在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過(guò)文章可以把我們那些零零散散的思想,聚集在一塊。相信許多人會(huì)覺(jué)得范文很難寫?下面是小編為大家收集的優(yōu)秀范文,供大家參考借鑒,希望可以幫助到有需要的朋友。
上海高二下數(shù)學(xué)課本篇一
(1)使學(xué)生了解并會(huì)用二元一次不等式表示平面區(qū)域以及用二元一次不等式組表示平面區(qū)域;
(2)了解線性規(guī)化的意義以及線性約束條件、線性目標(biāo)函數(shù)、線性規(guī)化問(wèn)題、可行解、可行域以及解等基本概念;
(3)了解線性規(guī)化問(wèn)題的圖解法,并能應(yīng)用它解決一些簡(jiǎn)單的實(shí)際問(wèn)題;
(4)培養(yǎng)學(xué)生觀察、聯(lián)想以及作圖的能力,滲透集合、化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生“建?!焙徒鉀Q實(shí)際問(wèn)題的能力;
(5)結(jié)合教學(xué)內(nèi)容,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和“用數(shù)學(xué)”的意識(shí),激勵(lì)學(xué)生勇于創(chuàng)新.
教學(xué)建議
一、知識(shí)結(jié)構(gòu)
教科書首先通過(guò)一個(gè)具體問(wèn)題,介紹了二元一次不等式表示平面區(qū)域.再通過(guò)一個(gè)具體實(shí)例,介紹了線性規(guī)化問(wèn)題及有關(guān)的幾個(gè)基本概念及一種基本解法-圖解法,并利用幾道例題說(shuō)明線性規(guī)化在實(shí)際中的應(yīng)用.
二、重點(diǎn)、難點(diǎn)分析
本小節(jié)的重點(diǎn)是二元一次不等式(組)表示平面的區(qū)域.
對(duì)學(xué)生來(lái)說(shuō),二元一次不等式(組)表示平面的區(qū)域是一個(gè)比較陌生、抽象的概念,按高二學(xué)生現(xiàn)有的知識(shí)和認(rèn)知水平難以透徹理解,因此學(xué)習(xí)二元一次不等式(組)表示平面的區(qū)域分為兩個(gè)大的層次:
(1)二元一次不等式表示平面區(qū)域.首先通過(guò)建立新舊知識(shí)的聯(lián)系,自然地給出概念.明確二元一次不等式在平面直角坐標(biāo)系中表示直線某一側(cè)所有點(diǎn)組成的平面區(qū)域不包含邊界直線(畫成虛線).其次再擴(kuò)大到所表示的平面區(qū)域是包含邊界直線且要把邊界直線畫成實(shí)線.
(2)二元一次不等式組表示平面區(qū)域.在理解二元一次不等式表示平面區(qū)域含義的基礎(chǔ)上,畫不等式組所表示的平面區(qū)域,找出各個(gè)不等式所表示的平面區(qū)域的公共部分.這是學(xué)生對(duì)代數(shù)問(wèn)題等價(jià)轉(zhuǎn)化為幾何問(wèn)題以及數(shù)學(xué)建模方法解決實(shí)際問(wèn)題的基礎(chǔ).
難點(diǎn)是把實(shí)際問(wèn)題轉(zhuǎn)化為線性規(guī)劃問(wèn)題,并給出解答.
對(duì)許多學(xué)生來(lái)說(shuō),從抽象到的化歸并不比從具體到抽象遇到的問(wèn)題少,學(xué)生解數(shù)學(xué)應(yīng)用題的最常見(jiàn)困難是不會(huì)將實(shí)際問(wèn)題提煉成數(shù)學(xué)問(wèn)題,即不會(huì)建模.所以把實(shí)際問(wèn)題轉(zhuǎn)化為線性規(guī)劃問(wèn)題作為本節(jié)的難點(diǎn),并緊緊圍繞如何引導(dǎo)學(xué)生根據(jù)實(shí)際問(wèn)題中的已知條件,找出約束條件和目標(biāo)函數(shù),然后利用圖解法求出解作為突破這個(gè)難點(diǎn)的關(guān)鍵.
對(duì)學(xué)生而言解決應(yīng)用問(wèn)題的障礙主要有三類:①不能正確理解題意,弄清各元素之間的關(guān)系;②不能分清問(wèn)題的主次關(guān)系,因而抓不住問(wèn)題的本質(zhì),無(wú)法建立數(shù)學(xué)模型;③孤立地考慮單個(gè)的問(wèn)題情景,不能多方聯(lián)想,形成正遷移.針對(duì)這些障礙以及題目本身文字過(guò)長(zhǎng)等因素,將本課設(shè)計(jì)為計(jì)算機(jī)輔助教學(xué),從而將實(shí)際問(wèn)題鮮活直觀地展現(xiàn)在學(xué)生面前,以利于理解;分析完題后,能夠抓住問(wèn)題的本質(zhì)特征,從而將實(shí)際問(wèn)題抽象概括為線性規(guī)劃問(wèn)題.另外,利用計(jì)算機(jī)可以較快地幫助學(xué)生掌握尋找整點(diǎn)解的方法.
三、教法建議
(1)對(duì)學(xué)生來(lái)說(shuō),二元一次不等式(組)表示平面的區(qū)域是一個(gè)比較陌生的概念,不象二元一次方程表示直線那樣已早有所知,為使學(xué)生對(duì)這一概念的引進(jìn)不感到突然,應(yīng)建立新舊知識(shí)的聯(lián)系,以便自然地給出概念
(2)建議將本節(jié)新課講授分為五步(思考、嘗試、猜想、證明、歸納)來(lái)進(jìn)行,目的是為了分散難點(diǎn),層層遞進(jìn),突出重點(diǎn),只要學(xué)生對(duì)舊知識(shí)掌握較好,完全有可能由學(xué)生主動(dòng)去探求新知,得出結(jié)論.
(3)要舉幾個(gè)典型例題,特別是似是而非的例子,對(duì)理解二元一次不等式(組)表示的平面區(qū)域的含義是十分必要的.
(4)建議通過(guò)本節(jié)教學(xué)著重培養(yǎng)學(xué)生掌握“數(shù)形結(jié)合”的數(shù)學(xué)思想,盡管側(cè)重于用“數(shù)”研究“形”,但同時(shí)也用“形”去研究“數(shù)”,這對(duì)培養(yǎng)學(xué)生觀察、聯(lián)想、猜測(cè)、歸納等數(shù)學(xué)能力是大有益處的.
(5)對(duì)作業(yè)、思考題、研究性題的建議:①作業(yè)主要訓(xùn)練學(xué)生規(guī)范的解題步驟和作圖能力;②思考題主要供學(xué)有余力的學(xué)生課后完成;③研究性題綜合性較大,主要用于拓寬學(xué)生的思維.
