復數(shù)概念的說課稿(精選14篇)

格式:DOC 上傳日期:2023-12-07 19:52:03
復數(shù)概念的說課稿(精選14篇)
時間:2023-12-07 19:52:03     小編:碧墨

總結(jié)是對過去的回憶和對未來的規(guī)劃,它幫助我們更加明晰自己的人生軌跡。在寫總結(jié)時,我們應該有目標和重點,避免冗余和廢話。閱讀一下這些總結(jié)范文,或許可以給你帶來新的思路和見解。

復數(shù)概念的說課稿篇一

函數(shù)作為初等數(shù)學的核心內(nèi)容,貫穿于整個初等數(shù)學體系之中。本章節(jié)9個課時,函數(shù)這一章在高中數(shù)學中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關系,而高中階段不僅把函數(shù)看成變量之間的依賴關系,更是從“變量說”到“對應說”,這是對函數(shù)本質(zhì)特征的進一步認識,也是學生認識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學建模的思想等內(nèi)容,這些內(nèi)容的學習,無疑對學生今后的學習起著深刻的影響。

二、教學目標。

理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。

通過對實際問題分析、抽象與概括,培養(yǎng)學生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。

通過對函數(shù)概念形成的探究過程,培養(yǎng)學生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。

三、重難點分析確定。

一、教學基本思路及過程。

本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學的基礎,只有對概念做到深刻理解,才能正確靈活地加以應用。本課(借助小黑板)從集合間的對應來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進一步學習函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。

二、學情分析。

一方面學生在初中已經(jīng)學習了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認識;另一方面在本書第一章學生已經(jīng)學習了集合的概念,這為學習函數(shù)的現(xiàn)代定義打下了基礎。

函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應來描繪函數(shù)概念,是一個抽象過程,要求學生的抽象、分析、概括的能力比較高,學生學起來有一定的難度,加上學生數(shù)學基礎較差,理解能力,運算能力等參差不齊等。

三、教法、學法。

1、本節(jié)課采用的方法有:

直觀教學法、啟發(fā)教學法、課堂討論法。

2、采用這些方法的理論依據(jù):

我一方面精心設計問題情景,引導學生主動探索,另一方面,依據(jù)本節(jié)為概念學習的特點,以問題的提出、問題的解決為主線,設置問題,倡導學生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學習過程成為學生心靈愉悅的主動認知過程,充分體現(xiàn)“教師為主導,學生為主體”的教學原則。

復數(shù)概念的說課稿篇二

(2)過程與方法:在定積分概念形成的過程中,培養(yǎng)學生的抽象概括能力和探索提升能力。

【教學重點】:

理解定積分的概念及其幾何意義,定積分的性質(zhì)【教學難點】:

3.教學用具。

多媒體。

4.標簽。

教學過程。

課堂小結(jié)。

定積分的定義,計算定積分的“四步曲”,定積分的幾何意義,定積分的性質(zhì)。

復數(shù)概念的說課稿篇三

一、說課內(nèi)容:

九年級數(shù)學下冊第27章第一節(jié)的二次函數(shù)的概念及相關習題(華東師范大學出版社)。

二、教材分析:

1、教材的地位和作用。

這節(jié)課是在學生已經(jīng)學習了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎上,來學習二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進一步學習二次函數(shù)將為它們的解法提供新的方法和途徑,并使學生更為深刻的理解數(shù)形結(jié)合的重要思想。而本節(jié)課的二次函數(shù)的概念是學習二次函數(shù)的'基礎,是為后來學習二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。

2、教學目標和要求:

(1)知識與技能:使學生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。

(2)過程與方法:復習舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學生解決問題的能力.

(3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學活動加深對二次函數(shù)概念的理解,發(fā)展學生的數(shù)學思維,增強學好數(shù)學的愿望與信心.

3、教學重點:對二次函數(shù)概念的理解。

4、教學難點:抽象出實際問題中的二次函數(shù)關系。

三、教法學法設計:

1、從創(chuàng)設情境入手,通過知識再現(xiàn),孕伏教學過程。

2、從學生活動出發(fā),通過以舊引新,順勢教學過程。

3、利用探索、研究手段,通過思維深入,領悟教學過程。

四、教學過程:

(一)復習提問。

1.什么叫函數(shù)?我們之前學過了那些函數(shù)?

(一次函數(shù),正比例函數(shù),反比例函數(shù))。

2.它們的形式是怎樣的?

(y=kx+b,ky=kx,ky=,k0)。

【設計意圖】復習這些問題是為了幫助學生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調(diào)k0的條件,以備與二次函數(shù)中的a進行比較.

(二)引入新課。

函數(shù)是研究兩個變量在某變化過程中的相互關系,我們已學過正比例函數(shù),反比例函數(shù)和一次函數(shù)。看下面三個例子中兩個變量之間存在怎樣的關系。

例1、(1)圓的半徑是r(cm)時,面積與半徑之間的關系是什么?

解:s=0)。

解:y=x(20/2-x)=x(10-x)=-x2+10x(0。

解:y=100(1+x)2。

=100(x2+2x+1)。

=100x2+200x+100(0。

教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點?

(三)講解新課。

以上函數(shù)不同于我們所學過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。

二次函數(shù)的定義:形如y=ax2+bx+c(a0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。

1、強調(diào)形如,即由形來定義函數(shù)名稱。二次函數(shù)即y是關于x的二次多項式(關于的x代數(shù)式一定要是整式)。

2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r0)。

3、為什么二次函數(shù)定義中要求a?

(若a=0,ax2+bx+c就不是關于x的二次多項式了)。

4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.

5、b和c是否可以為零?

由例1可知,b和c均可為零.

若b=0,則y=ax2+c;。

若c=0,則y=ax2+bx;。

若b=c=0,則y=ax2.

