高一數(shù)學(xué)教案等比數(shù)列范文(18篇)

格式:DOC 上傳日期:2023-12-03 05:04:12
高一數(shù)學(xué)教案等比數(shù)列范文(18篇)
時(shí)間:2023-12-03 05:04:12     小編:影墨

教案包括教學(xué)目標(biāo)、教學(xué)內(nèi)容、教學(xué)過程、教學(xué)方法以及評(píng)價(jià)與反思等要素。在編寫教案時(shí),教師要根據(jù)學(xué)生的知識(shí)水平和學(xué)習(xí)需求確定教學(xué)內(nèi)容和教學(xué)方法。希望這些范文能夠激發(fā)您編寫教案的創(chuàng)造力和思考力。

高一數(shù)學(xué)教案等比數(shù)列篇一

1、掌握等比數(shù)列前項(xiàng)和公式,并能運(yùn)用公式解決簡單的問題。

(1)理解公式的推導(dǎo)過程,體會(huì)轉(zhuǎn)化的思想;

2、通過公式的靈活運(yùn)用,進(jìn)一步滲透方程的思想、分類討論的思想、等價(jià)轉(zhuǎn)化的思想。

3、通過公式推導(dǎo)的教學(xué),對學(xué)生進(jìn)行思維的嚴(yán)謹(jǐn)性的訓(xùn)練,培養(yǎng)他們實(shí)事求是的科學(xué)態(tài)度。

(1)知識(shí)結(jié)構(gòu)。

先用錯(cuò)位相減法推出等比數(shù)列前項(xiàng)和公式,而后運(yùn)用公式解決一些問題,并將通項(xiàng)公式與前項(xiàng)和公式結(jié)合解決問題,還要用錯(cuò)位相減法求一些數(shù)列的前項(xiàng)和。

(2)重點(diǎn)、難點(diǎn)分析。

是等比數(shù)列前項(xiàng)和公式的推導(dǎo)與應(yīng)用。公式的推導(dǎo)中蘊(yùn)含了豐富的數(shù)學(xué)思想、方法(如分類討論思想,錯(cuò)位相減法等),這些思想方法在其他數(shù)列求和問題中多有涉及,所以對等比數(shù)列前項(xiàng)和公式的要求,不單是要記住公式,更重要的是掌握推導(dǎo)公式的方法。等比數(shù)列前項(xiàng)和公式是分情況討論的,在運(yùn)用中要特別注意和兩種情況。

(1)本節(jié)內(nèi)容分為兩課時(shí),一節(jié)為等比數(shù)列前項(xiàng)和公式的推導(dǎo)與應(yīng)用,一節(jié)為通項(xiàng)公式與前項(xiàng)和公式的綜合運(yùn)用,另外應(yīng)補(bǔ)充一節(jié)數(shù)列求和問題。

(2)等比數(shù)列前項(xiàng)和公式的推導(dǎo)是重點(diǎn)內(nèi)容,引導(dǎo)學(xué)生觀察實(shí)例,發(fā)現(xiàn)規(guī)律,歸納總結(jié),證明結(jié)論。

(3)等比數(shù)列前項(xiàng)和公式的推導(dǎo)的其他方法可以給出,提高學(xué)生學(xué)習(xí)的興趣。

(4)編擬例題時(shí)要全面,不要忽略的情況。

(5)通項(xiàng)公式與前項(xiàng)和公式的綜合運(yùn)用涉及五個(gè)量,已知其中三個(gè)量可求另兩個(gè)量,但解指數(shù)方程難度大。

高一數(shù)學(xué)教案等比數(shù)列篇二

解決集合元素的問題時(shí),我們一定要注意集合中的元素要滿足互異性,以免產(chǎn)生增根。

3、注意特殊集合——空集。

空集是不含任何元素的集合。我們規(guī)定空集是任何集合的子集,是任何非空集合的真子集。因而,在涉及集合之間關(guān)系的問題時(shí)要特別注意空集。

4、利用特殊工具——韋恩圖和數(shù)軸。

集合的表示方法可分為列舉法、描述法、圖示法。列舉法一般表示有限集,描述法一般表示無限集,用于書寫最終結(jié)果。在運(yùn)算過程中,一般用數(shù)軸表示連續(xù)型元素的集合,用韋恩圖表示離散型元素的集合。圖形語言可以幫我們快捷而直觀的找出答案,提高解題速度。

