教案是一份重要的教學參考材料,有助于教師提供有效的教學指導。編寫教案時要注重內容的系統(tǒng)性和深度,引導學生進行全面的學習和思考。下面是一份優(yōu)秀的教案范文,供大家參考和借鑒。
必修一數學教案篇一
引用:本文《高中化學必修二教案(人教版)》來源于師庫網,由師庫網博客摘錄整理,以下是的詳細內容:開發(fā)利用金屬礦物和海水...《基本營養(yǎng)物質》教案化學反應的速率和限度化學能與熱能化學與資源綜合利用、環(huán)...最簡單的有機化合物dd...《生活中兩種常見的'有機...來自石油和煤的兩種基本...引用:師庫網溫馨提示本篇內容來源于師庫網,旨在用于課件制作交流,非盈利性質,僅供參考,針對本文的問題如需了解更詳細,可留言或者聯系客服tags:教案、課件、師庫網、教案網、課件網
必修一數學教案篇二
1.古人見面常用的禮儀是拜禮和揖禮。前者主要以叩頭跪拜為主,后者則以拱手示意為主。
2.座次:坐西向東為尊,其次是坐北朝南,再次是坐南朝北,最卑是坐東朝西。3.銀河:又叫銀漢、天漢、星漢、河漢、云漢、星河。
4.五岳:東岳泰山、西岳華山、南岳衡山、北岳恒山、中岳嵩山。
5.五湖:太湖、鄱陽湖、青草湖、丹陽湖、洞庭湖。
6.趨:從長者尊者前面走過,要小步快走,以示敬意,叫“趨”。
7.三吳:吳興郡、吳郡、會稽郡。
8.三楚:西楚、東楚、南楚。
9.古人紀年:干支紀年和帝王紀年。干支紀年是十天干和十二地支依次兩兩相配而成得一種紀年方法。帝王紀年是按照帝王即位的年次或年號來紀年(明清兩代)的方法。
10.十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸。
11.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥。
12.古人紀月:序數紀月和特殊稱謂紀月。每季用孟、仲、季區(qū)分。用朔(初一)、望(十五)、晦(月末)等名稱標識日期。
夜半丙夜三更23-1雞鳴丁夜四更1-3平日戊夜五更3-5。
14.名:古代嬰兒出生幾個月后,一般由父親命名。
15.字:是20歲舉行加冠儀式后才起的,標志著成人。字是對名的解釋和補充,對名有表述、闡釋作用,因此又叫“表字”。有的字與名相近相成,也有的相反相成。
16.號:是一種固定的別名,又叫“別號”。
17.謚號:古代帝王、諸侯、高官大臣、貴族及其他有地位的人死后,根據其生前的品德來定的,帶有或褒或貶或同情的稱號。
18.古人自稱名,稱人稱字,這是基本的禮貌。
19.《周易》把禮儀分為五類:
吉禮:有關祭祀的,包括祭祀自然、神、祖先。兇禮:有關喪葬的,包括憑吊各種天災人禍。
軍禮:有關軍事活動的。賓禮:有關外交活動的,包括朝、聘、會、盟等國事活動。
嘉禮:有關個人成長和交往以及王位承襲的,包括冠禮、婚禮、宴飲之禮、養(yǎng)老禮等。
侯曉旭。
必修一數學教案篇三
本章的中心內容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實在解三角形的應用上。通過本章學習,學生應當達到以下學習目標:
(1)通過對任意三角形邊長和角度關系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。
(2)能夠熟練運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關的生活實際問題。
數學思想方法的教學是中學數學教學中的重要組成部分,有利于學生加深數學知識的理解和掌握。
本章重視與內容密切相關的數學思想方法的教學,并且在提出問題、思考解決問題的策略等方面對學生進行具體示范、引導。本章的兩個主要數學結論是正弦定理和余弦定理,它們都是關于三角形的邊角關系的結論。在初中,學生已經學習了相關邊角關系的定性的知識,就是“在任意三角形中有大邊對大角,小邊對小角”,“如果已知兩個三角形的兩條對應邊及其所夾的角相等,那么這兩個三角形全”等。
教科書在引入正弦定理內容時,讓學生從已有的幾何知識出發(fā),提出探究性問題:“在任意三角形中有大邊對大角,小邊對小角的邊角關系.我們是否能得到這個邊、角的關系準確量化的表示呢?”,在引入余弦定理內容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們仍然從量化的角度來研究這個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題?!痹O置這些問題,都是為了加強數學思想方法的教學。
加強與前后各章教學內容的聯系,注意復習和應用已學內容,并為后續(xù)章節(jié)教學內容做好準備,能使整套教科書成為一個有機整體,提高教學效益,并有利于學生對于數學知識的學習和鞏固。
