總結(jié)是對過去一定時期的工作、學(xué)習(xí)或思想情況進(jìn)行回顧、分析,并做出客觀評價的書面材料,它有助于我們尋找工作和事物發(fā)展的規(guī)律,從而掌握并運(yùn)用這些規(guī)律,是時候?qū)懸环菘偨Y(jié)了。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的總結(jié)嗎?以下我給大家整理了一些優(yōu)質(zhì)的總結(jié)范文,希望對大家能夠有所幫助。
小升初數(shù)學(xué)主要知識點(diǎn)總結(jié)篇一
包括一人或者二人時(同時、異時)、地(同地、異地)、向(同向、相向)的時間和距離等條件混合出現(xiàn)的行程問題。在杯賽中大量出現(xiàn),約占80%左右。建議熟練應(yīng)用標(biāo)準(zhǔn)解法,即s=v×t結(jié)合標(biāo)準(zhǔn)線段畫圖(基本功)解答。由于只用到相遇追及的基本公式即可解決,在解題的時候,一旦出現(xiàn)比較多的情況變化時,結(jié)合自己畫出的圖分段去分析情況。
復(fù)雜相遇追及問題
(1)多人相遇追及問題。比一般相遇追及問題多了一個運(yùn)動對象,即一般我們能碰到的是三人相遇追及問題。解題思路完全一樣,只是相對復(fù)雜點(diǎn),關(guān)鍵是標(biāo)準(zhǔn)畫圖的能力能否清楚表明三者的運(yùn)動狀態(tài)。
(2)多次相遇追及問題。即兩個人在一段路程中同時同地或者同時異地反復(fù)相遇和追及,俗稱“反復(fù)折騰型問題”。分為標(biāo)準(zhǔn)型(如已知兩地距離和兩者速度,求n次相遇或者追及點(diǎn)距特定地點(diǎn)的距離或者在規(guī)定時間內(nèi)的相遇或追及次數(shù))和純周期問題(少見,如已知兩者速度,求一個周期后,即兩者都回到初始點(diǎn)時相遇、追及的次數(shù))。
標(biāo)準(zhǔn)型解法固定,不能從路程入手,將會很繁,最好一開始就用求單位相遇、追及時間的方法,再求距離和次數(shù)就容易得多。如果用折線示意圖只能大概有個感性認(rèn)識,無法具體得出答案,除非是非考試時間仔細(xì)畫標(biāo)準(zhǔn)尺寸圖。
一般用到的時間公式是(只列舉甲、乙從兩端同時出發(fā)的情況,從同一端出發(fā)的情況少見,所以不贅述):
單程相遇時間:t單程相遇=s/(v甲+v乙)
單程追及時間:t單程追及=s/(v甲-v乙)
第n次相遇時間:tn= t單程相遇×(2n-1)
第m次追及時間:tm= t單程追及×(2m-1)
限定時間內(nèi)的相遇次數(shù):n相遇次數(shù)=[ (tn+ t單程相遇)/2 t單程相遇]
限定時間內(nèi)的追及次數(shù):m追及次數(shù)=[ (tm+ t單程追及)/2 t單程追及]
注:[ ]是取整符號
之后再選取甲或者乙來研究有關(guān)路程的關(guān)系,其中涉及到周期問題需要注意,不要把運(yùn)動方向搞錯了。
簡單例題:甲、乙兩車同時從a地出發(fā),在相距300千米的a、b兩地之間不斷往返行駛,已知甲車的速度是每小時30千米,乙車的速度是每小時20千 米。
問:(1)第二次迎面相遇后又經(jīng)過多長時間甲、乙追及相遇?(2)相遇時距離中點(diǎn)多少千米?(3)50小時內(nèi),甲乙兩車共迎面相遇多少次?
火車問題
特點(diǎn)無非是涉及到車長,相對容易。小題型分為:
1、火車過橋(隧道):一個有長度、有速度,一個有長度、但沒速度,
解法:火車車長+橋(隧道)長度(總路程) =火車速度×通過的時間;
2、火車+樹(電線桿):一個有長度、有速度,一個沒長度、沒速度,
解法:火車車長(總路程)=火車速度×通過時間;
3、火車+人:一個有長度、有速度,一個沒長度、但有速度,
(1)、火車+迎面行走的人:相當(dāng)于相遇問題,
解法:火車車長(總路程) =(火車速度+人的速度)×迎面錯過的時間;
(2)火車+同向行走的人:相當(dāng)于追及問題,
解法:火車車長(總路程) =(火車速度-人的速度) ×追及的時間;
(3)火車+坐在火車上的人:火車與人的相遇和追及問題
解法:火車車長(總路程) =(火車速度±人的速度) ×迎面錯過的時間(追及的時間);
4、火車+火車:一個有長度、有速度,一個也有長度、有速度,
(1)錯車問題:相當(dāng)于相遇問題,
解法:快車車長+慢車車長(總路程) =(快車速度+慢車速度) ×錯車時間;
(2)超車問題:相當(dāng)于追及問題,
解法:快車車長+慢車車長(總路程) =(快車速度-慢車速度) ×錯車時間;
對于火車過橋、火車和人相遇、火車追及人以及火車和火車之間的相遇、追及等等這幾種類型的題目,在分析題目的時候一定得結(jié)合著圖來進(jìn)行。
</span小升初數(shù)學(xué)主要知識點(diǎn)總結(jié)篇二
第 一,認(rèn)真聽老師講課。