高一數(shù)學(xué)教案等比數(shù)列篇三

對數(shù)函數(shù)(第二課時(shí))是20__人教版高一數(shù)學(xué)(上冊)第二章第八節(jié)第二課時(shí)的內(nèi)容,本小節(jié)涉及對數(shù)函數(shù)相關(guān)知識(shí),分三個(gè)課時(shí),這里是第二課時(shí)復(fù)習(xí)鞏固對數(shù)函數(shù)圖像及性質(zhì),并用此解決三類對數(shù)比大小問題,是對已學(xué)內(nèi)容(指數(shù)函數(shù)、指數(shù)比大小、對數(shù)函數(shù))的延續(xù)和發(fā)展,同時(shí)也體現(xiàn)了數(shù)學(xué)的實(shí)用性,為后續(xù)學(xué)習(xí)起到奠定知識(shí)基礎(chǔ)、滲透方法的作用,因此本節(jié)內(nèi)容起到了一種承上啟下的作用。

二、教學(xué)目標(biāo)。

根據(jù)教學(xué)大綱的要求以及本節(jié)課的地位與作用,結(jié)合高一學(xué)生的認(rèn)知特點(diǎn)確定教學(xué)目標(biāo)如下:

學(xué)習(xí)目標(biāo):

1、復(fù)習(xí)鞏固對數(shù)函數(shù)的圖像及性質(zhì)。

2、運(yùn)用對數(shù)函數(shù)的性質(zhì)比較兩個(gè)數(shù)的大小。

能力目標(biāo):

1、培養(yǎng)學(xué)生運(yùn)用圖形解決問題的意識(shí)即數(shù)形結(jié)合能力。

2、學(xué)生運(yùn)用已學(xué)知識(shí),已有經(jīng)驗(yàn)解決新問題的能力。

3、探索出方法,有條理闡述自己觀點(diǎn)的能力。

德育目標(biāo):

培養(yǎng)學(xué)生勤于思考、獨(dú)立思考、合作交流等良好的個(gè)性品質(zhì)。

三、教材的重點(diǎn)及難點(diǎn)。

教學(xué)中將在以下2個(gè)環(huán)節(jié)中突出教學(xué)重點(diǎn):

1、利用學(xué)生預(yù)習(xí)后的心得交流,資源共享,互補(bǔ)不足。

2、通過適當(dāng)?shù)木毩?xí),加強(qiáng)對解題方法的掌握及原理的理解。

教學(xué)中會(huì)在以下3個(gè)方面突破教學(xué)難點(diǎn):

1、教師調(diào)整角色,讓學(xué)生成為學(xué)習(xí)的主人,教師在其中起引導(dǎo)作用即可。

2、小組合作探索新問題時(shí),注重生生合作、師生互動(dòng),適時(shí)用語言鼓勵(lì)學(xué)生,增強(qiáng)學(xué)生參與討論的自信。

3、本節(jié)課采用多媒體輔助教學(xué),節(jié)省時(shí)間,加快課程進(jìn)度,增強(qiáng)了直觀形象性。

四、學(xué)生學(xué)情分析。

長處:高一學(xué)生經(jīng)過幾年的數(shù)學(xué)學(xué)習(xí),已具備一定的數(shù)學(xué)素養(yǎng),對于已學(xué)知識(shí)或用過的數(shù)學(xué)思想、方法有一定的應(yīng)用能力及應(yīng)用意識(shí),對于本節(jié)課而言,從知識(shí)上說,對數(shù)函數(shù)的圖像和性質(zhì)剛剛學(xué)過,本節(jié)課是知識(shí)的應(yīng)用,從數(shù)學(xué)能力上說,指數(shù)比大小問題的解題思想和方法在這可借鑒,另外數(shù)形結(jié)合能力、小結(jié)概括能力、特殊到一般歸納能力已具備一點(diǎn)。

學(xué)生可能遇到的困難:本節(jié)課從教學(xué)內(nèi)容上來看,第三類對數(shù)比大小是課本以外補(bǔ)充的內(nèi)容,沒有預(yù)習(xí)心得,讓學(xué)生在課堂中快速通過合作探究來完成解題思路的構(gòu)建,有一定的挑戰(zhàn)性,從學(xué)生能力上來看,探索出方法,有條理闡述自己觀點(diǎn)的能力還需加強(qiáng)鍛煉,知識(shí)之間的聯(lián)系認(rèn)識(shí)上還顯不足。

五、教法特點(diǎn)。

新課程強(qiáng)調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,在教育方式上,以學(xué)生為中心,讓學(xué)生成為學(xué)習(xí)的主人,教師在其中起引導(dǎo)作用即可?;诖?,本節(jié)課遵循此原則重點(diǎn)采用問題探究和啟發(fā)引導(dǎo)式的教學(xué)方法。從預(yù)習(xí)交流心得出發(fā),到探索新問題,再到題后的回顧總結(jié),一切以學(xué)生為中心,處處體現(xiàn)學(xué)生的主體地位,讓學(xué)生多說、多分析、多思考、多總結(jié),引導(dǎo)學(xué)生運(yùn)用自己的語言闡述觀點(diǎn),加強(qiáng)理解,在生生合作,師生互動(dòng)中解決問題,為提高學(xué)生分析問題、解決問題能力打下基礎(chǔ)。本節(jié)課采用多媒體輔助教學(xué),節(jié)省時(shí)間,加快課程進(jìn)度,增強(qiáng)了直觀形象性。