本章內容處理三角形中的邊角關系,與初中學習的三角形的邊與角的基本關系,已知三角形的邊和角相等判定三角形全等的知識有著密切聯系。教科書在引入正弦定理內容時,讓學生從已有的幾何知識出發(fā),提出探究性問題“在任意三角形中有大邊對大角,小邊對小角的邊角關系.我們是否能得到這個邊、角的關系準確量化的表示呢?”,在引入余弦定理內容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們仍然從量化的角度來研究這個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題?!边@樣,從聯系的觀點,從新的角度看過去的問題,使學生對于過去的知識有了新的認識,同時使新知識建立在已有知識的堅實基礎上,形成良好的知識結構。
《課程標準》和教科書把“解三角形”這部分內容安排在數學五的第一部分內容,
位置相對靠后,在此內容之前學生已經學習了三角函數、平面向量、直線和圓的方程等與本章知識聯系密切的內容,這使這部分內容的處理有了比較多的工具,某些內容可以處理得更加簡潔。比如對于余弦定理的證明,常用的方法是借助于三角的方法,需要對于三角形進行討論,方法不夠簡潔,教科書則用了向量的方法,發(fā)揮了向量方法在解決問題中的威力。
在證明了余弦定理及其推論以后,教科書從余弦定理與勾股定理的比較中,提出了一個思考問題“勾股定理指出了直角三角形中三邊平方之間的關系,余弦定理則指出了一般三角形中三邊平方之間的關系,如何看這兩個定理之間的'關系?”,并進而指出,“從余弦定理以及余弦函數的性質可知,如果一個三角形兩邊的平方和等于第三邊的平方,那么第三邊所對的角是直角;如果小于第三邊的平方,那么第三邊所對的角是鈍角;如果大于第三邊的平方,那么第三邊所對的角是銳角.從上可知,余弦定理是勾股定理的推廣.”
學數學的最終目的是應用數學,而如今比較突出的兩個問題是,學生應用數學的意識不強,創(chuàng)造能力較弱。學生往往不能把實際問題抽象成數學問題,不能把所學的數學知識應用到實際問題中去,對所學數學知識的實際背景了解不多,雖然學生機械地模仿一些常見數學問題解法的能力較強,但當面臨一種新的問題時卻辦法不多,對于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發(fā)現問題、解決問題的科學思維方法了解不夠。針對這些實際情況,本章重視從實際問題出發(fā),引入數學課題,最后把數學知識應用于實際問題。
1.1正弦定理和余弦定理(約3課時)
1.2應用舉例(約4課時)
1.3實習作業(yè)(約1課時)
1.要在本章的教學中,應該根據教學實際,啟發(fā)學生不斷提出問題,研究問題。在對于正弦定理和余弦定理的證明的探究過程中,應該因勢利導,根據具體教學過程中學生思考問題的方向來啟發(fā)學生得到自己對于定理的證明。如對于正弦定理,可以啟發(fā)得到有應用向量方法的證明,對于余弦定理則可以啟發(fā)得到三角方法和解析的方法。在應用兩個定理解決有關的解三角形和測量問題的過程中,一個問題也常常有多種不同的解決方案,應該鼓勵學生提出自己的解決辦法,并對于不同的方法進行必要的分析和比較。對于一些常見的測量問題甚至可以鼓勵學生設計應用的程序,得到在實際中可以直接應用的算法。
2.適當安排一些實習作業(yè),目的是讓學生進一步鞏固所學的知識,提高學生分析問題的解決實際問題的能力、動手操作的能力以及用數學語言表達實習過程和實習結果能力,增強學生應用數學的意識和數學實踐能力。教師要注意對于學生實習作業(yè)的指導,包括對于實際測量問題的選擇,及時糾正實際操作中的錯誤,解決測量中出現的一些問題。
必修一數學教案篇四
掌握三角函數模型應用基本步驟:
(1)根據圖象建立解析式;
(2)根據解析式作出圖象;
(3)將實際問題抽象為與三角函數有關的簡單函數模型·。
·利用收集到的數據作出散點圖,并根據散點圖進行函數擬合,從而得到函數模型·。
一、練習講解:《習案》作業(yè)十三的第3、4題。
(精確到0·001)·。
米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的`進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。
練習:教材p65面3題。
三、小結:1、三角函數模型應用基本步驟:
(1)根據圖象建立解析式;
(2)根據解析式作出圖象;
(3)將實際問題抽象為與三角函數有關的簡單函數模型·。
2、利用收集到的數據作出散點圖,并根據散點圖進行函數擬合,從而得到函數模型·。
四、作業(yè)《習案》作業(yè)十四及十五。
必修一數學教案篇五
3.通過參與編題解題,激發(fā)學生學習的愛好.
