必修二教案數(shù)學(xué)(專業(yè)19篇)

格式:DOC 上傳日期:2023-12-03 12:05:11
必修二教案數(shù)學(xué)(專業(yè)19篇)
時間:2023-12-03 12:05:11     小編:書香墨

教案的編寫要適應(yīng)學(xué)生的特點(diǎn)和學(xué)習(xí)需求,使教學(xué)更加貼近學(xué)生實(shí)際。教案的語言要簡潔明確,易于理解和操作。小編為大家準(zhǔn)備了一些教案案例,希望對大家在編寫教案時有所啟發(fā)。

必修二教案數(shù)學(xué)篇一

引用:本文《高中化學(xué)必修二教案(人教版)》來源于師庫網(wǎng),由師庫網(wǎng)博客摘錄整理,以下是的詳細(xì)內(nèi)容:開發(fā)利用金屬礦物和海水...《基本營養(yǎng)物質(zhì)》教案化學(xué)反應(yīng)的速率和限度化學(xué)能與熱能化學(xué)與資源綜合利用、環(huán)...最簡單的有機(jī)化合物dd...《生活中兩種常見的'有機(jī)...來自石油和煤的兩種基本...引用:師庫網(wǎng)溫馨提示本篇內(nèi)容來源于師庫網(wǎng),旨在用于課件制作交流,非盈利性質(zhì),僅供參考,針對本文的問題如需了解更詳細(xì),可留言或者聯(lián)系客服tags:教案、課件、師庫網(wǎng)、教案網(wǎng)、課件網(wǎng)

必修二教案數(shù)學(xué)篇二

1.古人見面常用的禮儀是拜禮和揖禮。前者主要以叩頭跪拜為主,后者則以拱手示意為主。

2.座次:坐西向東為尊,其次是坐北朝南,再次是坐南朝北,最卑是坐東朝西。3.銀河:又叫銀漢、天漢、星漢、河漢、云漢、星河。

4.五岳:東岳泰山、西岳華山、南岳衡山、北岳恒山、中岳嵩山。

5.五湖:太湖、鄱陽湖、青草湖、丹陽湖、洞庭湖。

6.趨:從長者尊者前面走過,要小步快走,以示敬意,叫“趨”。

7.三吳:吳興郡、吳郡、會稽郡。

8.三楚:西楚、東楚、南楚。

9.古人紀(jì)年:干支紀(jì)年和帝王紀(jì)年。干支紀(jì)年是十天干和十二地支依次兩兩相配而成得一種紀(jì)年方法。帝王紀(jì)年是按照帝王即位的年次或年號來紀(jì)年(明清兩代)的方法。

10.十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸。

11.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥。

12.古人紀(jì)月:序數(shù)紀(jì)月和特殊稱謂紀(jì)月。每季用孟、仲、季區(qū)分。用朔(初一)、望(十五)、晦(月末)等名稱標(biāo)識日期。

夜半丙夜三更23-1雞鳴丁夜四更1-3平日戊夜五更3-5。

14.名:古代嬰兒出生幾個月后,一般由父親命名。

15.字:是20歲舉行加冠儀式后才起的,標(biāo)志著成人。字是對名的解釋和補(bǔ)充,對名有表述、闡釋作用,因此又叫“表字”。有的字與名相近相成,也有的相反相成。

16.號:是一種固定的別名,又叫“別號”。

17.謚號:古代帝王、諸侯、高官大臣、貴族及其他有地位的人死后,根據(jù)其生前的品德來定的,帶有或褒或貶或同情的稱號。

18.古人自稱名,稱人稱字,這是基本的禮貌。

19.《周易》把禮儀分為五類:

吉禮:有關(guān)祭祀的,包括祭祀自然、神、祖先。兇禮:有關(guān)喪葬的,包括憑吊各種天災(zāi)人禍。

軍禮:有關(guān)軍事活動的。賓禮:有關(guān)外交活動的,包括朝、聘、會、盟等國事活動。

嘉禮:有關(guān)個人成長和交往以及王位承襲的,包括冠禮、婚禮、宴飲之禮、養(yǎng)老禮等。

侯曉旭。

必修二教案數(shù)學(xué)篇三

1. 閱讀課本 練習(xí)止.

2. 回答問題

(1)課本內(nèi)容分成幾個層次?每個層次的中心內(nèi)容是什么?

(2)層次間的聯(lián)系是什么?

(3)對數(shù)函數(shù)的定義是什么?

(4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?

3. 完成 練習(xí)

4. 小結(jié).

二、方法指導(dǎo)

1. 在學(xué)習(xí)對數(shù)函數(shù)時,同學(xué)們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

一、提問題

1. 對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?

2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?

3.是否所有的函數(shù)都有反函數(shù)?試舉例說明.

二、變題目

1. 試求下列函數(shù)的反函數(shù):

(1) ; (2) ;

(3) ; (4) .

2. 求下列函數(shù)的定義域:

(1) ; (2) ; (3) .

3. 已知 則 = ; 的定義域?yàn)?.

1.對數(shù)函數(shù)的'有關(guān)概念

(1)把函數(shù) 叫做對數(shù)函數(shù), 叫做對數(shù)函數(shù)的底數(shù);

(2)以10為底數(shù)的對數(shù)函數(shù) 為常用對數(shù)函數(shù);

(3)以無理數(shù) 為底數(shù)的對數(shù)函數(shù) 為自然對數(shù)函數(shù).

2. 反函數(shù)的概念

在指數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ;在對數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ,像這樣的兩個函數(shù)叫做互為反函數(shù).

3. 與對數(shù)函數(shù)有關(guān)的定義域的求法:

4. 舉例說明如何求反函數(shù).

一、課外作業(yè): 習(xí)題3-5 a組 1,2,3, b組1,

二、課外思考:

1. 求定義域: .

2. 求使函數(shù) 的函數(shù)值恒為負(fù)值的 的取值范圍.

必修二教案數(shù)學(xué)篇四

3.通過參與編題解題,激發(fā)學(xué)生學(xué)習(xí)的愛好.

教學(xué)重點(diǎn)是通項(xiàng)公式的熟悉;教學(xué)難點(diǎn)是對公式的靈活運(yùn)用.

實(shí)物投影儀,多媒體軟件,電腦.

研探式.

一.復(fù)習(xí)提問

等差數(shù)列的概念是從相鄰兩項(xiàng)的關(guān)系加以定義的,這個關(guān)系用遞推公式來表示比較簡單,但我們要圍繞通項(xiàng)公式作進(jìn)一步的理解與應(yīng)用.

二.主體設(shè)計

通項(xiàng)公式反映了項(xiàng)與項(xiàng)數(shù)之間的函數(shù)關(guān)系,當(dāng)?shù)炔顢?shù)列的首項(xiàng)與公差確定后,數(shù)列的每一項(xiàng)便確定了,可以求指定的項(xiàng)(即已知求).找學(xué)生試舉一例如:“已知等差數(shù)列中,首項(xiàng),公差,求.”這是通項(xiàng)公式的簡單應(yīng)用,由學(xué)生解答后,要求每個學(xué)生出一些運(yùn)用等差數(shù)列通項(xiàng)公式的題目,包括正用、反用與變用,簡單、復(fù)雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.

1.方程思想的運(yùn)用

(1)已知等差數(shù)列中,首項(xiàng),公差,則-397是該數(shù)列的第x項(xiàng).

(2)已知等差數(shù)列中,首項(xiàng),則公差

(3)已知等差數(shù)列中,公差,則首項(xiàng)

這一類問題先由學(xué)生解決,之后教師點(diǎn)評,四個量,在一個等式中,運(yùn)用方程的思想方法,已知其中三個量的值,可以求得第四個量.

2.基本量方法的使用

(1)已知等差數(shù)列中,求的值.

(2)已知等差數(shù)列中,求.

