直線的位置關系教案(模板19篇)

格式:DOC 上傳日期:2023-11-30 08:47:10
直線的位置關系教案(模板19篇)
時間:2023-11-30 08:47:10     小編:翰墨

教案的編寫應該根據(jù)不同學段和學科的特點來進行調(diào)整,以滿足學生的學習需求。編寫教案時,可以借鑒一些優(yōu)秀的教學案例,提高教學效果。以下是小編為大家整理的幾份優(yōu)秀教案范文,供大家參考。這些教案涵蓋了不同年級、不同學科的教學內(nèi)容,希望能給大家提供一些啟示和借鑒?,F(xiàn)在讓我們一起來看看吧,相信這些教案范文能夠為我們的教學活動提供一些建設性的幫助。%20教案是教師根據(jù)教學大綱和教學目標,制定的一種組織和安排教學活動的文件,它可以幫助教師合理地安排教學內(nèi)容和教學步驟,提高課堂教學效果。教案是教師的思考結果,也是教學過程中的指導和依據(jù)。我想我們需要編寫一份教案了吧。那么我們該如何撰寫一份高質(zhì)量的教案呢?教案的編寫需要考慮教學目標的明確、教學內(nèi)容的合理性、教學方法的選擇以及教學評價的有效性等方面的要求。教案的編寫還需要注意語言簡練、層次清晰,以及具備可操作性和可評價性。只有編寫好一份合理、科學的教案,才能有效地指導教學活動。以下是小編為大家整理的幾份優(yōu)秀教案范文,供大家參考。這些教案涵蓋了不同年級、不同學科的教學內(nèi)容,希望能給大家提供一些啟示和借鑒。現(xiàn)在讓我們一起來看看吧,相信這些教案范文能夠為我們的教學活動提供一些建設性的幫助。

直線的位置關系教案篇一

“思之不慎,行而失當”,“學然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自強也。”反思意識人類早就有之。作為教師,在教學中也應適時反思教學過程的得與失。

開課時,借助微機展示“圓圓的落日慢慢從海平面升起”的動畫,從而展現(xiàn)直線與圓的位置關系。由此引入課題——直線與圓的位置關系,學生比較感興趣,充分感受生活中的數(shù)學知識,體驗數(shù)學來源于生活。然后提出問題,引導學生大膽猜想,思考,發(fā)現(xiàn)三種位置關系,激發(fā)學生學習興趣,營造探索問題的氛圍。同時讓學生從生活中“找”數(shù)學,“想”數(shù)學,體會到數(shù)學知識無處不在,應用數(shù)學無處不有。這也符合“數(shù)學教學應從生活經(jīng)驗出發(fā)”的新課程標準要求。

在探索直線和圓位置關系所對應的數(shù)量關系時,我先引導學生回顧點和圓的位置關系所對應的數(shù)量關系,啟發(fā)學生用類比的方法來研究直線與圓的位置關系,在研究過程中,采用小組討論的方法,給予學生足夠的探索、交流的時間,培養(yǎng)學生互助、協(xié)作的精神,讓學生在相互討論中,集思廣益,形成思維互補,從而使概念更清楚,結論更準確。最后由學生小結這一知識點,我板書在黑板上,培養(yǎng)學生用數(shù)學語言歸納問題的能力,同時感受收獲知識的快樂。

在新知教授完畢,知識升華這塊,我安排了一道實際問題,一輛火車的噪首會不會影向處在與鐵路相交的另一條公路旁的學校?如果會影響,影響的時間有多長?新課標下的數(shù)學強調(diào)人人學有價值的數(shù)學,人人學有用的數(shù)學,由于此題要學生回到生活中去運用數(shù)學知識解決生活中遇到的問題,學生的積極性高漲,都急著討論解決方案,使乏味的數(shù)學學習變得有滋有味,使學生體會到學數(shù)學的重要性,體驗“生活中處處用數(shù)學”。

一堂課教學下來,也發(fā)現(xiàn)有諸多不妥之處,讓我認識到自己需要繼續(xù)努力。歸納主要有以下三點:。

1、教師在課堂應當以引導者的身份出現(xiàn),把課堂和講臺讓位于學生,讓“教師的教”真正服務于“學生的學”,而我在這一節(jié)課中因為一方面擔心學生在自主研究知識的形成時會浪費時間,另一方面擔心會產(chǎn)生意想不到的或者課前備課時沒有考慮到的回答,總是把自己的思想強加給學生,比如學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。學生只是被動的接受,這樣就會對概念的理解不是很深刻。這里可以改為讓學生自己下定義,教師適當放手,以師生共同討論的形式給學生以思維想象的空間,充分調(diào)動學生的積極性,使學生實現(xiàn)自主探究。

2、有些課堂提問欠合理化、科學化,提問隨意性大,缺乏針對性和啟發(fā)性,導致課堂教學引導不力,問題缺乏精心安排這就使得課堂存在著不少“徒勞的提問”。讓課堂時間分配的不太合理。今后應該把一些提問設計再提煉,能達到精而準。

3、在處理課后練習時,做的不夠細致,這一環(huán)節(jié)是對前面探究新知識是否掌握的一個小測試,重在幫助學生掌握方法,而我在講解練習時,只展示了解題思路,并沒有及時進行方法上的總結,致使部分學生在解決實際問題時思路不明確。這里教師要根據(jù)情況,簡要歸納、概括應掌握的方法,使學生能夠舉一反三,鞏固和擴大知識,吸收、內(nèi)化知識,充分體現(xiàn)”授人以魚不如授人以漁"。

總之,這是我對自己本節(jié)課的一些教學反思,或者說是對新課程理念的淺薄認識。

直線的位置關系教案篇二

教學目標:

1.使學生理解直線和圓的相交、相切、相離的概念。

2.掌握直線與圓的位置關系的性質(zhì)與判定并能夠靈活運用來解決實際問題。

3.培養(yǎng)學生把實際問題轉(zhuǎn)化為數(shù)學問題的能力及分類和化歸的能力。

重點難點:

2.難點:運用直線與圓的位置關系的性質(zhì)及判定解決相關的問題。

教學過程:

一.復習引入。

(目的:讓學生將點和圓的位置關系與直線和圓的位置關系進行類比,以便更好的掌握直線和圓的位置關系)。

二.定義、性質(zhì)和判定。

1.結合關于日出的三幅圖形,通過學生討論,給出直線與圓的三種位置關系的定義。

(1)線和圓有兩個公共點時,叫做直線和圓相交。這時直線叫做圓的割線。

(2)直線和圓有唯一的公點時,叫做直線和圓相切。這時直線叫做圓的切線。唯一的公共點叫做切點。

(3)直線和圓沒有公共點時,叫做直線和圓相離。

直線的位置關系教案篇三

新課程指出:學生是學習的主體,是發(fā)展的主體。在課堂教學中,教師要將課堂的主動權讓給學生,作為教師應以“探究過程,探究方法,探究結果,運用結果”為主線安排教學進程,應高度重視學生的主動參與、親自研究、動手操作,讓學生從中去體驗學習知識的過程,引導學生在發(fā)現(xiàn)問題、分析問題、解決問題的同時,培養(yǎng)學生的自主學習能力和創(chuàng)新意識。