六、教學(xué)過程分析。

1、課件展示本節(jié)課學(xué)習(xí)目標(biāo)。

設(shè)計(jì)意圖:明確任務(wù),激發(fā)興趣。

2、溫故知新(已填表形式復(fù)習(xí)對數(shù)函數(shù)的圖像和性質(zhì))。

設(shè)計(jì)意圖:復(fù)習(xí)已學(xué)知識(shí)和方法,為學(xué)生形成知識(shí)間的聯(lián)系和框架建立平臺(tái),并為下一步的應(yīng)用打下基礎(chǔ)。

3、預(yù)習(xí)后心得交流。

1)同底對數(shù)比大小。

2)既不同底數(shù),也不同真數(shù)的對數(shù)比大小。

設(shè)計(jì)意圖:通過學(xué)生的預(yù)習(xí),自己總結(jié)方法及此方法適用的題型,有條理的闡述自己的學(xué)習(xí)心得,老師只需起引導(dǎo)作用,引導(dǎo)學(xué)生從題目表面上升到題目的實(shí)質(zhì),從而找到解決問題的有效方法。

4、合作探究——同真異底型的對數(shù)比大小。

以例3為例,學(xué)生分組合作探究解題方法,預(yù)計(jì)兩種:一是利用換底公式將此類型轉(zhuǎn)化為同底異真型,利用之前總結(jié)的方法解決此問題。二是利用具體對數(shù)的大小關(guān)系探究出不同底對數(shù)函數(shù)在同一直角坐標(biāo)系中的圖像,以此來解決此類型比大小問題。

設(shè)計(jì)意圖:這一部分是本節(jié)課的難點(diǎn),探究中充分發(fā)揮學(xué)生的主動(dòng)性,培養(yǎng)主動(dòng)學(xué)習(xí)的意識(shí),同時(shí)也鍛煉學(xué)生各方面能力的很好機(jī)會(huì),為以后的探究學(xué)習(xí)積累經(jīng)驗(yàn)和方法,充分體現(xiàn)“授之以魚,不如授之以漁”的教學(xué)理念。另外數(shù)學(xué)問題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒有了反思,他們就錯(cuò)過了解題的一次重要而有效益的方面。因此,本題解決后,讓學(xué)生反思明白,要想利用性質(zhì)解決問題,關(guān)鍵要做到“腦中有圖”,以“形”促“數(shù)”。

5、小結(jié)。

6、思考題。

以20__高考題為例,讓學(xué)生學(xué)以致用,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣。

7、作業(yè)。

包括兩個(gè)方面:

1、書寫作業(yè)。

2、下節(jié)課前的預(yù)習(xí)作業(yè)。

通過本節(jié)課的教學(xué)實(shí)例來看,這種通過課本內(nèi)容預(yù)習(xí),而后課堂交流學(xué)習(xí)成果的方法效果不錯(cuò),既能很好的完成教學(xué)任務(wù),又能充分發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性。在自主探究時(shí),學(xué)生分組討論過程中,我參與小組討論,對有能力的小組,在探究出一種方法后,可鼓勵(lì)完成更多的方法探究,對于能力較弱的小組,可給予適當(dāng)?shù)奶崾荆箤W(xué)生都能動(dòng)起來,課堂都有所收獲,增強(qiáng)學(xué)生自信。另外,對于學(xué)生的總結(jié)回答,可能會(huì)比較慢,我一定會(huì)耐心聽,及時(shí)鼓勵(lì),給予學(xué)生微笑和語言的鼓勵(lì),效果很好。在小結(jié)環(huán)節(jié)中,對于高一學(xué)生自己小結(jié)的方法,是我一直的教學(xué)嘗試,由于只訓(xùn)練了半學(xué)期,學(xué)生只能達(dá)到小結(jié)知識(shí)的程度,在以后的訓(xùn)練中還會(huì)加入數(shù)學(xué)思想、數(shù)學(xué)方法的小結(jié)內(nèi)容,使這些數(shù)學(xué)名詞讓學(xué)生不再覺得抽象,而是變成具體的,可操作的、具體的解題工具。

高一數(shù)學(xué)教案等比數(shù)列篇四

教學(xué)重點(diǎn):理解等比數(shù)列的概念,認(rèn)識(shí)等比數(shù)列是反映自然規(guī)律的重要數(shù)列模型之一,探索并掌握等比數(shù)列的通項(xiàng)公式。

教學(xué)難點(diǎn):遇到具體問題時(shí),抽象出數(shù)列的模型和數(shù)列的等比關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)問題。

