點(diǎn),但與軸垂線的公共點(diǎn)可能沒(méi)有,也可任意個(gè)。

(3)函數(shù)圖像一定是坐標(biāo)系中的曲線,但坐標(biāo)系中的曲線不一定能成為函數(shù)圖像。

3、單調(diào)性和奇偶性

(1)奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上若有單調(diào)性,則其單調(diào)性完全相同。

偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上若有單調(diào)性,則其單調(diào)性恰恰相反。

(2)復(fù)合函數(shù)的單調(diào)性特點(diǎn)是:“同性得增,增必同性;異性得減,減必異性”。

復(fù)合函數(shù)的奇偶性特點(diǎn)是:“內(nèi)偶則偶,內(nèi)奇同外”。復(fù)合函數(shù)要考慮定義域的變化。(即復(fù)合有意義)

4、對(duì)稱性與周期性(以下結(jié)論要消化吸收,不可強(qiáng)記)

(1)函數(shù)與函數(shù)的圖像關(guān)于直線(軸)對(duì)稱。

推廣一:如果函數(shù)對(duì)于一切,都有成立,那么的圖像關(guān)于直線(由“和的一半確定”)對(duì)稱。

推廣二:函數(shù),的圖像關(guān)于直線對(duì)稱。

(2)函數(shù)與函數(shù)的圖像關(guān)于直線(軸)對(duì)稱。

(3)函數(shù)與函數(shù)的圖像關(guān)于坐標(biāo)原點(diǎn)中心對(duì)稱。

三、數(shù)列

2、等差數(shù)列中

(1)等差數(shù)列公差的取值與等差數(shù)列的單調(diào)性。

(2)也成等差數(shù)列。

(3)兩等差數(shù)列對(duì)應(yīng)項(xiàng)和(差)組成的新數(shù)列仍成等差數(shù)列。

(4)仍成等差數(shù)列。

(6)有限等差數(shù)列中,奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和的存在必然聯(lián)系,由數(shù)列的總項(xiàng)數(shù)是偶數(shù)還是奇數(shù)決定。若總項(xiàng)數(shù)為偶數(shù),則“偶數(shù)項(xiàng)和“奇數(shù)項(xiàng)和=總項(xiàng)數(shù)的一半與其公差的積;若總項(xiàng)數(shù)為奇數(shù),則“奇數(shù)項(xiàng)和—偶數(shù)項(xiàng)和”=此數(shù)列的中項(xiàng)。

(7)兩數(shù)的等差中項(xiàng)惟一存在。在遇到三數(shù)或四數(shù)成等差數(shù)列時(shí),??紤]選用“中項(xiàng)關(guān)系”轉(zhuǎn)化求解。

(8)判定數(shù)列是否是等差數(shù)列的主要方法有:定義法、中項(xiàng)法、通項(xiàng)法、和式法、圖像法(也就是說(shuō)數(shù)列是等差數(shù)列的充要條件主要有這五種形式)。

3、等比數(shù)列中:

(1)等比數(shù)列的符號(hào)特征(全正或全負(fù)或一正一負(fù)),等比數(shù)列的首項(xiàng)、公比與等比數(shù)列的單調(diào)性。

(2)兩等比數(shù)列對(duì)應(yīng)項(xiàng)積(商)組成的新數(shù)列仍成等比數(shù)列。

(4)有限等比數(shù)列中,奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和的存在必然聯(lián)系,由數(shù)列的總項(xiàng)數(shù)是偶數(shù)還是奇數(shù)決定。若總項(xiàng)數(shù)為偶數(shù),則“偶數(shù)項(xiàng)和”=“奇數(shù)項(xiàng)和”與“公比”的積;若總項(xiàng)數(shù)為奇數(shù),則“奇數(shù)項(xiàng)和“首項(xiàng)”加上“公比”與“偶數(shù)項(xiàng)和”積的和。

(5)并非任何兩數(shù)總有等比中項(xiàng)。僅當(dāng)實(shí)數(shù)同號(hào)時(shí),實(shí)數(shù)存在等比中項(xiàng)。對(duì)同號(hào)兩實(shí)數(shù)的等比中項(xiàng)不僅存在,而且有一對(duì)。也就是說(shuō),兩實(shí)數(shù)要么沒(méi)有等比中項(xiàng)(非同號(hào)時(shí)),如果有,必有一對(duì)(同號(hào)時(shí))。在遇到三數(shù)或四數(shù)成等差數(shù)列時(shí),常優(yōu)先考慮選用“中項(xiàng)關(guān)系”轉(zhuǎn)化求解。