在《直線和圓的位置關系》這節(jié)課中,我首先由生活中的情景——日落引入,讓學生發(fā)現(xiàn)地平線和太陽位置關系的變化,從而引出課題:直線和圓的位置關系。然后由學生平移直尺,自主探索發(fā)現(xiàn)直線和圓的三種位置關系,給出定義,聯(lián)系實際,由學生發(fā)現(xiàn)日常生活中存在的直線和圓相交、相切、相離的現(xiàn)象,緊接著引導學生探索三種位置關系下圓心到直線的距離與圓半徑的大小關系,由“做一做”進行應用,最后去解決實際問題。

1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學生比較感興趣,充分感受生活中反映直線與圓位置關系的現(xiàn)象,體驗到數(shù)學來源于實踐。對生活中的數(shù)學問題發(fā)生好奇,這是學生最容易接受的學習數(shù)學的好方法。新課標下的數(shù)學教學的基本特點之一就是密切關注數(shù)學與現(xiàn)實生活的聯(lián)系,從生活中“找”數(shù)學,“想”數(shù)學,讓學生真正感受到生活之中處處有數(shù)學。

2.在探索直線和圓位置關系所對應的數(shù)量關系時,我先引導學生回顧點和圓的位置關系所對應的數(shù)量關系,啟發(fā)學生運用類比的思想來思考問題,解決問題,學生很輕松的就能夠得出結論,從而突破本節(jié)課的難點,使學生充分理解位置關系與數(shù)量關系的相互轉(zhuǎn)化,這種等價關系是研究切線的理論基礎,從而為下節(jié)課探索切線的性質(zhì)打好基礎。

3.新課標下的數(shù)學強調(diào)人人學有價值的數(shù)學,人人學有用的數(shù)學,為此,在做一做之后我安排了一道實際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學生解決實際問題的能力。由于此題要學生回到生活中去運用數(shù)學,學生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學學習變得有滋有味,使學生體會到學數(shù)學的重要性,體驗“生活中處處用數(shù)學”。

1.學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。學生被動的接受,對概念的理解不是很深刻,可以改為讓學生下定義,師生共同討論的形式給學生以思維想象的空間,充分調(diào)動學生的積極性,使學生實現(xiàn)自主探究。

2.雖然我在設計本節(jié)課時是體現(xiàn)讓學生自主操作探究的原則,但在讓學生探索直線和圓三種位置關系所對應的數(shù)量關系時,沒有給予學生足夠的探索、交流的時間,限制了學生的思維。此處應充分發(fā)揮小組的特點,讓學生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結論更準確。

3.對“做一做”的處理不夠,這一環(huán)節(jié)是對探究的成績與效果的探索與檢驗,重在幫助學生掌握方法,我在講解“做一做”時,沒有充分展示解題思路,沒有及時進行方法上的總結,致使部分學生在解決實際問題時思路不明確。教師要根據(jù)情況,簡要歸納、概括應掌握的方法,使學生能夠舉一反三,鞏固和擴大知識,吸收、內(nèi)化知識。

總之,新課程的課堂教學要讓學生作為課堂教學的主體參與到課堂教學過程中來,充分展現(xiàn)自己的個性,施展自己的才華,使學生在參與和體驗的過程中真正成為學習的主人,養(yǎng)成勇于探索、敢于實踐的個性品質(zhì)。與此同時,教師還要為學生的學習創(chuàng)造探究的環(huán)境,營造探究的氛圍,促進探究的`開展,把握探究的深度,評價探究的效果。

直線的位置關系教案篇四

20xx.11.17早上第二節(jié)授課班級:初三、1班授課教師:

過程與方法目標:

2.通過例題教學,培養(yǎng)學生靈活運用知識的解決能力。

情感與態(tài)度目標:讓學生從運動的觀點來觀察直線和圓相交、相切、相離的關系、關注知識的生成,發(fā)展與變化的過程,主動探索,勇于發(fā)現(xiàn)。從而領悟世界上的一切物體都是運動變化著的,并且在一定的條件下可以轉(zhuǎn)化的辯證唯物主義觀點。

利用多媒體放映落日的動畫,初中數(shù)學教案《數(shù)學教案-直線和圓的位置關系(公開課)》。引導學生從公共點個數(shù)和圓心到直線的.距離兩方面體會直線和圓的不同位置關系。

學生看投影并思考問題。

調(diào)動學生積極主動參與數(shù)學活動中.。

探究新知。

1、通過觀察直線和圓的公共點個數(shù)得出直線和圓相離、相交、相切的定義。

布置作業(yè)。

1、課本第101頁7.3a組第2、3題。

2、課余時間,留心觀察周圍事物,找出直線和圓相交,相切,相離的實例,說給大家聽。

直線的位置關系教案篇五

教學目標:

1)知識目標:

a、知道直線和圓相交、相切、相離的定義。

b、根據(jù)定義來判斷直線和圓的位置關系,會根據(jù)直線和圓相切的定義畫出已知圓的切線。

c、根據(jù)圓心到直線的距離與圓的半徑之間的數(shù)量關系揭示直線和圓的位置。

2)能力目標:

讓學生通過觀察、看圖、填表、分析、對比,能找出圓心到直線的距離和圓的半徑之間的數(shù)量關系,揭示直線和圓的關系。此外,通過直線與圓的相對運動,培養(yǎng)學生運動變化的辨證唯物主義觀點,通過對研究過程的反思,進一步強化對分類和歸納的思想的認識。

直線的位置關系教案篇六

生:相交;平行;重合.

師:上節(jié)課我們研究了兩條直線的平行與相交的一種特殊情形——垂直,這節(jié)課我們繼續(xù)研究兩條直線相交的有關問題——夾角.

(教師點課題,板書)。

師:同學們對這節(jié)課的內(nèi)容已經(jīng)進行了自學,在學習過程中可能遇到一些疑難問題,在這里我和同學們愿意為你答疑解惑,同時,你所提出的問題也一定會帶給我們啟迪和思考.請同學們舉手示意.

學生a:老師,我不會求兩條直角的夾角.

師:請不要著急,通過這節(jié)課的學習、研究你一定能學會的.

學生c:通過直角三角形解決.老師,您在黑板上幫我畫個圖形.

