高中數(shù)學冪函數(shù)教案(精選19篇)

格式:DOC 上傳日期:2023-11-27 15:22:06
高中數(shù)學冪函數(shù)教案(精選19篇)
時間:2023-11-27 15:22:06     小編:筆塵

教案包括教學內(nèi)容、資源準備、教學步驟和課堂管理等方面。編寫教案要注重教學資源的選擇和利用,豐富教學內(nèi)容和教學手段。推薦給大家一些優(yōu)秀的教案范文,以便教師在教學過程中參考借鑒。

高中數(shù)學冪函數(shù)教案篇一

教學目標:

通過實例,理解冪函數(shù)的概念;能區(qū)分指數(shù)函數(shù)與冪函數(shù);會用待定系數(shù)法求冪函數(shù)的解析式。

教學重難點:

重點從五個具體冪函數(shù)中認識冪函數(shù)的一些特征。

難點指數(shù)函數(shù)與冪函數(shù)的區(qū)別和冪函數(shù)解析式的求解。

教學方法與手段:

1、采用師生互動的方式,在教師的引導下,學生通過思考、交流、討論,理解冪函數(shù)的定義,體驗自主探索、合作交流的學習方式,充分發(fā)揮學生的積極性與主動性。

2、利用投影儀及計算機輔助教學。

教學過程:

函數(shù)的完美追求:對于式子,

如果一定,n隨的變化而變化,我們建立了指數(shù)函數(shù);

如果一定,隨n的變化而變化,我們建立了對數(shù)函數(shù)。

設(shè)想:如果一定,n隨的變化而變化,是不是也應(yīng)該確定一個函數(shù)呢?

創(chuàng)設(shè)情境。

請大家看以下問題:

思考:以上問題中的函數(shù)有什么共同特征?

引導學生分析歸納概括得出:(1)都是以自變量x為底數(shù);(2)指數(shù)為常數(shù);(3)自變量x前的系數(shù)為1;(4)只有一項。上述問題中涉及的函數(shù),都是形如的函數(shù)。

探究新知。

一、冪函數(shù)的定義。

一般地,形如的函數(shù)稱為冪函數(shù),其中是自變量,是常數(shù)。

中前面的系數(shù)是1,后面沒有其它項。

小試牛刀。

(1),

思考:冪函數(shù)與指數(shù)函數(shù)有什么區(qū)別?

高中數(shù)學冪函數(shù)教案篇二

一、教材分析:

《34.4二次函數(shù)的應(yīng)用》選自義務(wù)教育課程標準試驗教科書《數(shù)學》(冀教版)九年級上冊第三十四章第四節(jié),這節(jié)課是在學生學習了二次函數(shù)的概念、圖象及性質(zhì)的基礎(chǔ)上,讓學生繼續(xù)探索二次函數(shù)與一元二次方程的關(guān)系,教材通過小球飛行這樣的實際情境,創(chuàng)設(shè)三個問題,這三個問題對應(yīng)了一元二次方程有兩個不等實根、有兩個相等實根、沒有實根的三種情況。這樣,學生結(jié)合問題實際意義就能對二次函數(shù)與一元二次方程的關(guān)系有很好的體會;從而得出用二次函數(shù)的圖象求一元二次方程的方法。這也突出了課標的要求:注重知識與實際問題的聯(lián)系。

本節(jié)教學時間安排1課時。

二、教學目標:

知識技能:

1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.

2.理解拋物線交x軸的點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.

3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

數(shù)學思考:

1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學生的探索能力和創(chuàng)新精神.

2.經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗.

3.通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況,進一步培養(yǎng)學生的數(shù)形結(jié)合思想。

解決問題:

1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗數(shù)學活動充滿著探索與創(chuàng)造,感受數(shù)學的嚴謹性以及數(shù)學結(jié)論的確定性。

2.通過利用二次函數(shù)的圖象估計一元二次方程的根,進一步掌握二次函數(shù)圖象與x軸的交點坐標和一元二次方程的根的關(guān)系,提高估算能力。

情感態(tài)度:

1.從學生感興趣的問題入手,讓學生親自體會學習數(shù)學的價值,從而提高學生學習數(shù)學的好奇心和求知欲。

2.通過學生共同觀察和討論,培養(yǎng)大家的合作交流意識。

三、教學重點、難點:

教學重點:

1.體會方程與函數(shù)之間的聯(lián)系。

2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

教學難點:

1.探索方程與函數(shù)之間關(guān)系的過程。

2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。

四、教學方法:啟發(fā)引導合作交流。

五:教具、學具:課件。

六、教學過程:

[活動1]檢查預(yù)習引出課題。

預(yù)習作業(yè):

1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.

2.回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.

師生行為:教師展示預(yù)習作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當總結(jié)和評價。

教師重點關(guān)注:學生回答問題結(jié)論準確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。

設(shè)計意圖:這兩道預(yù)習題目是對舊知識的回顧,為本課的教學起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計是讓學生用學過的熟悉的知識類比探究本課新知識。

[活動2]創(chuàng)設(shè)情境探究新知。

問題。

1.課本p94問題.