(6)判定數(shù)列是否是等比數(shù)列的方法主要有:定義法、中項(xiàng)法、通項(xiàng)法、和式法(也就是說(shuō)數(shù)列是等比數(shù)列的充要條件主要有這四種形式)。

4、等差數(shù)列與等比數(shù)列的聯(lián)系

(1)如果數(shù)列成等差數(shù)列,那么數(shù)列(總有意義)必成等比數(shù)列。

(2)如果數(shù)列成等比數(shù)列,那么數(shù)列必成等差數(shù)列。

(3)如果數(shù)列既成等差數(shù)列又成等比數(shù)列,那么數(shù)列是非零常數(shù)數(shù)列;但數(shù)列是常數(shù)數(shù)列僅是數(shù)列既成等差數(shù)列又成等比數(shù)列的必要非充分條件。

(4)如果兩等差數(shù)列有公共項(xiàng),那么由他們的公共項(xiàng)順次組成的新數(shù)列也是等差數(shù)列,且新等差數(shù)列的公差是原兩等差數(shù)列公差的最小公倍數(shù)。

如果一個(gè)等差數(shù)列與一個(gè)等比數(shù)列有公共項(xiàng)順次組成新數(shù)列,那么常選用“由特殊到一般的方法”進(jìn)行研討,且以其等比數(shù)列的項(xiàng)為主,探求等比數(shù)列中那些項(xiàng)是他們的公共項(xiàng),并構(gòu)成新的數(shù)列。

5、數(shù)列求和的常用方法:

(1)公式法:①等差數(shù)列求和公式(三種形式),

②等比數(shù)列求和公式(三種形式),

(2)分組求和法:在直接運(yùn)用公式法求和有困難時(shí),常將“和式”中“同類項(xiàng)”先合并在一起,再運(yùn)用公式法求和。

(3)倒序相加法:在數(shù)列求和中,若和式中到首尾距離相等的兩項(xiàng)和有其共性或數(shù)列的通項(xiàng)與組合數(shù)相關(guān)聯(lián),則常可考慮選用倒序相加法,發(fā)揮其共性的作用求和(這也是等差數(shù)列前和公式的推導(dǎo)方法)。

(4)錯(cuò)位相減法:如果數(shù)列的通項(xiàng)是由一個(gè)等差數(shù)列的通項(xiàng)與一個(gè)等比數(shù)列的通項(xiàng)相乘構(gòu)成,那么常選用錯(cuò)位相減法,將其和轉(zhuǎn)化為“一個(gè)新的的等比數(shù)列的和”求解(注意:一般錯(cuò)位相減后,其中“新等比數(shù)列的項(xiàng)數(shù)是原數(shù)列的項(xiàng)數(shù)減一的差”!)(這也是等比數(shù)列前和公式的推導(dǎo)方法之一)。

(6)通項(xiàng)轉(zhuǎn)換法。

四、三角函數(shù)

1、終邊與終邊相同(的終邊在終邊所在射線上)。

終邊與終邊共線(的終邊在終邊所在直線上)。

終邊與終邊關(guān)于軸對(duì)稱

終邊與終邊關(guān)于軸對(duì)稱

終邊與終邊關(guān)于原點(diǎn)對(duì)稱

一般地:終邊與終邊關(guān)于角的終邊對(duì)稱。

與的終邊關(guān)系由“兩等分各象限、一二三四”確定。

2、弧長(zhǎng)公式:,扇形面積公式:1弧度(1rad)。

3、三角函數(shù)符號(hào)特征是:一是全正、二正弦正、三是切正、四余弦正。

6、三角函數(shù)誘導(dǎo)公式的本質(zhì)是:奇變偶不變,符號(hào)看象限。

7、三角函數(shù)變換主要是:角、函數(shù)名、次數(shù)、系數(shù)(常值)的變換,其核心是“角的變換”!

