高二數(shù)學教案全套(6篇)

格式:DOC 上傳日期:2023-04-07 20:12:03
高二數(shù)學教案全套(6篇)
時間:2023-04-07 20:12:03     小編:zxfb

作為一位兢兢業(yè)業(yè)的人民教師,常常要寫一份優(yōu)秀的教案,教案是保證教學取得成功、提高教學質(zhì)量的基本條件。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的教案嗎?下面是小編整理的優(yōu)秀教案范文,歡迎閱讀分享,希望對大家有所幫助。

高二數(shù)學教案全套篇一

一、教學過程

1、復習。

反函數(shù)的概念、反函數(shù)求法、互為反函數(shù)的函數(shù)定義域值域的關(guān)系。

求出函數(shù)y=x3的反函數(shù)。

2、新課。

先讓學生用幾何畫板畫出y=x3的圖象,學生紛紛動手,很快畫出了函數(shù)的圖象。有部分學生發(fā)出了“咦”的一聲,因為他們得到了如下的圖象(圖1):

教師在畫出上述圖象的學生中選定生1,將他的屏幕內(nèi)容通過教學系統(tǒng)放到其他同學的屏幕上,很快有學生作出反應。

生2:這是y=x3的反函數(shù)y=的圖象。

師:對,但是怎么會得到這個圖象,請大家討論。

(學生展開討論,但找不出原因。)

師:我們請生1再給大家演示一下,大家?guī)退艺以颉?/p>

(生1將他的制作過程重新重復了一次。)

生3:問題出在他選擇的次序不對。

師:哪個次序?

生3:作點b前,選擇xa和xa3為b的坐標時,他先選擇xa3,后選擇xa,作出來的點的坐標為(xa3,xa),而不是(xa,xa3)。

師:是這樣嗎?我們請生1再做一次。

(這次生1在做的過程當中,按xa、xa3的次序選擇,果然得到函數(shù)y=x3的圖象。)

師:看來問題確實是出在這個地方,那么請同學再想想,為什么他采用了錯誤的次序后,恰好得到了y=x3的反函數(shù)y=的圖象呢?

(學生再次陷入思考,一會兒有學生舉手。)

師:我們請生4來告訴大家。

生4:因為他這樣做,正好是將y=x3上的點b(x,y)的橫坐標x與縱坐標y交換,而y=x3的反函數(shù)也正好是將x與y交換。

師:完全正確。下面我們進一步研究y=x3的圖象及其反函數(shù)y=的圖象的。關(guān)系,同學們能不能看出這兩個函數(shù)的圖象有什么樣的關(guān)系?

(多數(shù)學生回答可由y=x3的圖象得到y(tǒng)=的圖象,于是教師進一步追問。)

師:怎么由y=x3的圖象得到y(tǒng)=的圖象?

生5:將y=x3的圖象上點的橫坐標與縱坐標交換,可得到y(tǒng)=的圖象。

師:將橫坐標與縱坐標互換?怎么換?

(學生一時未能明白教師的意思,場面一下子冷了下來,教師不得不將問題進一步明確。)

師:我其實是想問大家這兩個函數(shù)的圖象有沒有對稱關(guān)系,有的話,是什么樣的對稱關(guān)系?

(學生重新開始觀察這兩個函數(shù)的圖象,一會兒有學生舉手。)

生6:我發(fā)現(xiàn)這兩個圖象應是關(guān)于某條直線對稱。

師:能說說是關(guān)于哪條直線對稱嗎?

生6:我還沒找出來。

(接下來,教師引導學生利用幾何畫板找出兩函數(shù)圖象的對稱軸,畫出如下圖形,如圖2所示:)

學生通過移動點a(點b、c隨之移動)后發(fā)現(xiàn),bc的中點m在同一條直線上,這條直線就是兩函數(shù)圖象的對稱軸,在追蹤m點后,發(fā)現(xiàn)中點的軌跡是直線y=x。

生7:y=x3的圖象及其反函數(shù)y=的圖象關(guān)于直線y=x對稱。

師:這個結(jié)論有一般性嗎?其他函數(shù)及其反函數(shù)的圖象,也有這種對稱關(guān)系嗎?請同學們用其他函數(shù)來試一試。

(學生紛紛畫出其他函數(shù)與其反函數(shù)的圖象進行驗證,最后大家一致得出結(jié)論:函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對稱。)

還是有部分學生舉手,因為他們畫出了如下圖象(圖3):

教師巡視全班時已經(jīng)發(fā)現(xiàn)這個問題,將這個圖象傳給全班學生后,幾乎所有人都看出了問題所在:圖中函數(shù)y=x2(x∈r)沒有反函數(shù),②也不是函數(shù)的圖象。