(6)若實(shí)際問(wèn)題要求的解是整數(shù)解,而我們利用圖解法得到的解為非整數(shù)解(近似解),應(yīng)作適當(dāng)?shù)恼{(diào)整,其方法應(yīng)以與線性目標(biāo)函數(shù)的直線的距離為依據(jù),在直線的附近尋求與此直線距離最近的整點(diǎn),不要在用圖解法所得到的近似解附近尋找.
如果可行域中的整點(diǎn)數(shù)目很少,采用逐個(gè)試驗(yàn)法也可.
(7)在線性規(guī)劃的實(shí)際問(wèn)題中,主要掌握兩種類型:一是給定一定數(shù)量的人力、物力資源,問(wèn)怎樣運(yùn)用這些資源能使完成的任務(wù)量,收到的效益;二是給定一項(xiàng)任務(wù)問(wèn)怎樣統(tǒng)籌安排,能使完成的這項(xiàng)任務(wù)耗費(fèi)的人力、物力資源最小.
上海高二下數(shù)學(xué)課本篇二
學(xué)習(xí)目標(biāo):
1、了解本章的學(xué)習(xí)的內(nèi)容以及學(xué)習(xí)思想方法2、能敘述隨機(jī)變量的定義
3、能說(shuō)出隨機(jī)變量與函數(shù)的關(guān)系,4、能夠把一個(gè)隨機(jī)試驗(yàn)結(jié)果用隨機(jī)變量表示
重點(diǎn):能夠把一個(gè)隨機(jī)試驗(yàn)結(jié)果用隨機(jī)變量表示
難點(diǎn):隨機(jī)事件概念的透徹理解及對(duì)隨機(jī)變量引入目的的認(rèn)識(shí):
環(huán)節(jié)一:隨機(jī)變量的定義
1.通過(guò)生活中的一些隨機(jī)現(xiàn)象,能夠概括出隨機(jī)變量的定義
2能敘述隨機(jī)變量的定義
3能說(shuō)出隨機(jī)變量與函數(shù)的區(qū)別與聯(lián)系
一、閱讀課本33頁(yè)問(wèn)題提出和分析理解,回答下列問(wèn)題?
1、了解一個(gè)隨機(jī)現(xiàn)象的規(guī)律具體指的是什么?
2、分析理解中的兩個(gè)隨機(jī)現(xiàn)象的隨機(jī)試驗(yàn)結(jié)果有什么不同?建立了什么樣的對(duì)應(yīng)關(guān)系?
總結(jié):
3、隨機(jī)變量
(1)定義:
這種對(duì)應(yīng)稱為一個(gè)隨機(jī)變量。即隨機(jī)變量是從隨機(jī)試驗(yàn)每一個(gè)可能的結(jié)果所組成的
到的映射。
(2)表示:隨機(jī)變量常用大寫字母.等表示.
(3)隨機(jī)變量與函數(shù)的區(qū)別與聯(lián)系
函數(shù)隨機(jī)變量
自變量
因變量
因變量的范圍
相同點(diǎn)都是映射都是映射
環(huán)節(jié)二隨機(jī)變量的應(yīng)用
1、能正確寫出隨機(jī)現(xiàn)象所有可能出現(xiàn)的結(jié)果2、能用隨機(jī)變量的描述隨機(jī)事件
例1:已知在10件產(chǎn)品中有2件不合格品。現(xiàn)從這10件產(chǎn)品中任取3件,其中含有的次品數(shù)為隨機(jī)變量的學(xué)案.這是一個(gè)隨機(jī)現(xiàn)象。(1)寫成該隨機(jī)現(xiàn)象所有可能出現(xiàn)的結(jié)果;(2)試用隨機(jī)變量來(lái)描述上述結(jié)果。
變式:已知在10件產(chǎn)品中有2件不合格品。從這10件產(chǎn)品中任取3件,這是一個(gè)隨機(jī)現(xiàn)象。若y表示取出的3件產(chǎn)品中的合格品數(shù),試用隨機(jī)變量描述上述結(jié)果
例2連續(xù)投擲一枚均勻的硬幣兩次,用x表示這兩次正面朝上的次數(shù),則x是一個(gè)隨機(jī)變
量,分別說(shuō)明下列集合所代表的隨機(jī)事件:
(1){x=0}(2){x=1}
(3){x<2}(4){x>0}
變式:連續(xù)投擲一枚均勻的硬幣三次,用x表示這三次正面朝上的次數(shù),則x是一個(gè)隨機(jī)變量,x的可能取值是?并說(shuō)明這些值所表示的隨機(jī)試驗(yàn)的結(jié)果.
練習(xí):寫出下列隨機(jī)變量可能取的值,并說(shuō)明隨機(jī)變量所取的值表示的隨機(jī)變量的結(jié)果。
(1)從學(xué)?;丶乙?jīng)過(guò)5個(gè)紅綠燈路口,可能遇到紅燈的次數(shù);
(2)一個(gè)袋中裝有5只同樣大小的球,編號(hào)為1,2,3,4,5,現(xiàn)從中隨機(jī)取出3只球,被取出的球的號(hào)碼數(shù);
小結(jié)(對(duì)標(biāo))
上海高二下數(shù)學(xué)課本篇三
預(yù)習(xí)課本p103~105,思考并完成以下問(wèn)題
(1)怎樣定義向量的數(shù)量積?向量的數(shù)量積與向量數(shù)乘相同嗎?
(2)向量b在a方向上的投影怎么計(jì)算?數(shù)量積的幾何意義是什么?
(3)向量數(shù)量積的性質(zhì)有哪些?
(4)向量數(shù)量積的運(yùn)算律有哪些?
[新知初探]
1.向量的數(shù)量積的定義
(1)兩個(gè)非零向量的數(shù)量積:
已知條件向量a,b是非零向量,它們的夾角為θ
定義a與b的數(shù)量積(或內(nèi)積)是數(shù)量|a||b|cosθ
記法a·b=|a||b|cosθ
(2)零向量與任一向量的數(shù)量積:
規(guī)定:零向量與任一向量的數(shù)量積均為0.
[點(diǎn)睛](1)兩向量的數(shù)量積,其結(jié)果是數(shù)量,而不是向量,它的值等于兩向量的模與兩向量夾角余弦值的乘積,其符號(hào)由夾角的余弦值來(lái)決定.
(2)兩個(gè)向量的數(shù)量積記作a·b,千萬(wàn)不能寫成a×b的形式.
2.向量的數(shù)量積的幾何意義
(1)投影的概念:
①向量b在a的方向上的投影為|b|cosθ.