角的變換主要有:已知角與特殊角的變換、已知角與目標(biāo)角的變換、角與其倍角的變換、兩角與其和差角的變換。

8、三角函數(shù)性質(zhì)、圖像及其變換:

(1)三角函數(shù)的定義域、值域、單調(diào)性、奇偶性、有界性和周期性

(2)三角函數(shù)圖像及其幾何性質(zhì):

(3)三角函數(shù)圖像的變換:兩軸方向的平移、伸縮及其向量的平移變換。

(4)三角函數(shù)圖像的作法:三角函數(shù)線法、五點(diǎn)法(五點(diǎn)橫坐標(biāo)成等差數(shù)列)和變換法。

9、三角形中的三角函數(shù):

(1)內(nèi)角和定理:三角形三角和為,任意兩角和與第三個(gè)角總互補(bǔ),任意兩半角和與第三個(gè)角的半角總互余。銳角三角形三內(nèi)角都是銳角三內(nèi)角的余弦值為正值任兩角和都是鈍角任意兩邊的平方和大于第三邊的平方。

(2)正弦定理:(r為三角形外接圓的半徑)。

(3)余弦定理:常選用余弦定理鑒定三角形的類型。

五、向量

1、向量運(yùn)算的幾何形式和坐標(biāo)形式,請(qǐng)注意:向量運(yùn)算中向量起點(diǎn)、終點(diǎn)及其坐標(biāo)的特征。

2、幾個(gè)概念:零向量、單位向量(與共線的單位向量是,平行(共線)向量(無(wú)傳遞性,是因?yàn)橛校?、相等向量(有傳遞性)、相反向量、向量垂直、以及一個(gè)向量在另一向量方向上的投影(在上的投影是)。

3、兩非零向量平行(共線)的充要條件

4、平面向量的基本定理:如果e1和e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)該平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù),使a= e1+ e2。

5、三點(diǎn)共線;

6、向量的數(shù)量積:

六、不等式

1、(1)解不等式是求不等式的解集,最后務(wù)必有集合的形式表示;不等式解集的端點(diǎn)值往往是不等式對(duì)應(yīng)方程的根或不等式有意義范圍的端點(diǎn)值。

(4)解含參不等式常分類等價(jià)轉(zhuǎn)化,必要時(shí)需分類討論。注意:按參數(shù)討論,最后按參數(shù)取值分別說(shuō)明其解集,但若按未知數(shù)討論,最后應(yīng)求并集。

2、利用重要不等式以及變式等求函數(shù)的最值時(shí),務(wù)必注意a,b(或a,b非負(fù)),且“等號(hào)成立”時(shí)的條件是積ab或和a+b其中之一應(yīng)是定值(一正二定三等四同時(shí))。

3、常用不等式有:(根據(jù)目標(biāo)不等式左右的運(yùn)算結(jié)構(gòu)選用)

a、b、c r,(當(dāng)且僅當(dāng)時(shí),取等號(hào))

5、含絕對(duì)值不等式的性質(zhì):

6、不等式的恒成立,能成立,恰成立等問(wèn)題

(1)恒成立問(wèn)題

若不等式在區(qū)間上恒成立,則等價(jià)于在區(qū)間上

若不等式在區(qū)間上恒成立,則等價(jià)于在區(qū)間上

(2)能成立問(wèn)題

(3)恰成立問(wèn)題

若不等式在區(qū)間上恰成立,則等價(jià)于不等式的解集為。

若不等式在區(qū)間上恰成立,則等價(jià)于不等式的解集為,

七、直線和圓

2、知直線縱截距,常設(shè)其方程為或;知直線橫截距,常設(shè)其方程為(直線斜率k存在時(shí),為k的倒數(shù))或知直線過(guò)點(diǎn),常設(shè)其方程為。

(2)直線在坐標(biāo)軸上的截距可正、可負(fù)、也可為0。直線兩截距相等直線的斜率為—1或直線過(guò)原點(diǎn);直線兩截距互為相反數(shù)直線的斜率為1或直線過(guò)原點(diǎn);直線兩截距絕對(duì)值相等直線的斜率為或直線過(guò)原點(diǎn)。

(3)在解析幾何中,研究?jī)蓷l直線的位置關(guān)系時(shí),有可能這兩條直線重合,而在立體幾何中一般提到的兩條直線可以理解為它們不重合。

4、線性規(guī)劃中幾個(gè)概念:約束條件、可行解、可行域、目標(biāo)函數(shù)、最優(yōu)解。

5、圓的方程:最簡(jiǎn)方程;標(biāo)準(zhǔn)方程;