教學重點是通項公式的熟悉;教學難點是對公式的靈活運用.
實物投影儀,多媒體軟件,電腦.
研探式.
一.復習提問
等差數列的概念是從相鄰兩項的關系加以定義的,這個關系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進一步的理解與應用.
二.主體設計
通項公式反映了項與項數之間的函數關系,當等差數列的首項與公差確定后,數列的每一項便確定了,可以求指定的項(即已知求).找學生試舉一例如:“已知等差數列中,首項,公差,求.”這是通項公式的簡單應用,由學生解答后,要求每個學生出一些運用等差數列通項公式的題目,包括正用、反用與變用,簡單、復雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.
1.方程思想的運用
(1)已知等差數列中,首項,公差,則-397是該數列的第x項.
(2)已知等差數列中,首項,則公差
(3)已知等差數列中,公差,則首項
這一類問題先由學生解決,之后教師點評,四個量,在一個等式中,運用方程的思想方法,已知其中三個量的值,可以求得第四個量.
2.基本量方法的使用
(1)已知等差數列中,求的值.
(2)已知等差數列中,求.
若學生的題目只有這兩種類型,教師可以小結(請出題者、解題者概括):因為已知條件可以化為關于和的二元方程組,所以這些等差數列是確定的,由和寫出通項公式,便可歸結為前一類問題.解決這類問題只需把兩個條件(等式)化為關于和的二元方程組,以求得和,和稱作基本量.
教師提出新的問題,已知等差數列的一個條件(等式),能否確定一個等差數列?學生回答后,教師再啟發(fā),由這一個條件可得到關于和的二元方程,這是一個和的`制約關系,從這個關系可以得到什么結論?舉例說明(例題可由學生或教師給出,視具體情況而定).
如:已知等差數列中,…
由條件可得即,可知,這是比較顯然的,與之相關的還能有什么結論?若學生答不出可提示,一定得某一項的值么?能否與兩項有關?多項有關?由學生發(fā)現規(guī)律,完善問題(3)已知等差數列中,求;;;;….
類似的還有
(4)已知等差數列中,求的值.
以上屬于對數列的項進行定量的研究,有無定性的判定?引出
3.研究等差數列的單調性
4.研究項的符號
這是為研究等差數列前項和的最值所做的預備工作.可配備的題目如
(1)已知數列的通項公式為,問數列從第幾項開始小于0?
(2)等差數列從第x項起以后每項均為負數.
三.小結
1.用方程思想熟悉等差數列通項公式;
2.用函數思想解決等差數列問題.
四.板書設計
等差數列通項公式1.方程思想的運用
2.基本量方法的使用
3.研究等差數列的單調性
4.研究項的符號
必修一數學教案篇六
1、了解函數的單調性和奇偶性的概念,把握有關證實和判定的基本方法。
(1)了解并區(qū)分增函數,減函數,單調性,單調區(qū)間,奇函數,偶函數等概念。
(2)能從數和形兩個角度熟悉單調性和奇偶性。
(3)能借助圖象判定一些函數的單調性,能利用定義證實某些函數的單調性;能用定義判定某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程。
2、通過函數單調性的證實,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養(yǎng)學生的觀察,歸納,抽象的能力,同時滲透數形結合,從非凡到一般的數學思想。
3、通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養(yǎng)樂于求索的精神,形成科學,嚴謹的研究態(tài)度。
必修一數學教案篇七
用坐標法解決幾何問題的步驟:
第二步:通過代數運算,解決代數問題;
第三步:將代數運算結果“翻譯”成幾何結論、
重點與難點:直線與圓的方程的應用、
問 題設計意圖師生活動
生:回顧,說出自己的看法、
2、解決直線與圓的位置關系,你將采用什么方法?