教學(xué)過程:

1.等差數(shù)列的通項(xiàng)公式。

2.等差數(shù)列的前n項(xiàng)和公式。

引入:1“一尺之棰,日取其半,萬世不竭?!?/p>

2細(xì)胞分裂模型。

3計(jì)算機(jī)病毒的傳播。

由學(xué)生通過類比,歸納,猜想,發(fā)現(xiàn)等比數(shù)列的特點(diǎn)。

進(jìn)而讓學(xué)生通過用遞推公式描述等比數(shù)列。

讓學(xué)生回憶用不完全歸納法得到等差數(shù)列的通項(xiàng)公式的過程然后類比等比數(shù)列的通項(xiàng)公式。

注意:1公比q是任意一個(gè)常數(shù),不僅可以是正數(shù)也可以是負(fù)數(shù)。

2當(dāng)首項(xiàng)等于0時(shí),數(shù)列都是0。當(dāng)公比為0時(shí),數(shù)列也都是0。

所以首項(xiàng)和公比都不可以是0。

3當(dāng)公比q=1時(shí),數(shù)列是怎么樣的,當(dāng)公比q大于1,公比q小于1時(shí)數(shù)列是怎么樣的?

4以及等比數(shù)列和指數(shù)函數(shù)的關(guān)系。

5是后一項(xiàng)比前一項(xiàng)。

列:1,2,(略)。

小結(jié):等比數(shù)列的通項(xiàng)公式。

1.教材p59練習(xí)1,2,3,題。

2.作業(yè):p60習(xí)題1,4。

第二課時(shí)5.2.4等比數(shù)列(二)。

提問:等差數(shù)列的通項(xiàng)公式。

等比數(shù)列的通項(xiàng)公式。

1.討論:如果是等差列的三項(xiàng)滿足。

由學(xué)生給出如果是等比數(shù)列滿足。

2練習(xí):如果等比數(shù)列=4,=16,=?(學(xué)生口答)。

如果等比數(shù)列=4,=16,=?(學(xué)生口答)。

3等比中項(xiàng):如果等比數(shù)列。那么,

則叫做等比數(shù)列的等比中項(xiàng)(教師給出)。

4思考:是否成立呢?成立嗎?

成立嗎?

又學(xué)生找到其間的規(guī)律,并對比記憶如果等差列,

5思考:如果是兩個(gè)等比數(shù)列,那么是等比數(shù)列嗎?

如果是為什么?是等比數(shù)列嗎?引導(dǎo)學(xué)生證明。

6思考:在等比數(shù)列里,如果成立嗎?

如果是為什么?由學(xué)生給出證明過程。

列3:一個(gè)等比數(shù)列的第3項(xiàng)和第4項(xiàng)分別是12和18,求它的第1項(xiàng)和第2項(xiàng)。

解(略)。

列4:略:

練習(xí):1在等比數(shù)列,已知那么。

2p61a組8。

高一數(shù)學(xué)教案等比數(shù)列篇五

將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0.01毫米。

30次后,厚度為,這個(gè)厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙?jiān)俦∫恍热缂埡?.001毫米,對折34次就超過珠穆朗瑪峰的高度了。還記得國王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是粒,用計(jì)算器算一下吧(用對數(shù)算也行)。

