教案要注重教學(xué)的靈活性和變通性,適應(yīng)不同學(xué)生的學(xué)習(xí)需求和發(fā)展水平。教案應(yīng)該符合學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)需要。高質(zhì)量的教案范文可以幫助教師更好地解決教學(xué)問題和困惑。
初中數(shù)學(xué)有理數(shù)乘法教案篇一
本次說課我共分成教材分析、教學(xué)方法與手段、教學(xué)過程分析和幾點思考四部分,具體內(nèi)容如下:
(一)教材的地位和作用:本節(jié)課的內(nèi)容是《新人教版七年級數(shù)學(xué)》教材中的第一章第四節(jié),“有理數(shù)的乘除法”是把“有理數(shù)乘法”和“有理數(shù)除法”的內(nèi)容進(jìn)行整合,在“有理數(shù)的加減混合運算”之后的一個學(xué)習(xí)內(nèi)容。在本章教材的編排中,“有理數(shù)的乘法”起著承上啟下的作用,它既是有理數(shù)加減的深入學(xué)習(xí),又是有理數(shù)除法、有理數(shù)乘方的基礎(chǔ),在有理數(shù)運算中有很重要的地位?!坝欣頂?shù)的乘法”從具體情境入手,把乘法看做連加,通過類比,讓學(xué)生進(jìn)行充分討論、自主探索與合作交流的形式,自己歸納出有理數(shù)乘法法則。通過這個探索的過程,發(fā)展了學(xué)生觀察、歸納、猜測、驗證的能力,使學(xué)生在學(xué)習(xí)的過程中獲得成功的體驗,增強(qiáng)了自信心。所以本節(jié)課的學(xué)習(xí)具有一定的現(xiàn)實地位。
(二)學(xué)情分析:因為學(xué)生在小學(xué)的學(xué)習(xí)里已經(jīng)接觸過正數(shù)和0的乘除法,對于兩個正數(shù)相乘、正數(shù)與0相乘、兩個正數(shù)相除、0與正數(shù)相除的情況學(xué)生已經(jīng)掌握。同時由于前面學(xué)習(xí)了有理數(shù)的加減法運算,學(xué)生對負(fù)數(shù)參與運算有了一定的認(rèn)識,但仍還有一定的困難。另外,經(jīng)過前一階段的教學(xué),學(xué)生對數(shù)學(xué)問題的研究方法有了一定的了解,課堂上合作交流也做得相對較好。
(三)教學(xué)目標(biāo)分析:基于以上的學(xué)情分析,我確定本節(jié)課的教學(xué)目標(biāo)如下。
1、知識目標(biāo):讓學(xué)生經(jīng)歷學(xué)習(xí)過程,探索歸納得出有理數(shù)的乘除法法則,并能熟練運用。
2、能力目標(biāo):在課堂學(xué)習(xí)過程中,使學(xué)生經(jīng)歷探索有理數(shù)乘除法法則的過程,發(fā)展觀察、猜想、歸納、驗證、運算的能力,同時在探索法則的過程中培養(yǎng)學(xué)生分類和歸納的數(shù)學(xué)思想。
3、情感態(tài)度和價值觀:在探索過程中尊重學(xué)生的學(xué)習(xí)態(tài)度,樹立學(xué)生學(xué)習(xí)數(shù)學(xué)的自信心,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)思維習(xí)慣。
4、教學(xué)重點:會進(jìn)行有理數(shù)的乘除法運算。
5、教學(xué)難點:有理數(shù)乘除法法則的探索與運用。
確定教學(xué)目標(biāo)的理由依據(jù)是:新課標(biāo)中指出課堂教學(xué)中應(yīng)體現(xiàn)知識與技能、過程與方法、情感態(tài)度與價值觀的.三維目標(biāo),同時也基于本節(jié)內(nèi)容的地位與作用。而確定重難點是根據(jù)新課標(biāo)的要求,結(jié)合學(xué)生的學(xué)情而確定的。
根據(jù)本節(jié)課的內(nèi)容特點及學(xué)生的學(xué)情,我選擇的教學(xué)方法是引導(dǎo)探索、小組合作、效果反饋的教學(xué)方法。為了提高課堂的教學(xué)容量,增加實際問題的直觀性,我選用多媒體輔助教學(xué)手段。
關(guān)于學(xué)法:本節(jié)課里我主要指導(dǎo)學(xué)生采用了自主探索、合作交流、自我反思的學(xué)習(xí)方法,我想這樣更能有效的培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的能力,更好的培養(yǎng)學(xué)生數(shù)學(xué)地思考問題。
本課共6課時,重點是有理數(shù)乘除法法則的教學(xué),下面我重點說有理數(shù)乘法法則的教學(xué)。整體的教學(xué)程序包括:情景創(chuàng)設(shè)、提出問題;引導(dǎo)探索、歸納結(jié)論;知識運用、加深理解;變式練習(xí)、形成能力;回顧與反思、納入知識系統(tǒng);布置作業(yè);板書設(shè)計七部分。
初中數(shù)學(xué)有理數(shù)乘法教案篇二
數(shù)學(xué)學(xué)習(xí)是最看重基礎(chǔ)的,只有堅實的基礎(chǔ)才能夠做好每一道題目。那么今天小編就來為大家分享和總結(jié)一下關(guān)于初中數(shù)學(xué)有理數(shù)的乘方教案的相關(guān)信息,希望同學(xué)們能夠?qū)⑦@篇教案中的知識給總結(jié)清楚了。
一、說教材。
1、地位作用。
有理數(shù)的乘方是初一年級上學(xué)期第一章第五節(jié)的教學(xué)內(nèi)容,是有理數(shù)的一種基本運算,從教材編排的結(jié)構(gòu)上看,共需要4個課時,此課為第一課時,是在學(xué)生學(xué)習(xí)了有理數(shù)的加、減、乘、除運算的基礎(chǔ)上來學(xué)習(xí)的,它既是有理數(shù)乘法的推廣和延續(xù),又是后繼學(xué)習(xí)有理數(shù)的混合運算、科學(xué)記數(shù)法和開方的基礎(chǔ),起到承前啟后、鋪路架橋的作用。在這一課的教學(xué)過程中,可以培養(yǎng)學(xué)生觀察問題、分析問題和解決問題的能力,以及轉(zhuǎn)化的數(shù)學(xué)思想,通過這一課的學(xué)習(xí),對培養(yǎng)學(xué)生的這些能力和轉(zhuǎn)化的數(shù)學(xué)思想起到很重要的作用。
2、教學(xué)目標(biāo)。
(1)讓學(xué)生理解并掌握有理數(shù)的乘方、冪、底數(shù)、指數(shù)的概念及意義;能夠正確進(jìn)行有理數(shù)的乘方運算。
(2)在生動的情境中讓學(xué)生獲得有理數(shù)乘方的初步經(jīng)驗;培養(yǎng)學(xué)生觀察、分析、歸納、概括的能力;經(jīng)歷從乘法到乘方的推廣的過程,從中感受轉(zhuǎn)化的數(shù)學(xué)思想。
(3)讓學(xué)生通過觀察、推理,歸納出有理數(shù)乘方的符號法則,增進(jìn)學(xué)生學(xué)好數(shù)學(xué)的自信心。
(4)經(jīng)歷知識的拓展過程,培養(yǎng)學(xué)生探究的能力和動手操作的能力,體會與他人合作交流的重要性。
3、教學(xué)重點:
有理數(shù)的乘方、冪、底數(shù)、指數(shù)的概念及其相互間的關(guān)系;有理數(shù)乘方的運算方法。
4、教學(xué)難點:
有理數(shù)的乘方、冪、底數(shù)、指數(shù)的概念及其相互間的關(guān)系的理解。
二、說教學(xué)方法。
啟發(fā)誘導(dǎo)式、實踐探究式。
三、說學(xué)法。