生:回顧、思考、討論、交流,得到解決問題的方法、
問 題設計意圖師生活動
3、閱讀并思考教科書上的例4,你將選擇什么方 法解決例4的'問題
生:自 學例4,并完成練習題1、2、
生:建立適當的直角坐標系, 探求解決問題的方法、
8、小結:
(1)利用“坐標法”解決問對知識進行歸納概括,體會利 師:指導 學生完成練習題、
生:閱讀教科書的例3,并完成第
問 題設計意圖師生活動
題的需要準備什么工作?
(2)如何建立直角坐標系,才能易于解決平面幾何問題?
(3)你認為學好“坐標法”解決問題的關鍵是什么?
必修一數學教案篇八
1.使學生了解奇偶性的概念,回會利用定義判定簡單函數的奇偶性。
2.在奇偶性概念形成過程中,培養(yǎng)學生的觀察,歸納能力,同時滲透數形結合和非凡到一般的思想方法。
3.在學生感受數學美的同時,激發(fā)學習的愛好,培養(yǎng)學生樂于求索的精神。
教學重點,難點。
重點是奇偶性概念的形成與函數奇偶性的判定。
難點是對概念的熟悉。
教學用具。
投影儀,計算機。
教學方法。
引導發(fā)現法。
教學過程。
一.引入新課。
前面我們已經研究了函數的單調性,它是反映函數在某一個區(qū)間上函數值隨自變量變化而變化的性質,今天我們繼續(xù)研究函數的另一個性質。從什么角度呢?將從對稱的角度來研究函數的性質。
(學生可能會舉出一些數值上的對稱問題,等,也可能會舉出一些圖象的對稱問題,此時教師可以引導學生把函數具體化,如和等。)。
學生經過思考,能找出原因,由于函數是映射,一個只能對一個,而不能有兩個不同的,故函數的圖象不可能關于軸對稱。最終提出我們今天將重點研究圖象關于軸對稱和關于原點對稱的問題,從形的特征中找出它們在數值上的規(guī)律。
二.講解新課。
2.函數的奇偶性(板書)。
學生開始可能只會用語言去描述:自變量互為相反數,函數值相等。教師可引導學生先把它們具體化,再用數學符號表示。(借助課件演示令比較得出等式,再令,得到,詳見課件的使用)進而再提出會不會在定義域內存在,使與不等呢?(可用課件幫助演示讓動起來觀察,發(fā)現結論,這樣的是不存在的)從這個結論中就可以發(fā)現對定義域內任意一個,都有成立。最后讓學生用完整的語言給出定義,不準確的地方教師予以提示或調整。
(1)偶函數的定義:假如對于函數的定義域內任意一個,都有,那么就叫做偶函數。(板書)。
(給出定義后可讓學生舉幾個例子,如等以檢驗一下對概念的初步熟悉)。
提出新問題:函數圖象關于原點對稱,它的自變量與函數值之間的數值規(guī)律是什么呢?(同時打出或的圖象讓學生觀察研究)。
學生可類比剛才的方法,很快得出結論,再讓學生給出奇函數的定義。
(2)奇函數的定義:假如對于函數的定義域內任意一個,都有,那么就叫做奇函數。(板書)。
(由于在定義形成時已經有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)。
例1。判定下列函數的奇偶性(板書)。
(1);(2);
(3);;
(5);(6)。
(要求學生口答,選出12個題說過程)。
解:(1)是奇函數。(2)是偶函數。
(3),是偶函數。
學生經過思考可以解決問題,指出只要舉出一個反例說明與不等。如即可說明它不是偶函數。(從這個問題的解決中讓學生再次熟悉到定義中任意性的重要)。
從(4)題開始,學生的答案會有不同,可以讓學生先討論,教師再做評述。即第(4)題中表面成立的=不能經受任意性的考驗,當時,由于,故不存在,更談不上與相等了,由于任意性被破壞,所以它不能是奇偶性。
可以用(6)輔助說明充分性不成立,用(5)說明必要性成立,得出結論。
(3)定義域關于原點對稱是函數具有奇偶性的必要但不充分條件。(板書)。
由學生小結判定奇偶性的步驟之后,教師再提出新的問題:在剛才的幾個函數中有是奇函數不是偶函數,有是偶函數不是奇函數,也有既不是奇函數也不是偶函數,那么有沒有這樣的函數,它既是奇函數也是偶函數呢?若有,舉例說明。
例2。已知函數既是奇函數也是偶函數,求證:。(板書)(試由學生來完成)。