高一數(shù)學(xué)教案等比數(shù)列篇六

設(shè)計(jì)意圖:解題時(shí),以學(xué)生分析為主,教師適時(shí)給予點(diǎn)撥,該題有意培養(yǎng)學(xué)生對含有參數(shù)的問題進(jìn)行分類討論的數(shù)學(xué)思想。7.總結(jié)歸納,加深理解以問題的形式出現(xiàn),引導(dǎo)學(xué)生回顧公式、推導(dǎo)方法,鼓勵(lì)學(xué)生積極回答,然后老師再從知識(shí)點(diǎn)及數(shù)學(xué)思想方法兩方面總結(jié)。設(shè)計(jì)意圖:以此培養(yǎng)學(xué)生的口頭表達(dá)能力,歸納概括能力。8.故事結(jié)束,首尾呼應(yīng)最后我們回到故事中的問題,我們可以計(jì)算出國王獎(jiǎng)賞的小麥約為1.84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽鋪設(shè)一條寬10米、厚8米的大道,大約是全世界一年糧食產(chǎn)量的459倍,顯然國王兌現(xiàn)不了他的承諾。設(shè)計(jì)意圖:把引入課題時(shí)的懸念給予釋疑,有助于學(xué)生克服疲倦、繼續(xù)積極思維。9.課后作業(yè),分層練習(xí)必做:p129練習(xí)1、2、3、4選作:(2)“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請問尖頭幾盞燈?”這首中國古詩的答案是多少?設(shè)計(jì)意圖:出選作題的目的是注意分層教學(xué)和因材施教,讓學(xué)有余力的學(xué)生有思考的空間。四、教法分析對公式的教學(xué),要使學(xué)生掌握與理解公式的來龍去脈,掌握公式的推導(dǎo)方法,理解公式的成立條件,充分體現(xiàn)公式之間的聯(lián)系。在教學(xué)中,我采用“問題――探究”的教學(xué)模式,把整個(gè)課堂分為呈現(xiàn)問題、探索規(guī)律、總結(jié)規(guī)律、應(yīng)用規(guī)律四個(gè)階段。利用多媒體輔助教學(xué),直觀地反映了教學(xué)內(nèi)容,使學(xué)生思維活動(dòng)得以充分展開,從而優(yōu)化了教學(xué)過程,大大提高了課堂教學(xué)效率。五、評(píng)價(jià)分析本節(jié)課通過三種推導(dǎo)方法的研究,使學(xué)生從不同的思維角度掌握了等比數(shù)列前n項(xiàng)和公式。錯(cuò)位相減:變加為減,等價(jià)轉(zhuǎn)化;遞推思想:縱橫聯(lián)系,揭示本質(zhì);等比定理:回歸定義,自然樸實(shí)。學(xué)生從中深刻地領(lǐng)會(huì)到推導(dǎo)過程中所蘊(yùn)含的數(shù)學(xué)思想,培養(yǎng)了學(xué)生思維的深刻性、敏銳性、廣闊性、批判性。同時(shí)通過精講一題,發(fā)散一串的變式教學(xué),使學(xué)生既鞏固了知識(shí),又形成了技能。在此基礎(chǔ)上,通過民主和諧的課堂氛圍,培養(yǎng)了學(xué)生自主學(xué)習(xí)、合作交流的學(xué)習(xí)習(xí)慣,也培養(yǎng)了學(xué)生勇于探索、不斷創(chuàng)新的思維品質(zhì)。

高一數(shù)學(xué)教案等比數(shù)列篇七

(2)求數(shù)列的前10項(xiàng)的和。例7已知數(shù)列滿足,,.

(1)求證:數(shù)列是等比數(shù)列;

(2)求的表達(dá)式和的表達(dá)式。

作業(yè):

1.已知同號(hào),則是成等比數(shù)列的。

(a)充分而不必要條件(b)必要而不充分條件。

(c)充要條件(d)既不充分而也不必要條件。

2.如果和是兩個(gè)等差數(shù)列,其中,那么等于。

(a)(b)(c)3(d)。

3.若某等比數(shù)列中,前7項(xiàng)和為48,前14項(xiàng)和為60,則前21項(xiàng)和為。

(a)180(b)108(c)75(d)63。

4.已知數(shù)列,對所有,其前項(xiàng)的積為,求的值,

5.已知為等差數(shù)列,前10項(xiàng)的和為,前100項(xiàng)的和為,求前110項(xiàng)的和。

6.等差數(shù)列中,,,依次抽出這個(gè)數(shù)列的第項(xiàng),組成數(shù)列,求數(shù)列的通項(xiàng)公式和前項(xiàng)和公式。

7.&nbs…p;已知數(shù)列,,

(1)求通項(xiàng)公式;

(2)若,求數(shù)列的最小項(xiàng)的值;

(3)數(shù)列的前項(xiàng)和為,求數(shù)列前項(xiàng)的和.

8.三數(shù)成等比數(shù)列,若第二個(gè)數(shù)加4就成等差數(shù)列,再把這個(gè)等差數(shù)列的第三個(gè)數(shù)加上32又成等比數(shù)列,求這三個(gè)數(shù)。

高一數(shù)學(xué)教案等比數(shù)列篇八

(5)會(huì)用真值表判斷相應(yīng)的復(fù)合命題的真假;

(6)在知識(shí)學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能.。

重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對“或”的含義的理解.。

1.新課導(dǎo)入。

初一平面幾何中曾學(xué)過命題,請同學(xué)們舉一個(gè)命題的例子.(板書:命題.)。

(從初中接觸過的“命題”入手,提出問題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識(shí).)。

學(xué)生舉例:平行四邊形的對角線互相平.……(1)。

兩直線平行,同位角相等.…………(2)。

教師提問:“……相等的角是對頂角”是不是命題?……(3)。

(同學(xué)議論結(jié)果,答案是肯定的.)。

教師提問:什么是命題?

(學(xué)生進(jìn)行回憶、思考.)。

概念總結(jié):對一件事情作出了判斷的語句叫做命題.。

(教師肯定了同學(xué)的回答,并作板書.)。

(教師利用投影片,和學(xué)生討論以下問題.)。

例1判斷以下各語句是不是命題,若是,判斷其真假:

2.講授新課。

(片刻后請同學(xué)舉手回答,一共講了四個(gè)問題.師生一道歸納如下.)。

(1)什么叫做命題?

