最新初一數(shù)學(xué)開(kāi)學(xué)第一課課件 初一開(kāi)學(xué)數(shù)學(xué)第一課怎么講(3篇)

格式:DOC 上傳日期:2023-03-16 06:44:35
最新初一數(shù)學(xué)開(kāi)學(xué)第一課課件 初一開(kāi)學(xué)數(shù)學(xué)第一課怎么講(3篇)
時(shí)間:2023-03-16 06:44:35     小編:zdfb

每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫(xiě)一篇文章。寫(xiě)作是培養(yǎng)人的觀(guān)察、聯(lián)想、想象、思維和記憶的重要手段。范文書(shū)寫(xiě)有哪些要求呢?我們?cè)鯓硬拍軐?xiě)好一篇范文呢?下面是小編為大家收集的優(yōu)秀范文,供大家參考借鑒,希望可以幫助到有需要的朋友。

初一數(shù)學(xué)開(kāi)學(xué)第一課課件 初一開(kāi)學(xué)數(shù)學(xué)第一課怎么講篇一

1.使學(xué)生正確理解數(shù)軸的意義,掌握數(shù)軸的三要素;

2.使學(xué)生學(xué)會(huì)由數(shù)軸上的已知點(diǎn)說(shuō)出它所表示的數(shù),能將有理數(shù)用數(shù)軸上的點(diǎn)表示出來(lái);

3.使學(xué)生初步理解數(shù)形結(jié)合的思想方法.

重點(diǎn):初步理解數(shù)形結(jié)合的思想方法,正確掌握數(shù)軸畫(huà)法和用數(shù)軸上的點(diǎn)表示有理數(shù).

難點(diǎn):正確理解有理數(shù)與數(shù)軸上點(diǎn)的對(duì)應(yīng)關(guān)系.

1.小學(xué)里曾用“射線(xiàn)”上的點(diǎn)來(lái)表示數(shù),你能在射線(xiàn)上表示出1和2嗎?

2.用“射線(xiàn)”能不能表示有理數(shù)?為什么?

3.你認(rèn)為把“射線(xiàn)”做怎樣的改動(dòng),才能用來(lái)表示有理數(shù)呢?

待學(xué)生回答后,教師指出,這就是我們本節(jié)課所要學(xué)習(xí)的'內(nèi)容——數(shù)軸.

讓學(xué)生觀(guān)察掛圖——放大的溫度計(jì),同時(shí)教師給予語(yǔ)言指導(dǎo):利用溫度計(jì)可以測(cè)量溫度,在溫度計(jì)上有刻度,刻度上標(biāo)有讀數(shù),根據(jù)溫度計(jì)的液面的不同位置就可以讀出不同的數(shù),從而得到所測(cè)的溫度.在0上10個(gè)刻度,表示10℃;在0下5個(gè)刻度,表示-5℃.

與溫度計(jì)類(lèi)似,我們也可以在一條直線(xiàn)上畫(huà)出刻度,標(biāo)上讀數(shù),用直線(xiàn)上的點(diǎn)表示正數(shù)、負(fù)數(shù)和零.具體方法如下(邊說(shuō)邊畫(huà)):

1.畫(huà)一條水平的直線(xiàn),在這條直線(xiàn)上任取一點(diǎn)作為原點(diǎn)(通常取適中的位置,如果所需的都是正數(shù),也可偏向左邊)用這點(diǎn)表示0(相當(dāng)于溫度計(jì)上的0℃);

2.規(guī)定直線(xiàn)上從原點(diǎn)向右為正方向(箭頭所指的方向),那么從原點(diǎn)向左為負(fù)方向(相當(dāng)于溫度計(jì)上0℃以上為正,0℃以下為負(fù));

3.選取適當(dāng)?shù)拈L(zhǎng)度作為單位長(zhǎng)度,在直線(xiàn)上,從原點(diǎn)向右,每隔一個(gè)長(zhǎng)度單位取一點(diǎn),依次表示為1,2,3,…從原點(diǎn)向左,每隔一個(gè)長(zhǎng)度單位取一點(diǎn),依次表示為-1,-2,-3,…

提問(wèn):我們能不能用這條直線(xiàn)表示任何有理數(shù)?(可列舉幾個(gè)數(shù))

在此基礎(chǔ)上,給出數(shù)軸的定義,即規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線(xiàn)叫做數(shù)軸.

進(jìn)而提問(wèn)學(xué)生:在數(shù)軸上,已知一點(diǎn)p表示數(shù)-5,如果數(shù)軸上的原點(diǎn)不選在原來(lái)位置,而改選在另一位置,那么p對(duì)應(yīng)的數(shù)是否還是-5?如果單位長(zhǎng)度改變呢?如果直線(xiàn)的正方向改變呢?