根據(jù)初一學(xué)生好動、好問、好奇的心理特征,課堂上采取由淺入深的啟發(fā)誘導(dǎo),隨著教學(xué)內(nèi)容的深入,讓學(xué)生一步一步的跟著動腦、動手、動口,在合作交流中培養(yǎng)學(xué)生學(xué)習(xí)的積極性和主動性,使學(xué)習(xí)方式由“學(xué)會”變?yōu)椤皶W(xué)”。
四、說教學(xué)手段。
利用多媒體教學(xué),目的之一是使課堂生動、形象又直觀,能激發(fā)學(xué)生的學(xué)習(xí)興趣,目的之二是增大教學(xué)容量,增強(qiáng)教學(xué)效果。
五、說教學(xué)設(shè)計。
以上就是小編為大家分享和總結(jié)的關(guān)于初中數(shù)學(xué)有理數(shù)的乘方教案的相關(guān)信息,希望同學(xué)們能夠很好地將這一部分的知識給總結(jié)清楚,更好地為考試做準(zhǔn)備。
初中數(shù)學(xué)有理數(shù)乘法教案篇三
知識與技能:理解掌握有理數(shù)的減法法則,會將有理數(shù)的減法運算轉(zhuǎn)化為加法運算。
過程與方法:通過把減法運算轉(zhuǎn)化為加法運算,向?qū)W生滲 透轉(zhuǎn)化思想,通過有理數(shù)的 減法運算,培養(yǎng)學(xué)生的運算能力。
情感態(tài)度與價值觀:通過揭示有理數(shù)的減法法則,滲透事物間普遍聯(lián)系、相互轉(zhuǎn)化的辯證唯物主義思想。
運用有理數(shù)的減法法則,熟練進(jìn)行減法運算。
理解有理數(shù)減法法則。
本節(jié)是在學(xué)習(xí)了正負(fù)數(shù)、相反數(shù)、有理數(shù)加法運算之后,以初中代數(shù)第一 冊第53頁的有理數(shù)減法法則及有理數(shù)減法運算的例1、例2為課堂教學(xué)內(nèi)容。有理數(shù)的'減法運算是一種基本的有理數(shù)運算,對今后正確熟練地進(jìn)行有理數(shù)的混合運算,并對解決實際問題都有十分重要的作用。
師生互動法
幻燈片
1課時
1、計算(口答):
(1) 1+(-2)
(2) -10+(+3)
(3) +10+(-3)
2、出示幻燈片二:
如圖:
教師引導(dǎo)觀察
教師總結(jié):這就是我們今天要學(xué)習(xí)的內(nèi)容(引入新課,板書課題)
1、師:誰能把10-3=7這個式子中的性質(zhì)符號補(bǔ)出來呢?
(+10)-(+3)=7
再計算:(+10)+(-3),師讓學(xué)生觀察兩式結(jié)果,由此得到:
(+10)-(+3)=(+10)+(-3)
觀察減法是否可以轉(zhuǎn)化為加法 計算呢?是如何轉(zhuǎn)化的呢?
(教師發(fā)揮主導(dǎo)作用,注意學(xué)生的參與意識)
2、再看一題:
計算:(-10)-(-3)
問題:計算:(-10)+(+3)
教師引導(dǎo),學(xué)生觀察上述兩題結(jié)果,由此得到
(-10)-(-3)=(-10)+(+3)
教師進(jìn)一步引導(dǎo)學(xué)生觀察式子,你能得到什么結(jié)論呢?
教師總結(jié):由以上兩式可以看出減法運算可以轉(zhuǎn)化成加法運算。
教師提問:通過以上的學(xué)習(xí),同學(xué)們想一想兩個有理數(shù)相減的法則是什么?
教師對學(xué)生回答給予點評,總結(jié)有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
強(qiáng)調(diào)法則:(1)減法轉(zhuǎn)化為加法,減數(shù)要變成相反數(shù)(2)法則適用于任何兩個有理數(shù)相減(3)用字母表示一般形式為a-b=a+(-b)
3 、例題講解:
出示幻燈片三(例1和例2)
例1計算:
(1)6-(-8)
(2)(-2)-3
(3)(-2.8)-(-1.7)
(4)0-4
(5)5+(-3)-(-2)
(6)(-5)-(-2.4)+(-1)
教師板書做示范,強(qiáng)調(diào)解題的規(guī)范性, 然后師生共同總結(jié)解題步驟,(1)轉(zhuǎn)化(2)進(jìn)行加法運算。
師巡視指導(dǎo),最后師生講評兩個學(xué)生的解題過程。
課后練習(xí)1、2
教師巡視指導(dǎo)
師組織學(xué)生自己編題
1、 談?wù)劚竟?jié)課你有哪些收獲和體會?[
2、本節(jié)課涉及的數(shù)學(xué)思想和數(shù)學(xué)方法是什么
教師點評:有 理數(shù)減法法則是一個轉(zhuǎn)化法則,要求同學(xué)們掌握并能應(yīng)用進(jìn) 行計算。
課堂檢測(包括基礎(chǔ)題和能力提高題)
1、-9-(-11)
2、3-15
學(xué)生思考后搶答,盡量照顧不同層次的學(xué)生參與的積極性。
學(xué)生觀察思考如何計算
學(xué)生觀察思考
互相討論
學(xué)生口述解題過程
由兩個學(xué)生板演,其他學(xué)生在練習(xí)本上做
第1小題學(xué)生搶答
第2小題找兩個 學(xué)生板演。
學(xué)生回答
學(xué)生相互交流自己的收獲和體會,教師參與互動并給予鼓勵性評價。
綜合考查學(xué)以致用
既復(fù)習(xí)鞏固有理數(shù)加法法則,同時為進(jìn)行有理數(shù)減法運算打下基礎(chǔ)
創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的認(rèn)知興趣。
讓學(xué)生通過嘗試,自己認(rèn)識減法可以轉(zhuǎn)化為加法計算。
學(xué)生通過一個問題易于充分發(fā)揮學(xué)習(xí)的主動性,同時也培養(yǎng)了學(xué)生分析問題的能力
可以培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)風(fēng)和良好 的學(xué)習(xí)習(xí)慣,同時鍛煉學(xué)生的表達(dá)能力
可以照顧不層次的學(xué)生,調(diào)動學(xué)生學(xué)習(xí)積極性。
通過練習(xí)讓學(xué)生進(jìn)一步鞏固新知,體驗知識的應(yīng)用性。
能增強(qiáng)學(xué)生學(xué)習(xí)的主動性和參與意識。
學(xué)生嘗試小結(jié),疏理知識,自由發(fā)表學(xué)習(xí)心得,能鍛煉學(xué)生的語言表達(dá)能力和歸納概括能力。
鍛煉學(xué)生綜合運用知識,獨立解題的能力
板書設(shè)計:
2.6有 理數(shù)的減法
有理數(shù)減法法則:
(+10)-(+3)=(+10)+(-3)
( -10)-(-3)=(-10)+(+3)
減去一個數(shù)等于加上這個數(shù)的相反數(shù). 例1:
例2:
練習(xí):
本節(jié)課我在問題探索過程中,以提問的形式展現(xiàn)新問題,激發(fā)學(xué)生的好奇心,學(xué)生學(xué)習(xí)的積極性很高,討論交流的氣氛很熱烈,解決問題后有 一種成就感,從而使學(xué)生更積極主動的學(xué)習(xí),并且營造了良好的學(xué)習(xí)氛圍,從而收到較好的學(xué)習(xí)效果。
初中數(shù)學(xué)有理數(shù)乘法教案篇四
能運用有理數(shù)加法法則,正確進(jìn)行有理數(shù)加法運算。
經(jīng)歷探索有理數(shù)加法法則的過程,感受數(shù)學(xué)學(xué)習(xí)的方法。
一、創(chuàng)設(shè)情境。
小學(xué)里,我們學(xué)過加法和減法運算,引進(jìn)負(fù)數(shù)后,怎樣進(jìn)行有理數(shù)的加法和減法運算呢?