最后教師與學生一起總結(jié):

點(x,y)與點(y,x)關(guān)于直線y=x對稱;

函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對稱。

二、反思與點評

1、在開學初,我就教學幾何畫板4。0的用法,在教函數(shù)圖象畫法的過程當中,發(fā)現(xiàn)學生根據(jù)選定坐標作點時,不太注意選擇橫坐標與縱坐標的順序,本課設(shè)計起源于此。雖然幾何畫板4。04中,能直接根據(jù)函數(shù)解析式畫出圖象,但這樣反而不能揭示圖象對稱的本質(zhì),所以本節(jié)課教學中,我有意選擇了幾何畫板4。0進行教學。

2、荷蘭數(shù)學教育家弗賴登塔爾認為,數(shù)學學習過程當中,可借助于生動直觀的形象來引導人們的思想過程,但常常由于圖形或想象的錯誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會影響學生正確理解比較抽象的概念。

計算機作為一種現(xiàn)代信息技術(shù)工具,在直觀化方面有很強的表現(xiàn)能力,如在函數(shù)的圖象、圖形變換等方面,利用計算機都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計算機,但不能達到更好地理解抽象概念,促進學生思維的目的的話,這樣的教學中,計算機最多只是一種普通的直觀工具而已。

在本節(jié)課的教學中,計算機更多的是作為學生探索發(fā)現(xiàn)的工具,學生不但發(fā)現(xiàn)了函數(shù)與其反函數(shù)圖象間的對稱關(guān)系,而且在更深層次上理解了反函數(shù)的概念,對反函數(shù)的存在性、反函數(shù)的求法等方面也有了更深刻的理解。

當前計算機用于中學數(shù)學的主要形式還是以輔助為主,更多的是把計算機作為一種直觀工具,有時甚至只是作為電子黑板使用,今后的發(fā)展方向應是:將計算機作為學生的認知工具,讓學生通過計算機發(fā)現(xiàn)探索,甚至利用計算機來做數(shù)學,在此過程當中更好地理解數(shù)學概念,促進數(shù)學思維,發(fā)展數(shù)學創(chuàng)新能力。

3、在引出兩個函數(shù)圖象對稱關(guān)系的時候,問題設(shè)計不甚妥當,本來是想要學生回答兩個函數(shù)圖象對稱的關(guān)系,但學生誤以為是問如何由y=x3的圖象得到y(tǒng)=的圖象,以致將學生引入歧途。這樣的問題在今后的教學中是必須力求避免的。

高二數(shù)學教案全套篇二

【自主梳理】

1.對數(shù):

(1) 一般地,如果 ,那么實數(shù) 叫做________________,記為________,其中 叫做對數(shù)的_______, 叫做________.

(2)以10為底的對數(shù)記為________,以 為底的對數(shù)記為_______.

(3) , .

2.對數(shù)的運算性質(zhì):

(1)如果 ,那么 ,

.

(2)對數(shù)的換底公式: .

3.對數(shù)函數(shù):

一般地,我們把函數(shù)____________叫做對數(shù)函數(shù),其中 是自變量,函數(shù)的定義域是______.

4.對數(shù)函數(shù)的圖像與性質(zhì):

a1 0

圖象性

質(zhì) 定義域:___________

值域:_____________

過點(1,0),即當x=1時,y=0

x(0,1)時_________

x(1,+)時________ x(0,1)時_________

x(1,+)時________

在___________上是增函數(shù) 在__________上是減函數(shù)

【自我檢測】

1. 的定義域為_________.

2.化簡: .

3.不等式 的解集為________________.

4.利用對數(shù)的換底公式計算: .

5.函數(shù) 的奇偶性是____________.

6.對于任意的 ,若函數(shù) ,則 與 的大小關(guān)系是___________________________.

【例1】填空題:

(1) .

(2)比較 與 的大小為___________.

(3)如果函數(shù) ,那么 的 最大值是_____________.

(4)函數(shù) 的奇偶性是___________.

【例2】求函數(shù) 的定義域和值域。

【例3】已知函數(shù) 滿足 .

(1)求 的解析式;

(2)判斷 的奇偶性;

(3)解不等式 .

課堂小結(jié)

1. .略

2.函數(shù) 的定義域為_______________.

3.函數(shù) 的值域是_____________.

4.若 ,則 的取值范圍是_____________.

5.設(shè) 則 的大小關(guān)系是_____________.

6.設(shè)函數(shù) ,若 ,則 的取值范圍為_________________.

7.當 時,不等式 恒成立,則 的取值范圍為______________.

8.函數(shù) 在區(qū)間 上的值域為 ,則 的最小值為____________.

9.已知 .