(這時教師在黑板上畫圖配合學生c的講解)。

直線的位置關系教案篇七

本節(jié)課,我先讓學生在課前自行完成教學案中“課前預習與導學”這一部分,情況良好。上課后先信息反饋進行評講,然后引導學生回憶了點與圓的位置關系及如何用數(shù)量關系來判斷點與圓的位置關系。接著以《海上日出》圖創(chuàng)設情景,從而引出課題:直線和圓的位置關系。然后由學生平移直尺,自主探索發(fā)現(xiàn)直線和圓的三種位置關系,給出定義,聯(lián)系實際,由學生發(fā)現(xiàn)日常生活中存在的直線和圓相交、相切、相離的現(xiàn)象,緊接著引導學生探索三種位置關系下圓心到直線的距離與圓半徑的大小關系,由小“練習”進行應用,最后通過“例題”“課堂檢測”去解決實際問題。通過本節(jié)課的教學,我認為成功之處有以下幾點:

1、在探索直線和圓位置關系所對應的數(shù)量關系時,我先引導學生回顧點和圓的位置關系所對應的數(shù)量關系,啟發(fā)學生運用類比的思想來思考問題,解決問題,學生很輕松的就能夠得出結論,從而突破本節(jié)課的難點,使學生充分理解位置關系與數(shù)量關系的相互轉(zhuǎn)化,這種等價關系是研究切線的理論基礎,從而為下節(jié)課探索切線的性質(zhì)打好基礎。

2、新課標下的數(shù)學強調(diào)人人學有價值的數(shù)學,人人學有用的數(shù)學,為此,在小練習之后我及時地進行總結歸納方法,讓學生在以后解決實際問題過程中能一下子找到切入點,培養(yǎng)學生解決實際問題的能力。

同時,我也感覺到本節(jié)課的教學有不妥之處,主要有以下三點:

1、學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。講得過多,學生被動的接受,思考得不夠,對概念的理解不是很深刻??梢愿臑樽寣W生類比點與圓的位置關系下定義,師生共同討論的形式給學生以思維想象的空間,充分調(diào)動學生的積極性,使學生實現(xiàn)自主探究。

2、對于我們學生的情況,初三的教學始終沒有擺脫灌輸式教學,盡管課上也讓學生自主操作、思考,但老師講的太多,沒有給予學生足夠的探索、交流的時間,勢必會影響到部分學生的思維,限制了學生的發(fā)展。所以,我們也要學會該“放手時就放手”,大膽地讓學生去思考,也許會有意外的收獲。

3、對教材的把握,對學生的實情,在備課時都要考慮。在選題時不僅要照顧到基礎薄弱的同學,也要照顧到基礎好些的同學,適時選做。對于有些題可以適當?shù)剡M行變式訓練,拓展靈活運用,活躍學生的思維。

總之,在今后的數(shù)學教學中還有很多需要我學習和掌握的東西,希望能和學生們一起共同進步,真正成為一名合格的數(shù)學教師。

直線的位置關系教案篇八

1、圓的定義:

到定點的距離等于定長的點的集合。

在圓內(nèi)、在圓上、在圓外(由點和圓心的距離與圓的半徑大小來確定)。

3、弦、直徑、孤、弓形、半圓、同心圓、等圓、等孤等概念。

等弧一定要強調(diào)要在同圓或等圓中;半圓不包括直徑。

4、過三點的圓(三角形的外心)。

經(jīng)過三角形三個頂點的圓叫三角形外接圓;外接圓的圓心叫三角形的外心;三角形的外心是三條邊中垂線的交點,到三個頂點距離相等;直角三角形外心在斜邊上、銳角三角心外心在三角形內(nèi)、鈍角三角形外心在三角形外。

5、垂徑定理及其推論:

定理及推論1:直線過圓心、垂直弦、平分弦、平分弦所對的優(yōu)弧、平分弦所對的劣弧這五要素中用其中兩個要素做條件就能推導出其它三個要素都成立。若用過圓心、平分弦做條件時要強調(diào)被平分的弦不是直徑。

推論2:平行弦所夾的弧相等。

6、圓心角、弦、弦心距、弧的關系:

圓心角、弧、弦、弦心距之間的相等關系必須要在同圓或等圓中才能成立;

弧的度數(shù)就等于它所對圓心角的度數(shù)。

7、圓周角定理及推論:

圓周角的定義:頂點在圓上,角的兩邊都與圓相交。

圓周角的定理:圓周角等于同弧所對圓心角的一半。

推論1、在同圓或等圓中,同弧或等弧所對的圓周角相等,圓周角相等,它所對的弧也相等。

推論2:直徑和半圓所對的'圓周角等于90度,90度的圓周角所對的弦是直徑,所對的弧是半圓。

推論3、三角形一邊的中線等于這一邊的一半時,這個三角形是直角三角形。

8、圓內(nèi)接四邊形:

定義:四個頂點都在圓上的四邊形。

定理:圓內(nèi)接四邊形對角互補。

推論:圓內(nèi)接四邊形的外角等于它的內(nèi)對角。

相交、相切、相離(由公共點個數(shù)或圓心到直線距離和圓的半徑大小來確定)。

10、切線的判定和性質(zhì):

定義:與圓只有一個公共點的直線。

判定定理:經(jīng)過半徑的外端且垂直于半徑的直線是圓的切線。

性質(zhì)定理:經(jīng)過切點的半徑必垂直于切線。

推論1:經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心。

推論2:經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點。

11、三角形內(nèi)切圓:

定義:與三角形三邊都相切的圓叫三角形內(nèi)切圓、內(nèi)切圓的圓心叫三角形內(nèi)心。內(nèi)心是三角形三條角平分線的交點,到三角形三邊距離相等。

12、切線長定理:

定理:圓外一點到圓的兩條切線的長相等,這個點與圓心的連線要平分兩條切線的夾角。

(圓內(nèi)切四邊形對邊相加相等)。

13、弦切角:

定義:一條邊是圓的切線,頂點是切點,另一條邊與圓相交的角;

定理:弦切角等于它所夾弧對的圓周角。

推論:兩個弦切角所夾的弧相等,這兩個弦切角相等。

14、和圓有關的比例線段:

相交弦定理及推論、切割線定理及推論。

直線的位置關系教案篇九

教學要求:能夠從日常生活實例中抽象出數(shù)學中所說的平面理解平面的無限延展性;正確地用圖形和符號表示點、直線、平面以及它們之間的關系;初步掌握文字語言、圖形語言與符號語言三種語言之間的`轉(zhuǎn)化;理解可以作為推理依據(jù)的三條公理.

教學重點:理解三條公理,能用三種語言分別表示.

教學難點:理解三條公理。

教學重點:掌握平行公理與等角定理.

教學難點:理解異面直線的定義與所成角。

教學要求:了解直線與平面的三種位置關系,理解直線在平面外的概念,了解平面與平面的兩種位置關系.

教學重點:掌握線面、面面位置關系的圖形語言與符號語言.

教學難點:理解各種位置關系的概念.