1、試一試。
你能把上面比賽的過程及結(jié)果用有理數(shù)的算式表示出來嗎?
做一做:比賽中勝負(fù)難料,兩場比賽的結(jié)果還可能有哪些情況呢?動動手填表。
你還能舉出一些應(yīng)用有理數(shù)加法的實際例子嗎?
二、探究歸納。
用數(shù)軸和算式可以將以上過程及結(jié)果分別表示為:
算式:________________________。
用數(shù)軸和算式可以將以上過程及結(jié)果分別表示為:
算式:________________________。
請用數(shù)軸和算式分別表示以上過程及結(jié)果:
算式:________________________。
仿照上面的做法,請在數(shù)軸上呈現(xiàn)下面的算式所表示的筆尖運動的過程和結(jié)果。
4、觀察、思考、討論、交流并得出有理數(shù)加法法則。
(1)通過計算說明小蟲是否回到起點p。
(2)如果小蟲爬行的速度為0.5厘米/秒,那么小蟲共爬行了多長時間。
1、高速公路養(yǎng)護(hù)小組,乘車沿東西向公路巡視維護(hù),如果約定向東為正,向西為負(fù),當(dāng)天的行駛記錄如下(單位:km)。
+17,-9,+7,-15,-3,+11,-6,-8,+5,+16。
(1)養(yǎng)護(hù)小組最后到達(dá)的地方在出發(fā)點的哪個方向?距出發(fā)點多遠(yuǎn)?
(2)養(yǎng)護(hù)過程中,最遠(yuǎn)外離出發(fā)點有多遠(yuǎn)?
(3)若汽車耗油量為0.09升/km,則這次養(yǎng)護(hù)共耗油多少升?
初中數(shù)學(xué)有理數(shù)乘法教案篇五
1、知識目標(biāo):了解有理數(shù)乘法法則的合理性,掌握有理數(shù)的乘法法則,熟練運用有理數(shù)的法則進(jìn)行準(zhǔn)確運算。
2、能力目標(biāo):通過對問題的變式探索,培養(yǎng)自己觀察、分析、抽象、概括的能力。
3、情感目標(biāo):培養(yǎng)積極思考和勇于探索的精神,形成良好的學(xué)習(xí)習(xí)慣。
重點:有理數(shù)乘法運算法則的推導(dǎo)及熟練運用。
難點:有理數(shù)乘法運算中積的符號的確定。
1、在小學(xué)我們已經(jīng)接觸了乘法,那什么叫乘法呢?
求幾個的運算,叫乘法。
一個數(shù)同0相乘,得0。
2、請你列舉幾道小學(xué)學(xué)過的乘法算式。
規(guī)定:向右為正,現(xiàn)在之后為正。
3分鐘后蝸牛應(yīng)在o點的()邊()cm處。
可以列式為:(+2)(+3)=。
問題2:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘后蝸牛在什么位置?
規(guī)定:向右為正,現(xiàn)在之后為正。
3分鐘后蝸牛應(yīng)在o點的()邊()cm處。
可以列式為:
問題3:如果蝸牛一直以每分鐘2cm的速度向右爬行,那么3分鐘前蝸牛在什么位置?
規(guī)定:向右為正,現(xiàn)在之后為正。
3分鐘前蝸牛應(yīng)在o點的()邊()cm處。
可以表示為:
問題4:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘前蝸牛在什么位置?
規(guī)定:向右為正,現(xiàn)在之后為正。
3分鐘前蝸牛應(yīng)在o點的()邊()cm處。
可以表示為:
2、觀察這四個式子:
(+2)(+3)=+6(—2)(—3)=+6。
(—2)(+3)=—6(+2)(—3)=—6。
正數(shù)乘正數(shù)積為__數(shù):負(fù)數(shù)乘負(fù)數(shù)積為__數(shù):
負(fù)數(shù)乘正數(shù)積為__數(shù):正數(shù)乘負(fù)數(shù)積為__數(shù):
乘積的絕對值等于各乘數(shù)絕對值的_____。
思考:當(dāng)一個因數(shù)為0時,積是多少?
兩數(shù)相乘,同號得,異號得,并把絕對值。
任何數(shù)同0相乘,都得。
1、你能確定下列乘積的符號嗎?
37積的符號為;(—3)7積的符號為;
3(—7)積的`符號為;(—3)(—7)積的符號為。
2先閱讀,再填空:
(—5)x(—3)。同號兩數(shù)相乘。
(—5)x(—3)=+()得正。
5x3=15把絕對值相乘。
所以(—5)x(—3)=15。
填空:(—7)x4____________________。
(—7)x4=—()___________。
7x4=28_____________。
所以(—7)x4=____________。
[例1]計算:
(1)(—5)(2)(—5)。
(3)(—6)(—0.45)(4)(—7)0=。
解:(1)(—5)(—6)=+(56)=+30=30。
請同學(xué)們仿照上述步驟計算(2)(3)(4)。
(2)(—5)6==。
(3)(—6)(—0.45)==。
(4)(—7)0=。
讓我們來總結(jié)求解步驟:
兩個數(shù)相乘,應(yīng)先確定積的,再確定積的。
1、小組口算比賽,看誰更棒。
(1)3(—4)(2)2(—6)(3)(—6)2。
(4)6(—2)(5)(—6)0(6)0(—6)。
2、仔細(xì)計算。,注意積的符號和絕對值。
(1)(—4)0.25(2)(—0.5)(—2)(3)(—)。
(4)(—2)(—)(5)(—)(—)(6)(—)5。
1、下列說法錯誤的是()。
a、一個數(shù)同0相乘,仍得0。
b、一個數(shù)同1相乘,仍得原數(shù)。
c、如果兩個數(shù)的乘積等于1,那么這兩個數(shù)互為相反數(shù)。
d、一個數(shù)同—1相乘,得原數(shù)的相反數(shù)。
2、在—2,3,4,—5這四個數(shù)中,任意兩個數(shù)相乘,所得的積最大的是()。
a、10b、12c、—20d、不是以上的答案。
3、計算下列各題:
(5)(—6)(—5)=;(6)(—5)(—6)=。
初中數(shù)學(xué)有理數(shù)乘法教案篇六
2、使學(xué)生更多經(jīng)歷有關(guān)知識發(fā)生、規(guī)律發(fā)現(xiàn)過程。
重點:對乘法運算法則的運用,對積的確定。
難點:如何在該知識中注重知識體系的延續(xù)。
有理數(shù)的乘法是小學(xué)所學(xué)乘法運算的延續(xù),也是在學(xué)習(xí)了有理數(shù)的加法法則與有理數(shù)的減法法則的基礎(chǔ)上所學(xué)習(xí)的,所以應(yīng)注意到各種法則間的必然聯(lián)系,在本節(jié)中應(yīng)注重學(xué)生學(xué)習(xí)的'過程,多讓學(xué)生經(jīng)歷知識、規(guī)律發(fā)現(xiàn)的過程。在學(xué)習(xí)中應(yīng)掌握有理數(shù)的乘法法則。
1、知識基礎(chǔ):
其一:小學(xué)所學(xué)過的乘法運算方法;
其二:有關(guān)在加法運算中結(jié)果的確定方法與步驟。
2、知識形成:
(引例)一只小蟲沿一條東西向的跑道,以每分鐘3米的速度爬行。
列式:
即:小蟲位于原來出發(fā)位置的東方6米處。
拓展:如果規(guī)定向東為正,向西為負(fù)。
列式:
即:小蟲位于原來出發(fā)位置的西方6米處。
概括:把一個因數(shù)換成它的相反數(shù),所得的積是原來的積的相反數(shù)。
3、設(shè)疑:
如果我們把中的一個因數(shù)2換成它的相。
反數(shù)-2時,所得的積又會有什么變化?