3.結(jié)合預(yù)習題1,完成課本p94觀察中的題目。

師生行為:教師提出問題1,給學生獨立思考的時間,教師可適當引導,對學生的解題思路和格式進行梳理和規(guī)范;問題2學生獨立思考指名回答,注重數(shù)形結(jié)合思想的滲透;問題3是由學生分組探究的,這個問題的探究稍有難度,活動中教師要深入到各個小組中進行點撥,引導學生總結(jié)歸納出正確結(jié)論。

教師重點關(guān)注:

1.學生能否把實際問題準確地轉(zhuǎn)化為數(shù)學問題;。

2.學生在思考問題時能否注重數(shù)形結(jié)合思想的應(yīng)用;。

3.學生在探究問題的過程中,能否經(jīng)歷獨立思考、認真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準確。

設(shè)計意圖:由現(xiàn)實中的實際問題入手給學生創(chuàng)設(shè)熟悉的問題情境,促使學生能積極地參與到數(shù)學活動中去,體會二次函數(shù)與實際問題的關(guān)系;學生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學生的合作精神,積累學習經(jīng)驗。

[活動3]例題學習鞏固提高。

問題。

例利用函數(shù)圖象求方程x2-2x-2=0的實數(shù)根(精確到0.1).

師生行為:教師提出問題,引導學生根據(jù)預(yù)習題2獨立完成,師生互相訂正。

教師關(guān)注:(1)學生在解題過程中格式是否規(guī)范;(2)學生所畫圖象是否準確,估算方法是否得當。

設(shè)計意圖:通過預(yù)習題2的鋪墊,同學們已經(jīng)從舊知識中尋找到新知識的生長點,很容易明確例題的解題思路和方法,這樣既降低難點且突出重點。

[活動4]練習反饋鞏固新知。

高中數(shù)學冪函數(shù)教案篇三

通過學生的討論,使學生更清楚以下事實:

(1)分解因式與整式的乘法是一種互逆關(guān)系;。

(2)分解因式的結(jié)果要以積的形式表示;。

(3)每個因式必須是整式,且每個因式的次數(shù)都必須低于原來的多項式的次數(shù);。

(4)必須分解到每個多項式不能再分解為止。

活動5:應(yīng)用新知。

例題學習:

p166例1、例2(略)。

在教師的引導下,學生應(yīng)用提公因式法共同完成例題。

讓學生進一步理解提公因式法進行因式分解。

活動6:課堂練習。

1.p167練習;。

2.看誰連得準。

x2-y2(x+1)2。

9-25x2y(x-y)。

x2+2x+1(3-5x)(3+5x)。

xy-y2(x+y)(x-y)。

3.下列哪些變形是因式分解,為什么?

(1)(a+3)(a-3)=a2-9。

(2)a2-4=(a+2)(a-2)。

(3)a2-b2+1=(a+b)(a-b)+1。

(4)2πr+2πr=2π(r+r)。

學生自主完成練習。

通過學生的反饋練習,使教師能全面了解學生對因式分解意義的理解是否到位,以便教師能及時地進行查缺補漏。

活動7:課堂小結(jié)。

從今天的課程中,你學到了哪些知識?掌握了哪些方法?明白了哪些道理?

學生發(fā)言。

通過學生的回顧與反思,強化學生對因式分解意義的理解,進一步清楚地了解分解因式與整式的乘法的互逆關(guān)系,加深對類比的數(shù)學思想的理解。

活動8:課后作業(yè)。

課本p170習題的第1、4大題。

學生自主完成。

通過作業(yè)的鞏固對因式分解,特別是提公因式法理解并學會應(yīng)用。

板書設(shè)計(需要一直留在黑板上主板書)。

15.4.1提公因式法例題。

1.因式分解的定義。

2.提公因式法。

高中數(shù)學冪函數(shù)教案篇四

熟練掌握三角函數(shù)式的求值。

教學重難點。

熟練掌握三角函數(shù)式的求值。

教學過程。

【知識點精講】。

三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形。

三角函數(shù)式的求值的類型一般可分為:。

(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。

三角函數(shù)式常用化簡方法:切割化弦、高次化低次。

注意點:靈活角的變形和公式的變形。

重視角的范圍對三角函數(shù)值的影響,對角的范圍要討論。

【例題選講】。

課堂小結(jié)】。

三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形。

三角函數(shù)式的求值的類型一般可分為:。

(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。

三角函數(shù)式常用化簡方法:切割化弦、高次化低次。

注意點:靈活角的變形和公式的變形。

重視角的范圍對三角函數(shù)值的影響,對角的范圍要討論。

【作業(yè)布置】。

p172能力提高5,6,7,8高考預(yù)測。

高中數(shù)學冪函數(shù)教案篇五

會運用圖象判斷單調(diào)性;理解函數(shù)的單調(diào)性,能判斷或證明一些簡單函數(shù)單調(diào)性;注意必須在定義域內(nèi)或其子集內(nèi)討論函數(shù)的單調(diào)性。