可以判斷真假的語句叫做命題.。

(2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.。

命題可分為簡單命題和復(fù)合命題.。

(4)命題的表示:用p,q,r,s,……來表示.。

(教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對復(fù)合命題的概念作出分析和展開.)。

對于給出“若p則q”形式的復(fù)合命題,應(yīng)能找到條件p和結(jié)論q.。

3.鞏固新課。

(1)5;

(2)0.5非整數(shù);

(3)內(nèi)錯(cuò)角相等,兩直線平行;

(4)菱形的對角線互相垂直且平分;

(5)平行線不相交;

(6)若ab=0,則a=0.。

(讓學(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)。

高一數(shù)學(xué)教案等比數(shù)列篇九

2、掌握標(biāo)準(zhǔn)方程中的幾何意義。

3、能利用上述知識(shí)進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡單的實(shí)際問題。

1、焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、

2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、

3、雙曲線的漸進(jìn)線方程為、

4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離是、

探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、

探究2、雙曲線與其漸近線具有怎樣的關(guān)系、

練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是、

例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、

(1)過點(diǎn),離心率、

(2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為、

例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程、

2、橢圓的離心率為,則雙曲線的離心率為、

3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、

4、設(shè)雙曲線的半焦距為,直線過、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率、

將本文的word文檔下載到電腦,方便收藏和打印。

高一數(shù)學(xué)教案等比數(shù)列篇十

(1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。

(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進(jìn)行分類。

(3)會(huì)用語言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。

(4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類。

(1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。

(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識(shí)。

(1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。

(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。

(1)學(xué)法:觀察、思考、交流、討論、概括。

(2)實(shí)物模型、投影儀四、教學(xué)思路。

1、教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動(dòng)及時(shí)給予評(píng)價(jià)。

2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。

1、引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。

3、組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。

(1)有兩個(gè)面互相平行;

(2)其余各面都是平行四邊形;

(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

4、教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。

5、提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?

6、以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

7、讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。

8、引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。

9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體。

1、有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)。

2、棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?

3、課本p8,習(xí)題1.1a組第1題。

5、棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?

由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容六、布置作業(yè)。

課本p8練習(xí)題1.1b組第1題。

課外練習(xí)課本p8習(xí)題1.1b組第2題。

高一數(shù)學(xué)教案等比數(shù)列篇十一

熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問題的能力,強(qiáng)化應(yīng)用儀式。

教學(xué)重難點(diǎn)。

熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問題的能力,強(qiáng)化應(yīng)用儀式。

教學(xué)過程。

【復(fù)習(xí)要求】熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問題的能力,強(qiáng)化應(yīng)用儀式。

【方法規(guī)律】應(yīng)用數(shù)列知識(shí)界實(shí)際應(yīng)用問題的關(guān)鍵是通過對實(shí)際問題的綜合分析,確定其數(shù)學(xué)模型是等差數(shù)列,還是等比數(shù)列,并確定其首項(xiàng),公差(或公比)等基本元素,然后設(shè)計(jì)合理的計(jì)算方案,即數(shù)學(xué)建模是解答數(shù)列應(yīng)用題的關(guān)鍵。

一、基礎(chǔ)訓(xùn)練。

1.某種細(xì)菌在培養(yǎng)過程中,每20分鐘分裂一次(一個(gè)分裂為兩個(gè)),經(jīng)過3小時(shí),這種細(xì)菌由1個(gè)可繁殖成()。

a、511b、512c、1023d、1024。

2.若一工廠的生產(chǎn)總值的月平均增長率為p,則年平均增長率為()。

a、b、

c、d、

二、典型例題。

例3、某地區(qū)位于沙漠邊緣,人與自然進(jìn)行長期頑強(qiáng)的斗爭,到1999年底全地區(qū)的綠化率已達(dá)到30%,從2000年開始,每年將出現(xiàn)以下的變化:原有沙漠面積的16%將栽上樹,改造為綠洲,同時(shí),原有綠洲面積的4%又被侵蝕,變?yōu)樯衬?問經(jīng)過多少年的努力才能使全縣的綠洲面積超過60%.(lg2=0.3)。

例4、.流行性感冒(簡稱流感)是由流感病毒引起的急性呼吸道傳染病.某市去年11月分曾發(fā)生流感,據(jù)資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內(nèi)感染該病毒的患者共有8670人,問11月幾日,該市感染此病毒的新的患者人數(shù)最多?并求這一天的新患者人數(shù).