直線的位置關系教案篇十

"思之不慎,行而失當”,“學然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自強也。”反思意識人類早就有之。作為教師,在教學中也應適時反思教學過程的得與失。

在《直線和圓的位置關系》一課教學后,感受頗多,現(xiàn)分享如下:

開課時,借助微機展示“圓圓的落日慢慢從海平面升起”的動畫,從而展現(xiàn)直線與圓的位置關系。由此引入課題——直線與圓的位置關系,學生比較感興趣,充分感受生活中的數(shù)學知識,體驗數(shù)學來源于生活。然后提出問題,引導學生大膽猜想,思考,發(fā)現(xiàn)三種位置關系,激發(fā)學生學習興趣,營造探索問題的氛圍。同時讓學生從生活中“找”數(shù)學,“想”數(shù)學,體會到數(shù)學知識無處不在,應用數(shù)學無處不有。這也符合“數(shù)學教學應從生活經(jīng)驗出發(fā)”的新課程標準要求。

在探索直線和圓位置關系所對應的數(shù)量關系時,我先引導學生回顧點和圓的位置關系所對應的數(shù)量關系,啟發(fā)學生用類比的方法來研究直線與圓的位置關系,在研究過程中,采用小組討論的方法,給予學生足夠的探索、交流的時間,培養(yǎng)學生互助、協(xié)作的精神,讓學生在相互討論中,集思廣益,形成思維互補,從而使概念更清楚,結論更準確。 最后由學生小結這一知識點,我板書在黑板上,培養(yǎng)學生用數(shù)學語言歸納問題的能力,同時感受收獲知識的快樂。

在新知教授完畢,知識升華這塊,我安排了一道實際問題,一輛火車的噪首會不會影向處在與鐵路相交的另一條公路旁的學校?如果會影響,影響的時間有多長?新課標下的數(shù)學強調(diào)人人學有價值的數(shù)學,人人學有用的數(shù)學,由于此題要學生回到生活中去運用數(shù)學知識解決生活中遇到的問題,學生的積極性高漲,都急著討論解決方案,使乏味的數(shù)學學習變得有滋有味,使學生體會到學數(shù)學的重要性,體驗“生活中處處用數(shù)學”。

一堂課教學下來,也發(fā)現(xiàn)有諸多不妥之處,讓我認識到自己需要繼續(xù)努力。歸納主要有以下三點:

1、教師在課堂應當以引導者的身份出現(xiàn),把課堂和講臺讓位于學生,讓“教師的教”真正服務于“學生的學”,而我在這一節(jié)課中因為一方面擔心學生在自主研究知識的形成時會浪費時間,另一方面擔心會產(chǎn)生意想不到的或者課前備課時沒有考慮到的回答,總是把自己的思想強加給學生,比如學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。學生只是被動的接受,這樣就會對概念的理解不是很深刻。這里可以改為讓學生自己下定義,教師適當放手,以師生共同討論的形式給學生以思維想象的空間,充分調(diào)動學生的積極性,使學生實現(xiàn)自主探究。

2、有些課堂提問欠合理化、科學化,提問隨意性大,缺乏針對性和啟發(fā)性,導致課堂教學引導不力,問題缺乏精心安排這就使得課堂存在著不少“徒勞的提問”。讓課堂時間分配的不太合理。今后應該把一些提問設計再提煉,能達到精而準。

3、在處理課后練習時,做的不夠細致,這一環(huán)節(jié)是對前面探究新知識是否掌握的一個小測試,重在幫助學生掌握方法,而我在講解練習時,只展示了解題思路,并沒有及時進行方法上的總結,致使部分學生在解決實際問題時思路不明確。這里教師要根據(jù)情況,簡要歸納、概括應掌握的方法,使學生能夠舉一反三,鞏固和擴大知識,吸收、內(nèi)化知識,充分體現(xiàn)"授人以魚不如授人以漁"。

總之,這是我對自己本節(jié)課的一些教學反思,或者說是對新課程理念的淺薄認識。

直線的位置關系教案篇十一

5、過程與方法。

理解直線和圓的三種位置關系,感受直線和圓的位置與它們的方程所組成的二元二次方程組的解的對應關系;體驗通過比較圓心到直線的距離和半徑之間的大小及通過方程組的解的個數(shù)判斷直線與圓的位置關系,能用直線和圓的方程解決一些條件下圓的切線問題;領會數(shù)形結合的數(shù)學思想方法,提高發(fā)現(xiàn)問題、分析問題、解決問題的能力。

6、情感態(tài)度與價值觀。

通過對本節(jié)課知識的探究活動,加深學生對解析法解決幾何問題的認識,從而領悟其中所蘊涵的數(shù)學思想,體驗探索中成功的喜悅,激發(fā)學習熱情,養(yǎng)成良好的學習習慣和品質(zhì)。

教法學法為了實現(xiàn)上述教學目標,本節(jié)課采取以下教學方法:

(1)恰當?shù)睦枚嗝襟w課件,通過學生熟悉的實際生活問題引入課題,拉近數(shù)學與現(xiàn)實的距離,激發(fā)學生的問題意識和求知欲,調(diào)動學生主體參與的積極性。

(2)采用“啟發(fā)式”問題教學法,用環(huán)環(huán)相扣的問題將探究活動層層深入,站在學生思維的最近發(fā)展區(qū)上啟發(fā)誘導。

(3)在整個數(shù)學教學過程中,既要體現(xiàn)學生的主體地位,更要強調(diào)教師的主導地位,在科學講授的同時教會學生清晰的思維和嚴謹?shù)耐评怼?/p>

在學法上注重以下幾點:

(2)在用代數(shù)法解決直線與圓的位置關系時,要能夠明確運算方向,把握關鍵步驟,正確的處理較為復雜數(shù)據(jù)。

課堂結構設計:

整個教學過程是四步組成,自主學習,合作探究,老師輔導、課堂展示。共分為八個環(huán)節(jié),復習、獨立訓練、相互探討、老師參與、形成結論、課堂展示、評價(互評師評)、反思。

教學過程設計:

通過問題情境,激發(fā)學生的學習興趣,使學生找到要學的與以學知識之間的聯(lián)系;問題串的設置可讓學生主動參與到學習中來;在判斷方法的形成與應用的探究中,師生的相互溝通調(diào)動學生的積極性,培養(yǎng)團隊精神;知識的生成和問題的解決,培養(yǎng)學生獨立思考的能力,激發(fā)學生的創(chuàng)新思維;通過練習檢測學生對知識的掌握情況;根據(jù)學生在課堂小結中的表現(xiàn)和課后作業(yè)情況,查缺補漏,以便調(diào)控教學。

回顧反思,拓展延伸:

直線的位置關系教案篇十二

“思之不慎,行而失當”,“學然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自強也?!狈此家庾R人類早就有之。作為教師,在教學中也應適時反思教學過程的得與失。