②向量a在b的方向上的投影為|a|cosθ.
(2)數(shù)量積的幾何意義:
數(shù)量積a·b等于a的長(zhǎng)度|a|與b在a的方向上的投影|b|cosθ的乘積.
[點(diǎn)睛](1)b在a方向上的投影為|b|cosθ(θ是a與b的夾角),也可以寫成a·b|a|.
(2)投影是一個(gè)數(shù)量,不是向量,其值可為正,可為負(fù),也可為零.
3.向量數(shù)量積的性質(zhì)
設(shè)a與b都是非零向量,θ為a與b的夾角.
(1)a⊥b?a·b=0.
(2)當(dāng)a與b同向時(shí),a·b=|a||b|,
當(dāng)a與b反向時(shí),a·b=-|a||b|.
(3)a·a=|a|2或|a|=a·a=a2.
(4)cosθ=a·b|a||b|.
(5)|a·b|≤|a||b|.
[點(diǎn)睛]對(duì)于性質(zhì)(1),可以用來(lái)解決有關(guān)垂直的問(wèn)題,即若要證明某兩個(gè)向量垂直,只需判定它們的數(shù)量積為0;若兩個(gè)非零向量的數(shù)量積為0,則它們互相垂直.
4.向量數(shù)量積的運(yùn)算律
(1)a·b=b·a(交換律).
(2)(λa)·b=λ(a·b)=a·(λb)(結(jié)合律).
(3)(a+b)·c=a·c+b·c(分配律).
[點(diǎn)睛](1)向量的數(shù)量積不滿足消去律:若a,b,c均為非零向量,且a·c=b·c,但得不到a=b.
(2)(a·b)·c≠a·(b·c),因?yàn)閍·b,b·c是數(shù)量積,是實(shí)數(shù),不是向量,所以(a·b)·c與向量c共線,a·(b·c)與向量a共線,因此,(a·b)·c=a·(b·c)在一般情況下不成立.
[小試身手]
1.判斷下列命題是否正確.(正確的打“√”,錯(cuò)誤的打“×”)
(1)兩個(gè)向量的數(shù)量積仍然是向量.()
(2)若a·b=b·c,則一定有a=c.()
(3)若a,b反向,則a·b=-|a||b|.()
(4)若a·b=0,則a⊥b.()
答案:(1)×(2)×(3)√(4)×
2.若|a|=2,|b|=12,a與b的夾角為60°,則a·b=()
a.2b.12
c.1d.14
答案:b
3.已知|a|=10,|b|=12,且(3a)·15b=-36,則a與b的夾角為()
a.60°b.120°
c.135°d.150°
答案:b
4.已知a,b的夾角為θ,|a|=2,|b|=3.
(1)若θ=135°,則a·b=________;
(2)若a∥b,則a·b=________;
(3)若a⊥b,則a·b=________.
答案:(1)-32(2)6或-6(3)0
向量數(shù)量積的運(yùn)算
[典例](1)已知向量a與b的夾角為120°,且|a|=4,|b|=2,求:①a·b;②(a+b)·
(a-2b).
(2)如圖,正三角形abc的邊長(zhǎng)為2,=c,=a,=b,求a·b+b·c+c·a.
[解](1)①由已知得a·b=|a||b|cosθ=4×2×cos120°=-4.
②(a+b)·(a-2b)=a2-a·b-2b2=16-(-4)-2×4=12.
(2)∵|a|=|b|=|c|=2,且a與b,b與c,c與a的夾角均為120°,
∴a·b+b·c+c·a=2×2×cos120°×3=-3.
向量數(shù)量積的求法
(1)求兩個(gè)向量的數(shù)量積,首先確定兩個(gè)向量的模及向量的夾角,其中準(zhǔn)確求出兩向量的夾角是求數(shù)量積的關(guān)鍵.
(2)根據(jù)數(shù)量積的運(yùn)算律,向量的加、減與數(shù)量積的混合運(yùn)算類似于多項(xiàng)式的乘法
運(yùn)算.
[活學(xué)活用]
已知|a|=3,|b|=4,a與b的夾角為120°,求:
(1)a·b;(2)a2-b2;
(3)(2a-b)·(a+3b).
解:(1)a·b=|a||b|cos120°=3×4×-12=-6.
(2)a2-b2=|a|2-|b|2=32-42=-7.
(3)(2a-b)·(a+3b)=2a2+5a·b-3b2
=2|a|2+5|a||b|·cos120°-3|b|2
=2×32+5×3×4×-12-3×42=-60.
與向量的模有關(guān)的問(wèn)題
[典例](1)(浙江高考)已知e1,e2是平面單位向量,且e1·e2=12.若平面向量b滿足b·e1=b·e2=1,則|b|=________.
(2)已知向量a,b的夾角為45°,且|a|=1,|2a-b|=10,則|b|=________.
[解析](1)令e1與e2的夾角為θ,
∴e1·e2=|e1|·|e2|cosθ=cosθ=12.
又0°≤θ≤180°,∴θ=60°.
∵b·(e1-e2)=0,
∴b與e1,e2的夾角均為30°,
∴b·e1=|b||e1|cos30°=1,
從而|b|=1cos30°=233.
(2)∵a,b的夾角為45°,|a|=1,
∴a·b=|a||b|cos45°=22|b|,
|2a-b|2=4-4×22|b|+|b|2=10,∴|b|=32.
[答案](1)233(2)32
求向量的模的常見(jiàn)思路及方法
(1)求模問(wèn)題一般轉(zhuǎn)化為求模的平方,與向量數(shù)量積聯(lián)系,并靈活應(yīng)用a2=|a|2,勿忘記開(kāi)方.
(2)a·a=a2=|a|2或|a|=a2,可以實(shí)現(xiàn)實(shí)數(shù)運(yùn)算與向量運(yùn)算的相互轉(zhuǎn)化.
[活學(xué)活用]
已知向量a,b滿足|a|=|b|=5,且a與b的夾角為60°,求|a+b|,|a-b|,|2a+b|.
解:∵|a+b|2=(a+b)2=(a+b)(a+b)
=|a|2+|b|2+2a·b=25+25+2|a||b|cos60°
=50+2×5×5×12=75,
∴|a+b|=53.
∵|a-b|2=(a-b)2=(a-b)(a-b)
=|a|2+|b|2-2a·b
=|a|2+|b|2-2|a||b|cos60°=25,
∴|a-b|=5.
∵|2a+b|2=(2a+b)(2a+b)
=4|a|2+|b|2+4a·b
=4|a|2+|b|2+4|a||b|cos60°=175,
∴|2a+b|=57.