高一數(shù)學(xué)教案等比數(shù)列篇十二

突出重點(diǎn).培養(yǎng)能力.。

三、課堂練習(xí)。

教材第13頁練習(xí)1、2、3、4.。

【助練習(xí)】第13頁練習(xí)4(1)中用一個(gè)方向的斜平行線段表示,用另一方向的平行線段表示如圖:

凡有陰影部分即為所求.。

四、小結(jié)。

提綱式(略).再一次突出交集和并集兩個(gè)概念中“且”,“或”的含義的不同.。

五、作業(yè)。

習(xí)題1至8.。

筆練結(jié)合板書.。

傾聽.修改練習(xí).掌握方法.。

觀察.思考.傾聽.理解.記憶.。

傾聽.理解.記憶.。

回憶、再現(xiàn)內(nèi)容.。

落實(shí)。

介紹解題技能技巧.。

內(nèi)容條理化.。

課堂教學(xué)設(shè)計(jì)說明。

2.反演律可根據(jù)學(xué)生實(shí)際酌情使用.。

高一數(shù)學(xué)教案等比數(shù)列篇十三

把實(shí)物圓柱放在講臺(tái)上讓學(xué)生畫。

2.學(xué)生畫完后展示自己的結(jié)果并與同學(xué)交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。

(二)研探新知。

1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測畫法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見解,教師及時(shí)給予點(diǎn)評(píng)。

畫水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫出多邊形來,因此平面多邊形水平放置時(shí),直觀圖的畫法可以歸結(jié)為確定點(diǎn)的位置的畫法。強(qiáng)調(diào)斜二測畫法的步驟。

練習(xí)反饋。

根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。

2.例2,用斜二測畫法畫水平放置的圓的直觀圖。

教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。

教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書畫法。

3.探求空間幾何體的直觀圖的畫法。

(1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體abcd-a’b’c’d’的直觀圖。

教師引導(dǎo)學(xué)生完成,要注意對每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫好每一步,不能敷衍了事。

(2)投影出示幾何體的三視圖。

請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握圖形尺寸大小之間的關(guān)系。

4.平行投影與中心投影。

投影出示課本p23圖,讓學(xué)生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點(diǎn)。

5.鞏固練習(xí),課本p25練習(xí)1,2,3。

三、歸納整理。

學(xué)生回顧斜二測畫法的關(guān)鍵與步驟。

四、作業(yè)。

1.書畫作業(yè),課本p25習(xí)題1—3a組和b組。

高一數(shù)學(xué)教案等比數(shù)列篇十四

1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.

(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.

(2)能從數(shù)和形兩個(gè)角度認(rèn)識(shí)單調(diào)性和奇偶性.

(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程.

2.通過函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.

3.通過對函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.

(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.

(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.

(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識(shí).教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.

(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點(diǎn)下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒有意識(shí)到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點(diǎn).

(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識(shí)出發(fā),通過問題逐步向抽象的定義靠攏.如可以設(shè)計(jì)這樣的問題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來.在這個(gè)過程中對一些關(guān)鍵的詞語(某個(gè)區(qū)間,任意,都有)的理解與必要性的認(rèn)識(shí)就可以融入其中,將概念的形成與認(rèn)識(shí)結(jié)合起來.

(2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號(hào),在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.

函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動(dòng)起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來.經(jīng)歷了這樣的過程,再得到等式時(shí),就比較容易體會(huì)它代表的是無數(shù)多個(gè)等式,是個(gè)恒等式.關(guān)于定義域關(guān)于原點(diǎn)對稱的問題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時(shí)還可以借助圖象說明定義域關(guān)于原點(diǎn)對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.

高一數(shù)學(xué)教案等比數(shù)列篇十五

1、鞏固集合、子、交、并、補(bǔ)的概念、性質(zhì)和記號(hào)及它們之間的關(guān)系。

2、了解集合的運(yùn)算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學(xué)解題的`一般思想。

3、了解集合元素個(gè)數(shù)問題的討論說明。

通過提問匯總練習(xí)提煉的形式來發(fā)掘?qū)W生學(xué)習(xí)方法。

培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維。

[教學(xué)重點(diǎn)、難點(diǎn)]:會(huì)正確應(yīng)用其概念和性質(zhì)做題[教具]:多媒體、實(shí)物投影儀。

[教學(xué)方法]:講練結(jié)合法。

[授課類型]:復(fù)習(xí)課。

[課時(shí)安排]:1課時(shí)。

[教學(xué)過程]:集合部分匯總。

本單元主要介紹了以下三個(gè)問題:

1,集合的含義與特征。

2,集合的表示與轉(zhuǎn)化。

3,集合的基本運(yùn)算。

一,集合的含義與表示(含分類)。

1,具有共同特征的對象的全體,稱一個(gè)集合。

2,集合按元素的個(gè)數(shù)分為:有限集和無窮集兩類。

高一數(shù)學(xué)教案等比數(shù)列篇十六

學(xué)習(xí)是一個(gè)潛移默化、厚積薄發(fā)的過程。編輯老師編輯了:數(shù)列,希望對您有所幫助!