(4)函數按其是否具有奇偶性可分為四類:(板書)。
例3。判定下列函數的奇偶性(板書)。
(1);(2);(3)。
由學生回答,不完整之處教師補充。
解:(1)當時,為奇函數,當時,既不是奇函數也不是偶函數。
(2)當時,既是奇函數也是偶函數,當時,是偶函數。
(3)當時,于是,
當時,,于是=,
綜上是奇函數。
教師小結(1)(2)注重分類討論的使用,(3)是分段函數,當檢驗,并不能說明具備奇偶性,因為奇偶性是對函數整個定義域內性質的刻畫,因此必須均有成立,二者缺一不可。
三.小結。
1.奇偶性的概念。
2.判定中注重的問題。
四.作業(yè)略。
五.板書設計。
2.函數的奇偶性例1.例3.
(1)偶函數定義。
(2)奇函數定義。
(3)定義域關于原點對稱是函數例2。小結。
具備奇偶性的必要條件。
(4)函數按奇偶性分類分四類。
探究活動。
(2)判定函數在上的單調性,并加以證實。
在此基礎上試利用這個函數的單調性解決下面的問題:
必修一數學教案篇九
1、使學生理解數列的概念,了解數列通項公式的意義,了解遞推公式是給出數列的一種方法,并能根據遞推公式寫出數列的前幾項。
(1)理解數列是按一定順序排成的一列數,其每一項是由其項數確定的。
(2)了解數列的各種表示方法,理解通項公式是數列第項與項數的關系式,能根據通項公式寫出數列的前幾項,并能根據給出的一個數列的前幾項寫出該數列的一個通項公式。
(3)已知一個數列的遞推公式及前若干項,便確定了數列,能用代入法寫出數列的`前幾項。
2、通過對一列數的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學生的觀察能力和抽象概括能力。
3、通過由求的過程,培養(yǎng)學生嚴謹的科學態(tài)度及良好的思維習慣。
(1)為激發(fā)學生學習數列的興趣,體會數列知識在實際生活中的作用,可由實際問題引入,從中抽象出數列要研究的問題,使學生對所要研究的內容心中有數,如書中所給的例子,還有物品堆放個數的計算等。
(2)數列中蘊含的函數思想是研究數列的指導思想,應及早引導學生發(fā)現數列與函數的關系。在教學中強調數列的項是按一定順序排列的,“次序”便是函數的自變量,相同的數組成的數列,次序不同則就是不同的數列。函數表示法有列表法、圖象法、解析式法,類似地,數列就有列舉法、圖示法、通項公式法。由于數列的自變量為正整數,于是就有可能相鄰的兩項(或幾項)有關系,從而數列就有其特殊的表示法——遞推公式法。
(3)由數列的通項公式寫出數列的前幾項是簡單的代入法,教師應精心設計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結構關系,盡量為寫通項公式提供幫助。
(4)由數列的前幾項寫出數列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結構特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規(guī)律性的結論,如正負相間用來調整等。如果學生一時不能寫出通項公式,可讓學生依據前幾項的規(guī)律,猜想該數列的下一項或下幾項的值,以便尋求項與項數的關系。
(5)對每個數列都有求和問題,所以在本節(jié)課應補充數列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學生分析與的關系,再由特殊到一般,研究其一般規(guī)律,并給出嚴格的推理證明(強調的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結果可合并及不可合并的情況。
(6)給出一些簡單數列的通項公式,可以求其項或最小項,又是函數思想與方法的體現,對程度好的學生應提出這一問題,學生運用函數知識是可以解決的。
必修一數學教案篇十
1.閱讀課本練習止。
2.回答問題:
(1)課本內容分成幾個層次?每個層次的中心內容是什么?