兩個(gè)向量的夾角和垂直
題點(diǎn)一:求兩向量的夾角
1.(重慶高考)已知非零向量a,b滿足|b|=4|a|,且a⊥(2a+b),則a與b的夾角為()
a.π3b.π2
c.2π3d.5π6
解析:選c∵a⊥(2a+b),∴a·(2a+b)=0,
∴2|a|2+a·b=0,
即2|a|2+|a||b|cos〈a,b〉=0.
∵|b|=4|a|,∴2|a|2+4|a|2cos〈a,b〉=0,
∴cos〈a,b〉=-12,∴〈a,b〉=2π3.
題點(diǎn)二:證明兩向量垂直
2.已知向量a,b不共線,且|2a+b|=|a+2b|,求證:(a+b)⊥(a-b).
證明:∵|2a+b|=|a+2b|,
∴(2a+b)2=(a+2b)2.
即4a2+4a·b+b2=a2+4a·b+4b2,
∴a2=b2.
∴(a+b)·(a-b)=a2-b2=0.
又a與b不共線,a+b≠0,a-b≠0,
∴(a+b)⊥(a-b).
題點(diǎn)三:利用夾角和垂直求參數(shù)
3.已知a⊥b,|a|=2,|b|=3且向量3a+2b與ka-b互相垂直,則k的值為()
a.-32b.32
c.±32d.1
解析:選b∵3a+2b與ka-b互相垂直,
∴(3a+2b)·(ka-b)=0,
∴3ka2+(2k-3)a·b-2b2=0.
∵a⊥b,∴a·b=0,
又|a|=2,|b|=3,
∴12k-18=0,k=32.
求向量a與b夾角的思路
(1)求向量夾角的關(guān)鍵是計(jì)算a·b及|a||b|,在此基礎(chǔ)上結(jié)合數(shù)量積的定義或性質(zhì)計(jì)算cosθ=a·b|a||b|,最后借助θ∈[0,π],求出θ的值.
(2)在個(gè)別含有|a|,|b|與a·b的等量關(guān)系式中,常利用消元思想計(jì)算cosθ的值.
層級(jí)一學(xué)業(yè)水平達(dá)標(biāo)
1.已知向量a,b滿足|a|=1,|b|=4,且a·b=2,則a與b的夾角θ為()
a.π6b.π4
c.π3d.π2
解析:選c由題意,知a·b=|a||b|cosθ=4cosθ=2,又0≤θ≤π,所以θ=π3.
2.已知|b|=3,a在b方向上的投影為32,則a·b等于()
a.3b.92
c.2d.12
解析:選b設(shè)a與b的夾角為θ.∵|a|cosθ=32,
∴a·b=|a||b|cosθ=3×32=92.
3.已知|a|=|b|=1,a與b的夾角是90°,c=2a+3b,d=ka-4b,c與d垂直,則k的值為()
a.-6b.6
c.3d.-3
解析:選b∵c·d=0,
∴(2a+3b)·(ka-4b)=0,
∴2ka2-8a·b+3ka·b-12b2=0,
∴2k=12,∴k=6.
4.已知a,b滿足|a|=4,|b|=3,夾角為60°,則|a+b|=()
a.37b.13
c.37d.13
解析:選c|a+b|=?a+b?2=a2+2a·b+b2
=42+2×4×3cos60°+32=37.
5.在四邊形abcd中,=,且·=0,則四邊形abcd是()
a.矩形b.菱形
c.直角梯形d.等腰梯形
解析:選b∵=,即一組對(duì)邊平行且相等,·=0,即對(duì)角線互相垂直,∴四邊形abcd為菱形.
6.給出以下命題:
①若a≠0,則對(duì)任一非零向量b都有a·b≠0;
②若a·b=0,則a與b中至少有一個(gè)為0;
③a與b是兩個(gè)單位向量,則a2=b2.
其中,正確命題的序號(hào)是________.
解析:上述三個(gè)命題中只有③正確,因?yàn)閨a|=|b|=1,所以a2=|a|2=1,b2=|b|2=1,故a2=b2.當(dāng)非零向量a,b垂直時(shí),有a·b=0,顯然①②錯(cuò)誤.
答案:③
7.設(shè)e1,e2是兩個(gè)單位向量,它們的夾角為60°,則(2e1-e2)·(-3e1+2e2)=________.
解析:(2e1-e2)·(-3e1+2e2)=-6e21+7e1·e2-2e22=-6+7×cos60°-2=-92.
答案:-92
8.若|a|=1,|b|=2,c=a+b,且c⊥a,則向量a與b的夾角為_(kāi)_______.
解析:∵c⊥a,∴c·a=0,
∴(a+b)·a=0,即a2+a·b=0.
∵|a|=1,|b|=2,∴1+2cos〈a,b〉=0,
∴cos〈a,b〉=-12.
又∵0°≤〈a,b〉≤180°,∴〈a,b〉=120°.
答案:120°
9.已知e1與e2是兩個(gè)夾角為60°的單位向量,a=2e1+e2,b=2e2-3e1,求a與b的
夾角.
解:因?yàn)閨e1|=|e2|=1,
所以e1·e2=1×1×cos60°=12,
|a|2=(2e1+e2)2=4+1+4e1·e2=7,故|a|=7,
|b|2=(2e2-3e1)2=4+9-12e1·e2=7,故|b|=7,
且a·b=-6e21+2e22+e1·e2=-6+2+12=-72,
所以cos〈a,b〉=a·b|a|·|b|=-727×7=-12,
所以a與b的夾角為120°.
10.已知|a|=2|b|=2,且向量a在向量b方向上的投影為-1.
(1)求a與b的夾角θ;
(2)求(a-2b)·b;
(3)當(dāng)λ為何值時(shí),向量λa+b與向量a-3b互相垂直?
解:(1)∵|a|=2|b|=2,
∴|a|=2,|b|=1.
又a在b方向上的投影為|a|cosθ=-1,
∴a·b=|a||b|cosθ=-1.
∴cosθ=-12,∴θ=2π3.
(2)(a-2b)·b=a·b-2b2=-1-2=-3.
(3)∵λa+b與a-3b互相垂直,
∴(λa+b)·(a-3b)=λa2-3λa·b+b·a-3b2
=4λ+3λ-1-3=7λ-4=0,∴λ=47.
層級(jí)二應(yīng)試能力達(dá)標(biāo)
1.已知|a|=2,|b|=1,且a與b的夾角為π3,則向量m=a-4b的模為()
a.2b.23
c.6d.12
解析:選b|m|2=|a-4b|2=a2-8a·b+16b2=4-8×2×1×12+16=12,所以|m|=23.
2.在rt△abc中,c=90°,ac=4,則·等于()
a.-16b.-8
c.8d.16
解析:選d法一:因?yàn)閏osa=acab,故·=||·||cosa=||2=16,故選d.