(1)過(guò)圓上一點(diǎn)圓的切線方程

過(guò)圓上一點(diǎn)圓的切線方程

過(guò)圓上一點(diǎn)圓的切線方程

如果點(diǎn)在圓外,那么上述直線方程表示過(guò)點(diǎn)兩切線上兩切點(diǎn)的“切點(diǎn)弦”方程。

如果點(diǎn)在圓內(nèi),那么上述直線方程表示與圓相離且垂直于(為圓心)的直線方程,(為圓心到直線的距離)。

7、曲線與的交點(diǎn)坐標(biāo)方程組的解;

過(guò)兩圓交點(diǎn)的圓(公共弦)系為,當(dāng)且僅當(dāng)無(wú)平方項(xiàng)時(shí),為兩圓公共弦所在直線方程。

八、圓錐曲線

1、圓錐曲線的兩個(gè)定義,及其“括號(hào)”內(nèi)的限制條件,在圓錐曲線問(wèn)題中,如果涉及到其兩焦點(diǎn)(兩相異定點(diǎn)),那么將優(yōu)先選用圓錐曲線第一定義;如果涉及到其焦點(diǎn)、準(zhǔn)線(一定點(diǎn)和不過(guò)該點(diǎn)的一定直線)或離心率,那么將優(yōu)先選用圓錐曲線第二定義;涉及到焦點(diǎn)三角形的問(wèn)題,也要重視焦半徑和三角形中正余弦定理等幾何性質(zhì)的應(yīng)用。

(1)注意:①圓錐曲線第一定義與配方法的綜合運(yùn)用;

②圓錐曲線第二定義是:“點(diǎn)點(diǎn)距為分子、點(diǎn)線距為分母”,橢圓點(diǎn)點(diǎn)距除以點(diǎn)線距商是小于1的正數(shù),雙曲線點(diǎn)點(diǎn)距除以點(diǎn)線距商是大于1的正數(shù),拋物線點(diǎn)點(diǎn)距除以點(diǎn)線距商是等于1。

2、圓錐曲線的幾何性質(zhì):圓錐曲線的對(duì)稱性、圓錐曲線的范圍、圓錐曲線的特殊點(diǎn)線、圓錐曲線的變化趨勢(shì)。其中,橢圓中、雙曲線中。

重視“特征直角三角形、焦半徑的最值、焦點(diǎn)弦的最值及其‘頂點(diǎn)、焦點(diǎn)、準(zhǔn)線等相互之間與坐標(biāo)系無(wú)關(guān)的幾何性質(zhì)’”,尤其是雙曲線中焦半徑最值、焦點(diǎn)弦最值的特點(diǎn)。

①直線與圓錐曲線相交的必要條件是他們構(gòu)成的方程組有實(shí)數(shù)解,當(dāng)出現(xiàn)一元二次方程時(shí),務(wù)必“判別式≥0”,尤其是在應(yīng)用韋達(dá)定理解決問(wèn)題時(shí),必須先有“判別式≥0”。

②直線與拋物線(相交不一定交于兩點(diǎn))、雙曲線位置關(guān)系(相交的四種情況)的特殊性,應(yīng)謹(jǐn)慎處理。

④如果在一條直線上出現(xiàn)“三個(gè)或三個(gè)以上的點(diǎn)”,那么可選擇應(yīng)用“斜率”為橋梁轉(zhuǎn)化。

4、要重視常見(jiàn)的尋求曲線方程的方法(待定系數(shù)法、定義法、直譯法、代點(diǎn)法、參數(shù)法、交軌法、向量法等),以及如何利用曲線的方程討論曲線的幾何性質(zhì)(定義法、幾何法、代數(shù)法、方程函數(shù)思想、數(shù)形結(jié)合思想、分類討論思想和等價(jià)轉(zhuǎn)化思想等),這是解析幾何的兩類基本問(wèn)題,也是解析幾何的基本出發(fā)點(diǎn)。

注意:①如果問(wèn)題中涉及到平面向量知識(shí),那么應(yīng)從已知向量的特點(diǎn)出發(fā),考慮選擇向量的幾何形式進(jìn)行“摘帽子或脫靴子”轉(zhuǎn)化,還是選擇向量的代數(shù)形式進(jìn)行“摘帽子或脫靴子”轉(zhuǎn)化。