重點。

難點。

一、復習引入。

1、函數(shù)的定義域、值域、圖象、表示方法。

(1)單調(diào)增函數(shù)。

(2)單調(diào)減函數(shù)。

(3)單調(diào)區(qū)間。

二、例題分析。

1、畫出下列函數(shù)圖象,并寫出單調(diào)區(qū)間:

(1)(2)(2)。

2、求證:函數(shù)在區(qū)間上是單調(diào)增函數(shù)。

3、討論函數(shù)的單調(diào)性,并證明你的結(jié)論。

變(1)討論函數(shù)的單調(diào)性,并證明你的結(jié)論。

變(2)討論函數(shù)的單調(diào)性,并證明你的結(jié)論。

三、隨堂練習。

1、判斷下列說法正確的是。

(1)若定義在上的函數(shù)滿足,則函數(shù)是上的單調(diào)增函數(shù);。

(2)若定義在上的函數(shù)滿足,則函數(shù)在上不是單調(diào)減函數(shù);。

(4)若定義在上的函數(shù)在區(qū)間上是單調(diào)增函數(shù),在區(qū)間上也是單調(diào)增函數(shù),則函數(shù)是上的單調(diào)增函數(shù)。

2、若一次函數(shù)在上是單調(diào)減函數(shù),則點在直角坐標平面的()。

a.上半平面b.下半平面c.左半平面d.右半平面。

3、函數(shù)在上是______;函數(shù)在上是_______。

3.下圖分別為函數(shù)和的圖象,求函數(shù)和的單調(diào)增區(qū)間。

4、求證:函數(shù)是定義域上的單調(diào)減函數(shù)。

四、回顧小結(jié)。

課后作業(yè)。

一、基礎(chǔ)題。

(1)(2)。

2、畫函數(shù)的圖象,并寫出單調(diào)區(qū)間。

二、提高題。

3、求證:函數(shù)在上是單調(diào)增函數(shù)。

4、若函數(shù),求函數(shù)的單調(diào)區(qū)間。

5、若函數(shù)在上是增函數(shù),在上是減函數(shù),試比較與的大小。

三、能力題。

6、已知函數(shù),試討論函數(shù)f(x)在區(qū)間上的單調(diào)性。

變(1)已知函數(shù),試討論函數(shù)f(x)在區(qū)間上的單調(diào)性。

高中數(shù)學冪函數(shù)教案篇六

老師講課認真聽講,不會的問題及時標記。在課堂上,做一個好學生,認真聽講,對于老師講的問題及時記錄,進行相應(yīng)的標記,在下課的時候,及時詢問老師,早日解決問題。

一定要課前預(yù)習一下知識點。在上課前或平時閑暇時間,一定要注意課下多多預(yù)習,預(yù)習比復習更加重要,真的很重要,關(guān)乎到課堂的思維能力的轉(zhuǎn)變,多多看看,對自己的理解有幫助。

課上要學會學習,記筆記,也要記住老師講的知識點。課堂上,自己要活躍一點,帶給老師感覺,讓老師對你有印象,便于日后學習高中數(shù)學,與老師探討學習方法,記筆記,記住講的重點。

多做一些比較普通而又常出的問題,來熟悉自己學的知識。在課下的時候,自己找出適合自己做的題,在做題中找出適合自己的題目,來進行做和學,總有一份題目適合自己做,便會更熟悉自己學的知識。

學會總結(jié)本節(jié)課的知識點,重點,做一個學會學習的人。及時總結(jié)所學的知識點,做一個學好習的人,讓自己的心中有著大致的思路,能夠解答出老師的,這便是可以了。

建立一個記錯本,錯誤的題記錄到本子上。將自己以前做過的錯題,及時的整理出來,并且能夠及時的回顧,便于日后在本子上學習到知識,能夠復習到自己以前錯過的題。

與老師經(jīng)常交流學習方法,總有一個適合你。多多的與老師交流,給老師留下一個好印象,便于自己和老師更深入的交流學習,及時的詢問一下高中數(shù)學的學習方法,總有一個適合自己。

高中數(shù)學冪函數(shù)教案篇七

3.能夠綜合運用各種法則求函數(shù)的導數(shù).。

函數(shù)的和、差、積、商的求導法則的推導與應(yīng)用.。

1.問題情境.。

(1)常見函數(shù)的導數(shù)公式:(默寫)。

(2)求下列函數(shù)的`導數(shù):;;.。

(3)由定義求導數(shù)的基本步驟(三步法).。

2.探究活動.。

例1求的導數(shù).。

思考已知,怎樣求呢?