通過(guò)上述提問(wèn),向?qū)W生指出:數(shù)軸的三要素——原點(diǎn)、正方向和單位長(zhǎng)度,缺一不可.

例1畫(huà)一個(gè)數(shù)軸,并在數(shù)軸上畫(huà)出表示下列各數(shù)的點(diǎn):

例2指出數(shù)軸上a,b,c,d,e各點(diǎn)分別表示什么數(shù).

課堂練習(xí)

示出來(lái).

2.說(shuō)出下面數(shù)軸上a,b,c,d,o,m各點(diǎn)表示什么數(shù)?

最后引導(dǎo)學(xué)生得出結(jié)論:正有理數(shù)可用原點(diǎn)右邊的點(diǎn)表示,負(fù)有理數(shù)可用原點(diǎn)左邊的點(diǎn)表示,零用原點(diǎn)表示.

指導(dǎo)學(xué)生閱讀教材后指出:數(shù)軸是非常重要的數(shù)學(xué)工具,它使數(shù)和直線(xiàn)上的點(diǎn)建立了對(duì)應(yīng)關(guān)系,它揭示了數(shù)和形之間的內(nèi)在聯(lián)系,為我們研究問(wèn)題提供了新的方法.

本節(jié)課要求同學(xué)們能掌握數(shù)軸的三要素,正確地畫(huà)出數(shù)軸,在此還要提醒同學(xué)們,所有的有理數(shù)都可用數(shù)軸上的點(diǎn)來(lái)表示,但是反過(guò)來(lái)不成立,即數(shù)軸上的點(diǎn)并不是都表示有理數(shù),至于數(shù)軸上的哪些點(diǎn)不能表示有理數(shù),這個(gè)問(wèn)題以后再研究.

1.在下面數(shù)軸上:

(1)分別指出表示-2,3,-4,0,1各數(shù)的點(diǎn).

(2)a,h,d,e,o各點(diǎn)分別表示什么數(shù)?

2.在下面數(shù)軸上,a,b,c,d各點(diǎn)分別表示什么數(shù)?

3.下列各小題先分別畫(huà)出數(shù)軸,然后在數(shù)軸上畫(huà)出表示大括號(hào)內(nèi)的一組數(shù)的點(diǎn):

(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};

初一數(shù)學(xué)開(kāi)學(xué)第一課課件 初一開(kāi)學(xué)數(shù)學(xué)第一課怎么講篇二

(一)教學(xué)知識(shí)點(diǎn)

1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過(guò)程,體會(huì)方程與函數(shù)之間的聯(lián)系.

2.理解二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)數(shù)和沒(méi)有實(shí)根.

3.理解一元二次方程的根就是二次函數(shù)與y=h(h是實(shí)數(shù))交點(diǎn)的橫坐標(biāo).

(二)能力訓(xùn)練要求

1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過(guò)程,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神.

2.通過(guò)觀(guān)察二次函數(shù)圖象與x軸的交點(diǎn)個(gè)數(shù),討論一元二次方程的根的情況,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想.

3.通過(guò)學(xué)生共同觀(guān)察和討論,培養(yǎng)大家的合作交流意識(shí).

(三)情感與價(jià)值觀(guān)要求

1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過(guò)程,體驗(yàn)數(shù)學(xué)活動(dòng)充滿(mǎn)著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性.

2.具有初步的創(chuàng)新精神和實(shí)踐能力.

1.體會(huì)方程與函數(shù)之間的聯(lián)系.

2.理解何時(shí)方程有兩個(gè)不等的實(shí)根,兩個(gè)相等的實(shí)數(shù)和沒(méi)有實(shí)根.

3.理解一元二次方程的根就是二次函數(shù)與y=h(h是實(shí)數(shù))交點(diǎn)的橫坐標(biāo).

1.探索方程與函數(shù)之間的聯(lián)系的過(guò)程.

2.理解二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系.

討論探索法.

投影片二張

第一張:(記作§2.8.1a)

第二張:(記作§2.8.1b)

ⅰ.創(chuàng)設(shè)問(wèn)題情境,引入新課

[師]我們學(xué)習(xí)了一元一次方程kx+b=0(k≠0)和一次函數(shù)y=kx+b(k≠0)后,討論了它們之間的關(guān)系.當(dāng)一次函數(shù)中的函數(shù)值y=0時(shí),一次函數(shù)y=kx+b就轉(zhuǎn)化成了一元一次方程kx+b=0,且一次函數(shù)y=kx+b(k≠0)的圖象與x軸交點(diǎn)的橫坐標(biāo)即為一元一次方程kx+b=0的解.