開課時,借助微機展示“圓圓的落日慢慢從海平面升起”的動畫,從而展現(xiàn)直線與圓的位置關系。由此引入課題——直線與圓的位置關系,學生比較感興趣,充分感受生活中的數(shù)學知識,體驗數(shù)學來源于生活。然后提出問題,引導學生大膽猜想,思考,發(fā)現(xiàn)三種位置關系,激發(fā)學生學習興趣,營造探索問題的氛圍。同時讓學生從生活中“找”數(shù)學,“想”數(shù)學,體會到數(shù)學知識無處不在,應用數(shù)學無處不有。這也符合“數(shù)學教學應從生活經(jīng)驗出發(fā)”的新課程標準要求。

在探索直線和圓位置關系所對應的數(shù)量關系時,我先引導學生回顧點和圓的位置關系所對應的數(shù)量關系,啟發(fā)學生用類比的方法來研究直線與圓的位置關系,在研究過程中,采用小組討論的方法,給予學生足夠的探索、交流的時間,培養(yǎng)學生互助、協(xié)作的精神,讓學生在相互討論中,集思廣益,形成思維互補,從而使概念更清楚,結論更準確。最后由學生小結這一知識點,我板書在黑板上,培養(yǎng)學生用數(shù)學語言歸納問題的能力,同時感受收獲知識的快樂。

在新知教授完畢,知識升華這塊,我安排了一道實際問題,一輛火車的噪首會不會影向處在與鐵路相交的另一條公路旁的學校?如果會影響,影響的時間有多長?新課標下的數(shù)學強調(diào)人人學有價值的數(shù)學,人人學有用的數(shù)學,由于此題要學生回到生活中去運用數(shù)學知識解決生活中遇到的問題,學生的積極性高漲,都急著討論解決方案,使乏味的數(shù)學學習變得有滋有味,使學生體會到學數(shù)學的重要性,體驗“生活中處處用數(shù)學”。

一堂課教學下來,也發(fā)現(xiàn)有諸多不妥之處,讓我認識到自己需要繼續(xù)努力。歸納主要有以下三點:。

1、教師在課堂應當以引導者的身份出現(xiàn),把課堂和講臺讓位于學生,讓“教師的教”真正服務于“學生的學”,而我在這一節(jié)課中因為一方面擔心學生在自主研究知識的形成時會浪費時間,另一方面擔心會產(chǎn)生意想不到的或者課前備課時沒有考慮到的回答,總是把自己的思想強加給學生,比如學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。學生只是被動的接受,這樣就會對概念的理解不是很深刻。這里可以改為讓學生自己下定義,教師適當放手,以師生共同討論的形式給學生以思維想象的空間,充分調(diào)動學生的積極性,使學生實現(xiàn)自主探究。

2、有些課堂提問欠合理化、科學化,提問隨意性大,缺乏針對性和啟發(fā)性,導致課堂教學引導不力,問題缺乏精心安排這就使得課堂存在著不少“徒勞的提問”。讓課堂時間分配的不太合理。今后應該把一些提問設計再提煉,能達到精而準。

3、在處理課后練習時,做的不夠細致,這一環(huán)節(jié)是對前面探究新知識是否掌握的一個小測試,重在幫助學生掌握方法,而我在講解練習時,只展示了解題思路,并沒有及時進行方法上的總結,致使部分學生在解決實際問題時思路不明確。這里教師要根據(jù)情況,簡要歸納、概括應掌握的方法,使學生能夠舉一反三,鞏固和擴大知識,吸收、內(nèi)化知識,充分體現(xiàn)”授人以魚不如授人以漁"。

總之,這是我對自己本節(jié)課的一些教學反思,或者說是對新課程理念的淺薄認識。

將本文的word文檔下載到電腦,方便收藏和打印。

直線的位置關系教案篇十三

一、課程目標分析:

《普通高中數(shù)學課程標準》指出:在平面解析幾何初步的教學中,教師應幫助學生經(jīng)歷如下過程:首先將幾何問題代數(shù)化,用代數(shù)的語言描述幾何要素及其關系,進而將幾何問題轉(zhuǎn)化為代數(shù)問題;處理代數(shù)問題;分析代數(shù)結果的幾何含義,最終解決幾何問題。這種思想應貫穿平面解析幾何教學的始終,幫助學生不斷地體會“數(shù)形結合”的思想方法。

二、教材分析:

1、教材的地位和作用:

《直線與圓的位置關系》這一節(jié)內(nèi)容出現(xiàn)在必修2的第二章《平面解析幾何初步》的第二節(jié)《圓與圓的方程》的第三小節(jié)的位置。就整套教材而言,《平面解析幾何初步》一章的教學主要是讓學生體會到用代數(shù)方法處理幾何問題的思想,為選修教材中的《圓錐曲線與方程》一章打好基礎。它是前兩節(jié)《直線與直線方程》和《圓與圓的方程》的綜合應用,也為后一小節(jié)《圓與圓的位置關系》提供研究方法的一個重要示例,是整個《平面解析幾何初步》章節(jié)的重要內(nèi)容,起著貫穿始終、應用反饋的重要作用,而且是貫徹“用代數(shù)方法處理幾何問題”思想和“數(shù)形結合”方法的重要的反映內(nèi)容和工具。在本章中的作用非常重要。

2、教材重點、難點。

直線的位置關系教案篇十四

這節(jié)課是義務教育課程標準實驗教科書九年級上冊第二十四章第2節(jié)第2課時的內(nèi)容。本人在教學過程中緊緊圍繞新課程理念展開教學,主要從以下幾方面介紹閃光點:

一、創(chuàng)設情境。

1、組織學生發(fā)現(xiàn),尋找,搜集和利用學習資源。

現(xiàn)代課程觀認為課程是由教師、教材、學生和環(huán)境四要素構成的,教師和學生是課程的開發(fā)者和創(chuàng)造者。組織學生發(fā)現(xiàn),尋找,搜集和利用學習資源是教師的一項重要職責。因此,在教學中,本人把日出這一自然現(xiàn)象作為課程資源引入數(shù)學教學,學生通過回想日出的景象畫出圖畫:一幅是美術圖畫;一幅是一條直線和一個圓。在學生都欣賞藝術圖畫的美時,教師引導學生欣賞一條直線和一個圓的數(shù)學美和它的價值,它的價值在于抽象和簡化,便與研究它的性質(zhì)。讓學生們看見了自然現(xiàn)象中的數(shù)學價值,同時也反應了自然現(xiàn)象和數(shù)學之間的聯(lián)系。然后,我引導學生把變化著的自然現(xiàn)象再抽象成數(shù)學問題,引出直線和圓的相交、相切、相離三種關系。