函數(shù)的和差積商的導數(shù)求導法則:

練習課本p22練習1~5題.。

點評:正確運用函數(shù)的四則運算的求導法則.。

函數(shù)的和差積商的導數(shù)求導法則.。

1.見課本p26習題1.2第1,2,5~7題.。

高中數(shù)學冪函數(shù)教案篇八

數(shù)學復習課不比新課,講的都是已經(jīng)學過的東西,我想許多老師都和我有相同的體會,那就是復習課比新課難上。

二、重視每一個學生。

三、做好課外與學生的溝通。

四、要多了解學生。

你對學生的了解更有助于你的教學,特別是在初三總復習間斷,及時了解每個學生的復習情況有助于你更好的制定復習計劃和備下一堂課,也有利于你更好的改進教學方法。

高中數(shù)學冪函數(shù)教案篇九

教學目標:

知識與技能。

1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。

2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應(yīng)地會求出另一個量的值。

3、會對一個具體實例進行概括抽象成為數(shù)學問題。

過程與方法。

1、通過函數(shù)概念,初步形成學生利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。

2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學生的抽象思維能力。

情感與價值觀。

1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。

2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學知識的理解和有效的學習模式。

教學重點:

1、掌握函數(shù)概念。

2、判斷兩個變量之間的關(guān)系是否可看作函數(shù)。

3、能把實際問題抽象概括為函數(shù)問題。

教學難點:

1、理解函數(shù)的概念。

2、能把實際問題抽象概括為函數(shù)問題。

教學過程設(shè)計:

一、創(chuàng)設(shè)問題情境,導入新課。

『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?

高中數(shù)學冪函數(shù)教案篇十

一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時,等號的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個變量,而代數(shù)式可以是多個變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。

高中數(shù)學冪函數(shù)教案篇十一

在函數(shù)教學中,我們不僅要在教會函數(shù)知識上下功夫,而且還應(yīng)該追求解決問題的“常規(guī)方法”——基本函數(shù)知識中所蘊含的思想方法,要從數(shù)學思想方法的高度進行函數(shù)教學。在函數(shù)的教學中,應(yīng)突出“類比”的思想和“數(shù)形結(jié)合”的思想。

2.注重“數(shù)學結(jié)合”的教學。

數(shù)形結(jié)合的思想方法是初中數(shù)學中一種重要的思想方法。數(shù)學是研究現(xiàn)實世界數(shù)量關(guān)系和空間形式的科學。而數(shù)形結(jié)合就是通過數(shù)與形之間的對應(yīng)和轉(zhuǎn)化來解決數(shù)學問題。它包含以形助數(shù)和以數(shù)解形兩個方面,利用它可使復雜問題簡單化,抽象問題具體化,它兼有數(shù)的嚴謹與形的直觀之長。

(1)讓學生經(jīng)歷繪制函數(shù)圖象的具體過程。

(2)切莫急于呈現(xiàn)畫函數(shù)圖象的簡單畫法。

(3)注意讓學生體會研究具體函數(shù)圖象規(guī)律的方法。

目標。

1、理解直線y=kx+b與y=kx之間的位置關(guān)系;。

2、會選擇兩個合適的點畫出一次函數(shù)的圖象;

3、掌握一次函數(shù)的性質(zhì).

過程與方法目標。

2、通過一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗數(shù)形結(jié)合法的應(yīng)用,培養(yǎng)推理及抽象思維能力。

2、在探究一次函數(shù)的圖象和性質(zhì)的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。

一次函數(shù)的圖象和性質(zhì)。

由一次函數(shù)的圖像歸納得出一次函數(shù)的性質(zhì)及對性質(zhì)的理解。

高中數(shù)學冪函數(shù)教案篇十二

對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。

右圖給出對于不同大小a所表示的函數(shù)圖形:

可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對稱圖形,因為它們互為反函數(shù)。

(1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。

(2)對數(shù)函數(shù)的值域為全部實數(shù)集合。

(3)函數(shù)總是通過(1,0)這點。

(4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。

如圖所示為a的不同大小影響函數(shù)圖形的情況。

可以看到:

(1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

(2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。

(3)函數(shù)圖形都是下凹的。

(4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。

(5)可以看到一個顯然的規(guī)律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數(shù)的曲線從分別接近于y軸與x軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于y軸的正半軸與x軸的負半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

(6)函數(shù)總是在某一個方向上無限趨向于x軸,永不相交。

(7)函數(shù)總是通過(0,1)這點。

高中數(shù)學冪函數(shù)教案篇十三

2.能較熟練地運用指數(shù)函數(shù)的性質(zhì)解決指數(shù)函數(shù)的平移問題;。

指數(shù)函數(shù)的性質(zhì)的應(yīng)用;。

指數(shù)函數(shù)圖象的平移變換.

1.復習指數(shù)函數(shù)的概念、圖象和性質(zhì)。

練習:函數(shù)y=ax(a0且a1)的定義域是_____,值域是______,函數(shù)圖象所過的定點坐標為.若a1,則當x0時,y1;而當x0時,y1.若00時,y1;而當x0時,y1.