法二:在上的投影為||cosa=||,故·=|cosa=||2=16,故選d.
3.已知向量a,b滿足|a|=1,|b|=2,且a在b方向上的投影與b在a方向上的投影相等,則|a-b|=()
a.1b.3
c.5d.3
解析:選c由于投影相等,故有|a|cos〈a,b〉=|b|cos〈a,b〉,因?yàn)閨a|=1,|b|
=2,所以cos〈a,b〉=0,即a⊥b,則|a-b|=|a|2+|b|2-2a·b=5.
4.如圖,在邊長(zhǎng)為2的菱形abcd中,∠bad=60°,e為bc的中點(diǎn),則·=()
a.-3b.0
c.-1d.1
解析:選c·=ab―→+12ad―→·(-)
=12·-||2+12||2
=12×2×2×cos60°-22+12×22=-1.
5.設(shè)向量a,b,c滿足a+b+c=0,(a-b)⊥c,a⊥b,若|a|=1,則|a|2+|b|2+|c|2的值是________.
解析:法一:由a+b+c=0得c=-a-b.
又(a-b)·c=0,∴(a-b)·(-a-b)=0,即a2=b2.
則c2=(a+b)2=a2+b2+2a·b=a2+b2=2,
∴|a|2+|b|2+|c|2=4.
法二:如圖,作==a,
=b,則=c.
∵a⊥b,∴ab⊥bc,
又∵a-b=-=,
(a-b)⊥c,∴cd⊥ca,
所以△abc是等腰直角三角形,
∵|a|=1,∴|b|=1,|c|=2,∴|a|2+|b|2+|c|2=4.
答案:4
6.已知向量a,b的夾角為45°,且|a|=4,12a+b·(2a-3b)=12,則|b|=________;b在a方向上的投影等于________.
解析:12a+b·(2a-3b)=a2+12a·b-3b2=12,即3|b|2-2|b|-4=0,解得|b|=2(舍負(fù)),b在a方向上的投影是|b|cos45°=2×22=1.
答案:21
7.已知非零向量a,b,滿足|a|=1,(a-b)·(a+b)=12,且a·b=12.
(1)求向量a,b的夾角;(2)求|a-b|.
解:(1)∵(a-b)·(a+b)=12,
∴a2-b2=12,
即|a|2-|b|2=12.
又|a|=1,
∴|b|=22.
∵a·b=12,
∴|a|·|b|cosθ=12,
∴cosθ=22,
∴向量a,b的夾角為45°.
(2)∵|a-b|2=(a-b)2
=|a|2-2|a||b|cosθ+|b|2=12,
∴|a-b|=22.
8.設(shè)兩個(gè)向量e1,e2,滿足|e1|=2,|e2|=1,e1與e2的夾角為π3,若向量2te1+7e2與e1+te2的夾角為鈍角,求實(shí)數(shù)t的取值范圍.
解:由向量2te1+7e2與e1+te2的夾角為鈍角,
得?2te1+7e2?·?e1+te2?|2te1+7e2|·|e1+te2|<0.即
(2te1+7e2)·(e1+te2)<0,化簡(jiǎn)即得
2t2+15t+7<0,解得-7
當(dāng)夾角為π時(shí),也有(2te1+7e2)·(e1+te2)<0,
但此時(shí)夾角不是鈍角,
設(shè)2te1+7e2=λ(e1+te2),λ<0,可得
2t=λ,7=λt,λ<0,?λ=-14,t=-142.
∴所求實(shí)數(shù)t的取值范圍是
-7,-142∪-142,-12.
【篇二】
[新知初探]
平面向量共線的坐標(biāo)表示
前提條件a=(x1,y1),b=(x2,y2),其中b≠0
結(jié)論當(dāng)且僅當(dāng)x1y2-x2y1=0時(shí),向量a、b(b≠0)共線
[點(diǎn)睛](1)平面向量共線的坐標(biāo)表示還可以寫成x1x2=y1y2(x2≠0,y2≠0),即兩個(gè)不平行于坐標(biāo)軸的共線向量的對(duì)應(yīng)坐標(biāo)成比例;
(2)當(dāng)a≠0,b=0時(shí),a∥b,此時(shí)x1y2-x2y1=0也成立,即對(duì)任意向量a,b都有:x1y2-x2y1=0?a∥b.
[小試身手]
1.判斷下列命題是否正確.(正確的打“√”,錯(cuò)誤的打“×”)
(1)已知a=(x1,y1),b=(x2,y2),若a∥b,則必有x1y2=x2y1.()
(2)向量(2,3)與向量(-4,-6)反向.()
答案:(1)√(2)√
2.若向量a=(1,2),b=(2,3),則與a+b共線的向量可以是()
a.(2,1)b.(-1,2)c.(6,10)d.(-6,10)
答案:c
3.已知a=(1,2),b=(x,4),若a∥b,則x等于()
a.-12b.12c.-2d.2
答案:d
4.已知向量a=(-2,3),b∥a,向量b的起點(diǎn)為a(1,2),終點(diǎn)b在x軸上,則點(diǎn)b的坐標(biāo)為_(kāi)_______.
答案:73,0
向量共線的判定
[典例](1)已知向量a=(1,2),b=(λ,1),若(a+2b)∥(2a-2b),則λ的值等于()
a.12b.13c.1d.2
(2)已知a(2,1),b(0,4),c(1,3),d(5,-3).判斷與是否共線?如果共線,它們的方向相同還是相反?
[解析](1)法一:a+2b=(1,2)+2(λ,1)=(1+2λ,4),2a-2b=2(1,2)-2(λ,1)=(2-2λ,2),由(a+2b)∥(2a-2b)可得2(1+2λ)-4(2-2λ)=0,解得λ=12.
法二:假設(shè)a,b不共線,則由(a+2b)∥(2a-2b)可得a+2b=μ(2a-2b),從而1=2μ,2=-2μ,方程組顯然無(wú)解,即a+2b與2a-2b不共線,這與(a+2b)∥(2a-2b)矛盾,從而假設(shè)不成立,故應(yīng)有a,b共線,所以1λ=21,即λ=12.
[答案]a
(2)[解]=(0,4)-(2,1)=(-2,3),=(5,-3)-(1,3)=(4,-6),
∵(-2)×(-6)-3×4=0,∴,共線.
又=-2,∴,方向相反.
綜上,與共線且方向相反.
向量共線的判定方法
(1)利用向量共線定理,由a=λb(b≠0)推出a∥b.
(2)利用向量共線的坐標(biāo)表達(dá)式x1y2-x2y1=0直接求解.