若學(xué)生的題目只有這兩種類型,教師可以小結(jié)(請出題者、解題者概括):因?yàn)橐阎獥l件可以化為關(guān)于和的二元方程組,所以這些等差數(shù)列是確定的,由和寫出通項(xiàng)公式,便可歸結(jié)為前一類問題.解決這類問題只需把兩個條件(等式)化為關(guān)于和的二元方程組,以求得和,和稱作基本量.

教師提出新的問題,已知等差數(shù)列的一個條件(等式),能否確定一個等差數(shù)列?學(xué)生回答后,教師再啟發(fā),由這一個條件可得到關(guān)于和的二元方程,這是一個和的`制約關(guān)系,從這個關(guān)系可以得到什么結(jié)論?舉例說明(例題可由學(xué)生或教師給出,視具體情況而定).

如:已知等差數(shù)列中,…

由條件可得即,可知,這是比較顯然的,與之相關(guān)的還能有什么結(jié)論?若學(xué)生答不出可提示,一定得某一項(xiàng)的值么?能否與兩項(xiàng)有關(guān)?多項(xiàng)有關(guān)?由學(xué)生發(fā)現(xiàn)規(guī)律,完善問題(3)已知等差數(shù)列中,求;;;;….

類似的還有

(4)已知等差數(shù)列中,求的值.

以上屬于對數(shù)列的項(xiàng)進(jìn)行定量的研究,有無定性的判定?引出

3.研究等差數(shù)列的單調(diào)性

4.研究項(xiàng)的符號

這是為研究等差數(shù)列前項(xiàng)和的最值所做的預(yù)備工作.可配備的題目如

(1)已知數(shù)列的通項(xiàng)公式為,問數(shù)列從第幾項(xiàng)開始小于0?

(2)等差數(shù)列從第x項(xiàng)起以后每項(xiàng)均為負(fù)數(shù).

三.小結(jié)

1.用方程思想熟悉等差數(shù)列通項(xiàng)公式;

2.用函數(shù)思想解決等差數(shù)列問題.

四.板書設(shè)計

等差數(shù)列通項(xiàng)公式1.方程思想的運(yùn)用

2.基本量方法的使用

3.研究等差數(shù)列的單調(diào)性

4.研究項(xiàng)的符號

必修二教案數(shù)學(xué)篇五

人教版語文必修1-5冊通假字(人教版高二必修)。

1今老矣,無能為也已矣。

2行李之往來,共其乏困供。

3夫晉,何厭之有饜。

4秦伯說,與鄭人盟悅。

5失之所與,不知智。

6秦王必h見臣悅。

7今日往而不反者,豎子也返。

8燕王誠振怖大王之威震。

9秦王還柱而走環(huán)。

10群臣驚愕,卒起不意,盡失其度猝。

11距關(guān),毋內(nèi)諸侯,拒納。

12張良出,要項(xiàng)伯邀。

13愿伯具言臣之不敢倍德也背。

14旦日不可不蚤自來謝項(xiàng)王早。

15令將軍與臣有s隙。

16因擊沛公于坐座。

17匪來貿(mào)絲,來即我謀非。

18于嗟鳩兮,無食桑葚吁。

19士之耽兮,猶可說也脫。

20淇則有岸,隰則有泮畔。

21涼婢囟改錯措。

22饔粢賾髻奄郁悒。

23何方圜之能周兮圓。

24進(jìn)不入以離尤兮罹。

25芳菲菲其彌章彰。

26箱簾六七十奩。

27蒲葦紉如絲韌。

28契闊談宴。

29取諸懷抱,悟言一室之內(nèi)晤。

30馮虛御風(fēng)憑。

31長樂王回深父甫。

32所守或匪親非。

33則無望民之多于鄰國也毋。

34無失其時毋。

35頒白者不負(fù)戴于道路矣斑。

36涂有餓莩而不知發(fā)途。

37以為輪。

38雖有槁暴又。

39合從締交,相與為一縱。

40師者,所以傳道受業(yè)解惑也授。

41或師焉,或不焉否。

42一尊還酹江月樽。

43秦王以十五城請易寡人之璧,可予不否。

44拜送書于庭廷。

45召有司案圖按。

46秦自公以來二十余君穆。

47唯大王與群臣孰計議之熟。

48畔主背親叛。

49與旃毛并咽之氈。

50掘野鼠去草食而食之l。

51空自苦亡人之地?zé)o。

52信義安所見乎現(xiàn)。

53王必欲降武,請畢今日之o歡。

54因泣下衿,與武決去訣。

55乃瞻衡宇橫。

56景翳翳以將入影。

57儼驂w于上路嚴(yán)。

58云銷雨霽消。

59北冥有魚溟。

60小知不及大知,小年不及大年智。

61湯之問棘也是已矣。

62此小大之辯也辨。

63德合一君,而征一國者耐。

64御六氣之辯變。

65臣以險釁,夙遭閔兇憫。

66零丁孤苦,至于成立伶仃。

67常在床蓐,臣侍湯藥褥。

68祖母今年九十有六又。

必修二教案數(shù)學(xué)篇六

一、教學(xué)目標(biāo):1.了解普查的意義.2.結(jié)合具體的實(shí)際問題情境,理解隨機(jī)抽樣的必要性和重要性.

二、重難點(diǎn):結(jié)合具體的實(shí)際問題情境,理解隨機(jī)抽樣的必要性和重要性.

三、教學(xué)方法:閱讀材料、思考與交流。

四、教學(xué)過程。

(一)、普查。

1、【問題提出】p7。

通過我國第五次人口普查的有關(guān)數(shù)據(jù),讓學(xué)生體會到統(tǒng)計對政府決策的重要作用――統(tǒng)計數(shù)據(jù)可以提供大量的信息,為國家的宏觀決策提供有關(guān)的支持.教科書通過對人口普查的有關(guān)新聞報道,讓學(xué)生體會人口普查的規(guī)模是何等的宏大與艱辛.

教科書提出了三個有代表性的問題.第一個問題主要是針對人口普查的作用,人口普查可以了解一個國家人口全面情況,比如,人口總數(shù)、男女性別比、受教育狀況、增長趨勢等.人口普查是對國家的政府決策實(shí)行情況的一個檢驗(yàn),比如,國家計劃生育政策,經(jīng)濟(jì)發(fā)展戰(zhàn)略,國家“普及九年義務(wù)教育”政策,人民群眾的生活水平等.第二個問題是針對普查本身存在的問題提出的,以加深學(xué)生對于普查的理解.學(xué)生可能有一個誤解,普查就是100%的準(zhǔn)確,其實(shí)不然,即使是最周全的調(diào)查方案,在實(shí)際執(zhí)行時都會產(chǎn)生一個誤差.教科書通過這個問題,目的是讓學(xué)生理解在人口普查中出現(xiàn)漏登是正常情況,調(diào)查方案的設(shè)計是盡可能讓這個誤差降低到最小.同時,也要讓學(xué)生理解人口普查的工作,即使出現(xiàn)漏登現(xiàn)象,人口普查的數(shù)據(jù)對國家的宏觀決策依然具有重要的作用.第三個問題是針對人口普查工作的艱辛而提出的,讓學(xué)生體會人口普查數(shù)據(jù)得來不易,要尊重人口普查人員的勞動,對人口普查工作要大力支持.

2、【閱讀材料】p4。

“閱讀材料”是課堂閱讀,目的是讓學(xué)生了解普查工作的特點(diǎn)和重要性,以及我國目前主要的一些普查工作.進(jìn)而,總結(jié)出普查的主要不足之處,這是從一個方面說明了抽樣調(diào)查的必要性.

普查是指一個國家或一個地區(qū)專門組織的一次性大規(guī)模的全面調(diào)查,目的是為了詳細(xì)地了解某項(xiàng)重要的國情、國力.