2、創(chuàng)設豐富的教學情境,激發(fā)學生的學習動機,培養(yǎng)學習興趣,充分調(diào)動學生的學習積極性。本人在教學第一環(huán)節(jié)用現(xiàn)實生活中日出這一景觀,讓學生享受美的情境中,在充分的想象中,從生活中抽象出數(shù)學模型,因此讓學生畫出兩種不同的日出圖畫,美術的圖畫讓學生看見了生活中的美。但在教學中本人著重引導學生欣賞另一種圖畫是抽象的數(shù)學美,在欣賞美的同時,體會生活中的數(shù)學,從而激發(fā)學生的求知欲。

3、給學生提供合作交流的空間和時間。首先給學生的自主學習提供時間,讓學生自己畫出日出情景,接著合作交流兩種日出的圖畫,這樣為學生創(chuàng)設合作交流的空間。

4、組織學生營造教室中的積極的心理氛圍。本人在教學中注重這一方面的滲透。教學第一環(huán)節(jié)中,學生畫出兩種不同的畫面后,及時反饋,給予表揚和鼓勵。尤其是教學過程中,我班田文潔同學由于偏科、數(shù)學底子薄弱,我發(fā)現(xiàn)她在畫圖中碰到老師的目光馬上避開,老師意識到她畫圖中可能有問題,我便走到她面前,與她交流,啟發(fā)她如何著手,并且誘導她從數(shù)學角度思考又該怎樣畫,這就給了她知識上的啟發(fā)和心理上的支持。還有看見胡海林沒有動筆和本,便走過去摸摸他的頭,并用溫和的目光問:“沒有思路嗎?”我啟發(fā)引導后,讓他和同桌交流,讓同桌再幫助他。這樣體現(xiàn)了對學生的信任、關心和理解。學生在老師的關愛下,學生的幫助下、受到激勵和鼓勵,激發(fā)了學習的興趣,從而用自己的愛心與學生一起營造了一個平等,尊重、信任、理解和寬容的教學氛圍。這正是新課程理念所倡導的。

二、新課講解(探究新知)。

這一部分的教學中主要滲透以下幾個基本理念:

1、讓課堂教學充滿創(chuàng)新活力。

(1)合作學習有利于培養(yǎng)學生的創(chuàng)新精神與創(chuàng)新能力。講述直線和圓相交、相切、相離的概念時,通過師生合作交流得出兩種方法,即交點的個數(shù)及點到直線的距離d與半徑r之間的關系,在合作交流中學生加深了對知識的理解和掌握、同時也有利于創(chuàng)新精神和創(chuàng)新能力的培養(yǎng)。

(2)探究過程是培養(yǎng)創(chuàng)新精神和創(chuàng)新能力的重要途徑。例:在講概念時,提出這一個問題:“通過回憶剛才畫出日出的圖畫,同學們發(fā)現(xiàn)直線與圓有三種位置,各自有什么特點?”這就為學生提供了探究的空間,學生很容易得出交點個數(shù),及時抓住探究過程中這一創(chuàng)新的“火花”,給予欣賞和激勵,從而掌握基礎知識和基本技能。

2、教學活動中尊重學生已有的知識和能力。

(1)尊重學生已有的知識和學生的經(jīng)驗。在講d與r的關系時,復習了上節(jié)所學點和圓的位置關系,這樣,學生學習新知識是在原有知識基礎上自我構建的過程,了解學生的知識基礎是老師備課的一項重要內(nèi)容。

(2)尊重學生獨特的感受和理解。由于學生間認知上、情感上的差異,這一部分教學很多學生對點到直線的距離即d與r關系很難表述,甚至想不到,所以曾多次激勵學生談獨特的見解。

(3)把新知識納入到原有認知結構中去。新知識是學生已獲得的知識,是學生自我建構后獲得的知識,新知識在獲得后,還有一個重要的任務就是把新知識以一定的方式組織起來,納到原有的認知結構中去,便于記憶和提取。這一環(huán)節(jié)充分體現(xiàn),即講完兩種方法后便出示表格進行歸納和總結,從而幫助學生不斷優(yōu)化認知結構。

3、提倡自主,合作,探究的學習方式。這一理念在這一環(huán)節(jié)的教學中又得到充分體現(xiàn)。采用獨立思考、分組討論,合作交流得出本節(jié)的重要內(nèi)容即本節(jié)的重點。

4、注重教師是學習活動的參與者。教師應引導學生在自主探索和合作交流中達到對新知識的理解。教學中我發(fā)現(xiàn)馮成同學的第二種方式是大部分學生沒有想到的,并且講述很好,過渡自然。因此異常興奮,我與同學們同時鼓掌,即達到高潮。充分體現(xiàn)了師生間共同分享感情和認識。

三、鞏固練習(深化練習)。

1、練習符合學生的認知規(guī)律,難易度適中。

2、練習量適中,題型多樣,有選擇題,填空題、解答題。

3、注重分層教學和能力培養(yǎng)、持續(xù)發(fā)展,設計了必做題,選做題。

四、課堂小結:

課堂小結是一個重要的環(huán)節(jié),本人給學生一定的思考和交流的空間,除了讓學生自己總結本節(jié)知識外,還用表格的形式又展現(xiàn)給大家,讓同學們再次回顧、反思、記憶。更重要的是讓學生總結本節(jié)的數(shù)學方法和數(shù)學思想,以及生活中處處充滿數(shù)學,數(shù)學為生活服務等理念。

不論從新課程理念,還是教學效果來看,這都是一節(jié)比較滿意的課。另外,教學過程凸現(xiàn)雙基,目標落實,教學結構完整有序,層層推進。教師對學生的尊重和愛護也都隨處體現(xiàn),教師對知識的精益求精,讓這一節(jié)課所有的知識點都清晰地呈現(xiàn)在學生面前,教師對學生間的相互評價,相互合作無疑又為學生間的友誼注入新的動力,作業(yè)設計分層教學,有必做題和選做題。

當然,這節(jié)課仍有需要改進的地方:

一、語言有待錘煉,在整節(jié)課中,老師的提問過于頻繁,其中不乏有很多較好的提問起到點拔、引導作用,但仍有一些問題不必要的,且提問時廢話較多。

二、時間分配的不太合理,練習時間稍有不足,因前面內(nèi)容即創(chuàng)設情境和探究新知識占用較多時間,所以后面的練習時間相對較短,對于分層教學處理練習就顯得倉促。