當(dāng)然,當(dāng)其中的一個因數(shù)為0時,所得的積還是等于0。
兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘;
任何數(shù)與零相乘,都得零。
例:計算:
p52.1、2、3。
本節(jié)課從實際情形入手,對多種情形進(jìn)行分析,從一般中找到規(guī)律,從而得到有關(guān)有理數(shù)乘法的運算法則。在運算中應(yīng)強(qiáng)調(diào)注意如何正確得到積的結(jié)果。
p57.1、2、3。
1、小學(xué)數(shù)學(xué)都學(xué)過哪些乘法的運算律?
2、在對有理數(shù)的簡便運算中,一般應(yīng)考慮到哪些可能的情況?
初中數(shù)學(xué)有理數(shù)乘法教案篇七
知識與能力:在現(xiàn)實背景中,理解有理數(shù)乘方的意義,掌握有理數(shù)乘方的運算。
過程與方法:培養(yǎng)學(xué)生觀察、分析、比較、歸納、概括的能力,滲透轉(zhuǎn)化的思想。
情感態(tài)度與價值觀:培養(yǎng)學(xué)生勤思,認(rèn)真,勇于探索的精神,并聯(lián)系實際,加強(qiáng)理解,體會數(shù)學(xué)給我們的生活帶來的便利。
教學(xué)重點:正確理解乘方的意義,掌握乘方的運算法則,進(jìn)行有理數(shù)乘方運算。
教學(xué)難點:正確理解乘方、底數(shù)、指數(shù)的概念并合理運算。
教材分析:本節(jié)內(nèi)容從小學(xué)所學(xué)過的一個數(shù)的平方與立方出發(fā),介紹了乘方的概念,然后,結(jié)合有理數(shù)乘方的運算,講述了乘方的運算方法。跟這部分內(nèi)容有關(guān)聯(lián)的是后面“科學(xué)計數(shù)法”、“有理數(shù)的混合運算”等部分內(nèi)容。
教學(xué)方法:
教法:引導(dǎo)探索法、嘗試指導(dǎo)法,充分體現(xiàn)學(xué)生主體地位;。
學(xué)法:學(xué)生觀察思考,自主探索,合作交流。
教學(xué)用具:電腦多媒體。
課時安排:一課時。
教學(xué)過程:教學(xué)環(huán)節(jié)、教師活動、學(xué)生活動、設(shè)計意圖。
創(chuàng)設(shè)情境:(出示珠穆朗瑪峰圖片)。
引語:同學(xué)們,珠穆朗瑪峰高嗎?對,它的海拔有8848千米,可是將一張紙連續(xù)對折30次,會有12個珠穆朗瑪峰高,你們感覺神奇嗎?就讓我們帶著這份神奇走進(jìn)數(shù)學(xué)課堂。要求學(xué)生折紙試驗,對折一次變成了幾層?對折2次變成了幾層?連續(xù)對折30次,應(yīng)該列一個怎樣的算式?對折100次呢?如果把這些式子寫出來,太麻煩,下面咱們一起來認(rèn)識一位數(shù)學(xué)新朋友,相信他能幫你解決這個難題。
板書課題:拿出課前準(zhǔn)備好的紙,每個學(xué)生都試驗一下,思考回答問題。激情導(dǎo)入,激發(fā)學(xué)生的求知欲。
揭示學(xué)習(xí)目標(biāo):電腦展示學(xué)習(xí)目標(biāo)、學(xué)生感悟、使學(xué)生了解本節(jié)學(xué)習(xí)內(nèi)容。
電腦展示:
1.了解有理數(shù)乘方的概念。
2.理解冪,指數(shù),底數(shù)。
3.一個數(shù)本身可以看作這個數(shù)本身的次方。
4.(-a)n與-an一樣嗎?為什么?
電腦展示:
1.把下列各式寫成乘方的形式,并指出底數(shù)和指數(shù)。
(-3)×(-3)×(-3)×(-3)。
-2×2×2×2×2×2×2。
2.你自己能找到同樣的例子嗎?
3.計算:(–2)3(–13)3-26。
學(xué)生積極思考,相互交流討論,讓不同層次的學(xué)生發(fā)言。此組練習(xí)具有梯度性,可調(diào)動不同層次學(xué)生的積極性。
完成下列計算:
22232425。
(-2)2(-2)3(-2)4(-2)5。
觀察計算結(jié),想一想:正數(shù)冪的符號與指數(shù)有何關(guān)系?負(fù)數(shù)冪的符號與指數(shù)有何關(guān)系?
學(xué)生對計算結(jié)果進(jìn)行分析相互交流得出結(jié)論,把問題再次交給學(xué)生,充分發(fā)揮學(xué)生的主觀能動性,培養(yǎng)學(xué)生歸納、總結(jié)的能力。
學(xué)生做作業(yè)。
教學(xué)反思:本節(jié)課的教學(xué)設(shè)計采用:“先學(xué)后教,當(dāng)堂訓(xùn)練”的教學(xué)模式。整個教學(xué)過程從思考問題到問題解決,學(xué)生自主學(xué)習(xí)貫穿始終,中間圍繞“自學(xué)-交流、更正-點撥、歸納”三個環(huán)節(jié)組織教學(xué),注重培養(yǎng)學(xué)生觀察、思考、交流歸納的能力。不足之處:在練習(xí)的講評上,應(yīng)給學(xué)生一個較為自由的空間,讓學(xué)生相互啟發(fā),相互交流。
初中數(shù)學(xué)有理數(shù)乘法教案篇八
(二)能力訓(xùn)練目標(biāo):
1.經(jīng)歷探索有理數(shù)乘法的運算律的過程,發(fā)展觀察、歸納的能力。
2.能運用乘法運算律簡化計算。
(三)情感與價值觀要求:
1.在共同探索、共同發(fā)現(xiàn)、共同交流的過程中分享成功的喜悅。
2.在討論的過程中,使學(xué)生感受集體的力量,培養(yǎng)團(tuán)隊意識。
乘法運算律的運用。
乘法運算律的運用。
探究交流相結(jié)合。
創(chuàng)設(shè)問題情境,引入新課。
[活動1]。
問題2:計算下列各題:
(1)(-7)×8;。
(2)8×(-7);。
(5)[3×(-4)]×(-5);。
(6)3×[(-4)×(-5)];。
[師生]由學(xué)生自主探索,教師可參與到學(xué)生的討論中。
像前面那樣規(guī)定有理數(shù)乘法法則后,乘法的交換律和結(jié)合律與分配律在有理數(shù)乘法中仍然成立。我們可以通過問題2來檢驗。(略)。
[師]同學(xué)們自己采用上面的方法來探究一下分配律在有理數(shù)范圍內(nèi)成立嗎?
[生]例如:5×[3十(-7)]和5×3十5×(-7);(略)。
[師](-5)×(3-7)和(-5)×3-5×7的結(jié)果相等嗎?