注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.

判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.

(1)y=3(x-1)2+1(2)s=3-2t2。

(3)y=(x+3)2-x2(4)s=10r2。

(5)y=22+2x(6)y=x4+2x2+1(可指出y是關于x2的二次函數(shù))。

(四)鞏固練習。

1.已知一個直角三角形的兩條直角邊長的和是10cm。

(1)當它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;。

(2)設這個直角三角形的面積為scm2,其中一條直角邊為xcm,求s關。

于x的函數(shù)關系式。

【設計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關系式,讓學生經(jīng)歷由具體到抽象的過程,從而降低學生學習的難度。

2.已知正方體的棱長為xcm,它的表面積為scm2,體積為vcm3。

(1)分別寫出s與x,v與x之間的函數(shù)關系式子;。

(2)這兩個函數(shù)中,那個是x的二次函數(shù)?

【設計意圖】簡單的實際問題,學生會很容易列出函數(shù)關系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習,讓學生體驗到成功的歡愉,激發(fā)他們學習數(shù)學的興趣,建立學好數(shù)學的信心。

五、評價分析。

本節(jié)的一個知識點就是二次函數(shù)的概念,教學中教師不能直接給出,而要讓學生自己在分析、揭示實際問題的數(shù)量關系并把實際問題轉(zhuǎn)化為數(shù)學模型的過程中,使學生感受函數(shù)是刻畫現(xiàn)實世界數(shù)量關系的有效模型,增加對二次函數(shù)的感性認識,側(cè)重點通過兩個實際問題的探究引導學生自己歸納出這種新的函數(shù)二次函數(shù),進一步感受數(shù)學在生活中的廣泛應用。對于最大面積問題,可給學生留為課下探究問題,發(fā)展學生的發(fā)散思維,方法不拘一格,只要合理均應鼓勵。

復數(shù)概念的說課稿篇四

教材的地位和作用:

集合是學習高中數(shù)學的重要工具之一,起著承前啟后的作用。本小節(jié)首先從初中代數(shù)與幾何涉及的集合實例人手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明.然后,介紹了集合的常用表示方法,包括列舉法、描述法等,還給出了畫圖表示集合的例子.從教材我歸納出本節(jié)內(nèi)容的教學重點和難點。

(一)教學重點:集合的基本概念和表示方法,集合元素的特征。

(一)知識目標:

(1)使學生初步理解集合的概念,知道常用數(shù)集的概念及其記法;

(2)使學生初步了解“屬于”關系的意義;

(3)使學生初步了解有限集、無限集、空集的意義。

(二)能力目標:

(1)重視基礎知識的教學、基本技能的訓練和能力的培養(yǎng);

(3)通過教師指導,發(fā)現(xiàn)知識結(jié)論,培養(yǎng)學生抽象概括能力和邏輯思維能力;

(三)德育目標:激發(fā)學生學習數(shù)學的興趣和積極性,陶冶學生的情。

操,培養(yǎng)學生堅忍不拔的意志,實事求是的科學學習態(tài)度和勇于創(chuàng)新的精神。

針對現(xiàn)在的學生知識遷移能力差、計算能力差的`特點,第一節(jié)課的內(nèi)容不要求學生太多的計算,通過大量的舉例讓學生充分掌握集合的基礎知識。

為了突出重點、突破難點,本節(jié)課主要采用觀察、分析、類比、歸納的方法讓學生參與學習,將學生置于主體位置,發(fā)揮學生的主觀能動性,將知識的形成過程轉(zhuǎn)化為學生親自探索類比的過程,使學生獲得發(fā)現(xiàn)的成就感。在這個過程中力求把握好以下幾點:。

(1)通過實例,讓學生去發(fā)現(xiàn)規(guī)律。讓學生在問題情景中,經(jīng)歷知識的形成和發(fā)展,力求使學生學會用類比的思想去看待問題。

(2)營造民主的教學氛圍,使學生參與教學全過程。

(3)力求反饋的全面性、及時性,通過精心設計的提問,讓學生的思維動起來,針對學生回答的問題,老師進行適當?shù)狞c評。

(4)給學生思考的時間和空間,不急于把結(jié)果拋給學生,讓學生自己去觀察,分析,類比得出結(jié)果,提高學生的推理能力。

(一)復習導入。

(1)簡介數(shù)集的發(fā)展,復習最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);

(2)教材中的章頭引言;

(3)教材中例子(p4)。

(二)講解新課。

(1)集合的有關概念。

(2)常用集合及表示方法。

(3)元素對于集合的隸屬關系。

(4)集合中元素的特性。

(三)課堂練習。

1下列各組對象能確定一個集合嗎?

(1)所有很大的實數(shù)的集合(不確定)。

(2)好心的人的集合(不確定)。

(3){1,2,2,3,4,5}(有重復)。

(4)所有直角三角形的集合(是的)。

(5)高一(12)班全體同學的集合(是的)。

(6)參加2008年奧運會的中國代表團成員的集合(是的)。

2、教材p5練習1、2。

1.本節(jié)主要學習了集合的基本概念、表示符號;一些常用數(shù)集及其記法;集合的元素與集合之間的關系;以及集合元素具有的特征.

2.我們在進一步復習鞏固集合有關概念的基礎上,又學習了集合的表示方法和有限集、無限集、空集的概念,同學們要熟練掌握.

復數(shù)概念的說課稿篇五

理解任意角的概念;理解終邊相同的角的意義;了解弧度的意義,并能進行弧度與角度的互化.

理解任意角三角函數(shù)(正弦、余弦、正切)的定義;初步了解有向線段的概念,會利用單位圓中的三角函數(shù)線表示任意角的正弦、余弦、正切.

終邊相同的角的意義和任意角三角函數(shù)(正弦、余弦、正切)的定義.