(1)求 的定義域;

(2)判斷 的奇偶性并予以證明;

(3)求使 的 的取值范圍。

10.對于函數(shù) ,回答下列問題:

(1)若 的定義域為 ,求實數(shù) 的取值范圍;

(2)若 的值域為 ,求實數(shù) 的取值范圍;

(3)若函數(shù) 在 內(nèi)有意義,求實數(shù) 的取值范圍。

四、糾錯分析

錯題卡 題 號 錯 題 原 因 分 析

【自主梳理】

1.對數(shù)

(1)以 為底的 的對數(shù), ,底數(shù),真數(shù)。

(2) , .

(3)0,1.

2.對數(shù)的運算性質(zhì)

(1) , , .

(2) .

3.對數(shù)函數(shù)

, .

4.對數(shù)函數(shù)的圖像與性質(zhì)

a1 0

圖象性質(zhì) 定義域:(0,+)

值域:r

過點(1,0),即當x=1時,y=0

x(0,1)時y0

x(1,+)時y0 x(0,1)時y0

x(1,+)時y0

在(0,+)上是增函數(shù) 在(0,+)上是減函數(shù)

1. 2. 3.

4. 5.奇函數(shù) 6. .

【例1】填空題:

(1)3.

(2) .

(3)0.

(4)奇函數(shù)。

【例2】解:由 得 .所以函數(shù) 的定義域是(0,1).

因為 ,所以,當 時, ,函數(shù) 的值域為 ;當 時, ,函數(shù) 的值域為 .

【例3】解:(1) ,所以 .

(2)定義域(-3,3)關(guān)于原點對稱,所以

,所以 為奇函數(shù)。

(3) ,所以當 時, 解得

當 時, 解得 .

高二數(shù)學教案全套篇三

1、知識與技能:

(1)推廣角的概念、引入大于角和負角;

(2)理解并掌握正角、負角、零角的定義;

(3)理解任意角以及象限角的概念;

(4)掌握所有與角終邊相同的角(包括角)的表示方法;

(5)樹立運動變化觀點,深刻理解推廣后的角的概念;

(6)揭示知識背景,引發(fā)學生學習興趣;

(7)創(chuàng)設(shè)問題情景,激發(fā)學生分析、探求的學習態(tài)度,強化學生的參與意識。

2、過程與方法:

通過創(chuàng)設(shè)情境:“轉(zhuǎn)體,逆(順)時針旋轉(zhuǎn)”,角有大于角、零角和旋轉(zhuǎn)方向不同所形成的角等,引入正角、負角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標系,引入象限角、非象限角的概念及象限角的判定方法;列出幾個終邊相同的角,畫出終邊所在的位置,找出它們的關(guān)系,探索具有相同終邊的角的表示;講解例題,總結(jié)方法,鞏固練習。

3、情態(tài)與價值:

通過本節(jié)的學習,使同學們對角的概念有了一個新的認識,即有正角、負角和零角之分。角的概念推廣以后,知道角之間的關(guān)系。理解掌握終邊相同角的表示方法,學會運用運動變化的觀點認識事物。

重點:理解正角、負角和零角的定義,掌握終邊相同角的表示法。

難點:終邊相同的角的表示。

投影儀等。

【創(chuàng)設(shè)情境】

思考:你的手表慢了5分鐘,你是怎樣將它校準的?假如你的手表快了1。25小時,你應當如何將它校準?當時間校準以后,分針轉(zhuǎn)了多少度?

我們發(fā)現(xiàn),校正過程中分針需要正向或反向旋轉(zhuǎn),有時轉(zhuǎn)不到一周,有時轉(zhuǎn)一周以上,這就是說角已不僅僅局限于之間,這正是我們這節(jié)課要研究的主要內(nèi)容——任意角。

【探究新知】

1、初中時,我們已學習了角的概念,它是如何定義的呢?

[展示投影]角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所成的圖形。如圖1.1—1,一條射線由原來的位置,繞著它的端點o按逆時針方向旋轉(zhuǎn)到終止位置ob,就形成角a。旋轉(zhuǎn)開始時的射線叫做角的始邊,ob叫終邊,射線的端點o叫做叫a的頂點。

2、如上述情境中所說的校準時鐘問題以及在體操比賽中我們經(jīng)常聽到這樣的術(shù)語:“轉(zhuǎn)體”(即轉(zhuǎn)體2周),“轉(zhuǎn)體”(即轉(zhuǎn)體3周)等,都是遇到大于的角以及按不同方向旋轉(zhuǎn)而成的角。同學們思考一下:能否再舉出幾個現(xiàn)實生活中“大于的角或按不同方向旋轉(zhuǎn)而成的角”的例子,這些說明了什么問題?又該如何區(qū)分和表示這些角呢?