(注意:(-5)×(3-7)中的3-7應(yīng)看作3與(-7)的和,才能應(yīng)用分配律。否則不能直接應(yīng)用分配律,因為減法沒有分配律。)。
講授新課:
[活動2]用文字語言和字母把乘法交換律、結(jié)合律、分配律表達(dá)出來。
應(yīng)得出:
1.一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等.
2.三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。
3.一般地,一個數(shù)同兩個數(shù)的和相乘,等于這個數(shù)分別同這兩個數(shù)相乘,再把積相加。
[活動3][師生]教師引導(dǎo)學(xué)生討論、交流,從中體會學(xué)習(xí)的快樂。
3.用簡便方法計算:
[活動4]。
練習(xí)(教科書第42頁)。
這節(jié)課我們學(xué)習(xí)乘法的運算律及它們的運用,使我們體驗到了掌握一般的正常運算外,還要靈活運用運算律,能簡便的一定要簡便,這樣做既快又準(zhǔn)。
課后作業(yè):課本習(xí)題1.4的第7題(3)、(6)。
用簡便方法計算:
(1)6.868×(-5)+6.868×(一12)+6.868×(+17)。
(2)[(4×8)×25一8]×125。
初中數(shù)學(xué)有理數(shù)乘法教案篇九
教案是教師為順利而有效地開展 教學(xué)活動,根據(jù)教學(xué) 大綱和教科書要求及學(xué)生的實際情況,以課時或課題為單位,對 教學(xué)內(nèi)容、教學(xué) 步驟、教學(xué) 方法等進(jìn)行的具體設(shè)計和安排的一種實用性教學(xué)文書。以下是小編整理的關(guān)于有理數(shù)教案,希望大家認(rèn)真閱讀!
這一節(jié)是初中數(shù)學(xué)中非常重要的內(nèi)容,從知識上講,數(shù)軸是數(shù)學(xué)學(xué)習(xí)和研究的重要工具,它主要應(yīng)用于絕對值概念的理解,有理數(shù)運算法則的推導(dǎo),及不等式的求解。同時,也是學(xué)習(xí)直角坐標(biāo)系的基礎(chǔ),從思想方法上講,數(shù)軸是數(shù)形結(jié)合的起點,而數(shù)形結(jié)合是學(xué)生理解數(shù)學(xué)、學(xué)好數(shù)學(xué)的重要思想方法。日常生活中帶見的用溫度計度量溫度,已為學(xué)習(xí)數(shù)軸概念打下了一定的基礎(chǔ)。通過問題情境類比得到數(shù)軸的概念,是這節(jié)課的主要學(xué)習(xí)方法。同時,數(shù)軸又能將數(shù)的分類直觀的表現(xiàn)出來,是學(xué)生領(lǐng)悟分類思想的基礎(chǔ)。
(3)由于七年級學(xué)生的理解能力和思維特征和生理特征,學(xué)生的好動性,注意力容易分散,愛發(fā)表見解,希望得到老師的表揚等特點,所以在教學(xué)中應(yīng)抓住學(xué)生這一生理心理特點,一方面要運用直觀生動的形象,一發(fā)學(xué)生的興趣,使他們的注意力始終集中在課堂上;另一方面要創(chuàng)造條件和機(jī)會,讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生的主動性。
從學(xué)生已有知識、經(jīng)驗出發(fā)研究新問題,是我們組織教學(xué)的一個重要原則。小學(xué)里曾學(xué)過利用射線上的點來表示數(shù),為此我們可引導(dǎo)學(xué)生思考:把射線怎樣做些改進(jìn)就可以用來表示有理數(shù)?伴以溫度計為模型,引出數(shù)軸的概念。教學(xué)中,數(shù)軸的三要素中的每一要素都要認(rèn)真分析它的作用,使學(xué)生從直觀認(rèn)識上升到理性認(rèn)識。直線、數(shù)軸都是非常抽象的數(shù)學(xué)概念,當(dāng)然對初學(xué)者不宜講的過多,但適當(dāng)引導(dǎo)學(xué)生進(jìn)行抽象的思維活動還是可行的。例如,向?qū)W生提問:在數(shù)軸上對應(yīng)一億萬分之一的點,你能畫出來嗎?它是不是存在等。
(一)知識與技能
1、掌握數(shù)軸的三要素,能正確畫出數(shù)軸。
2、能將已知數(shù)在數(shù)軸上表示出來,能說出數(shù)軸上已知點所表示的數(shù)。
(二)過程與方法
1、使學(xué)生受到把實際問題抽象成數(shù)學(xué)問題的訓(xùn)練,逐步形成應(yīng)用數(shù)學(xué)的意識。
2、對學(xué)生滲透數(shù)形結(jié)合的思想方法。
(三)情感、態(tài)度與價值觀
1、使學(xué)生初步了解數(shù)學(xué)來源于實踐,反過來又服務(wù)于實踐 的辯證唯物主義觀點。
2、通過畫數(shù)軸,給學(xué)生以圖形美的教育,同時由于數(shù)形的結(jié)合,學(xué)生會得到和諧美的享受。
1、重點:正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù)。
2、難點:有理數(shù)和數(shù)軸上的點的對應(yīng)關(guān)系。
1、重點、難點分析
本節(jié)的重點是初步理解數(shù)形結(jié)合的思想方法,正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù),并會比較有理數(shù)的大小.難點是正確理解有理數(shù)與數(shù)軸上點的對應(yīng)關(guān)系。數(shù)軸的概念包含兩個內(nèi)容,一是數(shù)軸的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規(guī)定的。另外應(yīng)該明確的'是,所有的有理數(shù)都可用數(shù)軸上的點表示,但數(shù)軸上的點所表示的數(shù)并不都是有理數(shù)。通過學(xué)習(xí),使學(xué)生初步掌握用數(shù)軸解決問題的方法,為今后充分利用“數(shù)軸”這個工具打下基礎(chǔ)。
2、知識結(jié)構(gòu)
有了數(shù)軸,數(shù)和形得到了初步結(jié)合,這有利于對數(shù)學(xué)問題的研究,數(shù)形結(jié)合是理解數(shù)學(xué)、學(xué)好數(shù)學(xué)的重要思想方法,本課知識要點如下:
定 義 規(guī)定了原點、正方向、單位長度的直線叫數(shù)軸
三要素 原 點 正方向 單位長度
應(yīng) 用 數(shù)形結(jié)合
1、教學(xué)方法:根據(jù)教師為主導(dǎo),學(xué)生為主體的原則,始終貫穿“激發(fā)興趣—手腦并用—啟發(fā)誘導(dǎo)—反饋矯正”的教學(xué)方法。
初中數(shù)學(xué)有理數(shù)乘法教案篇十
(二)能力訓(xùn)練目標(biāo):
1、經(jīng)歷探索有理數(shù)乘法的運算律的過程,發(fā)展觀察、歸納的能力。
2、能運用乘法運算律簡化計算。
(三)情感與價值觀要求:
1、在共同探索、共同發(fā)現(xiàn)、共同交流的過程中分享成功的喜悅。
2、在討論的過程中,使學(xué)生感受集體的力量,培養(yǎng)團(tuán)隊意識。
乘法運算律的運用。
乘法運算律的運用。
探究交流相結(jié)合。
創(chuàng)設(shè)問題情境,引入新課。
問題2:計算下列各題:
(1)(一7)×8;。
(2)8×(一7);
(5)[3×(一4)]×(一5);
(6)3×[(一4)×(一5)];
[師生]由學(xué)生自主探索,教師可參與到學(xué)生的討論中。
像前面那樣規(guī)定有理數(shù)乘法法則后,乘法的交換律和結(jié)合律與分配律在有理數(shù)乘法中仍然成立。我們可以通過問題2來檢驗。(略)。
[師]同學(xué)們自己采用上面的方法來探究一下分配律在有理數(shù)范圍內(nèi)成立嗎?