一、問題.

1、角的概念是什么?角按旋轉(zhuǎn)方向分為哪幾類?

2、在平面直角坐標系內(nèi)角分為哪幾類?與終邊相同的角怎么表示?

3、什么是弧度和弧度制?弧度和角度怎么換算?弧度和實數(shù)有什么樣的關系?

4、弧度制下圓的弧長公式和扇形的面積公式是什么?

5、任意角的三角函數(shù)的定義是什么?在各象限的符號怎么確定?

6、你能在單位圓中畫出正弦、余弦和正切線嗎?

7、同角三角函數(shù)有哪些基本關系式?

二、練習.

1.給出下列命題:

(1)小于的角是銳角;

(2)若是第一象限的角,則必為第一象限的角;

(3)第三象限的角必大于第二象限的角;

(4)第二象限的角是鈍角;

(5)相等的角必是終邊相同的角;終邊相同的角不一定相等;

(6)角2與角的終邊不可能相同;

2.設p點是角終邊上一點,且滿足則的值是。

4.若則角的終邊在象限。

5.在直角坐標系中,若角與角的終邊互為反向延長線,則角與角之間的關系是。

6.若是第三象限的角,則-,的終邊落在何處?

例1.如圖,分別是角的終邊.

(1)求終邊落在陰影部分(含邊界)的所有角的集合;

(2)求終邊落在陰影部分、且在上所有角的集合;

(3)求始邊在om位置,終邊在on位置的所有角的集合.

例2.

(1)已知角的終邊在直線上,求的值;

(2)已知角的終邊上有一點a,求的值。

例3.若,則在第象限.

1、若銳角的終邊上一點的坐標為,則角的弧度數(shù)為.

2、若,又是第二,第三象限角,則的取值范圍是.

3、一個半徑為的扇形,如果它的周長等于弧所在半圓的弧長,那么該扇形的圓心角度數(shù)是弧度或角度,該扇形的面積是.

4、已知點p在第三象限,則角終邊在第象限.

5、設角的終邊過點p,則的值為.

6、已知角的終邊上一點p且,求和的值.

1、經(jīng)過3小時35分鐘,分針轉(zhuǎn)過的角的弧度是.時針轉(zhuǎn)過的角的弧度數(shù)是.

2、若點p在第一象限,則在內(nèi)的取值范圍是.

3、若點p從(1,0)出發(fā),沿單位圓逆時針方向運動弧長到達q點,則q點坐標為.

4、如果為小于360的正角,且角的7倍數(shù)的角的終邊與這個角的終邊重合,求角的值.

復數(shù)概念的說課稿篇六

分析學習目標是教學中最先要考慮的因素,明晰學習目標,做到有的放矢,是課堂教學的第一要素。我從以下幾個方面考慮來制定本節(jié)課的學習目標:

(1)明確《課程標準》要求;

(2)分析教材;

(3)分析學情。

1、本節(jié)課的《課程標準》要求:

(1)在問題情境中了解數(shù)系的擴充過程,體會實際需求與數(shù)學內(nèi)部的矛盾(數(shù)的運算規(guī)則、方程求根)在數(shù)系擴充過程中的作用,感受人類理性思維的作用以及與現(xiàn)實世界的聯(lián)系。

(2)理解復數(shù)的基本概念以及復數(shù)相等的充要條件。

(3)了解復數(shù)的代數(shù)表示法及其幾何意義。

2、分析教材。

復數(shù)的引入實現(xiàn)了中學階段數(shù)系的最后一次擴充.但是,復數(shù)它完全沒有按照教科書所描述的邏輯連續(xù)性.實際的需要使實數(shù)具有某種實在感.可是,復數(shù)的情形卻不一樣,是純理論的創(chuàng)造。

3、分析學情。

在學習本節(jié)之前,學生對數(shù)的概念已經(jīng)擴充到實數(shù),也已清楚各種數(shù)集之間的包含關系等內(nèi)容,但知識是零碎、分散的,對數(shù)的生成發(fā)展的歷史和規(guī)律缺乏整體認識與理性思考,知識體系還未形成。另一方面學生對方程解的問題會默認為在實數(shù)集中進行,缺乏嚴謹?shù)乃季S習慣?;谝陨戏治?,本節(jié)課的學習目標如下:

(1)通過回憶數(shù)系的擴充過程,觀察所列舉的復數(shù)能簡述復數(shù)的定義,并能說出復數(shù)的實部與虛部。

(2)通過小組討論能將復數(shù)歸類,并能用語言或圖形表達復數(shù)的分類,會解決含有字母的復數(shù)的分類問題。

(3)通過比較給出的兩個復數(shù)能歸納出復數(shù)相等的充要條件,并能解決與例題相似的題目。

1、通過課堂檢測1檢測目標1的達成。

2、通過例1課堂檢測2檢測目標2的達成。

3、通過例2課堂檢測3檢測目標3的達成。

設計意圖:通過過程性評價和結(jié)果性評價來激發(fā)學生的學習興趣,提過課堂效率。同時能及時反饋學生信息,了解學生的學習效果。

本節(jié)課是人教版《選修1-2》第三章第一課時,復數(shù)的概念為學生學習復數(shù)的表示、復數(shù)的運算及后繼知識奠定了堅實的基礎,因此,復數(shù)的概念是本節(jié)課學習的重點。2象x=-1這樣的方程沒有實數(shù)解在學生心目中已成定論,負數(shù)不能開平方是學生固有的思維模式,而虛數(shù)單位i的引入會引起學生認知上的沖突、心理上的排斥。故虛數(shù)單位i的引入是學生學習中的難點。