②曲線與曲線方程、軌跡與軌跡方程是兩個(gè)不同的概念,尋求軌跡或軌跡方程時(shí)應(yīng)注意軌跡上特殊點(diǎn)對(duì)軌跡的“完備性與純粹性”的影響。

③在與圓錐曲線相關(guān)的綜合題中,常借助于“平面幾何性質(zhì)”數(shù)形結(jié)合(如角平分線的雙重身份)、“方程與函數(shù)性質(zhì)”化解析幾何問(wèn)題為代數(shù)問(wèn)題、“分類討論思想”化整為零分化處理、“求值構(gòu)造等式、求變量范圍構(gòu)造不等關(guān)系”等等。

九、直線、平面、簡(jiǎn)單多面體

1、計(jì)算異面直線所成角的關(guān)鍵是平移(補(bǔ)形)轉(zhuǎn)化為兩直線的夾角計(jì)算

2、計(jì)算直線與平面所成的角關(guān)鍵是作面的垂線找射影,或向量法(直線上向量與平面法向量夾角的余角),三余弦公式(最小角定理),或先運(yùn)用等積法求點(diǎn)到直線的距離,后虛擬直角三角形求解。注:一斜線與平面上以斜足為頂點(diǎn)的角的兩邊所成角相等斜線在平面上射影為角的平分線。

3、空間平行垂直關(guān)系的證明,主要依據(jù)相關(guān)定義、公理、定理和空間向量進(jìn)行,請(qǐng)重視線面平行關(guān)系、線面垂直關(guān)系(三垂線定理及其逆定理)的橋梁作用。注意:書寫證明過(guò)程需規(guī)范。

4、直棱柱、正棱柱、平行六面體、長(zhǎng)方體、正方體、正四面體、棱錐、正棱錐關(guān)于側(cè)棱、側(cè)面、對(duì)角面、平行于底的截面的幾何體性質(zhì)。

如三棱錐中:側(cè)棱長(zhǎng)相等(側(cè)棱與底面所成角相等)頂點(diǎn)在底上射影為底面外心,側(cè)棱兩兩垂直(兩對(duì)對(duì)棱垂直)頂點(diǎn)在底上射影為底面垂心,斜高長(zhǎng)相等(側(cè)面與底面所成相等)且頂點(diǎn)在底上在底面內(nèi)頂點(diǎn)在底上射影為底面內(nèi)心。

6、多面體是由若干個(gè)多邊形圍成的幾何體。棱柱和棱錐是特殊的多面體。

正多面體的每個(gè)面都是相同邊數(shù)的正多邊形,以每個(gè)頂點(diǎn)為其一端都有相同數(shù)目的棱,這樣的多面體只有五種,即正四面體、正六面體、正八面體、正十二面體、正二十面體。

7、球體積公式。球表面積公式,是兩個(gè)關(guān)于球的幾何度量公式。它們都是球半徑及的函數(shù)。

十、導(dǎo)數(shù)

1、導(dǎo)數(shù)的意義:曲線在該點(diǎn)處的切線的斜率(幾何意義)、瞬時(shí)速度、邊際成本(成本為因變量、產(chǎn)量為自變量的函數(shù)的導(dǎo)數(shù),c為常數(shù))

2、多項(xiàng)式函數(shù)的導(dǎo)數(shù)與函數(shù)的單調(diào)性

在一個(gè)區(qū)間上(個(gè)別點(diǎn)取等號(hào))在此區(qū)間上為增函數(shù)。

在一個(gè)區(qū)間上(個(gè)別點(diǎn)取等號(hào))在此區(qū)間上為減函數(shù)。

3、導(dǎo)數(shù)與極值、導(dǎo)數(shù)與最值:

(1)函數(shù)處有且“左正右負(fù)”在處取極大值;

函數(shù)在處有且左負(fù)右正”在處取極小值。

注意:①在處有是函數(shù)在處取極值的必要非充分條件。

②求函數(shù)極值的方法:先找定義域,再求導(dǎo),找出定義域的分界點(diǎn),列表求出極值。特別是給出函數(shù)極大(小)值的條件,一定要既考慮,又要考慮驗(yàn)“左正右負(fù)”(“左負(fù)右正”)的轉(zhuǎn)化,否則條件沒(méi)有用完,這一點(diǎn)一定要切記。

③單調(diào)性與最值(極值)的研究要注意列表!