普查主要有兩個特點(diǎn):(1)所取得的資料更加全面、系統(tǒng);(2)主要調(diào)查在特定時段的社會經(jīng)濟(jì)現(xiàn)象總體的數(shù)量.

普查是一項(xiàng)非常艱巨的工作,它要對所有的對象進(jìn)行調(diào)查.當(dāng)普查的對象很少時,普查無疑是一項(xiàng)非常好的調(diào)查方式.

(二)、抽樣調(diào)查。

【例1和其后的“思考交流”】p8~9。

緊接著,教科書通過例1和“思考交流”的兩個問題,讓學(xué)生了解普查有時候難以實(shí)現(xiàn).這主要有兩個方面的原因,其一,被調(diào)查對象的量大;其二,普查對被調(diào)查對象本身具有一定的破壞性.這從另一個方面說明了抽樣調(diào)查的必要性.然后,教科書通過抽象概括總結(jié)出抽樣調(diào)查的兩個主要優(yōu)點(diǎn).

【例2和其后的“思考交流”】p9~10。

主要是討論在抽樣調(diào)查時,什么樣的樣本才具有代表性.在抽樣時,如果抽樣不當(dāng),那么調(diào)查的結(jié)果可能會出現(xiàn)與實(shí)際情況不符,甚至是錯誤的結(jié)果,導(dǎo)致對決策的誤導(dǎo).在抽樣調(diào)查時,一定要保證隨機(jī)性原則,盡可能地避免人為因素的干擾;并且要保證每個個體以一定的概率被抽取到;同時,還要注意到要盡可能地控制抽樣調(diào)查中的.誤差.

由于檢驗(yàn)對象的量很大,或檢驗(yàn)對檢驗(yàn)對象具有破壞性時,通常情況下,所以采用普查的方法有時是行不通的.通常情況下,從調(diào)查對象中按照一定的方法抽取一部分,進(jìn)行調(diào)查或觀測,獲取數(shù)據(jù),并以此調(diào)查對象的某項(xiàng)指標(biāo)做出推斷,這就是抽樣調(diào)查.其中,調(diào)查對象的全體稱為總體,被抽取的一部分稱為樣本.

抽樣調(diào)查的優(yōu)點(diǎn):抽樣調(diào)查與普查相比,有很多優(yōu)點(diǎn),最突出的有兩點(diǎn):(1)迅速、及時;(2)節(jié)約人力、物力和財力.

解:統(tǒng)計的總體是指該地10000名學(xué)生的體重;個體是指這10000名學(xué)生中每一名學(xué)生的體重;樣本指這10000名學(xué)生中抽出的200名學(xué)生的體重;總體容量為10000;樣本容量為200.若對每一個個體逐一進(jìn)行“調(diào)查”,有時費(fèi)時、費(fèi)力,有時根本無法實(shí)現(xiàn),一個行之有效的辦法就是在每一個個體被抽取的機(jī)會均等的前提下從總體中抽取部分個體,進(jìn)行抽樣調(diào)查.

例2為了制定某市高一、高二、高三三個年級學(xué)生校服的生產(chǎn)計劃,有關(guān)部門準(zhǔn)備對180名初中男生的身高作調(diào)查,現(xiàn)有三種調(diào)查方案:

a.測量少年體校中180名男子籃球、排球隊員的身高;。

b.查閱有關(guān)外地180名男生身高的統(tǒng)計資料;。

c.在本市的市區(qū)和郊縣各任選一所完全中學(xué),兩所初級中學(xué),在這六所學(xué)校有關(guān)年級的小班中,用抽簽的方法分別選出10名男生,然后測量他們的身高.

解:選c方案.理由:方案c采取了隨機(jī)抽樣的方法,隨機(jī)樣本比較具有代表性、普遍性,可以被用來估計總體.

例3中央電視臺希望在春節(jié)聯(lián)歡晚會播出后一周內(nèi)獲得當(dāng)年春節(jié)聯(lián)歡晚會的收視率.下面三名同學(xué)為電視臺設(shè)計的調(diào)查方案.

甲同學(xué):我把這張《春節(jié)聯(lián)歡晚會收視率調(diào)查表》放在互聯(lián)網(wǎng)上,只要上網(wǎng)登錄該網(wǎng)址的人就可以看到這張表,他們填表的信息可以很快地反饋到我的電腦中.這樣,我就可以很快統(tǒng)計收視率了.

乙同學(xué):我給我們居民小區(qū)的每一份住戶發(fā)一個是否在除夕那天晚上看過中央電視臺春節(jié)聯(lián)歡晚會的調(diào)查表,只要一兩天就可以統(tǒng)計出收視率.

丙同學(xué):我在電話號碼本上隨機(jī)地選出一定數(shù)量的電話號碼,然后逐個給他們打電話,問一下他們是否收看了中央電視臺春節(jié)聯(lián)歡晚會,我不出家門就可以統(tǒng)計出中央電視臺春節(jié)聯(lián)歡晚會的收視率.

請問:上述三名同學(xué)設(shè)計的調(diào)查方案能夠獲得比較準(zhǔn)確的收視率嗎?為什么?

解:綜上所述,這三種調(diào)查方案都有一定的片面性,不能得到比較準(zhǔn)確的收視率.

(三)、課堂小結(jié):1、普查是一項(xiàng)非常艱巨的工作,它要對所有的對象進(jìn)行調(diào)查.當(dāng)普查的對象很少時,普查無疑是一項(xiàng)非常好的調(diào)查方式.普查主要有兩個特點(diǎn):(1)所取得的資料更加全面、系統(tǒng);(2)主要調(diào)查在特定時段的社會經(jīng)濟(jì)現(xiàn)象總體的數(shù)量.2、通常情況下,從調(diào)查對象中按照一定的方法抽取一部分,進(jìn)行調(diào)查或觀測,獲取數(shù)據(jù),并以此調(diào)查對象的某項(xiàng)指標(biāo)做出推斷,這就是抽樣調(diào)查.其中,調(diào)查對象的全體稱為總體,被抽取的一部分稱為樣本.抽樣調(diào)查的優(yōu)點(diǎn):抽樣調(diào)查與普查相比,有很多優(yōu)點(diǎn),最突出的有兩點(diǎn):(1)迅速、及時;(2)節(jié)約人力、物力和財力.

(四)、作業(yè):p10練習(xí)題;p10【習(xí)題1―2】。

五、教后反思:

必修二教案數(shù)學(xué)篇七

1.閱讀課本練習(xí)止。

2.回答問題:

(1)課本內(nèi)容分成幾個層次?每個層次的中心內(nèi)容是什么?

(2)層次間的聯(lián)系是什么?

(3)對數(shù)函數(shù)的定義是什么?

(4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?

3.完成練習(xí)。

4.小結(jié)。

二、方法指導(dǎo)。

1.在學(xué)習(xí)對數(shù)函數(shù)時,同學(xué)們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。

2.本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開,同學(xué)們在學(xué)習(xí)時應(yīng)該把兩個函數(shù)進(jìn)行類比,通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì)。

一、提問題。

1.對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?

2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?