(2)層次間的聯系是什么?
(3)對數函數的定義是什么?
(4)對數函數與指數函數有什么關系?
3.完成練習。
4.小結。
二、方法指導。
1.在學習對數函數時,同學們應從熟悉的指數問題出發(fā),通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質。
2.本節(jié)課的主線是對數函數是指數函數的反函數,所有的問題都應圍繞著這條主線展開,同學們在學習時應該把兩個函數進行類比,通過互為反函數的兩個函數的關系由已知函數研究未知函數的性質。
一、提問題。
1.對數函數的自變量和函數分別在指數函數中是什么?
2.兩個函數如果互為反函數,則他們的值域,定義域有什么關系?
3.是否所有的函數都有反函數?試舉例說明。
二、變題目。
1.試求下列函數的反函數:
(1);(2);(3);(4)。
2.求下列函數的定義域:。
(1);(2);(3)。
3.已知則=;的定義域為。
1.對數函數的有關概念。
(1)把函數叫做對數函數,叫做對數函數的底數。
(2)以10為底數的對數函數為常用對數函數。
(3)以無理數為底數的對數函數為自然對數函數。
2.反函數的概念。
在指數函數中,是自變量,是的函數,其定義域是,值域是;在對數函數中,是自變量,是的函數,其定義域是,值域是,像這樣的兩個函數叫做互為反函數。
3.與對數函數有關的定義域的求法:
4.舉例說明如何求反函數。
一、課外作業(yè):習題3-5a組1,2,3,b組1,
二、課外思考:
1.求定義域:
2.求使函數的函數值恒為負值的的取值范圍。
必修一數學教案篇十一
1.要讀好課本。
有些“自我感覺良好”的學生,常輕視課本中基礎知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠,重“量”輕“質”,陷入題海,到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。因此,同學們應從高一開始,增強自己從課本入手進行研究的意識。
2.要記好筆記。
首先,在課堂教學中培養(yǎng)好的聽課習慣是很重要的。當然聽是主要的,聽能使注意力集中,要把老師講的關鍵性部分聽懂、聽會。聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應適當地有目的性的記好筆記,領會課上老師的主要精神與意圖??茖W的記筆記可以提高45分鐘課堂效益。
3.要做好作業(yè)。
在課堂、課外練習中培養(yǎng)良好的作業(yè)習慣也很有必要.在作業(yè)中不但做得整齊、清潔,培養(yǎng)一種美感,還要有條理,這是培養(yǎng)邏輯能力的一條有效途徑,必須獨立完成。同時可以培養(yǎng)一種獨立思考和解題正確的責任感。在作業(yè)時要提倡效率,應該十分鐘完成的作業(yè),不拖到半小時完成,疲疲憊憊的作業(yè)習慣使思維松散、精力不集中,這對培養(yǎng)數學能力是有害而無益的。
4.要寫好總結。
一個人不斷接受新知識,不斷遭遇挫折產生疑問,不斷地總結,才有不斷地提高?!安粫偨Y的同學,他的能力就不會提高,挫折經驗是成功的基石?!弊匀唤邕m者生存的生物進化過程便是最好的例證。學習要經??偨Y規(guī)律,目的就是為了更一步的發(fā)展。
通過與老師、同學平時的接觸交流,逐步總結出一般性的學習步驟,它包括:制定計劃、課前自學、專心上課、及時復習、獨立作業(yè)、解決疑難、系統(tǒng)小結和課外學習幾個方面,簡單概括為四個環(huán)節(jié)(預習、上課、整理、作業(yè))和一個步驟(復習總結)。每一個環(huán)節(jié)都有較深刻的內容,帶有較強的目的性、針對性,要落實到位。堅持“兩先兩后一小結”(先預習后聽課,先復習后做作業(yè),寫好每個單元的總結)的學習習慣。
1.課前預習教材。課前可以把教材上第二天老師要講的內容看一下,看看哪些能看懂,哪些不懂。這樣老師在講課的時候我們就能帶著問題去聽,把自己沒看懂的問題聽懂。
2.上課專心聽講。這是很重要的,很多同學以為自己什么都弄懂了,就自己做自己的題目。其實即使是自己看懂了的,也可以看看老師也沒有另外的理解方法,老師的方法是不是比自己好。聽老師有時候講比自己看更好。
小編推薦:高一數學怎么學才能學好。
3.課后認真復習。剛學的知識,還沒完全被消化吸收成為自己的知識,如果不及時復習,就很容易忘記。所以,課后一定要抽出一些時間,及時對所學進行鞏固。
4.通過習題鞏固。數學是理科,需要通過一定量的習題來鞏固,量變積累到了一定量才能質變嘛。這個并非要各位打題海戰(zhàn)術,只要求各位做到熟練為止。
5.錯題反復研究。自己準備一個錯題本,把考試時候做錯的題目記錄下來,寫上做錯的原因,反復研究,避免再次出錯。
必修一數學教案篇十二
教學目標。
3.讓學生深刻理解向量在處理平面幾何問題中的優(yōu)越性.