1.使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng).

(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)唯一確定的.

(2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫出該數(shù)列的一個(gè)通項(xiàng)公式.

(3)已知一個(gè)數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項(xiàng).

2.通過對一列數(shù)的觀察、歸納,寫出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力.

3.通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣.

(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會(huì)數(shù)列知識(shí)在實(shí)際生活中的作用,可由實(shí)際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個(gè)數(shù)的.計(jì)算等.

(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.

(3)由數(shù)列的通項(xiàng)公式寫出數(shù)列的前幾項(xiàng)是簡單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫通項(xiàng)公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫通項(xiàng)公式提供幫助.

(4)由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動(dòng)等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等.如果學(xué)生一時(shí)不能寫出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系.

(5)對每個(gè)數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問題是重點(diǎn)問題,可先提出一個(gè)具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況.

(6)給出一些簡單數(shù)列的通項(xiàng)公式,可以求其最大項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運(yùn)用函數(shù)知識(shí)是可以解決的.

上述提供的:數(shù)列希望能夠符合大家的實(shí)際需要!

高一數(shù)學(xué)教案等比數(shù)列篇十七

使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會(huì)進(jìn)步的需要。具體目標(biāo)如下。

1.獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。

2.提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。

3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。

4.發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。

5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。 6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。

我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)(a版)》,它在堅(jiān)持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時(shí)代性,典型性和可接受性等到,具有如下特點(diǎn):

1.親和力:以生動(dòng)活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。

2.問題性:以恰時(shí)恰點(diǎn)的問題引導(dǎo)數(shù)學(xué)活動(dòng),培養(yǎng)問題意識(shí),孕育創(chuàng)新精神。

3.科學(xué)性與思想性:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。

4.時(shí)代性與應(yīng)用性:以具有時(shí)代性和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動(dòng),發(fā)展應(yīng)用意識(shí)。

1. 選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生看個(gè)究竟的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的。

2. 通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。

3. 在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。

兩個(gè)班一個(gè)普高一個(gè)職高,學(xué)習(xí)情況良好,但學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺性。班級(jí)存在的最大問題是計(jì)算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點(diǎn)在于培養(yǎng)學(xué)生的計(jì)算能力,同時(shí)要進(jìn)一步提高其思維能力。同時(shí),由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時(shí)適機(jī)補(bǔ)充一些內(nèi)容。因此時(shí)間上可能仍然吃緊。同時(shí),其底子薄弱,因此在教學(xué)時(shí)只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實(shí)一個(gè)知識(shí)點(diǎn),掌握一個(gè)知識(shí)點(diǎn)。

1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。

2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識(shí);注意從已有的`知識(shí)出發(fā),啟發(fā)學(xué)生思考。

3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。

4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。

5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。

6、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。

俗話說的好,好的教學(xué)計(jì)劃是教學(xué)成功的一半,作為一名優(yōu)異的教師,做好一定的教學(xué)計(jì)劃很有必要。

總結(jié):制定教學(xué)計(jì)劃的主要目的是為了全面了解學(xué)生的數(shù)學(xué)學(xué)習(xí)歷程,激勵(lì)學(xué)生的學(xué)習(xí)和改進(jìn)教師的教學(xué)。希望上面的,能受到大家的歡迎!

高一數(shù)學(xué)教案等比數(shù)列篇十八

(5)樹立映射觀點(diǎn),正確理解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù)。

初中學(xué)過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù)。引導(dǎo)學(xué)生把這個(gè)定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義。根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號(hào)。最后主要是借助有向線段進(jìn)一步認(rèn)識(shí)三角函數(shù)。講解例題,總結(jié)方法,鞏固練習(xí)。

任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點(diǎn)。過去習(xí)慣于用角的終邊上點(diǎn)的坐標(biāo)的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認(rèn)知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對準(zhǔn)確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對應(yīng)關(guān)系有沖突,而且“比值”需要通過運(yùn)算才能得到,這與函數(shù)值是一個(gè)確定的實(shí)數(shù)也有不同,這些都會(huì)影響學(xué)生對三角函數(shù)概念的理解。

本節(jié)利用單位圓上點(diǎn)的坐標(biāo)定義任意角的正弦函數(shù)、余弦函數(shù)。這個(gè)定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對應(yīng)關(guān)系,也表明了這兩個(gè)函數(shù)之間的關(guān)系。

教學(xué)重難點(diǎn)。

重點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號(hào));終邊相同的角的同一三角函數(shù)值相等(公式一).

難點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號(hào));三角函數(shù)線的正確理解。

【本文地址:http://www.mlvmservice.com/zuowen/17021945.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