3.是否所有的函數(shù)都有反函數(shù)?試舉例說明。

二、變題目。

1.試求下列函數(shù)的反函數(shù):

(1);(2);(3);(4)。

2.求下列函數(shù)的定義域:。

(1);(2);(3)。

3.已知則=;的定義域?yàn)椤?/p>

1.對數(shù)函數(shù)的有關(guān)概念。

(1)把函數(shù)叫做對數(shù)函數(shù),叫做對數(shù)函數(shù)的底數(shù)。

(2)以10為底數(shù)的對數(shù)函數(shù)為常用對數(shù)函數(shù)。

(3)以無理數(shù)為底數(shù)的對數(shù)函數(shù)為自然對數(shù)函數(shù)。

2.反函數(shù)的概念。

在指數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是;在對數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是,像這樣的兩個函數(shù)叫做互為反函數(shù)。

3.與對數(shù)函數(shù)有關(guān)的定義域的求法:

4.舉例說明如何求反函數(shù)。

一、課外作業(yè):習(xí)題3-5a組1,2,3,b組1,

二、課外思考:

1.求定義域:

2.求使函數(shù)的函數(shù)值恒為負(fù)值的的取值范圍。

必修二教案數(shù)學(xué)篇八

本節(jié)課力的合成,是在學(xué)生了解力的基本性質(zhì)和常見幾種力的基礎(chǔ)上,通過等效替代思想,研究多個力的合成方法,是對前幾節(jié)內(nèi)容的深化。

本節(jié)重點(diǎn)介紹力的合成法則——平行四邊形定則,但實(shí)際這是所有矢量運(yùn)算的共同工具,為學(xué)習(xí)其他矢量的運(yùn)算奠定了基礎(chǔ)。

更重要的是,力的合成是解決力學(xué)問題的基礎(chǔ),對今后牛頓運(yùn)動定律、平衡問題、動量與能量問題的理解和應(yīng)用都會產(chǎn)生重要影響。

因此,這節(jié)課承前啟后,在整個高中物理學(xué)習(xí)中占據(jù)著非常重要的地位。

二、教學(xué)目標(biāo)定位。

為了讓學(xué)生充分進(jìn)行實(shí)驗(yàn)探究,體驗(yàn)獲取知識的過程,本節(jié)內(nèi)容分兩課時來完成,今天我說課的內(nèi)容為本節(jié)內(nèi)容的第一課時。根據(jù)上述教材分析,考慮到學(xué)生的實(shí)際情況,在本節(jié)課的教學(xué)過程中,我制定了如下教學(xué)目標(biāo):。

一、知識與技能。

理解合力、分力、力的合成的概念理解力的合成本質(zhì)上是從等效的角度進(jìn)行力的替代。

探究求合力的方法——力的平行四邊形定則,會用平行四邊形定則求合力。

二、過程與方法。

通過學(xué)習(xí)合力和分力的概念,了解物理學(xué)常用的方法——等效替代法。

通過實(shí)驗(yàn)探究方案的設(shè)計與實(shí)施,體驗(yàn)科學(xué)探究的過程。

三、情感態(tài)度與價值觀。

培養(yǎng)學(xué)生的合作精神,激發(fā)學(xué)生學(xué)習(xí)興趣,形成良好的學(xué)習(xí)方法和習(xí)慣。

培養(yǎng)認(rèn)真細(xì)致、實(shí)事求是的實(shí)驗(yàn)態(tài)度。

根據(jù)以上分析確定本節(jié)課的重點(diǎn)與難點(diǎn)如下:

一、重點(diǎn)。

合力和分力的概念以及它們的關(guān)系。

實(shí)驗(yàn)探究力的合成所遵循的法則。

二、難點(diǎn)。

平行四邊形定則的理解和運(yùn)用。

三、重、難點(diǎn)突破方法——教法簡介。

本堂課的重、難點(diǎn)為實(shí)驗(yàn)探究力的合成所遵循的法則——平行四邊形定則,為了實(shí)現(xiàn)重難點(diǎn)的突破,讓學(xué)生真正理解平行四邊形定則,就要讓學(xué)生親自體驗(yàn)規(guī)律獲得的過程。

因此,本堂課在學(xué)法上采用學(xué)生自主探究的實(shí)驗(yàn)歸納法——通過重現(xiàn)獲取知識和方法的思維過程,讓學(xué)生親自去體驗(yàn)、探究、歸納總結(jié)。體現(xiàn)學(xué)生主體性。

實(shí)驗(yàn)歸納法的步驟如下。這樣設(shè)計讓學(xué)生不僅能知其然,更能知其所以然,這也是本堂課突破重點(diǎn)和難點(diǎn)的重要手段。

本堂課在教法上采用啟發(fā)式教學(xué)——通過設(shè)置問題,引導(dǎo)啟發(fā)學(xué)生,激發(fā)學(xué)生思維。體現(xiàn)教師主導(dǎo)作用。

四、教學(xué)過程設(shè)計。

采用六環(huán)節(jié)教學(xué)法,教學(xué)過程共有六個步驟。

教學(xué)過程第一環(huán)節(jié)、創(chuàng)設(shè)情景導(dǎo)入新課:

第二環(huán)節(jié)、新課教學(xué):

展示合力與分力以及力的合成的概念,強(qiáng)調(diào)等效替代法。舉例說明等效替代法是一種重要的物理方法。

第三環(huán)節(jié)、合作探究:

首先,教師展示實(shí)驗(yàn)儀器,讓學(xué)生思考如何設(shè)計實(shí)驗(yàn),,如何進(jìn)行實(shí)驗(yàn)?zāi)?學(xué)生面對器材可能會覺得無從下手。再次設(shè)置問題引導(dǎo)學(xué)生思維,讓學(xué)生面對儀器分組討論以下四個問題。

問題1要用動畫輔助說明。在問題2中,教師要強(qiáng)調(diào)結(jié)點(diǎn)的問題,用動畫說明。問題3中,直觀簡潔的描述力必須用力的圖示,用圖片說明。問題4讓學(xué)生注意測力計的使用,減小實(shí)驗(yàn)誤差。通過對這四個問題的討論,再結(jié)合多媒體動畫的展示,使學(xué)生對探究的步驟清晰明了。

然后,學(xué)生分組實(shí)驗(yàn),合作探究,記錄合力與兩分力的大小和方向,作出力的圖示。實(shí)驗(yàn)完成后請學(xué)生展示實(shí)驗(yàn)結(jié)果,應(yīng)該立即可得出結(jié)論一:比較分力與合力的大小,可得互成角度的兩個力的合成,不能簡單地利用代數(shù)方法相加減.

那合力與分力到底滿足什么關(guān)系呢?

此時要引導(dǎo)學(xué)生思考:既然從數(shù)字上找不到關(guān)系,哪可不可以從幾何上找找關(guān)系呢?學(xué)生會立即猜想出o、a、c、b像是一個平行四邊形的四個頂點(diǎn),ob可能是這個平行四邊形的對角線.哪么猜想是否正確呢?親自實(shí)踐才有發(fā)言權(quán),學(xué)生動手作圖:以oa、oc為鄰邊作平行四邊形oacb,看平行四邊形的對角線與ob是否重合。

學(xué)生作圖后發(fā)現(xiàn)對角線與合力很接近。教師說明實(shí)驗(yàn)的誤差是不可避免的,科學(xué)家經(jīng)過很多次的、精細(xì)的實(shí)驗(yàn),最后確認(rèn)對角線的長度、方向,跟合力的大小、方向一致,說明對角線就表示f1和f2的合力.由此得到結(jié)論二:力的合成法則——平行四邊形定則。

進(jìn)入。

第四環(huán)節(jié):歸納總結(jié)。

將本文的word文檔下載到電腦,方便收藏和打印。

必修二教案數(shù)學(xué)篇九

1.要讀好課本。

有些“自我感覺良好”的學(xué)生,常輕視課本中基礎(chǔ)知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠(yuǎn),重“量”輕“質(zhì)”,陷入題海,到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。因此,同學(xué)們應(yīng)從高一開始,增強(qiáng)自己從課本入手進(jìn)行研究的意識。

2.要記好筆記。

首先,在課堂教學(xué)中培養(yǎng)好的聽課習(xí)慣是很重要的。當(dāng)然聽是主要的,聽能使注意力集中,要把老師講的關(guān)鍵性部分聽懂、聽會。聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應(yīng)適當(dāng)?shù)赜心康男缘挠浐霉P記,領(lǐng)會課上老師的主要精神與意圖??茖W(xué)的記筆記可以提高45分鐘課堂效益。