三、板書不夠規(guī)范,因本節(jié)書本沒有例題,所以應在黑板上板書作業(yè)格式,這樣在以后作業(yè)中有格式示范,書寫規(guī)范。

四、教學過程不太注重數(shù)學思想滲透,例:創(chuàng)設情境中畫圖,導出直線與圓的三種位置關系,要啟發(fā)誘導學生采用了什么數(shù)學思想。

針對以上問題,在以后的教學中,要加強語言錘煉,要注重分層教學,注重能力培養(yǎng),要注重數(shù)學思想和方法滲透。

總之,這是我對自己本節(jié)課的一些教學反思,或者說是對新課程理念的淺薄認識。

直線的位置關系教案篇十五

:通過觀察、實驗、討論、合作研究等數(shù)學活動使學生了解探索問題的一般方法;由觀察得到“圓心與直線的距離和圓半徑大小的數(shù)量關系對應等價于直線和圓的位置關系”從而實現(xiàn)位置關系與數(shù)量關系的轉(zhuǎn)化,滲透運動與轉(zhuǎn)化的數(shù)學思想。

:創(chuàng)設問題情景,激發(fā)學生好奇心;體驗數(shù)學活動中的探索與創(chuàng)造,感受數(shù)學的嚴謹性和數(shù)學結論的正確性,在學習活動中獲得成功的體驗;通過“轉(zhuǎn)化”數(shù)學思想的運用,讓學生認識到事物之間是普遍聯(lián)系、相互轉(zhuǎn)化的辨證唯物主義思想。

二、教學重、難點。

難點:學生能根據(jù)圓心到直線的距離d與圓的半徑r之間的數(shù)量關系,揭示直線與圓的位置關系;直線與圓的三種位置關系判定方法的運用。

三、教學設計。

問???題。

設計意圖。

師生活動。

2.圖形中的圓與直線的位置都是一樣的嗎?

師:讓學生之間進行討論、交流,引導學生觀察圖形,導入新課.

生:看圖,并說出自己的看法.

師:引導學生利用類比、歸納的思想,總結直線與圓的位置關系的種類,進一步深化“數(shù)形結合”的數(shù)學思想.

問???題。

設計意圖。

師生活動。

使學生回憶初中的數(shù)學知識,培養(yǎng)抽象概括能力.

師:引導學生從幾何的角度說明判斷方法和通過直線與圓的方程說明判斷方法.

生:利用圖形,尋找兩種方法的數(shù)學思想.

師:指導學生閱讀教科書上的例1.

生:閱讀科書上的例1,并完成教科書第128頁的練習題2.

師;分析例1,并展示解答過程;啟發(fā)學生概括判斷直線與圓的位置關系的基本步驟,注意給學生留有總結思考的時間.

生:交流自己總結的步驟.

師:展示解題步驟.

7.通過學習教科書上的例2,你能說明例2中體現(xiàn)出來的數(shù)學思想方法嗎?

進一步深化“數(shù)形結合”的數(shù)學思想.

師:指導學生閱讀并完成教科書上的例2,啟發(fā)學生利用“數(shù)形結合”的數(shù)學思想解決問題.

問???題。

設計意圖。

師生活動。

8.通過例2的學習,你發(fā)現(xiàn)了什么?

明確弦長的運算方法.

師:引導并啟發(fā)學生探索直線與圓的相交弦的求法.

生:通過分析、抽象、歸納,得出相交弦長的運算方法.

9.完成教科書第128頁的練習題1、2、3、4.

師:引導學生完成練習題.

生:互相討論、交流,完成練習題.

10.課堂小結:

教師提出下列問題讓學生思考:

作業(yè):習題4.2a組:1、3.

直線的位置關系教案篇十六

《直線和圓的位置關系的復習》一課的教學,可以說非常成功。教學設計充分體現(xiàn)了新的教學理念,重點突出、層次清楚、構思新穎,整個教學過程教師采用多樣化的呈現(xiàn)方式為學生搭建參與探究的平臺,高度重視學生的主動參與,有意識地為學生創(chuàng)設了良好的數(shù)學交流情境。注意學生的情感與態(tài)度,知識與技能的形成和發(fā)展,使每個學生都有表現(xiàn)的機會和獲得成功的體驗。

由于本節(jié)課綜合性強,涉及到的知識面廣,對學生的能力水平要求高。教師結合本節(jié)課的教學目標,突出重點,突破難點。采用教師啟發(fā)引導,學生合作交流的方式來組織本節(jié)課的教學。注重解題思路分析和方法引導,善于引導學生尋找圖形中的數(shù)量關系,選用適當?shù)闹R和方法正確解答問題。

在學習知識的同時,注意數(shù)學思想方法的滲透。在教學中,數(shù)學知識是一條明線,數(shù)學思想方法是一條暗線。崔老師在引導學生學習的同時,教給學生思考方法、學習方法和解決問題的方法,為學生未來發(fā)展服務,讓學生在腦海里留下數(shù)學意識,長期下去,學生將終身受用。

板書條理分明,布局合理,文字與圖形完美結合,板書設計不僅讓學生對直線和圓的位置關系圖形的特征一目了然,而且也便于揭示它們之間的區(qū)別和聯(lián)系。體現(xiàn)了板書的形式美和簡潔美,真正使板書起到了畫龍點睛的作用。

充分發(fā)揮小組的特點,讓學生相互啟發(fā)討論,形成思維互補,集思廣益,從而使題意理解更清楚,結論更準確。

教師教態(tài)自然,語言清晰,數(shù)學語言表述準確,操作演示熟練,提問率高,體現(xiàn)素質(zhì)教育面向全體學生的要求。

教師注意培養(yǎng)學生的自信心,在教學過程的設計上體現(xiàn)了層次性和梯度性。防止學生對一些問題出現(xiàn)畏懼情緒,鼓勵學生敢于知難而進,讓學生樹立戰(zhàn)勝困難的勇氣和決心。例題的設計,按照由易到難的順序呈現(xiàn),關于直線和圓的復習教學中能利用一個圖形提出盡可能多的問題,并盡可能的覆蓋到圓的大多數(shù)知識,盡可能的加強知識間的橫縱的聯(lián)系,盡可能滲透多種數(shù)學思想和方法,最大限度的榨取它的利用價值,達到了一線串珠的目的。體現(xiàn)了綜合性例題的大容量、大綜合的特點,非常有效地達成本節(jié)課的教學目標。

直線的位置關系教案篇十七

從教學以來,我一直不斷的學習和研究如何使學生在數(shù)學課堂中高效的學習,在探索過程中我發(fā)現(xiàn)教師要想讓學生學好數(shù)學,必須高度重視學生的主動參與課堂學習,讓學生親身體驗學習知識的過程,引導學生在發(fā)現(xiàn)問題、分析問題、解決問題的同時,培養(yǎng)學生的自主學習能力和創(chuàng)新意識。《直線與圓的位置關系》是高中學習中一個重要的內(nèi)容,下面我詳細總結一下我講的這節(jié)課。