[展示課件]如自行車車輪、螺絲扳手等按不同方向旋轉(zhuǎn)時成不同的角,這些都說明了我們研究推廣角概念的必要性。為了區(qū)別起見,我們規(guī)定:按逆時針方向旋轉(zhuǎn)所形成的角叫正角(positiveangle),按順時針方向旋轉(zhuǎn)所形成的角叫負角(negativeangle)。如果一條射線沒有做任何旋轉(zhuǎn),我們稱它形成了一個零角(zeroangle)。

3、學習小結(jié):

(1)你知道角是如何推廣的嗎?

(2)象限角是如何定義的呢?

(3)你熟練掌握具有相同終邊角的表示了嗎?會寫終邊落在x軸、y軸、直線上的角的集合。

課后習題

作業(yè):

1、習題1.1a組第1,2,3題。

2。多舉出一些日常生活中的“大于的角和負角”的例子,熟練掌握他們的表示,

進一步理解具有相同終邊的角的特點。

高二數(shù)學教案全套篇四

1、預習教材,問題導入

根據(jù)以下提綱,預習教材p2~p5,回答下列問題。

(1)對于一般的二元一次方程組a1x+b1y=c1,①a2x+b2y=c2,②其中a1b2-a2b1≠0,如何寫出它的求解步驟?

提示:分五步完成:

第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2,③

第二步,解③,得x=b2c1-b1c2a1b2-a2b1.

第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1,④

第四步,解④,得y=a1c2-a2c1a1b2-a2b1.

第五步,得到方程組的解為x=b2c1-b1c2a1b2-a2b1,y=a1c2-a2c1a1b2-a2b1.

(2)在數(shù)學中算法通常指什么?

提示:在數(shù)學中,算法通常是指按照一定規(guī)則解決某一類問題的明確和有限的步驟。

2、歸納總結(jié),核心必記

(1)算法的概念

12世紀的算法指的是用阿拉伯數(shù)字進行算術(shù)運算的過程續(xù)表

數(shù)學中的算法通常是指按照一定規(guī)則解決某一類問題的明確和有限的步驟

現(xiàn)代算法通??梢跃幊捎嬎銠C程序,讓計算機執(zhí)行并解決問題

(2)設(shè)計算法的目的

計算機解決任何問題都要依賴于算法。只有將解決問題的過程分解為若干個明確的步驟,即算法,并用計算機能夠接受的“語言”準確地描述出來,計算機才能夠解決問題。

(1)求解某一個問題的算法是否是的?

提示:不是。

(2)任何問題都可以設(shè)計算法解決嗎?

提示:不一定。

高二數(shù)學教案全套篇五

1、進一步理解和掌握數(shù)列的有關(guān)概念和性質(zhì);

2、在對一個數(shù)列的探究過程中,提高提出問題、分析問題和解決問題的能力;

3、進一步提高問題探究意識、知識應用意識和同伴合作意識。

問題的提出與解決

如何進行問題的探究

啟發(fā)探究式

問題:已知{an}是首項為1,公比為的無窮等比數(shù)列。對于數(shù)列{an},提出你的問題,并進行研究,你能得到一些什么樣的結(jié)論?

1、數(shù)列{an}是一個等比數(shù)列,可以從等比數(shù)列角度來進行研究;

2、研究所給數(shù)列的項之間的關(guān)系;

3、研究所給數(shù)列的子數(shù)列;

4、研究所給數(shù)列能構(gòu)造的新數(shù)列;

5、數(shù)列是一種特殊的函數(shù),可以從函數(shù)性質(zhì)角度來進行研究;

6、研究所給數(shù)列與其它知識的聯(lián)系(組合數(shù)、復數(shù)、圖形、實際意義等)。

針對學生的研究情況,對所提問題進行歸類,選擇部分類型問題共同進行研究、分析與解決。

1、研究一個數(shù)列可以從哪些方面提出問題并進行研究?

2、你最喜歡哪位同學的研究?為什么?

高二數(shù)學教案全套篇六

掌握向量的概念、坐標表示、運算性質(zhì),做到融會貫通,能應用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。

向量的性質(zhì)及相關(guān)知識的綜合應用。

(一)主要知識:

1、掌握向量的概念、坐標表示、運算性質(zhì),做到融會貫通,能應用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。

(二)例題分析:

1、進一步熟練有關(guān)向量的運算和證明;能運用解三角形的知識解決有關(guān)應用問題,

2、滲透數(shù)學建模的思想,切實培養(yǎng)分析和解決問題的能力。

【本文地址:http://www.mlvmservice.com/zuowen/2429489.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