3.要做好作業(yè)。

在課堂、課外練習(xí)中培養(yǎng)良好的作業(yè)習(xí)慣也很有必要.在作業(yè)中不但做得整齊、清潔,培養(yǎng)一種美感,還要有條理,這是培養(yǎng)邏輯能力的一條有效途徑,必須獨(dú)立完成。同時可以培養(yǎng)一種獨(dú)立思考和解題正確的責(zé)任感。在作業(yè)時要提倡效率,應(yīng)該十分鐘完成的作業(yè),不拖到半小時完成,疲疲憊憊的作業(yè)習(xí)慣使思維松散、精力不集中,這對培養(yǎng)數(shù)學(xué)能力是有害而無益的。

4.要寫好總結(jié)。

一個人不斷接受新知識,不斷遭遇挫折產(chǎn)生疑問,不斷地總結(jié),才有不斷地提高?!安粫偨Y(jié)的同學(xué),他的能力就不會提高,挫折經(jīng)驗(yàn)是成功的基石。”自然界適者生存的生物進(jìn)化過程便是最好的例證。學(xué)習(xí)要經(jīng)常總結(jié)規(guī)律,目的就是為了更一步的發(fā)展。

通過與老師、同學(xué)平時的接觸交流,逐步總結(jié)出一般性的學(xué)習(xí)步驟,它包括:制定計劃、課前自學(xué)、專心上課、及時復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面,簡單概括為四個環(huán)節(jié)(預(yù)習(xí)、上課、整理、作業(yè))和一個步驟(復(fù)習(xí)總結(jié))。每一個環(huán)節(jié)都有較深刻的內(nèi)容,帶有較強(qiáng)的目的性、針對性,要落實(shí)到位。堅持“兩先兩后一小結(jié)”(先預(yù)習(xí)后聽課,先復(fù)習(xí)后做作業(yè),寫好每個單元的總結(jié))的學(xué)習(xí)習(xí)慣。

1.課前預(yù)習(xí)教材。課前可以把教材上第二天老師要講的內(nèi)容看一下,看看哪些能看懂,哪些不懂。這樣老師在講課的時候我們就能帶著問題去聽,把自己沒看懂的問題聽懂。

2.上課專心聽講。這是很重要的,很多同學(xué)以為自己什么都弄懂了,就自己做自己的題目。其實(shí)即使是自己看懂了的,也可以看看老師也沒有另外的理解方法,老師的方法是不是比自己好。聽老師有時候講比自己看更好。

小編推薦:高一數(shù)學(xué)怎么學(xué)才能學(xué)好。

3.課后認(rèn)真復(fù)習(xí)。剛學(xué)的知識,還沒完全被消化吸收成為自己的知識,如果不及時復(fù)習(xí),就很容易忘記。所以,課后一定要抽出一些時間,及時對所學(xué)進(jìn)行鞏固。

4.通過習(xí)題鞏固。數(shù)學(xué)是理科,需要通過一定量的習(xí)題來鞏固,量變積累到了一定量才能質(zhì)變嘛。這個并非要各位打題海戰(zhàn)術(shù),只要求各位做到熟練為止。

5.錯題反復(fù)研究。自己準(zhǔn)備一個錯題本,把考試時候做錯的題目記錄下來,寫上做錯的原因,反復(fù)研究,避免再次出錯。

必修二教案數(shù)學(xué)篇十

教學(xué)目標(biāo)。

3.讓學(xué)生深刻理解向量在處理平面幾何問題中的優(yōu)越性.

教學(xué)重難點(diǎn)。

教學(xué)重點(diǎn):用向量方法解決實(shí)際問題的基本方法:向量法解決幾何問題的“三步曲”.

教學(xué)難點(diǎn):如何將幾何等實(shí)際問題化歸為向量問題.

教學(xué)過程。

由于向量的線性運(yùn)算和數(shù)量積運(yùn)算具有鮮明的幾何背景,平面幾何圖形的許多性質(zhì),如平移、全等、相似、長度、夾角等都可以由向量的線性運(yùn)算及數(shù)量積表示出來,因此,可用向量方法解決平面幾何中的一些問題,下面我們通過幾個具體實(shí)例,說明向量方法在平面幾何中的運(yùn)用。

思考:

運(yùn)用向量方法解決平面幾何問題可以分哪幾個步驟?

運(yùn)用向量方法解決平面幾何問題可以分哪幾個步驟?

“三步曲”:

(2)通過向量運(yùn)算,研究幾何元素之間的關(guān)系,如距離、夾角等問題;。

(3)把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系.

必修二教案數(shù)學(xué)篇十一

一)、課內(nèi)重視聽講,課后及時復(fù)習(xí)。

新知識的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行,所以要特點(diǎn)重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時要緊跟老師的思路,積極展開思維預(yù)測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識和基本技能的學(xué)習(xí),課后要及時復(fù)習(xí)不留疑點(diǎn)。首先要在做各種習(xí)題之前將老師所講的知識點(diǎn)回憶一遍,正確掌握各類公式的推理過程,應(yīng)盡量回憶而不采用不清楚立即翻書之舉。認(rèn)真獨(dú)立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問的學(xué)習(xí)作風(fēng),對于有些題目由于自己的思路不清,一時難以解出,應(yīng)讓自己冷靜下來認(rèn)真分析題目,盡量自己解決。在每個階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識的點(diǎn)、線、面結(jié)合起來交織成知識網(wǎng)絡(luò),納入自己的知識體系。

二)、適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。

要想學(xué)好數(shù)學(xué),多做題是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。實(shí)踐證明:越到關(guān)鍵時候,你所表現(xiàn)的解題習(xí)慣與平時練習(xí)無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養(yǎng)成良好的解題習(xí)慣是非常重要的。

三)、調(diào)整心態(tài),正確對待考試。

首先,應(yīng)把主要精力放在基礎(chǔ)知識、基本技能、基本方法這三個方面上,因?yàn)槊看慰荚囌冀^大部分的也是基礎(chǔ)性的題目,而對于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠(yuǎn)鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。

在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎(chǔ)題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學(xué)會嘗試得分,使自己的水平正常甚至超常發(fā)揮。

必修二教案數(shù)學(xué)篇十二

1、了解函數(shù)的單調(diào)性和奇偶性的概念,把握有關(guān)證實(shí)和判定的基本方法。

(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念。

(2)能從數(shù)和形兩個角度熟悉單調(diào)性和奇偶性。

(3)能借助圖象判定一些函數(shù)的單調(diào)性,能利用定義證實(shí)某些函數(shù)的單調(diào)性;能用定義判定某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程。

2、通過函數(shù)單調(diào)性的證實(shí),提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時滲透數(shù)形結(jié)合,從非凡到一般的數(shù)學(xué)思想。

3、通過對函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度。

必修二教案數(shù)學(xué)篇十三

2.教學(xué)重點(diǎn)。

函數(shù)單調(diào)性的概念,判斷和證明簡單函數(shù)的單調(diào)性.。

3.教學(xué)難點(diǎn)。

函數(shù)單調(diào)性概念的生成,證明單調(diào)性的代數(shù)推理論證.。

1.教學(xué)有利因素。

2.教學(xué)不利因素。

1.理解函數(shù)單調(diào)性的相關(guān)概念.掌握證明簡單函數(shù)單調(diào)性的方法.。

為達(dá)成課堂教學(xué)目標(biāo),突出重點(diǎn),突破難點(diǎn),我們主要采取以下形式組織學(xué)習(xí)材料:

(一)創(chuàng)設(shè)情境,引入課題。

問題1:觀察下列函數(shù)圖象,請你說說這些函數(shù)有什么變化趨勢?