注意:利用導(dǎo)數(shù)求最值的步驟:先找定義域再求出導(dǎo)數(shù)為0及導(dǎo)數(shù)不存在的的點(diǎn),然后比較定義域的端點(diǎn)值和導(dǎo)數(shù)為0的點(diǎn)對(duì)應(yīng)函數(shù)值的大小,其中最大的就是最大值,最小就為最小。

數(shù)學(xué)知識(shí)點(diǎn)占比數(shù)學(xué)知識(shí)點(diǎn)歸納公式篇四

1、變量與常量

在某一變化過(guò)程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。

一般地,在某一變化過(guò)程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有確定的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的函數(shù)。

2、函數(shù)解析式

用來(lái)表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。

使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)

(1)解析法

兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法。

(2)列表法

把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來(lái)表示函數(shù)關(guān)系,這種表示法叫做列表法。

(3)圖像法

用圖像表示函數(shù)關(guān)系的方法叫做圖像法。

4、由函數(shù)解析式畫其圖像的一般步驟

(1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值

(2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)

(3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來(lái)。

1、知識(shí)網(wǎng)絡(luò)結(jié)構(gòu)

2、知識(shí)要點(diǎn)

(1)在同一平面內(nèi),兩條直線的位置關(guān)系有兩種:相交和平行,垂直是相交的一種特殊情況。

(2)在同一平面內(nèi),不相交的兩條直線叫平行線。如果兩條直線只有一個(gè)公共點(diǎn),稱這兩條直線相交;如果兩條直線沒(méi)有公共點(diǎn),稱這兩條直線平行。

鄰補(bǔ)角。鄰補(bǔ)角的性質(zhì):鄰補(bǔ)角互補(bǔ)。如圖1所示,與互為鄰補(bǔ)角,

與互為鄰補(bǔ)角。+=180°;+=180°;+=180°;+=180°。

3、兩條直線相交所構(gòu)成的四個(gè)角中,一個(gè)角的兩邊分別是另一個(gè)角的兩邊的反向延長(zhǎng)線,這樣的兩個(gè)角互為對(duì)頂角。對(duì)頂角的性質(zhì):對(duì)頂角相等。如圖1所示,與互為對(duì)頂角。=; =。

其中一條叫做另一條的垂線。如圖2所示,當(dāng)=90°時(shí),⊥。

垂線的性質(zhì):

性質(zhì)1:過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。

性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。

性質(zhì)3:如圖2所示,當(dāng)a⊥b時(shí),====90°。

點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度叫點(diǎn)到直線的距離。

5、同位角、內(nèi)錯(cuò)角、同旁內(nèi)角基本特征:

在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側(cè),這樣的兩個(gè)角叫同位角。圖3中,共有對(duì)同位角:與是同位角;與是同位角;與是同位角;與是同位角。

在兩條直線(被截線)之間,并且在第三條直線(截線)的兩側(cè),這樣的兩個(gè)角叫內(nèi)錯(cuò)角。圖3中,共有對(duì)內(nèi)錯(cuò)角:與是內(nèi)錯(cuò)角;與是內(nèi)錯(cuò)角。

在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個(gè)角叫同旁內(nèi)角。圖3中,共有對(duì)同旁內(nèi)角:與是同旁內(nèi)角;與是同旁內(nèi)角。

1、實(shí)數(shù)的分類

(1)按定義分類:

(2)按性質(zhì)符號(hào)分類:

注:0既不是正數(shù)也不是負(fù)數(shù).

2、實(shí)數(shù)的相關(guān)概念

(1)相反數(shù)

③互為相反數(shù)的兩個(gè)數(shù)之和等于0.a、b互為相反數(shù)a+b=0.

(2)絕對(duì)值|a|≥0.

(4)平方根

(5)立方根

3、實(shí)數(shù)與數(shù)軸

4、實(shí)數(shù)大小的比較

(1)對(duì)于數(shù)軸上的任意兩個(gè)點(diǎn),靠右邊的點(diǎn)所表示的數(shù)較大.