現(xiàn)在我們學(xué)習(xí)了一元二次方程ax2+bx+c=0(a≠0)和二次函數(shù)y=ax2+bx+c(a≠0),它們之間是否也存在一定的關(guān)系呢?本節(jié)課我們將探索有關(guān)問(wèn)題。

通過(guò)學(xué)生的討論,使學(xué)生更清楚以下事實(shí):

(1)分解因式與整式的乘法是一種互逆關(guān)系;

(2)分解因式的結(jié)果要以積的形式表示;

(3)每個(gè)因式必須是整式,且每個(gè)因式的次數(shù)都必須低于原來(lái)的多項(xiàng)式的次數(shù);

(4)必須分解到每個(gè)多項(xiàng)式不能再分解為止。

活動(dòng)5:應(yīng)用新知

例題學(xué)習(xí):

p166例1、例2(略)

在教師的引導(dǎo)下,學(xué)生應(yīng)用提公因式法共同完成例題。

讓學(xué)生進(jìn)一步理解提公因式法進(jìn)行因式分解。

活動(dòng)6:課堂練習(xí)

1.p167練習(xí);

2.看誰(shuí)連得準(zhǔn)

x2-y2(x+1)2

9-25x2y(x-y)

x2+2x+1(3-5x)(3+5x)

xy-y2(x+y)(x-y)

3.下列哪些變形是因式分解,為什么?

(1)(a+3)(a-3)=a2-9

(2)a2-4=(a+2)(a-2)

(3)a2-b2+1=(a+b)(a-b)+1

(4)2πr+2πr=2π(r+r)

學(xué)生自主完成練習(xí)。

通過(guò)學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對(duì)因式分解意義的理解是否到位,以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏。

活動(dòng)7:課堂小結(jié)

從今天的課程中,你學(xué)到了哪些知識(shí)?掌握了哪些方法?明白了哪些道理?

學(xué)生發(fā)言。

通過(guò)學(xué)生的回顧與反思,強(qiáng)化學(xué)生對(duì)因式分解意義的理解,進(jìn)一步清楚地了解分解因式與整式的乘法的互逆關(guān)系,加深對(duì)類(lèi)比的數(shù)學(xué)思想的理解。

活動(dòng)8:課后作業(yè)

課本p170習(xí)題的第1、4大題。

學(xué)生自主完成

通過(guò)作業(yè)的鞏固對(duì)因式分解,特別是提公因式法理解并學(xué)會(huì)應(yīng)用。

板書(shū)設(shè)計(jì)(需要一直留在黑板上主板書(shū))

15.4.1提公因式法例題

1.因式分解的定義

2.提公因式法

初一數(shù)學(xué)開(kāi)學(xué)第一課課件 初一開(kāi)學(xué)數(shù)學(xué)第一課怎么講篇三

(一)知識(shí)教學(xué)點(diǎn)

1.了解;方程算術(shù)解法與代數(shù)解法的區(qū)別。

2.掌握:代數(shù)解法解簡(jiǎn)易方程。

(二)能力訓(xùn)練點(diǎn)

1.通過(guò)代數(shù)解法解簡(jiǎn)易方程的學(xué)習(xí)使學(xué)生認(rèn)識(shí)問(wèn)題頭腦不僵化,培養(yǎng)其創(chuàng)造性思維的能力。

2.通過(guò)代數(shù)法解簡(jiǎn)易方程進(jìn)一步培養(yǎng)學(xué)生運(yùn)算能力和邏輯思維能力。

(三)德育滲透點(diǎn)

1.培養(yǎng)學(xué)生實(shí)事求是的科學(xué)態(tài)度,用發(fā)展的眼光看問(wèn)題的辯證唯物主義思想。

2.滲透化“未知”為“已知”的化歸思想。

(四)美育滲透點(diǎn)

通過(guò)用新的方法解簡(jiǎn)易方程,使學(xué)生初步領(lǐng)略數(shù)學(xué)中的方法美。

1.教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法。注意教學(xué)中民主意識(shí)和學(xué)生的主體作用的體現(xiàn)。

2.學(xué)生學(xué)法:識(shí)記→練習(xí)反饋

1.重點(diǎn):代數(shù)解法解簡(jiǎn)易方程。

2.難點(diǎn):解方程時(shí)準(zhǔn)確把握兩邊都加上(或減去)、乘以(或除以)同一適當(dāng)?shù)臄?shù)。

3.疑點(diǎn):代數(shù)解法解簡(jiǎn)易方程的依據(jù)。

1課時(shí)

投影儀或電腦、自制膠片。

教師創(chuàng)設(shè)情境,學(xué)生解決問(wèn)題。教師介紹新的方法,學(xué)生反復(fù)練習(xí)。

(一)創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入

(出示投影1)

引例:班上有37名同學(xué),分成人數(shù)相等的兩隊(duì)進(jìn)行拔河比賽,恰好余3人當(dāng)裁判員,每個(gè)隊(duì)有多少人?