設(shè)函數(shù)的定義域?yàn)?,區(qū)間.在區(qū)間上,若函數(shù)的圖象(從左向右)總是上升的,即隨的增大而增大,則稱函數(shù)在區(qū)間上是遞增的,區(qū)間稱為函數(shù)的單調(diào)增區(qū)間(學(xué)生類比定義“遞減”,接著推出下圖,讓學(xué)生準(zhǔn)確回答單調(diào)性.)。

(二)引導(dǎo)探索,生成概念。

問題2:(1)下圖是函數(shù)的圖象(以為例),它在定義域r上是遞增的嗎?

(2)函數(shù)在區(qū)間上有何單調(diào)性?

預(yù)設(shè):學(xué)生會不置可否,或者憑感覺猜測,可追問判定依據(jù).。

問題3:(1)如何用數(shù)學(xué)符號描述函數(shù)圖象的“上升”特征,即“隨的增大而增大”?

(2)已知,若有.能保證函數(shù)在區(qū)間上遞增嗎?

拖動“拖動點(diǎn)”改變函數(shù)在區(qū)間上的圖象,可以遞增,可以先增后減,也可以先減后增.。

(3)已知,若有,能保證函數(shù)在區(qū)間上遞增嗎?

拖動“拖動點(diǎn)”,觀察函數(shù)在區(qū)間上的圖象變化.。

(4)已知,若有。

能保證函數(shù)在區(qū)間上遞增嗎?

設(shè)計說明:可先請持贊同觀點(diǎn)的同學(xué)說明理由,再請持反對意見的學(xué)生畫出反駁,然后追問:無數(shù)個也不能保證函數(shù)遞增,那該怎么辦呢?若學(xué)生回答全部取完或任取,追問“總不能一個一個驗(yàn)證吧?”

問題4:如何用數(shù)學(xué)語言準(zhǔn)確刻畫函數(shù)在區(qū)間上遞增呢?

問題5:請你試著用數(shù)學(xué)語言定義函數(shù)在區(qū)間上是遞減的.。

(三)學(xué)以致用,理解感悟。

判斷題:你認(rèn)為下列說法是否正確,請說明理由.(舉例或者畫圖)。

(1)設(shè)函數(shù)的定義域?yàn)?,若對任意,都有,則在區(qū)間上遞增;

(2)設(shè)函數(shù)的定義域?yàn)閞,若對任意,且,都有,則是遞增的;

(3)反比例函數(shù)的單調(diào)遞減區(qū)間是.。

例題:判斷并證明函數(shù)的單調(diào)性.。

必修二教案數(shù)學(xué)篇十四

(2)了解區(qū)間的概念;。

(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。

【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個抽象的概念,對學(xué)生來說一個難點(diǎn)。要解決這一問題,就要在通過從實(shí)際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。

問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.

1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?

1.2高度變量h與時間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?

設(shè)計意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個變量之間的依賴關(guān)系,從問題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個t,按照給定的對應(yīng)關(guān)系,都有的一個高度h與之對應(yīng)。

問題2:分析教科書中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的`圖象,都有的一個臭氧層空洞面積s與之相對應(yīng)。

問題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時間的關(guān)系。

設(shè)計意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。

必修二教案數(shù)學(xué)篇十五

1.掌握數(shù)軸的三要素,能正確畫出數(shù)軸。

2、會用數(shù)軸上的點(diǎn)表示有理數(shù);;會求一個有理數(shù)的相反數(shù);能利用數(shù)軸比較有理數(shù)的大小。

【過程與方法】經(jīng)歷從現(xiàn)實(shí)情景抽象出數(shù)軸的過程,體會數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系。

【情感態(tài)度與價值觀】感受數(shù)形結(jié)合的.思想方法;

【教學(xué)重點(diǎn)】會說出數(shù)軸上已知點(diǎn)所表示的數(shù),能將已知數(shù)在數(shù)軸上表示出來。

【教學(xué)難點(diǎn)】利用數(shù)軸比較有理數(shù)的大小。

(一)創(chuàng)設(shè)情境,引入課題。

(1)(出示投影1)問題:三個溫度計所表示的溫度是多少?

學(xué)生回答.。

(2)在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.

這種表示數(shù)的圖形就是今天我們要學(xué)的內(nèi)容—數(shù)軸(板書課題)。

(二)得出定義,揭示內(nèi)涵。

與溫度計類似,我們也可以在一條直線上畫出刻度,標(biāo)上讀數(shù),用直線上的點(diǎn)表示正數(shù)、負(fù)數(shù)和零.具體方法如下(教師示范畫數(shù)軸,邊說邊畫):

(1)畫直線,取原點(diǎn)。

(2)標(biāo)正方向。

(3)選取單位長度,標(biāo)數(shù)(強(qiáng)調(diào):負(fù)數(shù)從0向左寫起)。

概念:規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸。

(三)強(qiáng)化概念,深入理解。

1、下列圖形哪些是數(shù)軸,哪些不是,為什么?

學(xué)生回答,相互糾正,理解數(shù)軸三要素,鞏固數(shù)軸概念。

2、學(xué)生自己在練習(xí)本上畫一個數(shù)軸。教師在黑板上畫。

(四)動手練習(xí),歸納總結(jié)。

1、在數(shù)軸上的點(diǎn)表示有理數(shù)。

一個學(xué)生在黑板上完成,其他同學(xué)在自己所畫數(shù)軸上完成。

明確“任何一個有理數(shù)都可以用數(shù)軸上的一個點(diǎn)來表示”

2.指出數(shù)軸上a,b,c,d各點(diǎn)分別表示什么數(shù)。@師愿教育。

3、通過數(shù)軸比較有理數(shù)的大小。觀察類比溫度計回答問題。

(1)在數(shù)軸上表示的兩個數(shù),(右)邊的數(shù)總比(左)邊的數(shù)大;

(2)正數(shù)都(大于)0,負(fù)數(shù)都(小于)0;正數(shù)(大于)一切負(fù)數(shù)。

例1、比較下列各數(shù)的大小:-1.5,0.6,-3,-2。

鞏固所學(xué)知識。

(五)、歸納小結(jié),強(qiáng)化思想。

師生總結(jié)本課內(nèi)容。

1、數(shù)軸的概念,數(shù)軸的三要素。

2、數(shù)軸上兩個不同的點(diǎn)所表示的兩個有理數(shù)大小關(guān)系。

3、所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)來表示。

師:你感到自己今天的表現(xiàn)怎樣?

習(xí)題2.21、2、3。

選作第4題。

必修二教案數(shù)學(xué)篇十六

1.使學(xué)生了解奇偶性的概念,回會利用定義判定簡單函數(shù)的奇偶性。

2.在奇偶性概念形成過程中,培養(yǎng)學(xué)生的觀察,歸納能力,同時滲透數(shù)形結(jié)合和非凡到一般的思想方法。

3.在學(xué)生感受數(shù)學(xué)美的同時,激發(fā)學(xué)習(xí)的愛好,培養(yǎng)學(xué)生樂于求索的精神。

教學(xué)重點(diǎn),難點(diǎn)。

重點(diǎn)是奇偶性概念的形成與函數(shù)奇偶性的判定。

難點(diǎn)是對概念的熟悉。

教學(xué)用具。

投影儀,計算機(jī)。

教學(xué)方法。

引導(dǎo)發(fā)現(xiàn)法。

教學(xué)過程。

一.引入新課。

前面我們已經(jīng)研究了函數(shù)的單調(diào)性,它是反映函數(shù)在某一個區(qū)間上函數(shù)值隨自變量變化而變化的性質(zhì),今天我們繼續(xù)研究函數(shù)的另一個性質(zhì)。從什么角度呢?將從對稱的角度來研究函數(shù)的性質(zhì)。

(學(xué)生可能會舉出一些數(shù)值上的對稱問題,等,也可能會舉出一些圖象的對稱問題,此時教師可以引導(dǎo)學(xué)生把函數(shù)具體化,如和等。)。