例1解不等式:

(1);(2);。

(3);(4).

小結(jié):解關(guān)于指數(shù)的不等式與判斷幾個指數(shù)值的大小一樣,是指數(shù)性質(zhì)的運用,關(guān)鍵是底數(shù)所在的范圍.

例2說明下列函數(shù)的圖象與指數(shù)函數(shù)y=2x的圖象的關(guān)系,并畫出它們的示意圖:

(1);(2);(3);(4).

小結(jié):指數(shù)函數(shù)的平移規(guī)律:y=f(x)左右平移y=f(x+k)(當k0時,向左平移,反之向右平移),上下平移y=f(x)+h(當h0時,向上平移,反之向下平移).

練習:

(1)將函數(shù)f(x)=3x的圖象向右平移3個單位,再向下平移2個單位,可以得到函數(shù)的圖象.

(2)將函數(shù)f(x)=3x的圖象向右平移2個單位,再向上平移3個單位,可以得到函數(shù)的圖象.

(3)將函數(shù)圖象先向左平移2個單位,再向下平移1個單位所得函數(shù)的解析式是.

(4)對任意的a0且a1,函數(shù)y=a2x1的圖象恒過的定點的坐標是.函數(shù)y=a2x-1的圖象恒過的定點的坐標是.

小結(jié):指數(shù)函數(shù)的定點往往是解決問題的突破口!定點與單調(diào)性相結(jié)合,就可以構(gòu)造出函數(shù)的簡圖,從而許多問題就可以找到解決的突破口.

(5)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=2x和y=2|x2|的圖象?

(6)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=|2x-1|的圖象?

小結(jié):函數(shù)圖象的對稱變換規(guī)律.

例3已知函數(shù)y=f(x)是定義在r上的奇函數(shù),且x0時,f(x)=1-2x,試畫出此函數(shù)的圖象.

例4求函數(shù)的最小值以及取得最小值時的x值.

小結(jié):復合函數(shù)常常需要換元來求解其最值.

練習:

(1)函數(shù)y=ax在[0,1]上的最大值與最小值的和為3,則a等于;。

(2)函數(shù)y=2x的值域為;。

(4)當x0時,函數(shù)f(x)=(a2-1)x的值總大于1,求實數(shù)a的取值范圍.

1.指數(shù)函數(shù)的性質(zhì)及應(yīng)用;。

2.指數(shù)型函數(shù)的定點問題;。

3.指數(shù)型函數(shù)的草圖及其變換規(guī)律.

課本p55-6,7.

(1)函數(shù)f(x)的定義域為(0,1),則函數(shù)的定義域為.

(2)對于任意的x1,x2r,若函數(shù)f(x)=2x,試比較的大小.

高中數(shù)學冪函數(shù)教案篇十四

(二)解析:本節(jié)課要學的內(nèi)容指的是會判定函數(shù)在某個區(qū)間上的單調(diào)性、會確定函數(shù)的單調(diào)區(qū)間、能證明函數(shù)的單調(diào)性,其關(guān)鍵是利用形式化的定義處理有關(guān)的單調(diào)性問題,理解它關(guān)鍵就是要學會轉(zhuǎn)換式子。學生已經(jīng)掌握了函數(shù)單調(diào)性的定義、代數(shù)式的變換、函數(shù)的概念等知識,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的應(yīng)用。教學的重點是應(yīng)用定義證明函數(shù)在某個區(qū)間上的單調(diào)性,解決重點的關(guān)鍵是嚴格按過程進行證明。

二、教學目標及解析。

(一)教學目標:

掌握用定義證明函數(shù)單調(diào)性的步驟,會求函數(shù)的單調(diào)區(qū)間,提高應(yīng)用知識解決問題的能力。

(二)解析:

會證明就是指會利用三步曲證明函數(shù)的單調(diào)性;會求函數(shù)的單調(diào)區(qū)間就是指會利用函數(shù)的圖象寫出單調(diào)增區(qū)間或減區(qū)間;應(yīng)用知識解決問題就是指能利用函數(shù)單調(diào)性的意義去求參變量的取值情況或轉(zhuǎn)化成熟悉的問題。

三、問題診斷分析。

在本節(jié)課的教學中,學生可能遇到的問題是如何才能準確確定的符號,產(chǎn)生這一問題的原因是學生對代數(shù)式的恒等變換不熟練。要解決這一問題,就是要根據(jù)學生的實際情況進行知識補習,特別是因式分解、二次根式中的分母有理化的補習。

在本節(jié)課的教學中,準備使用(),因為使用(),有利于()。

高中數(shù)學冪函數(shù)教案篇十五

2.通過對抽象符號的認識與使用,使學生在符號表示方面的能力得以提高.。

難點:重點是在映射的基礎(chǔ)上理解的概念;

難點是對抽象符號的認識與使用.。

投影儀。

自學研究與啟發(fā)討論式.。

(要求學生盡量用自己的話描述初中的定義,并試舉出各類學過的例子)。

提問1.是嗎?