師:該問(wèn)題如何解決呢?請(qǐng)同學(xué)們考慮好后寫(xiě)在練習(xí)本上.

學(xué)生活動(dòng):解答問(wèn)題,一個(gè)學(xué)生板演.

師生共同訂正,對(duì)照板演學(xué)生的做法,師問(wèn):有無(wú)不同解法?

學(xué)生活動(dòng):回答問(wèn)題,一個(gè)學(xué)生板演,其他學(xué)生比較兩種解法.

問(wèn);這兩種解法有什么不同呢?

學(xué)生活動(dòng):積極思索,回答問(wèn)題.(一是列算式的解法,二是列方程的解法).

師:很好.為了敘述問(wèn)題方便,我們分別把這兩種解法叫做算術(shù)解法和代數(shù)解法.小學(xué)學(xué)過(guò)的應(yīng)用題可用算術(shù)方法也可用代數(shù)方法解.有時(shí)算術(shù)方法簡(jiǎn)便,有時(shí)代數(shù)方法簡(jiǎn)便,但是隨著學(xué)習(xí)的逐步展開(kāi),遇到的問(wèn)題越來(lái)越復(fù)雜,使用代數(shù)解法的優(yōu)越性將會(huì)體現(xiàn)的越來(lái)越充分,因此,在初中代數(shù)課上,將把方程的知識(shí)作為一個(gè)重要的內(nèi)容來(lái)學(xué)習(xí).當(dāng)然,在開(kāi)始學(xué)習(xí)方程時(shí),還是要從簡(jiǎn)單的方程入手,即簡(jiǎn)易方程.引出課題.

[板書(shū)]1.5簡(jiǎn)易方程

(二)探索新知,講授新課

師:談到方程,同學(xué)們并不陌生,你能說(shuō)明什么叫方程嗎?

學(xué)生活動(dòng):踴躍舉手,回答問(wèn)題。

[板書(shū)]含有未知數(shù)的等式叫方程

接問(wèn):你還知道關(guān)于方程的其他概念嗎?

學(xué)生活動(dòng):積極思考并回答。

[板書(shū)]方程的解;解方程

追問(wèn):能再具體些嗎?即什么叫方程的解?什么叫解方程?并舉例說(shuō)明.學(xué)生活動(dòng):互相討論后回答.(使方程左右兩邊相等的未知數(shù)的值叫做方程的解;求方程的解的過(guò)程叫解方程,

師:好!這是小學(xué)學(xué)的解方程的方法。在初中代數(shù)課上,我們要從另一角度來(lái)解,還以上邊這個(gè)方程為例。

[板書(shū)]

學(xué)生活動(dòng):相互討論達(dá)成共識(shí)(合理。因把x=5代入方程3x+9=24,左邊=右邊,所以x=5是方程的解)

【教法說(shuō)明】先復(fù)習(xí)小學(xué)有關(guān)方程的幾個(gè)概念和解法,再提代數(shù)解法,形成對(duì)比,使學(xué)生認(rèn)識(shí)到同一問(wèn)題可從不同角度去考慮,即培養(yǎng)了發(fā)散思維。正是因?yàn)檎J(rèn)識(shí)問(wèn)題的不同側(cè)面,導(dǎo)致學(xué)生感到疑惑,這時(shí)讓學(xué)生自己去檢驗(yàn)新方法的合理性,不但可消除疑慮,而且還有助于發(fā)展學(xué)生的創(chuàng)造能力。

師:以前的方法只能解很簡(jiǎn)單的方程,而后者則可以解較復(fù)雜的方程,因此更為重要。為了更好的理解和熟悉這種解法,我們共同做例1。

(三)嘗試反饋,鞏固練習(xí)

例1解方程(x/2)-5=11

問(wèn):你認(rèn)為第一步方程兩邊應(yīng)加上(或減去)什么數(shù)最合適?為什么?

學(xué)生活動(dòng):思考并回答.(師板書(shū))

問(wèn):你認(rèn)為第二步方程兩邊應(yīng)乘以(或除以)什么數(shù)最合適?為什么?

學(xué)生活動(dòng):思考并回答(師板書(shū))

解:方程兩邊都加上5,得

(x/2)-5+5=11+5

x/2=16

(x/2)*2=16*2

x=32

問(wèn):這個(gè)結(jié)果正確嗎?請(qǐng)同學(xué)們自己檢驗(yàn).

學(xué)生活動(dòng):練習(xí)本上檢驗(yàn)并回答問(wèn)題.(正確)

師:這種新方法解方程時(shí),第一步目的是什么?第二步目的是什么?從而確定出該加上(或減去)怎樣的數(shù),該乘以(或除以)怎樣的數(shù)更合適.

學(xué)生活動(dòng):回答這兩個(gè)問(wèn)題.

【本文地址:http://www.mlvmservice.com/zuowen/1624259.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