(3)無(wú)理數(shù)的比較大?。?/p>

數(shù)學(xué)知識(shí)點(diǎn)占比數(shù)學(xué)知識(shí)點(diǎn)歸納公式篇五

解排列組合問(wèn)題的依據(jù)是:分類相加,分步相乘,有序排列,無(wú)序組合。

解排列組合問(wèn)題的規(guī)律是:相鄰問(wèn)題捆綁法;不鄰問(wèn)題插空法;多排問(wèn)題單排法;定位問(wèn)題優(yōu)先法;定序問(wèn)題倍縮法;多元問(wèn)題分類法;有序分配問(wèn)題法;選取問(wèn)題先排后排法;至多至少問(wèn)題間接法。

你掌握了三種常見(jiàn)的概率公式嗎?(①等可能事件的概率公式;②互斥事件有一個(gè)發(fā)生的概率公式;③相互獨(dú)立事件同時(shí)發(fā)生的概率公式。)

二項(xiàng)式展開式的通項(xiàng)公式、n次獨(dú)立重復(fù)試驗(yàn)中事件a發(fā)生k次的概率易記混。

通項(xiàng)公式:它是第r+1項(xiàng)而不是第r項(xiàng);

事件a發(fā)生k次的概率:。其中k=0,1,2,3,…,n,且0

求分布列的解答題你能把步驟寫全嗎?

如何對(duì)總體分布進(jìn)行估計(jì)?(用樣本估計(jì)總體,是研究統(tǒng)計(jì)問(wèn)題的一個(gè)基本思想方法,一般地,樣本容量越大,這種估計(jì)就越精確,要求能畫出頻率分布表和頻率分布直方圖;理解頻率分布直方圖矩形面積的幾何意義。)

你還記得一般正態(tài)總體如何化為標(biāo)準(zhǔn)正態(tài)總體嗎?(對(duì)任一正態(tài)總體來(lái)說(shuō),取值小于x的概率,其中表示標(biāo)準(zhǔn)正態(tài)總體取值小于的概率)

數(shù)學(xué)知識(shí)點(diǎn)占比數(shù)學(xué)知識(shí)點(diǎn)歸納公式篇六

圓的標(biāo)準(zhǔn)方程(x—a)2+(y—b)2=r2中,有三個(gè)參數(shù)a、b、r,即圓心坐標(biāo)為(a,b),只要求出a、b、r,這時(shí)圓的方程就被確定,因此確定圓方程,須三個(gè)獨(dú)立條件,其中圓心坐標(biāo)是圓的定位條件,半徑是圓的定形條件。

1、直線和圓位置關(guān)系的判定方法一是方程的觀點(diǎn),即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式δ來(lái)討論位置關(guān)系。

①δ0,直線和圓相交。②δ=0,直線和圓相切。③δ0,直線和圓相離。

方法二是幾何的觀點(diǎn),即把圓心到直線的距離d和半徑r的大小加以比較。

①dr,直線和圓相離。

2、直線和圓相切,這類問(wèn)題主要是求圓的切線方程。求圓的切線方程主要可分為已知斜率k或已知直線上一點(diǎn)兩種情況,而已知直線上一點(diǎn)又可分為已知圓上一點(diǎn)和圓外一點(diǎn)兩種情況。

3、直線和圓相交,這類問(wèn)題主要是求弦長(zhǎng)以及弦的中點(diǎn)問(wèn)題。

⑴圓心到切線的距離等于圓的半徑;

⑵過(guò)切點(diǎn)的半徑垂直于切線;

⑶經(jīng)過(guò)圓心,與切線垂直的直線必經(jīng)過(guò)切點(diǎn);

⑷經(jīng)過(guò)切點(diǎn),與切線垂直的直線必經(jīng)過(guò)圓心;

當(dāng)一條直線滿足

(1)過(guò)圓心;

(2)過(guò)切點(diǎn);

(3)垂直于切線三個(gè)性質(zhì)中的兩個(gè)時(shí),第三個(gè)性質(zhì)也滿足。

經(jīng)過(guò)半徑的外端點(diǎn)并且垂直于這條半徑的直線是圓的切線。

從圓外一點(diǎn)作圓的兩條切線,兩切線長(zhǎng)相等,圓心與這一點(diǎn)的連線平分兩條切線的夾角。

【本文地址:http://www.mlvmservice.com/zuowen/2577999.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