學(xué)生經(jīng)過思考,能找出原因,由于函數(shù)是映射,一個只能對一個,而不能有兩個不同的,故函數(shù)的圖象不可能關(guān)于軸對稱。最終提出我們今天將重點(diǎn)研究圖象關(guān)于軸對稱和關(guān)于原點(diǎn)對稱的問題,從形的特征中找出它們在數(shù)值上的規(guī)律。

二.講解新課。

2.函數(shù)的奇偶性(板書)。

學(xué)生開始可能只會用語言去描述:自變量互為相反數(shù),函數(shù)值相等。教師可引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示。(借助課件演示令比較得出等式,再令,得到,詳見課件的使用)進(jìn)而再提出會不會在定義域內(nèi)存在,使與不等呢?(可用課件幫助演示讓動起來觀察,發(fā)現(xiàn)結(jié)論,這樣的是不存在的)從這個結(jié)論中就可以發(fā)現(xiàn)對定義域內(nèi)任意一個,都有成立。最后讓學(xué)生用完整的語言給出定義,不準(zhǔn)確的地方教師予以提示或調(diào)整。

(1)偶函數(shù)的定義:假如對于函數(shù)的定義域內(nèi)任意一個,都有,那么就叫做偶函數(shù)。(板書)。

(給出定義后可讓學(xué)生舉幾個例子,如等以檢驗(yàn)一下對概念的初步熟悉)。

提出新問題:函數(shù)圖象關(guān)于原點(diǎn)對稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢?(同時打出或的圖象讓學(xué)生觀察研究)。

學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義。

(2)奇函數(shù)的定義:假如對于函數(shù)的定義域內(nèi)任意一個,都有,那么就叫做奇函數(shù)。(板書)。

(由于在定義形成時已經(jīng)有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)。

例1。判定下列函數(shù)的奇偶性(板書)。

(1);(2);

(3);;

(5);(6)。

(要求學(xué)生口答,選出12個題說過程)。

解:(1)是奇函數(shù)。(2)是偶函數(shù)。

(3),是偶函數(shù)。

學(xué)生經(jīng)過思考可以解決問題,指出只要舉出一個反例說明與不等。如即可說明它不是偶函數(shù)。(從這個問題的解決中讓學(xué)生再次熟悉到定義中任意性的重要)。

從(4)題開始,學(xué)生的答案會有不同,可以讓學(xué)生先討論,教師再做評述。即第(4)題中表面成立的=不能經(jīng)受任意性的考驗(yàn),當(dāng)時,由于,故不存在,更談不上與相等了,由于任意性被破壞,所以它不能是奇偶性。

可以用(6)輔助說明充分性不成立,用(5)說明必要性成立,得出結(jié)論。

(3)定義域關(guān)于原點(diǎn)對稱是函數(shù)具有奇偶性的必要但不充分條件。(板書)。

由學(xué)生小結(jié)判定奇偶性的步驟之后,教師再提出新的問題:在剛才的幾個函數(shù)中有是奇函數(shù)不是偶函數(shù),有是偶函數(shù)不是奇函數(shù),也有既不是奇函數(shù)也不是偶函數(shù),那么有沒有這樣的函數(shù),它既是奇函數(shù)也是偶函數(shù)呢?若有,舉例說明。

例2。已知函數(shù)既是奇函數(shù)也是偶函數(shù),求證:。(板書)(試由學(xué)生來完成)。

(4)函數(shù)按其是否具有奇偶性可分為四類:(板書)。

例3。判定下列函數(shù)的奇偶性(板書)。

(1);(2);(3)。

由學(xué)生回答,不完整之處教師補(bǔ)充。

解:(1)當(dāng)時,為奇函數(shù),當(dāng)時,既不是奇函數(shù)也不是偶函數(shù)。

(2)當(dāng)時,既是奇函數(shù)也是偶函數(shù),當(dāng)時,是偶函數(shù)。

(3)當(dāng)時,于是,

當(dāng)時,,于是=,

綜上是奇函數(shù)。

教師小結(jié)(1)(2)注重分類討論的使用,(3)是分段函數(shù),當(dāng)檢驗(yàn),并不能說明具備奇偶性,因?yàn)槠媾夹允菍瘮?shù)整個定義域內(nèi)性質(zhì)的刻畫,因此必須均有成立,二者缺一不可。

三.小結(jié)。

1.奇偶性的概念。

2.判定中注重的問題。

四.作業(yè)略。

五.板書設(shè)計。

2.函數(shù)的奇偶性例1.例3.

(1)偶函數(shù)定義。

(2)奇函數(shù)定義。

(3)定義域關(guān)于原點(diǎn)對稱是函數(shù)例2。小結(jié)。

具備奇偶性的必要條件。

(4)函數(shù)按奇偶性分類分四類。

探究活動。

(2)判定函數(shù)在上的單調(diào)性,并加以證實(shí)。

在此基礎(chǔ)上試?yán)眠@個函數(shù)的單調(diào)性解決下面的問題:

必修二教案數(shù)學(xué)篇十七

了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景.

(2)一元二次不等式。

會從實(shí)際情境中抽象出一元二次不等式模型.

通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.

會解一元二次不等式,對給定的一元二次不等式,會設(shè)計求解的程序框圖.

(3)二元一次不等式組與簡單線性規(guī)劃問題。

會從實(shí)際情境中抽象出二元一次不等式組.

了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.

會從實(shí)際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.

(4)基本不等式:

了解基本不等式的證明過程.

必修二教案數(shù)學(xué)篇十八

(1)掌握與()型的絕對值不等式的解法.

(2)掌握與()型的絕對值不等式的解法.

(3)通過用數(shù)軸來表示含絕對值不等式的解集,培養(yǎng)學(xué)生數(shù)形結(jié)合的能力;。

教學(xué)重點(diǎn):型的不等式的解法;。

教學(xué)難點(diǎn):利用絕對值的意義分析、解決問題.

教學(xué)過程設(shè)計。

教師活動。

學(xué)生活動。

設(shè)計意圖。

一、導(dǎo)入新課。

【提問】正數(shù)的絕對值什么?負(fù)數(shù)的絕對值是什么?零的絕對值是什么?舉例說明?

【概括】。

口答。

絕對值的概念是解與()型絕對值不等值的概念,為解這種類型的絕對值不等式做好鋪墊.。

二、新課。

【提問】如何解絕對值方程.。

【質(zhì)疑】的解集有幾部分?為什么也是它的解集?

【練習(xí)】解下列不等式:

(1);

(2)。

【設(shè)問】如果在中的,也就是怎樣解?

【點(diǎn)撥】可以把看成一個整體,也就是把看成,按照的解法來解.。

所以,原不等式的解集是。

【設(shè)問】如果中的是,也就是怎樣解?

【點(diǎn)撥】可以把看成一個整體,也就是把看成,按照的解法來解.。

由得。

由得。

所以,原不等式的解集是。

口答.畫出數(shù)軸后在數(shù)軸上表示絕對值等于2的數(shù).。

畫出數(shù)軸,思考答案。

不等式的解集表示為。

畫出數(shù)軸。

思考答案。

不等式的解集為。

或表示為,或。

筆答。

(1)。

(2),或。

筆答。

筆答。

根據(jù)絕對值的意義自然引出絕對值方程()的解法.。

由淺入深,循序漸進(jìn),在型絕對值方程的基礎(chǔ)上引出()型絕對值方程的解法.。

針對解()絕對值不等式學(xué)生常出現(xiàn)的情況,運(yùn)用數(shù)軸質(zhì)疑、解惑.。

落實(shí)會正確解出與()絕對值不等式的教學(xué)目標(biāo).。

在將看成一個整體的關(guān)鍵處點(diǎn)撥、啟發(fā),使學(xué)生主動地進(jìn)行練習(xí).。

繼續(xù)強(qiáng)化將看成一個整體繼續(xù)強(qiáng)化解不等式時不要犯丟掉這部分解的錯誤.。

三、課堂練習(xí)。

解下列不等式:

(1);

(2)。

筆答。

(1);

(2)。

檢查教學(xué)目標(biāo)落實(shí)情況.。

四、小結(jié)。

的解集是;的解集是。

解絕對值不等式注意不要丟掉這部分解集.。

五、作業(yè)。

1.閱讀課本含絕對值不等式解法.。

2.習(xí)題2、3、4。

課堂教學(xué)設(shè)計說明。

1.抓住解型絕對值不等式的關(guān)鍵是絕對值的意義,為此首先通過復(fù)習(xí)讓學(xué)生掌握好絕對值的意義,為解絕對值不等式打下牢固的基礎(chǔ).