結(jié)合以上分析,本節(jié)課的教法主要采用問題驅(qū)動教學模式.通過設置問題串,讓學生形成認知沖突;通過設置問題串,引領學生追溯歷史,提煉數(shù)系擴充的原則;通過設置問題串,幫助學生合乎情理的建立新的認知結(jié)構(gòu),讓數(shù)學理論自然誕生在學生的思想中。

從建構(gòu)主義的角度來看,數(shù)學學習是指學生自己建構(gòu)數(shù)學知識的活動.在數(shù)學活動過程中,學生與教材及教師產(chǎn)生交互作用,形成了數(shù)學知識、技能和能力,發(fā)展了情感態(tài)度和思維品質(zhì).基于這一理論,我把這一節(jié)課的教學程序分成四個環(huán)節(jié)來進行,下面我向各位專家作詳細說明:

1創(chuàng)設情境。

從學生已有的.知識入手,提出問題串:

問題2你能用包含關系將這些數(shù)集“串”起來嗎?(n?z?q?r)。

問題3“?”能換成“?”嗎?為什么??設計意圖:一方面從學生已有的認知入手,便于學生快速進入學習狀態(tài),激發(fā)他們的學習熱情,培養(yǎng)學生的歸納、概括與表達能力;另一方面為引入虛數(shù)單位“i”埋下伏筆,引入課題。

2建構(gòu)理論。

追問:這些問題是怎么解決的呢?

問題5那么在實數(shù)范圍內(nèi)加、減、乘、除、乘方、開方這些運算總能實施了嗎?

由此,追問:

問題6需要添加什么樣的數(shù)呢?

此時,教師適時介紹與虛數(shù)單位i有關歷史,,從而激發(fā)學生學習的興趣,強化對i的認識,并讓學生感受到科學上每一步的邁出是多么的艱辛!

引入i后,給出問題串:

問題7添加的新數(shù)僅僅是i嗎?

問題8你還能寫出其他含有i的數(shù)嗎?

問題9你能寫出一個形式,把剛才所寫出來的數(shù)都包含在內(nèi)嗎?

由此,追問:a?bi(a,b?r)一定是虛數(shù)嗎?

問題10實數(shù)集與擴充后的復數(shù)集是什么關系呢?

設計意圖:讓學生直觀地感受復數(shù)的分類,進一步深化復數(shù)的概念。

3檢測反饋。

(1)4(2)2-3i(3)-6i(4)0(5)1i(6)2?2。

并追問:對于復數(shù)z1?a?bi,z2?c?di(a,b,c,d?r),你認為在什么情況下相等呢?從而為在直角坐標系中用點表示復數(shù)提供了可能.并設置了:

4回顧反思(學生的疑問和收獲)。

拋出問題:實數(shù)能用數(shù)軸上的點來表示,所有的復數(shù)也能用數(shù)軸上的點來表示嗎?

設計意圖:通過學生總結(jié)、教師提煉,深化內(nèi)容,讓學生體會數(shù)系擴充過程中蘊含的創(chuàng)新精神和實踐能力。提出問題激發(fā)學生對復數(shù)的后續(xù)學習的欲望。

本節(jié)課教學,采用問題驅(qū)動教學模式,從概念產(chǎn)生的背景到概念的建立、辨析再到概念的應用,層層深入,最后完成評價檢測目標的達成。這樣教學,符合“感知—辨認—概括—定義—應用”的概念學習模式。此外,復數(shù)的概念,并不是通過教師的講授來實現(xiàn)的,而是讓學生在問題解決中感悟、體驗。

當然,在本設計中,有些問題還有值得思考的必要。比如,由于虛數(shù)單位i的概念非常抽象,又與學生原有知識沖突,學生能否順利接受從而理解復數(shù)的概念?學生能否將復數(shù)分類并能準確表示?評價方案是否切合學生實際?如果這些學習目標無法順利實現(xiàn),在教學過程中還要做哪些知識鋪墊?這都是值得研究的。

以上是我對數(shù)系的擴充的第一課時的構(gòu)思與設計,請各位專家批評指正.謝謝!

復數(shù)概念的說課稿篇七

工商行政管理是國家實施經(jīng)濟監(jiān)督職能的重要組成部分,它通過國家特設的行政管理機關(在我國叫工商行政管理局),運用行政權力依法對市場經(jīng)濟活動進行監(jiān)督管理,行政執(zhí)法,對被管理對象的行為依法進行控制、支持、制止、處罰等。以維護市場經(jīng)濟秩序。

不同的社會經(jīng)濟制度的管理活動,其社會性質(zhì)有所不同。按照社會屬性的要求,我國的工商行政管理必須緊密結(jié)合我國的國情.體現(xiàn)社會主義經(jīng)濟制度的要求,體現(xiàn)社會主義國家和全體人民的利益。

復數(shù)概念的說課稿篇八

《數(shù)系的擴充與復數(shù)的概念》是北師大版普通高中課程標準數(shù)學實驗教材選修1-2第四章第一節(jié)的內(nèi)容,大綱課時安排一課時。主要包括數(shù)系概念的發(fā)展簡介,數(shù)系的擴充,復數(shù)相關概念、分類、相等條件,代數(shù)表示和幾何意義。

復數(shù)的引入是中學階段數(shù)系的又一次擴充,引入復數(shù)以后,這不僅可以使學生對于數(shù)的概念有一個初步的、完整的認識,也為進一步學習數(shù)學打下了基礎。通過本節(jié)課學習,要使學生在問題情境中了解數(shù)系擴充的過程以及引入復數(shù)的必要性,學習復數(shù)的一些基本知識,體會人類理性思維在數(shù)系擴充中的作用。