[生]例如:5×[3十(一7)]和5×3十5×(一7);(略)。
[師](一5)×(3一7)和(一5)×3一5×7的結(jié)果相等嗎?
(注意:(一5)×(3一7)中的3一7應(yīng)看作3與(一7)的和,才能應(yīng)用分配律。否則不能直接應(yīng)用分配律,因為減法沒有分配律。)。
講授新課:
用文字語言和字母把乘法交換律、結(jié)合律、分配律表達(dá)出來。
應(yīng)得出:
1、一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。
2、三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。
3、一般地,一個數(shù)同兩個數(shù)的'和相乘,等于這個數(shù)分別同這兩個數(shù)相乘,再把積相加。
[師生]教師引導(dǎo)學(xué)生討論、交流,從中體會學(xué)習(xí)的快樂。
3、用簡便方法計算:
練習(xí)(教科書第42頁)。
這節(jié)課我們學(xué)習(xí)乘法的運算律及它們的運用,使我們體驗到了掌握一般的正常運算外,還要靈活運用運算律,能簡便的一定要簡便,這樣做既快又準(zhǔn)。
課后作業(yè):課本習(xí)題1.4的第7題(3)、(6)。
用簡便方法計算:
(1)6.868×(一5)十6.868×(一12)十6.868×(十17)。
(2)[(4×8)×25一8]×125。
初中數(shù)學(xué)有理數(shù)乘法教案篇十一
5、本節(jié)課通過行程問題說明有理數(shù)的乘法法則的合理性,讓學(xué)生感知到數(shù)學(xué)知識來源于生活,并應(yīng)用于生活。
本節(jié)的教學(xué)重點是能夠熟練進(jìn)行有理數(shù)的乘法運算。依據(jù)有理數(shù)的乘法法則和運算律靈活進(jìn)行有理數(shù)乘法運算是進(jìn)一步學(xué)習(xí)除法運算和乘方運算的基礎(chǔ)。有理數(shù)的乘法運算和加法運算一樣,都包括符號判定與絕對值運算兩個步驟。因數(shù)不包含0的乘法運算中積的符號取決于因數(shù)中所含負(fù)號的個數(shù)。當(dāng)負(fù)號的個數(shù)為奇數(shù)時,積的符號為負(fù)號;當(dāng)負(fù)號的個數(shù)為偶數(shù)時,積的符號為正數(shù)。積的絕對值是各個因數(shù)的絕對值的積。運用乘法交換律恰當(dāng)?shù)慕Y(jié)合因數(shù)可以簡化運算過程。
本節(jié)的難點是對有理數(shù)的乘法法則的理解。有理數(shù)的乘法法則中的“同號得正,異號得負(fù)”只是針對兩個因數(shù)相乘的情況而言的。乘法法則給出了判定積的符號和積的絕對值的方法。即兩個因數(shù)符號相同,積的符號是正號;兩個因數(shù)符號不同,積的符號是負(fù)號。積的絕對值是這兩個因數(shù)的絕對值的積。
a·b=b·a;
(a·b)·c=a·(b·c);
(a+b)·c=a·c+b·c。
1、有理數(shù)乘法法則,實際上是一種規(guī)定。行程問題是為了了解這種規(guī)定的合理性。
2、兩數(shù)相乘時,確定符號的依據(jù)是“同號得正,異號得負(fù)”,絕對值相乘也就是小學(xué)學(xué)過的算術(shù)乘法。
3、基礎(chǔ)較差的同學(xué),要注意乘法求積的符號法則與加法求和的符號法則的區(qū)別。
4、幾個數(shù)相乘,如果有一個因數(shù)為0,那么積就等于0。反之,如果積為0,那么,至少有一個因數(shù)為0。
5、小學(xué)學(xué)過的乘法交換律、結(jié)合律、分配律對有理數(shù)乘法仍適用,需注意的是這里的字母a、b、c既可以是正有理數(shù)、0,也可以是負(fù)有理數(shù)。
6、如果因數(shù)是帶分?jǐn)?shù),一般要將它化為假分?jǐn)?shù),以便于約分。
初中數(shù)學(xué)有理數(shù)乘法教案篇十二
3、經(jīng)歷利用已有知識解決新問題的探索過程。
教學(xué)難點:理解商的符號及其絕對值與被除數(shù)和除數(shù)的關(guān)系。
(一)、學(xué)前準(zhǔn)備。
1、師生活動。
1)、小明從家里到學(xué)校,每分鐘走50米,共走了20分鐘。
問小明家離學(xué)校有1000米,列出的算式為50×20=1000.
2)放學(xué)時,小明仍然以每分鐘50米的速度回家,應(yīng)該走20分鐘。
列出的算式為1000=20。
從上面這個例子你可以發(fā)現(xiàn),有理數(shù)除法與乘法之間的關(guān)系互為逆運算。
(二)、合作交流、探究新知。
1、小組合作完成。
再相互交流、并與小學(xué)里學(xué)習(xí)的乘除方法進(jìn)行類比與對比,歸納有理數(shù)的除法法則:
1)、除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。
2)、兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相加減,0除以任何一個不等于0的數(shù),都得0.
2、運用法則計算:
(1)(-15)(-3);(2)(-12)(一);(3)(-8)(一)。
3、師生共同完成p34例5.
(三)練習(xí):p35。
通過這節(jié)課的學(xué)習(xí),你的收獲是:
1)、除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。
2)、兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相加減,0除以任何一個不等于0的數(shù),都得0.
五。作業(yè)布置。
1、計算。
(1)(+48)(+6);(2);
(3)4(-2);(4)0(-1000)。
2、計算。
(1)(-1155)[(-11)(+3)(-5)];(2)375。
1、p39第1、2、3、4題。
初中數(shù)學(xué)有理數(shù)乘法教案篇十三
2.培養(yǎng)學(xué)生觀察、分析、歸納及運算能力.。
三角尺、小黑板、小卡片。
1課時。
(一)、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問題。
1.計算:
2.化簡下列各式符號:
(1)-(-6);(2)-(+8);(3)+(-7);
(4)+(+4);(5)-(-9);(6)-(+3).。
3.填空:
(1)______+6=20;(2)20+______=17;
(3)______+(-2)=-20;(4)(-20)+______=-6.。
(二)、師生共同研究有理數(shù)減法法則。
問題1(1)(+10)-(+3)=______;
(2)(+10)+(-3)=______.。
教師引導(dǎo)學(xué)生發(fā)現(xiàn):兩式的結(jié)果相同,即(+10)-(+3)=(+10)+(-3).。
(2)(+10)+(+3)=______.。
(2)的結(jié)果是多少?
于是,(+10)-(-3)=(+10)+(+3).。
至此,教師引導(dǎo)學(xué)生歸納出有理數(shù)減法法則:
減去一個數(shù),等于加上這個數(shù)的相反數(shù).。
教師強(qiáng)調(diào)運用此法則時注意“兩變”:一是減法變?yōu)榧臃?;二是減數(shù)變?yōu)槠湎喾磾?shù).減數(shù)變號(減法============加法)。
(三)、運用舉例變式練習(xí)。
例1計算:
(1)(-3)-(-5);(2)0-7.。
例2計算:
通過計算上面一組有理數(shù)減法算式,引導(dǎo)學(xué)生發(fā)現(xiàn):
閱讀課本63頁例3。
(四)、小結(jié)。
1.教師指導(dǎo)學(xué)生閱讀教材后強(qiáng)調(diào)指出:
(五)、課堂練習(xí)。
1.計算:
(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;
2.計算:
3.計算:
(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;
(4)(-5.9)-(-6.1);
利用有理數(shù)減法解下列問題。
課本習(xí)題2.6知識技能的2、3、4和問題解決1。
(一)知識回顧(三)例題解析(五)課堂小結(jié)。
例1、例2、例3。
(二)觀察發(fā)現(xiàn)(四)課堂練習(xí)練習(xí)設(shè)計。
初中數(shù)學(xué)有理數(shù)乘法教案篇十四
3、通過探究、練習(xí),養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
2、學(xué)習(xí)難點:運算順序的確定與性質(zhì)符號的處理。
(一)、學(xué)前準(zhǔn)備。
1、計算。
1)(0.0318)(1.4)。
2)2+(8)×2。
(二)、探究新知。
1、由上面的問題1,計算方便嗎?想過別的方法嗎?
