無論是身處學(xué)校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。那么我們該如何寫一篇較為完美的范文呢?以下是小編為大家收集的優(yōu)秀范文,歡迎大家分享閱讀。
高三數(shù)學(xué)知識點(diǎn)整理目錄高三數(shù)學(xué)知識篇一
1.滿足二元一次不等式(組)的x和y的取值構(gòu)成有序數(shù)對(x,y),稱為二元一次不等式(組)的一個(gè)解,所有這樣的有序數(shù)對(x,y)構(gòu)成的集合稱為二元一次不等式(組)的解集。
2.二元一次不等式(組)的每一個(gè)解(x,y)作為點(diǎn)的坐標(biāo)對應(yīng)平面上的一個(gè)點(diǎn),二元一次不等式(組)的解集對應(yīng)平面直角坐標(biāo)系中的一個(gè)半平面(平面區(qū)域)。
3.直線l:ax+by+c=0(a、b不全為零)把坐標(biāo)平面劃分成兩部分,其中一部分(半個(gè)平面)對應(yīng)二元一次不等式ax+by+c0(或≥0),另一部分對應(yīng)二元一次不等式ax+by+c0(或≤0)。
4.已知平面區(qū)域,用不等式(組)表示它,其方法是:在所有直線外任取一點(diǎn)(如本題的原點(diǎn)(0,0)),將其坐標(biāo)代入ax+by+c,判斷正負(fù)就可以確定相應(yīng)不等式。
5.一個(gè)二元一次不等式表示的平面區(qū)域是相應(yīng)直線劃分開的半個(gè)平面,一般用特殊點(diǎn)代入二元一次不等式檢驗(yàn)就可以判定,當(dāng)直線不過原點(diǎn)時(shí)常選原點(diǎn)檢驗(yàn),當(dāng)直線過原點(diǎn)時(shí),常選(1,0)或(0,1)代入檢驗(yàn),二元一次不等式組表示的平面區(qū)域是它的各個(gè)不等式所表示的平面區(qū)域的公共部分,注意邊界是實(shí)線還是虛線的含義?!熬€定界,點(diǎn)定域”。
6.滿足二元一次不等式(組)的整數(shù)x和y的取值構(gòu)成的有序數(shù)對(x,y),稱為這個(gè)二元一次不等式(組)的一個(gè)解。所有整數(shù)解對應(yīng)的點(diǎn)稱為整點(diǎn)(也叫格點(diǎn)),它們都在這個(gè)二元一次不等式(組)表示的平面區(qū)域內(nèi)。
7.畫二元一次不等式ax+by+c≥0所表示的平面區(qū)域時(shí),應(yīng)把邊界畫成實(shí)線,畫二元一次不等式ax+by+c0所表示的平面區(qū)域時(shí),應(yīng)把邊界畫成虛線。
8.若點(diǎn)p(x0,y0)與點(diǎn)p1(x1,y1)在直線l:ax+by+c=0的同側(cè),則ax0+by0+c與ax1+byl+c符號相同;若點(diǎn)p(x0,y0)與點(diǎn)p1(x1,y1)在直線l:ax+by+c=0的兩側(cè),則ax0+by0+c與ax1+byl+c符號相反。
9.從實(shí)際問題中抽象出二元一次不等式(組)的步驟是:
(1)根據(jù)題意,設(shè)出變量;
(3)把各個(gè)不等式連同變量x,y有意義的實(shí)際范圍合在一起,組成不等式組。
高三數(shù)學(xué)知識點(diǎn)整理目錄高三數(shù)學(xué)知識篇二
1、分式的分母不等于零;
2、偶次方根的被開方數(shù)大于等于零;
3、對數(shù)的真數(shù)大于零;
4、指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)大于零且不等于1;
5、三角函數(shù)正切函數(shù)y=tanx中x≠kπ+π/2;
6、如果函數(shù)是由實(shí)際意義確定的解析式,應(yīng)依據(jù)自變量的實(shí)際意義確定其取值范圍。
二、函數(shù)的解析式的常用求法:
1、定義法;
2、換元法;
3、待定系數(shù)法;
4、函數(shù)方程法;
5、參數(shù)法;
6、配方法
三、函數(shù)的值域的常用求法:
1、換元法;
2、配方法;
3、判別式法;
4、幾何法;
5、不等式法;
6、單調(diào)性法;
7、直接法
四、函數(shù)的最值的常用求法:
1、配方法;
2、換元法;
3、不等式法;
4、幾何法;
5、單調(diào)性法
五、函數(shù)單調(diào)性的常用結(jié)論:
1、若f(x),g(x)均為某區(qū)間上的增(減)函數(shù),則f(x)+g(x)在這個(gè)區(qū)間上也為增(減)函數(shù)。
2、若f(x)為增(減)函數(shù),則-f(x)為減(增)函數(shù)。
3、若f(x)與g(x)的單調(diào)性相同,則f[g(x)]是增函數(shù);若f(x)與g(x)的單調(diào)性不同,則f[g(x)]是減函數(shù)。
4、奇函數(shù)在對稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對稱區(qū)間上的單調(diào)性相反。
5、常用函數(shù)的單調(diào)性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。
六、函數(shù)奇偶性的常用結(jié)論:
1、如果一個(gè)奇函數(shù)在x=0處有定義,則f(0)=0,如果一個(gè)函數(shù)y=f(x)既是奇函數(shù)又是偶函數(shù),則f(x)=0(反之不成立)。
2、兩個(gè)奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。
3、一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的積(商)為奇函數(shù)。
4、兩個(gè)函數(shù)y=f(u)和u=g(x)復(fù)合而成的函數(shù),只要其中有一個(gè)是偶函數(shù),那么該復(fù)合函數(shù)就是偶函數(shù);當(dāng)兩個(gè)函數(shù)都是奇函數(shù)時(shí),該復(fù)合函數(shù)是奇函數(shù)。
5、若函數(shù)f(x)的定義域關(guān)于原點(diǎn)對稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點(diǎn)是:右端為一個(gè)奇函數(shù)和一個(gè)偶函數(shù)的和。
高三數(shù)學(xué)知識點(diǎn)整理目錄高三數(shù)學(xué)知識篇三
當(dāng)命題“若p則q”為真時(shí),可表示為p=q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=q,得出p為q的充分條件是容易理解的。
但為什么說q是p的必要條件呢?
事實(shí)上,與“p=q”等價(jià)的逆否命題是“非q=非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對于p是必不可少的,因而是必要的。
(2)再看“充要條件”
回憶一下初中學(xué)過的“等價(jià)于”這一概念;如果從命題a成立可以推出命題b成立,反過來,從命題b成立也可以推出命題a成立,那么稱a等價(jià)于b,記作ab?!俺湟獥l件”的含義,實(shí)際上與“等價(jià)于”的含義完全相同。也就是說,如果命題a等價(jià)于命題b,那么我們說命題a成立的充要條件是命題b成立;同時(shí)有命題b成立的充要條件是命題a成立。
(3)定義與充要條件
數(shù)學(xué)中,只有a是b的充要條件時(shí),才用a去定義b,因此每個(gè)定義中都包含一個(gè)充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個(gè)四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。
顯然,一個(gè)定理如果有逆定理,那么定理、逆定理合在一起,可以用一個(gè)含有充要條件的語句來表示。
“充要條件”有時(shí)還可以改用“當(dāng)且僅當(dāng)”來表示,其中“當(dāng)”表示“充分”?!皟H當(dāng)”表示“必要”。
(4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的“結(jié)論”都可作為必要條件。
【本文地址:http://www.mlvmservice.com/zuowen/2060115.html】