[活學(xué)活用]
已知a=(1,2),b=(-3,2),當(dāng)k為何值時(shí),ka+b與a-3b平行,平行時(shí)它們的方向相同還是相反?
解:ka+b=k(1,2)+(-3,2)=(k-3,2k+2),
a-3b=(1,2)-3(-3,2)=(10,-4),
若ka+b與a-3b平行,則-4(k-3)-10(2k+2)=0,
解得k=-13,此時(shí)ka+b=-13a+b=-13(a-3b),故ka+b與a-3b反向.
∴k=-13時(shí),ka+b與a-3b平行且方向相反.
三點(diǎn)共線問(wèn)題
[典例](1)已知=(3,4),=(7,12),=(9,16),求證:a,b,c三點(diǎn)共線;
(2)設(shè)向量=(k,12),=(4,5),=(10,k),當(dāng)k為何值時(shí),a,b,c三點(diǎn)
共線?
[解](1)證明:∵=-=(4,8),
=-=(6,12),
∴=32,即與共線.
又∵與有公共點(diǎn)a,∴a,b,c三點(diǎn)共線.
(2)若a,b,c三點(diǎn)共線,則,共線,
∵=-=(4-k,-7),
=-=(10-k,k-12),
∴(4-k)(k-12)+7(10-k)=0.
解得k=-2或k=11.
有關(guān)三點(diǎn)共線問(wèn)題的解題策略
(1)要判斷a,b,c三點(diǎn)是否共線,一般是看與,或與,或與是否共線,若共線,則a,b,c三點(diǎn)共線;
(2)使用a,b,c三點(diǎn)共線這一條件建立方程求參數(shù)時(shí),利用=λ,或=λ,或=λ都是可以的,但原則上要少用含未知數(shù)的表達(dá)式.
[活學(xué)活用]
設(shè)點(diǎn)a(x,1),b(2x,2),c(1,2x),d(5,3x),當(dāng)x為何值時(shí),與共線且方向相同,此時(shí),a,b,c,d能否在同一條直線上?
解:=(2x,2)-(x,1)=(x,1),
=(1,2x)-(2x,2)=(1-2x,2x-2),
=(5,3x)-(1,2x)=(4,x).
由與共線,所以x2=1×4,所以x=±2.
又與方向相同,所以x=2.
此時(shí),=(2,1),=(-3,2),
而2×2≠-3×1,所以與不共線,
所以a,b,c三點(diǎn)不在同一條直線上.
所以a,b,c,d不在同一條直線上.
向量共線在幾何中的應(yīng)用
題點(diǎn)一:兩直線平行判斷
1.如圖所示,已知直角梯形abcd,ad⊥ab,ab=2ad=2cd,過(guò)點(diǎn)c作ce⊥ab于e,用向量的方法證明:de∥bc;
證明:如圖,以e為原點(diǎn),ab所在直線為x軸,ec所在直線為y軸建立直角坐標(biāo)系,
設(shè)||=1,則||=1,||=2.
∵ce⊥ab,而ad=dc,
∴四邊形aecd為正方形,
∴可求得各點(diǎn)坐標(biāo)分別為e(0,0),b(1,0),c(0,1),d(-1,1).
∵=(-1,1)-(0,0)=(-1,1),
=(0,1)-(1,0)=(-1,1),
∴=,∴∥,即de∥bc.
題點(diǎn)二:幾何形狀的判斷
2.已知直角坐標(biāo)平面上四點(diǎn)a(1,0),b(4,3),c(2,4),d(0,2),求證:四邊形abcd是等腰梯形.
證明:由已知得,=(4,3)-(1,0)=(3,3),
=(0,2)-(2,4)=(-2,-2).
∵3×(-2)-3×(-2)=0,∴與共線.
=(-1,2),=(2,4)-(4,3)=(-2,1),
∵(-1)×1-2×(-2)≠0,∴與不共線.
∴四邊形abcd是梯形.
∵=(-2,1),=(-1,2),
∴||=5=||,即bc=ad.
故四邊形abcd是等腰梯形.
題點(diǎn)三:求交點(diǎn)坐標(biāo)
3.如圖所示,已知點(diǎn)a(4,0),b(4,4),c(2,6),求ac和ob交點(diǎn)p的坐標(biāo).
解:法一:設(shè)=t=t(4,4)
=(4t,4t),
則=-=(4t,4t)-(4,0)=(4t-4,4t),
=-=(2,6)-(4,0)=(-2,6).
由,共線的條件知(4t-4)×6-4t×(-2)=0,
解得t=34.∴=(3,3).
∴p點(diǎn)坐標(biāo)為(3,3).
法二:設(shè)p(x,y),
則=(x,y),=(4,4).
∵,共線,
∴4x-4y=0.①
又=(x-2,y-6),=(2,-6),
且向量,共線,
∴-6(x-2)+2(6-y)=0.②
解①②組成的方程組,得x=3,y=3,
∴點(diǎn)p的坐標(biāo)為(3,3).
應(yīng)用向量共線的坐標(biāo)表示求解幾何問(wèn)題的步驟
層級(jí)一學(xué)業(yè)水平達(dá)標(biāo)
1.下列向量組中,能作為表示它們所在平面內(nèi)所有向量的基底的是()
a.e1=(0,0),e2=(1,-2)
b.e1=(-1,2),e2=(5,7)
c.e1=(3,5),e2=(6,10)
d.e1=(2,-3),e2=12,-34
解析:選ba中向量e1為零向量,∴e1∥e2;c中e1=12e2,∴e1∥e2;d中e1=4e2,∴e1∥e2,故選b.
2.已知點(diǎn)a(1,1),b(4,2)和向量a=(2,λ),若a∥,則實(shí)數(shù)λ的值為()
a.-23b.32
c.23d.-32
解析:選c根據(jù)a,b兩點(diǎn)的坐標(biāo),可得=(3,1),
∵a∥,∴2×1-3λ=0,解得λ=23,故選c.
3.已知a(2,-1),b(3,1),則與平行且方向相反的向量a是()
a.(2,1)b.(-6,-3)
c.(-1,2)d.(-4,-8)
解析:選d=(1,2),向量(2,1)、(-6,-3)、(-1,2)與(1,2)不平行;(-4,-8)與(1,2)平行且方向相反.
4.已知向量a=(x,2),b=(3,-1),若(a+b)∥(a-2b),則實(shí)數(shù)x的值為()
a.-3b.2
c.4d.-6
解析:選d因?yàn)?a+b)∥(a-2b),a+b=(x+3,1),a-2b=(x-6,4),所以4(x+3)-(x-6)=0,解得x=-6.