2、由上面的問題2,你的計算方法是先算乘除法,再算加減法。
3、結(jié)合問題1,閱讀課本p36p37頁內(nèi)容(帶計算器的同學(xué)跟著操作、練習(xí))。
4、結(jié)合問題2,你先猜想,有理數(shù)的混合運算順序應(yīng)該是先算乘除法,再算加減法。
5、閱讀p36,并動手做做。
1、計算。
1)、186(2)。
2)11+(22)3(11)。
3)(0.1)(100)。
1、有理數(shù)的混合運算順序應(yīng)該是先算乘除法,再算加減法。
2、計算器的使用。
p39第7題(4、5、7、8)、第8題。
初中數(shù)學(xué)有理數(shù)乘法教案篇十五
2.探索運用乘法運算律簡化運算。
〖探索1。
〖閱讀理解。
乘法交換律和結(jié)合律(見p40)。
〖探索2。
下列計算若按順序依次相乘怎樣算?用運算律為什么能簡化運算?
(1)252004(2)-1999。
〖探索3。
運用運算律真的能節(jié)省時間嗎?分兩個大組,比一比:
計算(-198)。
〖練習(xí)1。
運用乘法交換律和結(jié)合律簡化運算:
(1)1999125(2)-1097。
〖探索4。
2.如右圖,你會用兩種方法求長方形abcd的面積嗎?
〖例題學(xué)習(xí)。
p41.例5。
〖作業(yè)。
p41.練習(xí)。
〖補(bǔ)充作業(yè)。
1.計算(注意運用分配律簡化運算):。
(1)-6(100-);(2)(-12).
(2)2(-3)4(-5)(-6)789(-10);。
(3)2(-3)4(-5)(-6)0789(-10);。
4.下列各式的積(冪)是正的還是負(fù)的?為什么?
(1)(-3)(-3)(-3)(-3)(-3).
5.運用乘法交換律和結(jié)合律簡化運算:
(1)-98(-0.6);(2)-1999(-)()。
2.運用分配律化簡下列的式子:
(1)例3x+9x+x(2)13x-20x+5x;。
=(3+9+1)x。
=13x;。
(3)12-9(4)-z-7z-8z.
初中數(shù)學(xué)有理數(shù)乘法教案篇十六
學(xué)習(xí)目標(biāo):。
1、理解有理數(shù)的運算法則;能根據(jù)有理數(shù)乘法運算法則進(jìn)行有理的簡單運算。
2、經(jīng)歷探索有理數(shù)乘法法則過程,發(fā)展觀察、歸納、猜想、驗證能力.
3、培養(yǎng)語言表達(dá)能力.調(diào)動學(xué)習(xí)積極性,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣.
學(xué)習(xí)重點:有理數(shù)乘法。
學(xué)習(xí)難點:法則推導(dǎo)。
教學(xué)方法:引導(dǎo)、探究、歸納與練習(xí)相結(jié)合。
教學(xué)過程。
一、學(xué)前準(zhǔn)備。
計算:
(1)(一2)十(一2)。
(2)(一2)十(一2)十(一2)。
(3)(一2)十(一2)十(一2)十(一2)。
(4)(一2)十(一2)十(一2)十(一2)十(一2)。
猜想下列各式的值:
(一2)×2(一2)×3。
(一2)×4(一2)×5。
二、探究新知。
1、自學(xué)有理數(shù)乘法中不同的形式,完成教科書中29~30頁的填空.
2、觀察以上各式,結(jié)合對問題的研究,請同學(xué)們回答:
(3)負(fù)數(shù)乘以正數(shù)積為__________數(shù),(4)負(fù)數(shù)乘以負(fù)數(shù)積為__________數(shù)。
提出問題:一個數(shù)和零相乘如何解釋呢?
初中數(shù)學(xué)有理數(shù)乘法教案篇十七
1、熟練有理數(shù)的乘法運算并能用乘法運算律簡化運算。
2、讓學(xué)生通過觀察、思考、探究、討論,主動地進(jìn)行學(xué)習(xí)。
3、培養(yǎng)學(xué)生語言表達(dá)能力以及與他人溝通、交往能力,使其逐漸熱愛數(shù)學(xué)這門課程。
教學(xué)重點:正確運用運算律,使運算簡化。
教學(xué)難點:運用運算律,使運算簡化。
一、學(xué)前準(zhǔn)備。
1、下面兩組練習(xí),請同學(xué)們選擇一組計算。并比較它們的結(jié)果:
請以小組為單位,相互檢查,看計算對了嗎?
二、探究新知。
1、下面我們以小組為單位,仔細(xì)觀察上面的式子與結(jié)果,把你的發(fā)現(xiàn)相互交流交流。
2、怎么樣,在有理數(shù)運算律中,乘法的交換律,結(jié)合律以及分配律還成立嗎?
3、歸納、總結(jié)。
乘法交換律:兩個數(shù)相乘,交換因數(shù)的位置,積相等。
即:ab=ba。
乘法結(jié)合律:三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。
即:(ab)c=a(bc)。
乘法分配律:一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加。
即:a(b+c)=ab+bc。
三、新知應(yīng)用。
1、例題。
用兩種方法計算(+-)12。
2、看誰算得快,算得準(zhǔn)。
1)(-7)(-)2)915.
四、課堂小結(jié)。
怎么樣,這節(jié)課有什么收獲,還有那些問題沒有解決?