在學習了這節(jié)課以后,學生首先能知道數(shù)系是怎么擴充的,并且這種擴充是必要的,虛數(shù)單位公開課《數(shù)系的擴充與復數(shù)的概念》說課稿在數(shù)系擴充過程中的作用,而復數(shù)就是一個實數(shù)加上一個實數(shù)乘以公開課《數(shù)系的擴充與復數(shù)的概念》說課稿。學生能清楚的知道一個復數(shù)什么時候是虛數(shù),什么時候是純虛數(shù),兩個復數(shù)相等的充要條件是什么。讓學生在經(jīng)歷一系列的活動后,完成對知識的探索,變被動地“接受問題”為主動地“發(fā)現(xiàn)問題”,加強學生對知識應用的靈活性,深化學生對復數(shù)的認識,從而提高分析問題和解決問題的能力。

1、在問題情境中了解數(shù)系的擴充過程。體會實際需求與數(shù)學內(nèi)部的矛盾(數(shù)的運算規(guī)則、方程求根)在數(shù)系擴充過程中的作用,感受人類理性思維的作用以及數(shù)與現(xiàn)實世界的聯(lián)系。

2、理解復數(shù)的有關概念、數(shù)系間的關系、和幾何表示。

3、掌握復數(shù)的分類和復數(shù)相等的條件。

4、體會類比、轉(zhuǎn)化、數(shù)形結(jié)合思想在數(shù)學發(fā)現(xiàn)和解決數(shù)學問題中的作用。

認識i的意義、復數(shù)的有關概念以及復數(shù)相等的條件。

復數(shù)相關概念的理解和復數(shù)的幾何意義的理解。

復數(shù)的概念是整個復數(shù)內(nèi)容的基礎,復數(shù)的有關概念都是圍繞復數(shù)的代數(shù)表示形式展開的。虛數(shù)單位、實部、虛部的命名,復數(shù)想等的充要條件,以及虛數(shù)、純虛數(shù)等概念的理解,都應促進對復數(shù)實質(zhì)的理解,即復數(shù)實際上是一有序?qū)崝?shù)對。類比實數(shù)可以用數(shù)軸表示,把復數(shù)在直角坐標系中表示出來,就得到了復數(shù)的幾何表示,這就把數(shù)和形有機的結(jié)合了起來。

在學習本節(jié)課的過程中,復數(shù)的概念如果單純地講解或介紹會顯得較為枯燥無味,學生不易接受,教學時,采用講解已學過的數(shù)集的擴充的歷史,讓學生體會到數(shù)系的擴充是生產(chǎn)實踐的需要,也是數(shù)學學科自身發(fā)展的需要;介紹數(shù)的概念的發(fā)展過程,使學生對數(shù)的形成、發(fā)展的歷史和規(guī)律,各種數(shù)集中之間的關系有著比較清晰、完整的認識、從而讓學生積極主動地建構(gòu)虛數(shù)的概念、復數(shù)的概念、復數(shù)的分類。由于學生對數(shù)系擴充的知識不熟悉,對了解實數(shù)系擴充到復數(shù)系的過程有困難,也就是對虛數(shù)單位公開課《數(shù)系的擴充與復數(shù)的概念》說課稿的.引入難以理解。另外虛數(shù)單位公開課《數(shù)系的擴充與復數(shù)的概念》說課稿和實數(shù)進行四則運算也不容易接受。復數(shù)的相等和復數(shù)的相關概念(比如實部、虛部、虛數(shù)、純虛數(shù)等)這些學生很容易理解。

本節(jié)課我采用設問“n、z、q、r分別代表什么?它們的如何發(fā)展得來的?”、“實系數(shù)一元二次方程公開課《數(shù)系的擴充與復數(shù)的概念》說課稿沒有實數(shù)根、能否將實數(shù)集進行擴充,使得在新的數(shù)集中,該問題能得到圓滿解決呢?”吸引學生,激發(fā)學生的求知欲,為虛數(shù)單位的引入打下基礎,在新知識的教學過程中我主要采用設疑、提示、觀察、類比、練習等活動啟發(fā)學生,讓學生動手、動口、動腦,積極參與到自主、合作探究的學習活動中,以努力把類比、分類、歸納、概括、分析等方法貫穿到課堂中去,實現(xiàn)新課程課堂教學理念。

從課堂教學和課后作業(yè)來看,學生已理解了新知識,掌握了本節(jié)的知識點。但個人仍感覺教學中存在著很多需要改進的地方。例如數(shù)系擴充的發(fā)展史是否應該放在課前讓學生自己收集,復數(shù)的分類是否再講解細致一點,提問的范圍是否再擴大些,教學語言是否再簡練一些,新課程教學理念怎樣做才能落實得更好些等都是值得反思的。通過本次公開教學活動,我希望各位同仁多提些教學建議,多讓我分享大家的智慧,使得個人和在座的所有老師從中受益,讓我們的教學水平再邁上一個新的臺階。

復數(shù)概念的說課稿篇九

學生對一元二次方程概念的理解基本結(jié)束了。我認為數(shù)學教學要以提高學生的數(shù)學素質(zhì)為指導思想,以學生積極參與教學活動為目標,以探索概念的過程和展開思維分析為主線,在課堂教學中,教師充分調(diào)動學生的一切因素,讓學生在和諧、愉悅的氛圍中獲取知識、掌握方法。

探索新課改下的'數(shù)學課堂教學模式,優(yōu)化數(shù)學課堂教學結(jié)構(gòu),還是一個長期而艱苦的工作。我堅信只要我們不斷地創(chuàng)新,大膽地探索,就一定能取得好的教學效果。

復數(shù)概念的說課稿篇十

教學內(nèi)容:

六年制小學數(shù)學第十二冊課本第55頁例1.例2.作業(yè)本第31(29)。

教學目標:

1.使學生理解比例的意義。

2.使學生能應用比例尺的知識求平面圖的比例尺,以及根據(jù)比例尺求圖上距離和實際距離。

3.培養(yǎng)學生分析問題、解決問題的能力和創(chuàng)新能力。

教學重點:

理解比例尺的意義。

教學難點:

根據(jù)比例尺求圖上距離和實際距離。

教具準備:

多媒體課件一套。

教學過程:

一、問題的情景:

1.出示郵票。問:你能同樣大小的把它畫在圖紙上嗎?