5.設(shè)a=32,tanα,b=cosα,13,且a∥b,則銳角α為()
a.30°b.60°
c.45°d.75°
解析:選a∵a∥b,
∴32×13-tanαcosα=0,
即sinα=12,α=30°.
6.已知向量a=(3x-1,4)與b=(1,2)共線,則實(shí)數(shù)x的值為_(kāi)_______.
解析:∵向量a=(3x-1,4)與b=(1,2)共線,
∴2(3x-1)-4×1=0,解得x=1.
答案:1
7.已知a(-1,4),b(x,-2),若c(3,3)在直線ab上,則x=________.
解析:=(x+1,-6),=(4,-1),
∵∥,∴-(x+1)+24=0,∴x=23.
答案:23
8.已知向量a=(1,2),b=(-2,3),若λa+μb與a+b共線,則λ與μ的關(guān)系是________.
解析:∵a=(1,2),b=(-2,3),
∴a+b=(1,2)+(-2,3)=(-1,5),
λa+μb=λ(1,2)+μ(-2,3)=(λ-2μ,2λ+3μ),
又∵(λa+μb)∥(a+b),
∴-1×(2λ+3μ)-5(λ-2μ)=0,
∴λ=μ.
答案:λ=μ
9.已知a,b,c三點(diǎn)的坐標(biāo)為(-1,0),(3,-1),(1,2),并且=13,=13,求證:∥.
證明:設(shè)e,f的坐標(biāo)分別為(x1,y1)、(x2,y2),
依題意有=(2,2),=(-2,3),=(4,-1).
∵=13,∴(x1+1,y1)=13(2,2).
∴點(diǎn)e的坐標(biāo)為-13,23.
同理點(diǎn)f的坐標(biāo)為73,0,=83,-23.
又83×(-1)-4×-23=0,∴∥.
10.已知向量a=(2,1),b=(1,1),c=(5,2),m=λb+c(λ為常數(shù)).
(1)求a+b;
(2)若a與m平行,求實(shí)數(shù)λ的值.
解:(1)因?yàn)閍=(2,1),b=(1,1),
所以a+b=(2,1)+(1,1)=(3,2).
(2)因?yàn)閎=(1,1),c=(5,2),
所以m=λb+c=λ(1,1)+(5,2)=(λ+5,λ+2).
又因?yàn)閍=(2,1),且a與m平行,
所以2(λ+2)=λ+5,解得λ=1.
層級(jí)二應(yīng)試能力達(dá)標(biāo)
1.已知平面向量a=(x,1),b=(-x,x2),則向量a+b()
a.平行于x軸
b.平行于第一、三象限的角平分線
c.平行于y軸
d.平行于第二、四象限的角平分線
解析:選c因?yàn)閍+b=(0,1+x2),所以a+b平行于y軸.
2.若a(3,-6),b(-5,2),c(6,y)三點(diǎn)共線,則y=()
a.13b.-13
c.9d.-9
解析:選da,b,c三點(diǎn)共線,
∴∥,而=(-8,8),=(3,y+6),
∴-8(y+6)-8×3=0,即y=-9.
3.已知向量a=(1,0),b=(0,1),c=ka+b(k∈r),d=a-b,如果c∥d,那么()
a.k=1且c與d同向
b.k=1且c與d反向
c.k=-1且c與d同向
d.k=-1且c與d反向
解析:選d∵a=(1,0),b=(0,1),若k=1,則c=a+b=(1,1),d=a-b=(1,-1),顯然,c與d不平行,排除a、b.若k=-1,則c=-a+b=(-1,1),d=a-b=-(-1,1),即c∥d且c與d反向.
4.已知平行四邊形三個(gè)頂點(diǎn)的坐標(biāo)分別為(-1,0),(3,0),(1,-5),則第四個(gè)頂點(diǎn)的坐標(biāo)是()
a.(1,5)或(5,5)
b.(1,5)或(-3,-5)
c.(5,-5)或(-3,-5)
d.(1,5)或(5,-5)或(-3,-5)
解析:選d設(shè)a(-1,0),b(3,0),c(1,-5),第四個(gè)頂點(diǎn)為d,
①若這個(gè)平行四邊形為?abcd,
則=,∴d(-3,-5);
②若這個(gè)平行四邊形為?acdb,
則=,∴d(5,-5);
③若這個(gè)平行四邊形為?acbd,
則=,∴d(1,5).
綜上所述,d點(diǎn)坐標(biāo)為(1,5)或(5,-5)或(-3,-5).
5.已知=(6,1),=(x,y),=(-2,-3),∥,則x+2y的值為_(kāi)_______.
解析:∵=++=(6,1)+(x,y)+(-2,-3)
=(x+4,y-2),
∴=-=-(x+4,y-2)=(-x-4,-y+2).
∵∥,
∴x(-y+2)-(-x-4)y=0,即x+2y=0.
答案:0
6.已知向量=(3,-4),=(6,-3),=(5-m,-3-m).若點(diǎn)a,b,c能構(gòu)成三角形,則實(shí)數(shù)m應(yīng)滿足的條件為_(kāi)_______.
解析:若點(diǎn)a,b,c能構(gòu)成三角形,則這三點(diǎn)不共線,即與不共線.
∵=-=(3,1),=-=(2-m,1-m),
∴3(1-m)≠2-m,即m≠12.
答案:m≠12
7.已知a(1,1),b(3,-1),c(a,b).
(1)若a,b,c三點(diǎn)共線,求a與b之間的數(shù)量關(guān)系;
(2)若=2,求點(diǎn)c的坐標(biāo).
解:(1)若a,b,c三點(diǎn)共線,則與共線.
=(3,-1)-(1,1)=(2,-2),=(a-1,b-1),
∴2(b-1)-(-2)(a-1)=0,∴a+b=2.
(2)若=2,則(a-1,b-1)=(4,-4),
∴a-1=4,b-1=-4,∴a=5,b=-3,
∴點(diǎn)c的坐標(biāo)為(5,-3).
8.如圖所示,在四邊形abcd中,已知a(2,6),b(6,4),c(5,0),d(1,0),求直線ac與bd交點(diǎn)p的坐標(biāo).
解:設(shè)p(x,y),則=(x-1,y),
=(5,4),=(-3,6),=(4,0).
由b,p,d三點(diǎn)共線可得==(5λ,4λ).
又∵=-=(5λ-4,4λ),
由于與共線得,(5λ-4)×6+12λ=0.
解得λ=47,
∴=47=207,167,
∴p的坐標(biāo)為277,167.
上海高二下數(shù)學(xué)課本篇四
∴λk=2,λ=-1,
∴k=-2,λ=-1,
∴k=-2.