首先從實際生活出發(fā),引用古詩句“海上升明月,天涯共此時”及海上日出的多媒體展示,引導學生回憶直線和圓的位置關系及判定方法,通過對已有研究方法的揭示,增強學生運用遷移方法研究新問題的意識;接著借助多媒體引出三個問題,讓學生運用初中的知識判斷一下直線和圓的位置關系,鞏固學生初中所學內(nèi)容更好的為本節(jié)課的學習打下基礎,從而引導學生揭示出直線與圓的位置關系與公共點的個數(shù)之間存在著對應關系的本質(zhì)特征;最后,引入輪船遇到臺風的實際問題,讓學生體會源自生活的數(shù)學,思考解決實際問題的方法,在數(shù)與形的相互轉(zhuǎn)化過程中思考問題。

在我的引導下,提示學生先用初中所學內(nèi)容解決輪船遇臺風問題,學生很輕易的把這個問題解決了,緊接著我又趁熱打鐵,提出一般的`三角形中這個方法是否可以,由此得到由高中知識解決直線與圓的位置關系的方法:幾何法,代數(shù)法。為此,我以問題為導向,以探究問題的方式引導學生自學自悟,為學生提供了自主合作探究的舞臺,讓學生思維在數(shù)學中自由翱翔。通過一系列問題學生不僅加深了對判定直線與圓的位置關系的方法的理解,更重要的是使學生學會運用聯(lián)想、化歸、數(shù)形結合等思想方法去研究問題,促進學生在學會數(shù)學的過程中順利地向會學數(shù)學的方向發(fā)展。

為了提高學生的學習興趣,讓學生有目的的去學,提高學生的學習能力,這節(jié)課設置了大量問題,使學生充分地實踐與探索,不斷地歸納與總結,引導學生發(fā)現(xiàn)規(guī)律、拓展思路。在探索直線和圓位置關系所對應的數(shù)量關系時,我先引導學生回顧點和圓的位置關系所對應的數(shù)量關系,啟發(fā)學生運用類比的思想來思考問題,解決問題,學生很輕松的就能夠得出結論,從而突破本節(jié)課的難點,使學生充分理解位置關系與數(shù)量關系的相互轉(zhuǎn)化。

適量的練習、課后作業(yè)及時鞏固了學生的學習,學生需通過動手動腦來完成,使學生對知識點的學習由課內(nèi)延伸到課外。

當然,這節(jié)課有成功之處,也有很多不足,比如,盡管準備的很充分,但是還是有點緊張;雖然我在設計本節(jié)課時是想體現(xiàn)學生自主探究的原則,但是在一些問題提出之后,沒有給予學生足夠的時間思考,限制了學生的思維。此外,對學生引導的語言概括及對學生及時性鼓勵的不是太好,學生的積極性及配合并不高。

在今后的教學中,我會繼續(xù)不斷的學習,提高自己的教學水平,真正讓學生學會數(shù)學、學好數(shù)學,使學生的各項能力在數(shù)學學習中得到更好的發(fā)展和提高,我相信在將來的教學中,我會做得越來越好,真正成為一名合格的教師。

直線的位置關系教案篇十八

并深刻剖析直線是圓的切線的判定條件和直線與圓相切的性質(zhì);對重要的結論及時。

(2)在教學中,以“觀察——猜想——證明——剖析——應用——歸納”為主線,開展在教師組織下,以學生為主體,活動式教學。

新課程理念及新基礎教育理念都提倡“把課堂還給學生,讓課堂充滿生命活力”,讓學生真正“動起來”,動不應當是表面的、外在的,而應當使學生的思維處于活躍狀態(tài),積極思考問題,這種內(nèi)在的、深層的動,更要落實,動靜結合,收放適度,動得有序,動而不亂。課堂教學要的不是熱鬧場面,而是對問題的深入研究和思考。首先要設計好問題,針對不同意見和問題引導學生展開討論、辯論,抓住學生發(fā)言中的問題,及時給以矯正。當教師提出問題讓學生探索時,學生自己尋找答案時,要放手讓學生活動,但要避免學生興奮過度或活動過量。今后再教學本節(jié)課仍應倡導提高學生的問題意識,以對問題的探究來構筑本節(jié)課教學的主題。但是,教師待學生的問題提完后,與學生一道對問題進行歸類,找出學生思維和知識的核心問題,以此組織課堂教學,并相機解決其他問題。仍應放權給學生,給他們想、做、說的機會,讓他們討論、質(zhì)疑、交流,圍繞某一個問題展開辯論。教師應當給學生時間和權利,讓學生充分進行思考,給學生充分表達自己思維的機會。但是,應關注學生的參與程度,有的學生的參與只是一種表面上的行為參與。要看學生的思維是否活躍,關鍵是學生所回答的問題、提出的問題,是否建立在一定的思維層次上,是否會引起其他學生的積極思考,還是學生的自我需要。也就是說我們要關注學生思維的狀態(tài)與學習互動的狀態(tài)。

直線的位置關系教案篇十九

節(jié)課的教學,我認為成功之處有以下幾點:

1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學生比較感興趣,充分感受生活中反映直線與圓位置關系的現(xiàn)象,體驗到數(shù)學來源于實踐。對生活中的數(shù)學問題發(fā)生好奇,這是學生最容易接受的學習數(shù)學的好方法。新課標下的數(shù)學教學的基本特點之一就是密切關注數(shù)學與現(xiàn)實生活的聯(lián)系,從生活中“找”數(shù)學,“想”數(shù)學,讓學生真正感受到生活之中處處有數(shù)學。

2.在探索直線和圓位置關系所對應的數(shù)量關系時,我先引導學生回顧點和圓的位置關系所對應的數(shù)量關系,啟發(fā)學生運用類比的思想來思考問題,解決問題,學生很輕松的就能夠得出結論,從而突破本節(jié)課的難點,使學生充分理解位置關系與數(shù)量關系的相互轉(zhuǎn)化,這種等價關系是研究切線的理論基礎,從而為下節(jié)課探索切線的性質(zhì)打好基礎。

3.新課標下的數(shù)學強調(diào)人人學有價值的數(shù)學,人人學有用的數(shù)學,為此,在做一做之后我安排了一道實際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學生解決實際問題的能力。由于此題要學生回到生活中去運用數(shù)學,學生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學學習變得有滋有味,使學生體會到學數(shù)學的重要性,體驗“生活中處處用數(shù)學”。

同時,我也感覺到本節(jié)課的設計有不妥之處,主要有以下三點:

1.學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。學生被動的接受,對概念的理解不是很深刻,可以改為讓學生下定義,師生共同討論的形式給學生以思維想象的空間,充分調(diào)動學生的積極性,使學生實現(xiàn)自主探究。

2.雖然我在設計本節(jié)課時是體現(xiàn)讓學生自主操作探究的原則,但在讓學生探索直線和圓三種位置關系所對應的數(shù)量關系時,沒有給予學生足夠的探索、交流的時間,限制了學生的思維。此處應充分發(fā)揮小組的特點,讓學生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結論更準確。

【本文地址:http://www.mlvmservice.com/zuowen/16632312.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