教學重難點。
教學重點:用向量方法解決實際問題的基本方法:向量法解決幾何問題的“三步曲”.
教學難點:如何將幾何等實際問題化歸為向量問題.
教學過程。
由于向量的線性運算和數量積運算具有鮮明的幾何背景,平面幾何圖形的許多性質,如平移、全等、相似、長度、夾角等都可以由向量的線性運算及數量積表示出來,因此,可用向量方法解決平面幾何中的一些問題,下面我們通過幾個具體實例,說明向量方法在平面幾何中的運用。
思考:
運用向量方法解決平面幾何問題可以分哪幾個步驟?
運用向量方法解決平面幾何問題可以分哪幾個步驟?
“三步曲”:
(2)通過向量運算,研究幾何元素之間的關系,如距離、夾角等問題;。
(3)把運算結果“翻譯”成幾何關系.
必修一數學教案篇十三
(2)了解區(qū)間的概念;。
(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數集的意義和作用;。
【問題診斷分析】在本節(jié)課的教學中,學生可能遇到的問題是函數的概念及符號的理解,產生這一問題的原因是:函數本身就是一個抽象的概念,對學生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數的概念,培養(yǎng)學生的抽象概況能力,其中關鍵是理論聯系實際,把抽象轉化為具體。
問題1:一枚炮彈發(fā)射后,經過26s落到地面擊中目標.炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時間變量t之間的對應關系是否為函數?若是,其自變量是什么?
設計意圖:通過以上問題,讓學生正確理解讓學生體會用解析式或圖象刻畫兩個變量之間的依賴關系,從問題的實際意義可知,在t的變化范圍內任給一個t,按照給定的對應關系,都有的一個高度h與之對應。
問題2:分析教科書中的實例(2),引導學生看圖并啟發(fā):在t的變化t按照給定的`圖象,都有的一個臭氧層空洞面積s與之相對應。
問題3:要求學生仿照實例(1)、(2),描述實例(3)中恩格爾系數和時間的關系。
設計意圖:通過這些問題,讓學生理解得到函數的定義,培養(yǎng)學生的歸納、概況的能力。
必修一數學教案篇十四
教學目標。
1、理解平面向量的坐標的概念;。
2、掌握平面向量的坐標運算;。
3、會根據向量的坐標,判斷向量是否共線.
教學重難點。
教學重點:平面向量的坐標運算。
教學難點:向量的坐標表示的理解及運算的準確性.
教學過程。
平面向量基本定理:。
什么叫平面的一組基底?
平面的基底有多少組?
引入:。
1.平面內建立了直角坐標系,點a可以用什么來。
表示?
2.平面向量是否也有類似的表示呢?
必修一數學教案篇十五
教學目標。
理解以兩角差的余弦公式為基礎,推導兩角和、差正弦和正切公式的方法,體會三角恒等變換特點的過程,理解推導過程,掌握其應用.
教學重難點。
1.教學重點:兩角和、差正弦和正切公式的推導過程及運用;。
2.教學難點:兩角和與差正弦、余弦和正切公式的靈活運用.
教學過程。
必修一數學教案篇十六
教學目標。
熟悉兩角和與差的正、余公式的推導過程,提高邏輯推理能力。
掌握兩角和與差的正、余弦公式,能用公式解決相關問題。
教學重難點。
熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。
教學過程。
復習。
兩角差的余弦公式。
用-b代替b看看有什么結果?
【本文地址:http://www.mlvmservice.com/zuowen/17362205.html】