(由學生討論,發(fā)表各自的意見,有的認為它不是,理由是沒有兩個變量,也有的認為是,理由是可以可做.)。

現(xiàn)在請同學們打開書翻到第50頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)。

提問2.新的的定義是什么?能否用最簡單的語言來概括一下.。

(板書)2.2。

一、的概念。

問題3:映射與有何關(guān)系?(一定是映射嗎?映射一定是嗎?)。

引導學生發(fā)現(xiàn),是特殊的映射,特殊在集合a,b必是非空的數(shù)集.。

2.本質(zhì):是非空數(shù)集到非空數(shù)集的映射.(板書)。

然后讓學生試回答剛才關(guān)于是不是的問題,要求從映射的角度解釋.。

此時學生可以清楚的看到滿足映射觀點下的定義,故是一個,這樣解釋就很自然.。

教師繼續(xù)把問題引向深入,提出在映射的觀點下如何解釋是個?

從映射角度看可以是其中定義域是,值域是.。

3.的三要素及其作用(板書)。

例1以下關(guān)系式表示嗎?為什么?

(1);(2).。

解:(1)由有意義得,解得.由于定義域是空集,故它不能表示.。

(2)由有意義得,解得.定義域為,值域為.。

由以上兩題可以看出三要素的作用。

(1)判斷一個關(guān)系是否存在.(板書)。

例2下列各中,哪一個與是同一個.。

(1);(2)(3);(4).。

解:先認清,它是(定義域)到(值域)的映射,其中。

再看(1)定義域為且,是不同的;(2)定義域為,是不同的;

(4),法則是不同的;

而(3)定義域是,值域是,法則是乘2減1,與完全相同.。

(2)判斷兩個是否相同.(板書)。

4.對符號的理解(板書)。

例3已知試求(板書)。

分析:首先讓學生認清的含義,要求學生能從變量觀點和映射觀點解釋,再進行計算.。

含義1:當自變量取3時,對應(yīng)的值即;

含義2:定義域中原象3的象,根據(jù)求象的方法知.而應(yīng)表示原象的象,即.。

計算之后,要求學生了解與的區(qū)別,是常量,而是變量,只是中一個特殊值.。

1.的定義。

2.對三要素的認識。

3.對符號的認識。

五、

2.2例1.例3.。

一.的概念。

1.定義。

2.本質(zhì)例2.小結(jié):

3.三要素的認識及作用。

4.對符號的理解。

探究活動。

答案:

高中數(shù)學冪函數(shù)教案篇十六

3.探究發(fā)現(xiàn)任意角 與 的三角函數(shù)值的關(guān)系.

利用誘導公式(二),口答下列三角函數(shù)值.

(1). ;(2). ;(3). .

喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題.

由sin300= 出發(fā),用三角的定義引導學生求出 sin(-300),sin1500值,讓學生聯(lián)想若已知sin = ,能否求出sin( ),sin( )的值.

1.探究任意角 與 的三角函數(shù)又有什么關(guān)系;

2.探究任意角 與 的三角函數(shù)之間又有什么關(guān)系.

遺忘的規(guī)律是先快后慢,過程的再現(xiàn)是深刻記憶的重要途徑,在經(jīng)歷思考問題-觀察發(fā)現(xiàn)-到一般化結(jié)論的探索過程,從特殊到一般,數(shù)形結(jié)合,學生對知識的理解與掌握以深入腦中,此時以類同問題的提出,大膽的放手讓學生分組討論,重現(xiàn)了探索的整個過程,加深了知識的深刻記憶,對學生無形中鼓舞了氣勢,增強了自信,加大了挑戰(zhàn).而新知識點的自主探討,對教師駕馭課堂的能力也充滿了極大的挑戰(zhàn).彼此相信,彼此信任,產(chǎn)生了師生的默契,師生共同進步.

誘導公式(三)、(四)

給出本節(jié)課的課題

三角函數(shù)誘導公式

標題的后出,讓學生在經(jīng)歷整個探索過程后,還回味在探索,發(fā)現(xiàn)的成功喜悅中,猛然回頭,哦,原來知識點已經(jīng)輕松掌握,同時也是對本節(jié)課內(nèi)容的小結(jié).

的三角函數(shù)值,等于 的同名函數(shù)值,前面加上一個把 看成銳角時原函數(shù)值的符合.(即:函數(shù)名不變,符號看象限.)

設(shè)計意圖

簡便記憶公式.

求下列三角函數(shù)的值:(1).sin( ); (2). co.

設(shè)計意圖

本練習的設(shè)置重點體現(xiàn)一題多解,讓學生不僅學會靈活運用應(yīng)用三角函數(shù)的誘導公式,還能養(yǎng)成靈活處理問題的良好習慣.這里還要給學生指出課本中的“負角”化為“正角”是針對具體負角而言的.