讓同學們畫一畫,再拿出郵票的長,比一比,怎么樣?

歸納:(同樣長)得:圖上的長和實際的長的比是1:1。

2.教室的長是9米,你能同樣長的畫在圖紙上嗎?更大一些呢?

4.導入新課:人們在繪制地圖和平面圖時,往往因為紙的大小有限,不可能按實際的大小畫在圖紙上,經(jīng)常需要把實際距離縮小一定的倍數(shù)以后再畫成圖。象手表等機器零件比較小,又得把實際長度擴大一定的倍數(shù)以后,才能畫到圖紙上去。這就.需要涉及到一種新的知識。也就是今天我們一起來研究比例尺的問題。

板書:比例尺。

二、問題解決:

5.一個教室長是9米,如果我們要畫這個教室的平面圖,為了看圖和攜帶方便,就需要把實際距離縮小一定的倍數(shù)后畫在平面圖上,縮小多少倍由你自己決定,你打算設計:用幾厘米表示9米。請四人小組討論并設計。

6.小組回報設計方案,教師選擇以下四種方案。

(1).用9厘米表示9米。

(2).用4.5厘米表示9米。

(3).用3厘米表示9米。

(4).用1厘米表示9米。

7.說說以上方案是圖上距離比實際距離縮小了多少倍?

算一算,每幅圖圖上距離和實際距離的比。

(1).9厘米9米=9900=1100。

(2).4.5厘米9米=4.5900=1200。

(3).3厘米9米=3900=1300。

(4).1厘米9米=1900。

8.這四個比的前項代表什么?(圖上距離),后項代表什么?(實際距離),我們把這樣的`比,叫比例尺。

齊讀:比例尺是圖上距離與實際距離的比,化簡后得到最簡整數(shù)比。

比例尺怎樣求:(看上述四個比例式得出):

圖上距離實際距離=比例尺或圖上距離。

實際距離。

9.討論匯報:上面四幅圖,比例尺是多少圖最大?

比例尺是多少圖再???為什么?

10.練習:

(1).甲、乙兩座城市相距120千米,在地圖上量得兩城市的距離是4厘米。求這幅地圖的比例尺。

(2).學校里修建運動場,在設計圖上用25厘米長線段來表示操場的實際長度150米。求圖上距離和實際距離的比。

(3).一張中國圖,圖上4厘米表示實際距離1040千米,求這幅地圖的比例尺?

(4).一張緊密圖紙中,圖上1厘米表示實際1毫米,求這幅精密圖紙的比例尺?

(觀察精密零件如果要畫在圖紙上,怎么辦?(放大)。那這幅精密圖紙的比例尺會求嗎?

上述四題分層練習,后講評。

11.比較(3)、(4)兩題的比例尺有什么不同?

教師小結(jié):一般把縮小圖的比例尺寫成前項是1的比,而把放大圖的比例尺寫成后項是1的長。

12.比例尺有多少種表示方法?讓生說一說。

(常見的有:比的形式分數(shù)的形式線段形式)。

三、問題的應用:

根據(jù)比例尺的關系式,求實際距離。

(學生獨立解答,同時抽一生板演)。

解:設上海到北京的實際距離為x厘米,

x=105000000。

105000000厘米=1050千米。

答:上海到北京的實際距離大約是1050千米。

(2).分析講述:

根據(jù)比例尺的計算公式,已知圖上距離和比例尺求實際距離,用方程解。

(先設x,再根據(jù)比例尺的計算公式列出方程。)。

(3).圖上距離和實際距離的單位要統(tǒng)一,一般都統(tǒng)一為低級單位厘米。

(4)怎樣設x,.教師指出:設未知數(shù)時,單位要與已知單位統(tǒng)一,后再化聚到問題單位。

(5)嘗試練習第57頁試一試。

復數(shù)概念的說課稿篇十一

在職人才引進:

業(yè)務定義。

在職人才引進申報:符合當在職人才引進申報政策的人員,可辦理在職人才引進申報。具體參看當政策。

政策依據(jù):

深圳市人才引進實施辦法(深府辦函[2013]37號)《深圳市人才引進綜合評價指標及分值表》(深人社規(guī)〔2013〕5號)。

在職人才引進的條件:

(一)符合以下基本條件,且人才引進積分分值達到100分的,可以申請辦理人才引進手續(xù):

1.年齡在18周歲以上,48周歲以下;

2.身體健康;

3.已在我市辦理居住證和繳納社保;

4.符合《深圳經(jīng)濟特區(qū)人口與計劃生育條例》的規(guī)定;

5.未參加國家禁止的組織及活動,無刑事犯罪記錄。

(二)符合上款基本條件的第2、4、5項,且符合以下條件之一,可直接申請辦理人才引進手續(xù):

1.兩院院士;

6.取得《深圳市出國留學人員資格證明》,且年齡不超過48周歲的留學回國人員。

(三)根據(jù)我市戶籍遷入規(guī)定,以下人員申請人才引進年齡上限可放寬:

本款第2至5項所規(guī)定人員,須在最近連續(xù)3個納稅內(nèi)具備與申請事由相適應的身份資格;納稅額超過以上規(guī)定納稅額一倍以上的,其年齡可放寬至55周歲。

(四)市政府對高層次專業(yè)人才及其配偶、獲得特殊獎項或表彰人員、投資納稅人員、隨軍家屬、機關事業(yè)單位或駐深單位人員等引進另有規(guī)定的,按其規(guī)定執(zhí)行。