這是取得好成績的主要原因。聽講時要做到全神貫注,聚精會神,跟著老師的思路走,不能開小差,更切忌一邊講話一邊聽講。其次要專心凝 聽老師講的每一個字,因?yàn)閿?shù)學(xué)是以嚴(yán)謹(jǐn)著稱的,一字之差就非同小可,一字之間就隱藏玄機(jī)無限。聽講時還要注意記筆記。上課還要積極舉手發(fā)言,舉手發(fā)言的好 處可真不少:①可以鞏固當(dāng)堂學(xué)到的知識。②鍛煉了自己的口才。③那些模糊不清的觀念和錯誤能得到老師的指教。真是一舉三得??傊犞v要做到手到、口到、 眼到、耳到、心到。
第二,課外練習(xí)。
孔子曰:“學(xué)而時習(xí)之”。課后作業(yè)也是學(xué)習(xí)和鞏固數(shù)學(xué)的重要環(huán)節(jié)。我很注意解題的精度和速度。精度就是 準(zhǔn)確度,專心致志地獨(dú)立完成作業(yè),力求一次性準(zhǔn)確,而一旦有了錯,要及時改正。而速度是為了鍛煉自己注意力集中,有緊迫感。可以在開始做作業(yè)時定好鬧鐘, 放在自己看不見的地方再做作業(yè),這樣有助于提高作業(yè)速度??荚嚂r,就不會緊張,也不會顧此失彼了。
第 三,復(fù)習(xí)、預(yù)習(xí)。
對數(shù)學(xué)的復(fù)習(xí),預(yù)習(xí)可以定在每天晚上,在完成當(dāng)天作業(yè)后,再將第二天要學(xué)的新知識簡要地看一看,再回憶一下老師已講過的內(nèi)容。睡覺時躺在 床上,腦海里再像看電影一樣將老師上課的過程“看”一遍,如果有什么疑難,可以翻翻書,直到搞懂為止。每個星期天還要作一星期功課的小結(jié)復(fù)習(xí)、預(yù)習(xí)。這樣 對學(xué)數(shù)學(xué)有好處,并掌握得牢固,就不會忘記了。
<p小升初數(shù)學(xué)主要知識點(diǎn)總結(jié)篇三
一、算術(shù)
1、加法交換律:兩數(shù)相加交換加數(shù)的位置,和不變。
2、加法結(jié)合律:a+b=b+a
3、乘法交換律:a×b=b×a
4、乘法結(jié)合律:a×b×c=a×(b×c)
5、乘法分配律:a×b+a×c=a×b+c
6、除法的性質(zhì):a÷b÷c=a÷(b×c)
7、除法的性質(zhì):在除法里,被除數(shù)和除數(shù)同時擴(kuò)大(或縮小)相同的倍數(shù),商不變。o除以任何不是o的數(shù)都得o。簡便乘法:被乘數(shù)、乘數(shù)末尾有o的乘法,可以先把o前面的相乘,零不參加運(yùn)算,有幾個零都落下,添在積的末尾。
8、有余數(shù)的除法:被除數(shù)=商×除數(shù)+余數(shù)
二、方程、代數(shù)與等式
等式:等號左邊的數(shù)值與等號右邊的數(shù)值相等的式子叫做等式。等式的基本性質(zhì):等式兩邊同時乘以(或除以)一個相同的數(shù),等式仍然成立。
方程式:含有未知數(shù)的等式叫方程式。
一元一次方程式:含有一個未知數(shù),并且未知數(shù)的次數(shù)是一次的等式叫做一元一次方程式。學(xué)會一元一次方程式的例法及計算。即例出代有χ的算式并計算。
代數(shù):代數(shù)就是用字母代替數(shù)。
代數(shù)式:用字母表示的式子叫做代數(shù)式。如:3x=ab+c
<p小升初數(shù)學(xué)主要知識點(diǎn)總結(jié)篇四
一、整數(shù)四則運(yùn)算
1 、整數(shù)加法
把兩個數(shù)合并成一個數(shù)的運(yùn)算叫做加法。 在加法里,相加的數(shù)叫做加數(shù),加得的數(shù)叫做和。加數(shù)是部分?jǐn)?shù),和是總數(shù)。
【公式】
加數(shù)+加數(shù)=和
一個加數(shù)=和-另一個加數(shù)
2 、整數(shù)減法
已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運(yùn)算叫做減法。
在減法里,已知的和叫做被減數(shù),已知的加數(shù)叫做減數(shù),未知的加數(shù)叫做差。被減數(shù)是總數(shù),減數(shù)和差分別是部分?jǐn)?shù)。
加法和減法互為逆運(yùn)算。
3、 整數(shù)乘法
求幾個相同加數(shù)的和的簡便運(yùn)算叫做乘法。
在乘法里,相同的加數(shù)和相同加數(shù)的個數(shù)都叫做因數(shù)。相同加數(shù)的和叫做積。
在乘法里,0和任何數(shù)相乘都得0. 1和任何數(shù)相乘都的任何數(shù)。
【公式】
一個因數(shù)× 一個因數(shù) =積
一個因數(shù)=積÷另一個因數(shù)
4 、整數(shù)除法
已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運(yùn)算叫做除法。
在除法里,已知的積叫做被除數(shù),已知的一個因數(shù)叫做除數(shù),所求的因數(shù)叫做商。
乘法和除法互為逆運(yùn)算。
在除法里,0不能做除數(shù)。因?yàn)?和任何數(shù)相乘都得0,所以任何一個數(shù)除以0,均得不到一個確定的商。
【公式】
被除數(shù)÷除數(shù)=商
除數(shù)=被除數(shù)÷商
被除數(shù)=商×除數(shù)
<p【本文地址:http://www.mlvmservice.com/zuowen/2225445.html】