學生練習

化簡: .

設(shè)計意圖

重點加強對三角函數(shù)的誘導公式的綜合應(yīng)用.

1.小結(jié)使用誘導公式化簡任意角的三角函數(shù)為銳角的步驟.

2.體會數(shù)形結(jié)合、對稱、化歸的思想.

3.“學會”學習的習慣.

1.課本p-27,第1,2,3小題;

2.附加課外題 略.

設(shè)計意圖

加強學生對三角函數(shù)的誘導公式的記憶及靈活應(yīng)用,附加題的設(shè)置有利于有能力的同學“更上一樓”.

八.課后反思

對本節(jié)內(nèi)容在進行教學設(shè)計之前,本人反復閱讀了課程標準和教材,針對教材的內(nèi)容,編排了一系列問題,讓學生親歷知識發(fā)生、發(fā)展的過程,積極投入到思維活動中來,通過與學生的互動交流,關(guān)注學生的思維發(fā)展,在逐漸展開中,引導學生用已學的知識、方法予以解決,并獲得知識體系的更新與拓展,收到了一定的預(yù)期效果,尤其是練習的處理,讓學生通過個人、小組、集體等多種解難釋疑的嘗試活動,感受“觀察——歸納——概括——應(yīng)用”等環(huán)節(jié),在知識的形成、發(fā)展過程中展開思維,逐步培養(yǎng)學生發(fā)現(xiàn)問題、探索問題、解決問題的能力和創(chuàng)造性思維的能力,充分發(fā)揮了學生的主體作用,也提高了學生主體的合作意識,達到了設(shè)計中所預(yù)想的目標。

然而還有一些缺憾:對本節(jié)內(nèi)容,難度不高,本人認為,教師的干預(yù)(講解)還是太多。

在以后的教學中,對于一些較簡單的內(nèi)容,應(yīng)放手讓學生多一些探究與合作。隨著教育改革的深化,教學理念、教學模式、教學內(nèi)容等教學因素,都在不斷更新,作為數(shù)學教師要更新教學觀念,從學生的全面發(fā)展來設(shè)計課堂教學,關(guān)注學生個性和潛能的發(fā)展,使教學過程更加切合《課程標準》的要求。用全新的理論來武裝自己,讓自己的課堂更有效。

高中數(shù)學冪函數(shù)教案篇十七

1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進行初步的應(yīng)用。

(1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關(guān)系正確描繪對數(shù)函數(shù)的圖象。

(2)能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質(zhì)去研究認識對數(shù)函數(shù)的性質(zhì),初步學會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題。

2.通過對數(shù)函數(shù)概念的學習,樹立相互聯(lián)系相互轉(zhuǎn)化的觀點,通過對數(shù)函數(shù)圖象和性質(zhì)的學習,滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學生的觀察,分析,歸納等邏輯思維能力。

3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學生進行對稱美,簡潔美等審美教育,調(diào)動學生學習數(shù)學的積極性。

(1)對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學生已經(jīng)學過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的。故是對上述知識的應(yīng)用,也是對函數(shù)這一重要數(shù)學思想的進一步認識與理解。對數(shù)函數(shù)的概念,圖象與性質(zhì)的學習使學生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸。它是解決有關(guān)自然科學領(lǐng)域中實際問題的重要工具,是學生今后學習對數(shù)方程,對數(shù)不等式的基礎(chǔ)。

(2)本節(jié)的教學重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì)。難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì)。由于對數(shù)函數(shù)的概念是一個抽象的形式,學生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學的重點。

(3)本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開。而通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點。

(1)對數(shù)函數(shù)在引入時,就應(yīng)從學生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。

(2)在本節(jié)課中結(jié)合對數(shù)函數(shù)教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數(shù)這條主線引導學生思考的方向。這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣。

高中數(shù)學冪函數(shù)教案篇十八

1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。

2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應(yīng)地會求出另一個量的值。

3、會對一個具體實例進行概括抽象成為數(shù)學問題。

過程與方法。

1、通過函數(shù)概念,初步形成學生利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。

2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學生的抽象思維能力。

情感與價值觀。

1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。

2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學知識的理解和有效的學習模式。

1、掌握函數(shù)概念。

2、判斷兩個變量之間的關(guān)系是否可看作函數(shù)。

3、能把實際問題抽象概括為函數(shù)問題。

1、理解函數(shù)的概念。

2、能把實際問題抽象概括為函數(shù)問題。

一、創(chuàng)設(shè)問題情境,導入新課。

『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?

高中數(shù)學冪函數(shù)教案篇十九

一、教學目標:

1、知識與技能:

(1)結(jié)合實例,了解正整數(shù)指數(shù)函數(shù)的概念.

(2)能夠求出正整數(shù)指數(shù)函數(shù)的解析式,進一步研究其性質(zhì).