復數(shù)概念的說課稿篇十二

函數(shù)作為初等數(shù)學的核心內(nèi)容,貫穿于整個初等數(shù)學體系之中。函數(shù)這一章在高中數(shù)學中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關系,而高中階段不僅把函數(shù)看成變量之間的依賴關系,更是從“變量說”到“對應說”,這是對函數(shù)本質(zhì)特征的進一步認識,也是學生認識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學建模的思想等內(nèi)容,這些內(nèi)容的學習,無疑對學生今后的學習起著深刻的影響。

本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學的基礎,只有對概念做到深刻理解,才能正確靈活地加以應用。本課從集合間的對應來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進一步學習函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。

二、重難點分析。

根據(jù)對上述對教材的分析及新課程標準的要求,確定函數(shù)的概念既是本節(jié)課的重點,也應該是本章的難點。

三、學情分析。

1、有利因素:一方面學生在初中已經(jīng)學習了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認識;另一方面在本書第一章學生已經(jīng)學習了集合的概念,這為學習函數(shù)的現(xiàn)代定義打下了基礎。

2、不利因素:函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應來描繪函數(shù)概念,是一個抽象過程,要求學生的抽象、分析、概括的能力比較高,學生學起來有一定的難度。

四、目標分析。

1、理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。

2、通過對實際問題分析、抽象與概括,培養(yǎng)學生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。

3、通過對函數(shù)概念形成的探究過程,培養(yǎng)學生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。

五、教法學法。

本節(jié)課的教學以學生為主體、教師是數(shù)學課堂活動的組織者、引導者和參與者,我一方面精心設計問題情景,引導學生主動探索。另一方面,依據(jù)本節(jié)為概念學習的特點,以問題的提出、問題的解決為主線,始終在學生知識的“最近發(fā)展區(qū)”設置問題,倡導學生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學習過程成為學生心靈愉悅的主動認知過程。

學法方面,學生通過對新舊兩種函數(shù)定義的對比,在集合論的觀點下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。

六、教學過程。

(一)創(chuàng)設情景,引入新課。

情景1:提供一張表格,把上次運動會得分前10的情況填入表格,我報名次,學生提供分數(shù)。

名次(得分)。

情景3:某市一天24小時內(nèi)的氣溫變化圖:(圖略)。

提問(1):這三個例子中都涉及到了幾個變化的量?(兩個)。

提問(2):當其中一個變量取值確定后,另一個變量將如何?(它的值也隨之唯一確定)。

提問(3):這樣的關系在初中稱之為什么?(函數(shù))引出課題。

[設計意圖]在創(chuàng)設本課開頭情境1、2的時候,我并沒有運用書中的前兩個例子。第一個例子我改成提供給學生一張運動會成績統(tǒng)計單。是為了創(chuàng)設和學生或者生活相近的情境,從而引起學生的興趣,調(diào)節(jié)課堂氣氛,引人入勝,第二個例子我改成一道簡單的速度與時間問題,是因為學生對重力加速度的問題還不是很熟悉。同時這兩個例子并沒有改變課本用三個實例分別代表三種表示函數(shù)方法的意圖。這樣學生可以從熟悉的情景引入,提高學生的參與程度。符合學生的認知特點。

(二)探索新知,形成概念。

1、引導分析,探求特征。

思考:如何用集合的語言來闡述上述三個問題的共同特征?

[設計意圖]并不急著讓學生回答此問,為引導學生改變思路,換個角度思考問題,進入本節(jié)課的重點。這里也是教師作為教學的引導者的體現(xiàn),及時對學生進行指引。

提問(4):觀察上述三問題,它們分別涉及到了哪些集合?(每個問題都涉及到了兩個集合,具體略)。

[設計意圖]引導學生觀察,培養(yǎng)觀察問題,分析問題的能力。

提問(5):兩個集合的元素之間具有怎樣的關系?(對應)。

及時給出單值對應的定義,并嘗試用輸入值,輸出值的概念來表達這種對應。

提問(6):現(xiàn)在你能從集合角度說說這三個問題的共同點嗎?

[設計意圖]學生相互討論,并回答,引出函數(shù)的概念。訓練學生的歸納能力。

上述一系列問題,始終在學生知識的“最近發(fā)展區(qū)”,倡導學生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動,生生互動中,在學生心情愉悅的氛圍中,突破本節(jié)課的重點。

3、探求定義,提出注意。

提問(7):你覺得這個定義中應注意哪些問題?

[設計意圖]剖析概念,使學生抓住概念的本質(zhì),便于理解記憶。

4、例題剖析,強化概念。

例1、判斷下列對應是否為函數(shù):

[設計意圖]通過例1的教學,使學生體會單值對應關系在刻畫函數(shù)概念中的核心作用。

例2、(1);(2)y=x-1;(3);[設計意圖]首先對求函數(shù)的定義域進行方法引導,偶次方根必需注意的地方,其次,通過(2)(3)兩道題,強調(diào)只有對應法則與定義域相同的兩個函數(shù),才是相同的函數(shù)。而與函數(shù)用什么字母表示無關,進一步理解函數(shù)符號的本質(zhì)內(nèi)涵。

例3、試求下列函數(shù)的定義域與值域:

[設計意圖]讓學體會理解函數(shù)的三要素。

5、鞏固練習,運用概念。

書本練習p24:1,2,3,4。

6、課堂小結(jié),提升思想。

引導學生進行回顧,使學生對本節(jié)課有一個整體把握,將對學生形成的知識系統(tǒng)產(chǎn)生積極的影響。

七、教學評價。

1、我通過對一系列問題情景的設計,讓學生在問題解決的過程中體驗成功的樂趣,實現(xiàn)對本課重難點的突破。

2、為使課堂形式更加豐富,也可將某些問題改成判斷題。

4。本節(jié)課的起始,可以借助于多媒體技術,為學生創(chuàng)設更理想的教學情景。

復數(shù)概念的說課稿篇十三

“棱錐”這節(jié)教材是《立體幾何》的第2.2節(jié),它是在學生學習了直線和平面的基礎知識,掌握了棱柱的概念和性質(zhì)的基礎上進一步研究多面體的又一常見幾何體。它既是線面關系的具體化,又為以后進一步學習棱臺的概念和性質(zhì)奠定了基礎。因此掌握好棱錐的概念和性質(zhì)尤其是正棱錐的概念和性質(zhì)意義非常重要,同時,這節(jié)課也是進一步培養(yǎng)高一學生的'空間想象能力和邏輯思維能力的重要內(nèi)容。

2、教學內(nèi)容。

本節(jié)課的主要教學內(nèi)容是棱錐、正棱錐的概念和性質(zhì)以及運用正棱錐的性質(zhì)解決有關計算和證明問題。通過觀察具體幾何體模型引出棱錐的概念;通過棱柱與棱錐類比引入正棱錐的概念;通過對具體問題的研究,逐步探索和發(fā)現(xiàn)正棱錐的性質(zhì),從而找到解決正棱錐問題的一般數(shù)學思想方法,這樣做,學生會感到自然,好接受。對教材的內(nèi)容則有所增減,處理方式也有適當改變。

3、教學目標。

根據(jù)教學大綱的要求,本節(jié)教材的特點和高一學生對空間圖形的認知特點,我把本節(jié)課的教學目標確定為:

(1)知識目標:使學生理解棱錐以及正棱錐的概念,掌握正棱錐的性質(zhì),領會應用正棱錐的性質(zhì)解題的一般方法初步學會應用性質(zhì)解決相關問題。

(2)能力目標:通過對正棱錐中相關元素的相互轉(zhuǎn)化的研究,培養(yǎng)學生知識遷移的能力及數(shù)學表達能力,提高學生的空間想象能力以及空間問題向平面轉(zhuǎn)化的能力。

(3)德育、美育目標:通過教學進行辯證唯物主義思想教育,數(shù)學審美教育,提高學生學習數(shù)學的積極性。

4、教學重點,難點,關鍵。

對于高一學生來說,空間觀念正逐步形成。而實際生活中,遇到的往往是正棱錐,它的性質(zhì)用處較多。因此,本節(jié)課的教學重點是通過對具體問題的分析和探索,自然而然地引出正棱錐的最重要性質(zhì)及其實質(zhì);而如何將空間問題轉(zhuǎn)化為平面問題來解決?本節(jié)課則通過抓住正棱錐中的基本圖形這一難點實現(xiàn)突破,教學的關鍵是正確認識正棱錐的線線,線面垂直關系。

二、說教法。

由于本節(jié)課安排在立體幾何學習的中期,正是進一步培養(yǎng)學生形成空間觀念和提高學生邏輯思維能力的最佳時機,因此,在教學中,一方面通過電教手段,把某些概念,性質(zhì)或知識關鍵點制成了投影片,既節(jié)省時間,又增加其直觀性和趣味性,起到事半功倍的作用;另一方面,在教學中并沒有采取把正棱錐性質(zhì)同時全部講授給學生的做法,而是通過具體問題的分析與處理,將正棱錐最重要的性質(zhì)這一知識點發(fā)現(xiàn)的全過程逐步展現(xiàn)給學生,讓學生體會知識發(fā)生、發(fā)展的過程及其規(guī)律,從而提高學生分析和解決實際問題的能力。因此我把本節(jié)的教法確定為:類比聯(lián)想、研究探討、直觀想象、啟發(fā)誘導、建立模型、學會應用、發(fā)展?jié)撃?、形成能力、提高素質(zhì)的啟發(fā)式教學。

三、說學法。

教學矛盾的主要方面是學生的學。學是中心,會學是目的。因此,在教學中要不斷指導學生學會學習。根據(jù)立體幾何教學的特點,這節(jié)課主要是教給學生“動手做,動腦想;嚴格證,多訓練,勤鉆研?!钡难杏懯綄W習方法。這樣做,增加了學生主動參與的機會,增強了參與意識,教給學生獲取知識的途徑;思考問題的方法。使學生真正成為教學的主體。也只有這樣做,才能使學生“學”有新“思”,“思”有所“得”,“練”有所“獲”。學生才會逐步感到數(shù)學美,會產(chǎn)生一種成功感,從而提高學生學習數(shù)學的興趣;也只有這樣做,才能適應素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

四、說教學過程。

復數(shù)概念的說課稿篇十四

質(zhì)數(shù)又稱素數(shù)。一個大于1的自然數(shù),除了1和它自身外,不能被其他自然數(shù)整除的數(shù)叫做質(zhì)數(shù);否則稱為合數(shù)(規(guī)定1既不是質(zhì)數(shù)也不是合數(shù))。

2、質(zhì)數(shù)的性質(zhì)。

(1)質(zhì)數(shù)p的約數(shù)只有兩個:1和p。

(2)初等數(shù)學基本定理:任一大于1的自然數(shù),要么本身是質(zhì)數(shù),要么可以分解為幾個質(zhì)數(shù)之積,且這種分解是唯一的。

(3)質(zhì)數(shù)的個數(shù)是無限的。

(4)若n為正整數(shù),在n2到(n+1)2之間至少有一個質(zhì)數(shù)。

(5)若n為大于或等于2的正整數(shù),在n到n!之間至少有一個質(zhì)數(shù)。

(6)所有大于10的質(zhì)數(shù)中,個位數(shù)只有1,3,7,9。

【本文地址:http://www.mlvmservice.com/zuowen/17991829.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