層級(jí)二應(yīng)試能力達(dá)標(biāo)
1.設(shè)a是非零向量,λ是非零實(shí)數(shù),則下列結(jié)論中正確的是()
a.a與λa的方向相同
b.a與-λa的方向相反
c.a與λ2a的方向相同
d.|λa|=λ|a|
解析:選c只有當(dāng)λ>0時(shí),a與λa的方向相同,a與-λa的方向相反,且|λa|=λ|a|.因?yàn)棣?>0,所以a與λ2a的方向相同.
2.已知o是△abc所在平面內(nèi)一點(diǎn),d為邊bc的中點(diǎn),且2++=0,則()
a.=b.=2
c.=3d.2=
解析:選a∵在△abc中,d為邊bc的中點(diǎn),∴+=2,∴2(+)=0,即+=0,從而=.
3.已知向量a,b不共線,若=λ1a+b,=a+λ2b,且a,b,c三點(diǎn)共線,則關(guān)于實(shí)數(shù)λ1,λ2一定成立的關(guān)系式為()
a.λ1=λ2=1b.λ1=λ2=-1
c.λ1λ2=1d.λ1+λ2=1
解析:選c∵a,b,c三點(diǎn)共線,
∴=k(k≠0).
∴λ1a+b=k(a+λ2b)=ka+kλ2b.
又∵a,b不共線,
∴λ1=k,1=kλ2,∴λ1λ2=1.
4.已知平面內(nèi)有一點(diǎn)p及一個(gè)△abc,若++=,則()
a.點(diǎn)p在△abc外部b.點(diǎn)p在線段ab上
c.點(diǎn)p在線段bc上d.點(diǎn)p在線段ac上
解析:選d∵++=,
∴++-=0,
∴+++=0,即++=0,
∴2=,∴點(diǎn)p在線段ac上.
5.設(shè)e1,e2是兩個(gè)不共線的向量,若向量ke1+2e2與8e1+ke2方向相反,則k=______.
解析:∵ke1+2e2與8e1+ke2共線,
∴ke1+2e2=λ(8e1+ke2)=8λe1+λke2.
∴k=8λ,2=λk,解得λ=12,k=4或λ=-12,k=-4.
∵ke1+2e2與8e1+ke2反向,
∴λ=-12,k=-4.
答案:-4
6.如圖所示,在?abcd中,=a,=b,an=3nc,m為bc的中點(diǎn),則=________(用a,b)表示.
解析:=+=-=12-14
=12b-14(a+b)=14b-14a=14(b-a).
答案:14(b-a)
7.已知:在四邊形abcd中,=a+2b,=-4a-b,=-5a-3b,求證:四邊形abcd為梯形.
證明:如圖所示.
∵=++=(a+2b)+(-4a-b)+(-5a-3b)
=-8a-2b=2(-4a-b),
∴=2.
∴與共線,且||=2||.
又∵這兩個(gè)向量所在的直線不重合,
∴ad∥bc,且ad=2bc.
∴四邊形abcd是以ad,bc為兩條底邊的梯形.
8.如圖,已知△ocb中,點(diǎn)a是bc的中點(diǎn),d是將ob分成2∶1的一個(gè)內(nèi)分點(diǎn),dc和oa交于點(diǎn)e,設(shè)=a,=b.
(1)用a,b表示向量,;
(2)若=λ,求λ的值.
解:(1)由a是bc的中點(diǎn),則有=12(+),
從而=2-=2a-b.
由d是將ob分成2∶1的一個(gè)內(nèi)分點(diǎn),得=23,
從而=-=(2a-b)-23b=2a-53b.
(2)由于c,e,d三點(diǎn)共線,則=μ,
又=-=(2a-b)-λa=(2-λ)a-b,
=2a-53b,
從而(2-λ)a-b=μ2a-53b,
又a,b不共線,則2-λ=2μ,1=53μ,解得λ=45.
上海高二下數(shù)學(xué)課本篇五
教學(xué)目標(biāo)
鞏固二元一次不等式和二元一次不等式組所表示的平面區(qū)域,能用此來(lái)求目標(biāo)函數(shù)的最值.
重點(diǎn)難點(diǎn)
理解二元一次不等式表示平面區(qū)域是教學(xué)重點(diǎn).
如何擾實(shí)際問(wèn)題轉(zhuǎn)化為線性規(guī)劃問(wèn)題,并給出解答是教學(xué)難點(diǎn).
教學(xué)步驟
【新課引入】
我們知道,二元一次不等式和二元一次不等式組都表示平面區(qū)域,在這里開(kāi)始,教學(xué)又翻開(kāi)了新的一頁(yè),在今后的學(xué)習(xí)中,我們可以逐步看到它的運(yùn)用.
【線性規(guī)劃】
先討論下面的問(wèn)題
設(shè),式中變量x、y滿足下列條件
①
求z的值和最小值.
我們先畫出不等式組①表示的平面區(qū)域,如圖中內(nèi)部且包括邊界.點(diǎn)(0,0)不在這個(gè)三角形區(qū)域內(nèi),當(dāng)時(shí),,點(diǎn)(0,0)在直線上.
作一組和平等的直線
可知,當(dāng)l在的右上方時(shí),直線l上的點(diǎn)滿足.
即,而且l往右平移時(shí),t隨之增大,在經(jīng)過(guò)不等式組①表示的三角形區(qū)域內(nèi)的點(diǎn)且平行于l的直線中,以經(jīng)過(guò)點(diǎn)a(5,2)的直線l,所對(duì)應(yīng)的t,以經(jīng)過(guò)點(diǎn)的直線,所對(duì)應(yīng)的t最小,所以
在上述問(wèn)題中,不等式組①是一組對(duì)變量x、y的約束條件,這組約束條件都是關(guān)于x、y的一次不等式,所以又稱線性約束條件.
是欲達(dá)到值或最小值所涉及的變量x、y的解析式,叫做目標(biāo)函數(shù),由于又是x、y的解析式,所以又叫線性目標(biāo)函數(shù),上述問(wèn)題就是求線性目標(biāo)函數(shù)在線性約束條件①下的值和最小值問(wèn)題.
線性約束條件除了用一次不等式表示外,有時(shí)也有一次方程表示.
一般地,求線性目標(biāo)函數(shù)在線性約束條件下的值或最小值的問(wèn)題,統(tǒng)稱為線性規(guī)劃問(wèn)題,滿足線性約束條件的解叫做可行解,由所有可行解組成的集合叫做可行域,在上述問(wèn)題中,可行域就是陰影部分表示的三角形區(qū)域,其中可行解(5,2)和(1,1)分別使目標(biāo)函數(shù)取得值和最小值,它們都叫做這個(gè)問(wèn)題的解.
【本文地址:http://www.mlvmservice.com/zuowen/2417394.html】