2、過程與方法:

(1)讓學生借助實例,了解正整數(shù)指數(shù)函數(shù),體會從具體到一般,從個別到整體的研究過程和研究方法.

(2)從圖像上觀察體會正整數(shù)指數(shù)函數(shù)的性質(zhì),為這一章的學習作好鋪墊.

3、情感.態(tài)度與價值觀:使學生通過學習正整數(shù)指數(shù)函數(shù)體會學習指數(shù)函數(shù)的重要意義,增強學習研究函數(shù)的積極性和自信心.

二、教學重點:正整數(shù)指數(shù)函數(shù)的定義.教學難點:正整數(shù)指數(shù)函數(shù)的解析式的確定.

三、學法指導:學生觀察、思考、探究.教學方法:探究交流,講練結(jié)合。

四、教學過程。

(一)新課導入。

[互動過程1]:

(2)請你用圖像表示1個細胞分裂的次數(shù)n()與得到的細胞個數(shù)y之間的關(guān)系;。

(3)請你寫出得到的細胞個數(shù)y與分裂次數(shù)n之間的關(guān)系式,試用科學計算器計算細胞分裂15次、20次得到的細胞個數(shù).

解:

分裂次數(shù)12345678。

細胞個數(shù)248163264128256。

(3)細胞個數(shù)與分裂次數(shù)之間的關(guān)系式為,用科學計算器算得,所以細胞分裂15次、20次得到的細胞個數(shù)分別為32768和1048576.

小結(jié):從本題中可以看出我們得到的細胞分裂個數(shù)都是底數(shù)為2的指數(shù),而且指數(shù)是變量,取值為正整數(shù).細胞個數(shù)與分裂次數(shù)之間的關(guān)系式為.細胞個數(shù)隨著分裂次數(shù)的增多而逐漸增多.

[互動過程2]:問題2.電冰箱使用的氟化物的釋放破壞了大氣上層的臭氧層,臭氧含量q近似滿足關(guān)系式q=q00.9975t,其中q0是臭氧的初始量,t是時間(年),這里設(shè)q0=1.

(1)計算經(jīng)過20,40,60,80,1,臭氧含量q;。

(2)用圖像表示每隔臭氧含量q的變化;。

(3)試分析隨著時間的增加,臭氧含量q是增加還是減少.

(2)用圖像表示每隔20年臭氧含量q的變化,它的圖像是由一些孤立的點組成.

(3)通過計算和觀察圖形可以知道,隨著時間的增加,臭氧含量q在逐漸減少.

小結(jié):從本題中可以看出我們得到的臭氧含量q都是底數(shù)為0.9975的指數(shù),而且指數(shù)是變量,取值為正整數(shù).臭氧含量q近似滿足關(guān)系式q=0.9975t,隨著時間的增加,臭氧含量q在逐漸減少.

正整數(shù)指數(shù)函數(shù)的定義:一般地,函數(shù)叫作正整數(shù)指數(shù)函數(shù),其中是自變量,定義域是正整數(shù)集.

說明:1.正整數(shù)指數(shù)函數(shù)的圖像是一些孤立的點,這是因為函數(shù)的定義域是正整數(shù)集.2.在研究增長問題、復利問題、質(zhì)量濃度問題中常見這類函數(shù).

(二)、例題:某地現(xiàn)有森林面積為1000,每年增長5%,經(jīng)過年,森林面積為.寫出,間的函數(shù)關(guān)系式,并求出經(jīng)過5年,森林的面積.

分析:要得到,間的函數(shù)關(guān)系式,可以先一年一年的增長變化,找出規(guī)律,再寫出,間的函數(shù)關(guān)系式.

解:根據(jù)題意,經(jīng)過一年,森林面積為1000(1+5%);經(jīng)過兩年,森林面積為1000(1+5%)2;經(jīng)過三年,森林面積為1000(1+5%)3;所以與之間的函數(shù)關(guān)系式為,經(jīng)過5年,森林的面積為1000(1+5%)5=1276.28(hm2).

練習:課本練習1,2。

解:一個月后他應(yīng)取回的錢數(shù)為y=2000(1+2.38%),二個月后他應(yīng)取回的錢數(shù)為y=2000(1+2.38%)2;,三個月后他應(yīng)取回的錢數(shù)為y=2000(1+2.38%)3,,n個月后他應(yīng)取回的錢數(shù)為y=2000(1+2.38%)n;所以n與y之間的關(guān)系為y=2000(1+2.38%)n(nn+),一年后他全部取回,他能取回的錢數(shù)為y=2000(1+2.38%)12.

(三)、小結(jié):1.正整數(shù)指數(shù)函數(shù)的圖像是一些孤立的點,這是因為函數(shù)的定義域是正整數(shù)集.2.在研究增長問題、復利問題、質(zhì)量濃度問題中常見這類函數(shù)。

【本文地址:http://www.mlvmservice.com/zuowen/15692108.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