2.在解與絕對值不等式中的關(guān)鍵處設(shè)問、質(zhì)疑、點(diǎn)撥,讓學(xué)生融會貫通的掌握它們解法之間的內(nèi)在聯(lián)系,以達(dá)到提高學(xué)生解題能力的目的.

3.針對學(xué)生解()絕對值不等式容易出現(xiàn)丟掉這部分解集的錯誤,在教學(xué)中應(yīng)根據(jù)絕對值的意義從數(shù)軸進(jìn)行突破,并在練習(xí)中糾正這個錯誤,以提高學(xué)生的運(yùn)算能力.

必修二教案數(shù)學(xué)篇十九

本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實(shí)在解三角形的應(yīng)用上。通過本章學(xué)習(xí),學(xué)生應(yīng)當(dāng)達(dá)到以下學(xué)習(xí)目標(biāo):

(1)通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。

(2)能夠熟練運(yùn)用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的生活實(shí)際問題。

數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識的理解和掌握。

本章重視與內(nèi)容密切相關(guān)的數(shù)學(xué)思想方法的教學(xué),并且在提出問題、思考解決問題的策略等方面對學(xué)生進(jìn)行具體示范、引導(dǎo)。本章的兩個主要數(shù)學(xué)結(jié)論是正弦定理和余弦定理,它們都是關(guān)于三角形的邊角關(guān)系的結(jié)論。在初中,學(xué)生已經(jīng)學(xué)習(xí)了相關(guān)邊角關(guān)系的定性的知識,就是“在任意三角形中有大邊對大角,小邊對小角”,“如果已知兩個三角形的兩條對應(yīng)邊及其所夾的角相等,那么這兩個三角形全”等。

教科書在引入正弦定理內(nèi)容時,讓學(xué)生從已有的幾何知識出發(fā),提出探究性問題:“在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系.我們是否能得到這個邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題?!痹O(shè)置這些問題,都是為了加強(qiáng)數(shù)學(xué)思想方法的教學(xué)。

加強(qiáng)與前后各章教學(xué)內(nèi)容的聯(lián)系,注意復(fù)習(xí)和應(yīng)用已學(xué)內(nèi)容,并為后續(xù)章節(jié)教學(xué)內(nèi)容做好準(zhǔn)備,能使整套教科書成為一個有機(jī)整體,提高教學(xué)效益,并有利于學(xué)生對于數(shù)學(xué)知識的學(xué)習(xí)和鞏固。

本章內(nèi)容處理三角形中的邊角關(guān)系,與初中學(xué)習(xí)的三角形的邊與角的基本關(guān)系,已知三角形的邊和角相等判定三角形全等的知識有著密切聯(lián)系。教科書在引入正弦定理內(nèi)容時,讓學(xué)生從已有的幾何知識出發(fā),提出探究性問題“在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系.我們是否能得到這個邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題?!边@樣,從聯(lián)系的觀點(diǎn),從新的角度看過去的問題,使學(xué)生對于過去的知識有了新的認(rèn)識,同時使新知識建立在已有知識的堅實(shí)基礎(chǔ)上,形成良好的知識結(jié)構(gòu)。

《課程標(biāo)準(zhǔn)》和教科書把“解三角形”這部分內(nèi)容安排在數(shù)學(xué)五的第一部分內(nèi)容,

位置相對靠后,在此內(nèi)容之前學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、平面向量、直線和圓的方程等與本章知識聯(lián)系密切的內(nèi)容,這使這部分內(nèi)容的處理有了比較多的工具,某些內(nèi)容可以處理得更加簡潔。比如對于余弦定理的證明,常用的方法是借助于三角的方法,需要對于三角形進(jìn)行討論,方法不夠簡潔,教科書則用了向量的方法,發(fā)揮了向量方法在解決問題中的威力。

在證明了余弦定理及其推論以后,教科書從余弦定理與勾股定理的比較中,提出了一個思考問題“勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個定理之間的'關(guān)系?”,并進(jìn)而指出,“從余弦定理以及余弦函數(shù)的性質(zhì)可知,如果一個三角形兩邊的平方和等于第三邊的平方,那么第三邊所對的角是直角;如果小于第三邊的平方,那么第三邊所對的角是鈍角;如果大于第三邊的平方,那么第三邊所對的角是銳角.從上可知,余弦定理是勾股定理的推廣.”

學(xué)數(shù)學(xué)的最終目的是應(yīng)用數(shù)學(xué),而如今比較突出的兩個問題是,學(xué)生應(yīng)用數(shù)學(xué)的意識不強(qiáng),創(chuàng)造能力較弱。學(xué)生往往不能把實(shí)際問題抽象成數(shù)學(xué)問題,不能把所學(xué)的數(shù)學(xué)知識應(yīng)用到實(shí)際問題中去,對所學(xué)數(shù)學(xué)知識的實(shí)際背景了解不多,雖然學(xué)生機(jī)械地模仿一些常見數(shù)學(xué)問題解法的能力較強(qiáng),但當(dāng)面臨一種新的問題時卻辦法不多,對于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發(fā)現(xiàn)問題、解決問題的科學(xué)思維方法了解不夠。針對這些實(shí)際情況,本章重視從實(shí)際問題出發(fā),引入數(shù)學(xué)課題,最后把數(shù)學(xué)知識應(yīng)用于實(shí)際問題。

1.1正弦定理和余弦定理(約3課時)

1.2應(yīng)用舉例(約4課時)

1.3實(shí)習(xí)作業(yè)(約1課時)

1.要在本章的教學(xué)中,應(yīng)該根據(jù)教學(xué)實(shí)際,啟發(fā)學(xué)生不斷提出問題,研究問題。在對于正弦定理和余弦定理的證明的探究過程中,應(yīng)該因勢利導(dǎo),根據(jù)具體教學(xué)過程中學(xué)生思考問題的方向來啟發(fā)學(xué)生得到自己對于定理的證明。如對于正弦定理,可以啟發(fā)得到有應(yīng)用向量方法的證明,對于余弦定理則可以啟發(fā)得到三角方法和解析的方法。在應(yīng)用兩個定理解決有關(guān)的解三角形和測量問題的過程中,一個問題也常常有多種不同的解決方案,應(yīng)該鼓勵學(xué)生提出自己的解決辦法,并對于不同的方法進(jìn)行必要的分析和比較。對于一些常見的測量問題甚至可以鼓勵學(xué)生設(shè)計應(yīng)用的程序,得到在實(shí)際中可以直接應(yīng)用的算法。

2.適當(dāng)安排一些實(shí)習(xí)作業(yè),目的是讓學(xué)生進(jìn)一步鞏固所學(xué)的知識,提高學(xué)生分析問題的解決實(shí)際問題的能力、動手操作的能力以及用數(shù)學(xué)語言表達(dá)實(shí)習(xí)過程和實(shí)習(xí)結(jié)果能力,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識和數(shù)學(xué)實(shí)踐能力。教師要注意對于學(xué)生實(shí)習(xí)作業(yè)的指導(dǎo),包括對于實(shí)際測量問題的選擇,及時糾正實(shí)際操作中的錯誤,解決測量中出現(xiàn)的一些問題。

【本文地址:http://www.mlvmservice.com/zuowen/17123338.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