乘法交換律:兩個數(shù)相乘,交換因數(shù)的位置,積相等。
即:ab=ba。
乘法結(jié)合律:三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。
即:(ab)c=a(bc)。
乘法分配律:一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加。
即:a(b+c)=ab+bc。
五、作業(yè)布置。
初中數(shù)學(xué)有理數(shù)乘法教案篇十八
2.內(nèi)容解析。
有理數(shù)的乘法是繼有理數(shù)的加減法之后的又一種基本運算。有理數(shù)乘法既是有理數(shù)運算的深入,又是進(jìn)一步學(xué)習(xí)有理數(shù)的除法、乘方的基礎(chǔ),對后續(xù)代數(shù)學(xué)習(xí)是至關(guān)重要的。
與有理數(shù)加法法則類似,有理數(shù)乘法法則也是一種規(guī)定,給出這種規(guī)定要遵循的原則是“使原有的運算律保持不變”。本節(jié)課要在小學(xué)已掌握的乘法運算的基礎(chǔ)上,通過合情推理的方式,得到“要使正數(shù)乘正數(shù)(或0)的規(guī)律在正數(shù)乘負(fù)數(shù)、負(fù)數(shù)乘負(fù)數(shù)時仍然成立,那么運算結(jié)果應(yīng)該是什么”的結(jié)論,從而使學(xué)生體會乘法法則的合理性。與加法法則一樣,正數(shù)乘負(fù)數(shù)、負(fù)數(shù)乘負(fù)數(shù)的法則,也要從符號和絕對值來分析。由于絕對值相乘就是非負(fù)數(shù)相乘,因此,這里關(guān)鍵是要規(guī)定好含有負(fù)數(shù)的兩數(shù)相乘之積的符號,這是有理數(shù)乘法的本質(zhì)特征,也是乘法法則的核心。
基于以上分析,可以確定本課的教學(xué)重點是兩個有理數(shù)相乘的符號法則。
1.目標(biāo)。
(1)理解有理數(shù)乘法法則,能利用有理數(shù)乘法法則計算兩個數(shù)的乘法。
(2)能說出有理數(shù)乘法的符號法則,能用例子說明法則的合理性。
2.目標(biāo)解析。
達(dá)成目標(biāo)(2)的標(biāo)志是學(xué)生能通過具體例子說明有理數(shù)乘法的符號法則的歸納過程。
有理數(shù)的乘法與小學(xué)學(xué)習(xí)的乘法的區(qū)別在于負(fù)數(shù)參與了運算。本課要以正數(shù)、0之間的運算為基礎(chǔ),構(gòu)造一組有規(guī)律的算式,先讓學(xué)生從算式左右各數(shù)的符號和絕對值兩個角度觀察這些算式的共同特點并得出規(guī)律,再以問題“要使這個規(guī)律在引入負(fù)數(shù)后仍然成立,那么應(yīng)有……”為引導(dǎo),讓學(xué)生思考在這樣的規(guī)律下,正數(shù)乘負(fù)數(shù)、負(fù)數(shù)乘正數(shù)、兩個負(fù)數(shù)相乘各應(yīng)有什么運算結(jié)果,并從積的符號和絕對值兩個角度總結(jié)出規(guī)律,進(jìn)而給出有理數(shù)乘法法則,在這個過程中體會規(guī)定的合理性。上述過程中,學(xué)生對于為什么要討論這些問題、什么叫“觀察下面的乘法算式”、從哪些角度概括算式的規(guī)律等,都會出現(xiàn)困難。為了解決這些困難,教師應(yīng)該在“如何觀察”上加強(qiáng)指導(dǎo),并明確提出“從符號和絕對值兩個角度看規(guī)律”的要求。
本課的教學(xué)難點是:如何觀察給定的乘法算式;從哪些角度概括算式的規(guī)律。
教師引導(dǎo)學(xué)生從有理數(shù)分類的角度考慮,區(qū)分出有理數(shù)乘法的情況有:正數(shù)乘正數(shù)、正數(shù)與0相乘、正數(shù)乘負(fù)數(shù)、負(fù)數(shù)乘正數(shù)、負(fù)數(shù)乘負(fù)數(shù)。
設(shè)計意圖:有理數(shù)分為正數(shù)、零、負(fù)數(shù),由此引出兩個有理數(shù)相乘的幾種情況,既復(fù)習(xí)有關(guān)知識,為下面的教學(xué)做好準(zhǔn)備,又滲透了分類討論思想。
問題2下面從我們熟悉的乘法運算開始。觀察下面的乘法算式,你能發(fā)現(xiàn)什么規(guī)律嗎?
3×3=9,
3×2=6,
3×1=3,
3×0=0.
追問1:你認(rèn)為問題要我們“觀察”什么?應(yīng)該從哪幾個角度去觀察、發(fā)現(xiàn)規(guī)律?
如果學(xué)生仍然有困難,教師給予提示:
(1)四個算式有什么共同點?——左邊都有一個乘數(shù)3.
(2)其他兩個數(shù)有什么變化規(guī)律?——隨著后一個乘數(shù)逐次遞減1,積逐次遞減3.
設(shè)計意圖:構(gòu)造這組有規(guī)律的算式,為通過合情推理,得到正數(shù)乘負(fù)數(shù)的法則做準(zhǔn)備。通過追問、提示,使學(xué)生知道“如何觀察”“如何發(fā)現(xiàn)規(guī)律”。
教師:要使這個規(guī)律在引入負(fù)數(shù)后仍然成立,那么,3×(-1)=-3,這是因為后一乘數(shù)從0遞減1就是-1,因此積應(yīng)該從0遞減3而得-3.
追問2:根據(jù)這個規(guī)律,下面的兩個積應(yīng)該是什么?
3×(-2)=,
3×(-3)=.
練習(xí):請你模仿上面的過程,自己構(gòu)造出一組算式,并說出它的變化規(guī)律。
設(shè)計意圖:讓學(xué)生自主構(gòu)造算式,加深對運算規(guī)律的理解。
先讓學(xué)生觀察、敘述、補(bǔ)充,教師再總結(jié):都是正數(shù)乘負(fù)數(shù),積都為負(fù)數(shù),積的絕對值等于各乘數(shù)絕對值的積。
設(shè)計意圖:先得到一類情況的結(jié)果,降低歸納概括的難度,同時也為后面的學(xué)習(xí)奠定基礎(chǔ)。
問題3觀察下列算式,類比上述過程,你又能發(fā)現(xiàn)什么規(guī)律?
3×3=9,
2×3=6,
1×3=3,
0×3=0.
鼓勵學(xué)生模仿正數(shù)乘負(fù)數(shù)的過程,自己獨立得出規(guī)律。
設(shè)計意圖:為得到負(fù)數(shù)乘正數(shù)的結(jié)論做準(zhǔn)備;培養(yǎng)學(xué)生的模仿、概括的能力。
追問1:要使這個規(guī)律在引入負(fù)數(shù)后仍然成立,你認(rèn)為下面的空格應(yīng)各填什么數(shù)?
(-1)×3=,
(-2)×3=,
(-3)×3=.
練習(xí):請你模仿上面的過程,自己構(gòu)造出一組算式,并說出它的變化規(guī)律。
先讓學(xué)生觀察、敘述、補(bǔ)充,教師再總結(jié):都是負(fù)數(shù)乘正數(shù),積都為負(fù)數(shù),積的絕對值等于各乘數(shù)絕對值的積。
追問3:正數(shù)乘負(fù)數(shù)、負(fù)數(shù)乘正數(shù)兩種情況下的結(jié)論有什么共性?你能把它概括出來嗎?
設(shè)計意圖:讓學(xué)生模仿已有的討論過程,自己得出負(fù)數(shù)乘正數(shù)的結(jié)論,并進(jìn)一步概括出“異號兩數(shù)相乘,積的符號為負(fù),積的絕對值等于各乘數(shù)絕對值的積”。既使學(xué)生感受法則的合理性,又培養(yǎng)他們的歸納思想和概括能力。
問題4利用上面歸納的結(jié)論計算下面的算式,你能發(fā)現(xiàn)其中的規(guī)律嗎?
(-3)×3=,
(-3)×2=,
(-3)×1=,
(-3)×0=.
追問1:按照上述規(guī)律填空,并說說其中有什么規(guī)律?
(-3)×(-1)=,
(-3)×(-2)=,
(-3)×(-3)=.
設(shè)計意圖:由學(xué)生自主探究得出負(fù)數(shù)乘負(fù)數(shù)的結(jié)論。因為有前面積累的豐富經(jīng)驗,學(xué)生能獨立完成。
問題5總結(jié)上面所有的情況,你能試著自己給出有理數(shù)乘法法則嗎?
學(xué)生獨立思考后進(jìn)行課堂交流,師生共同完成,得出結(jié)論后再讓學(xué)生看教科書。
學(xué)生獨立思考、回答。如果有困難,可先讓學(xué)生看課本第29頁有理數(shù)乘法法則后面的一段文字。
設(shè)計意圖:讓學(xué)生嘗試歸納乘法法則,明確按法則計算的關(guān)鍵步驟。
例1計算:
學(xué)生獨立完成后,全班交流。
教師說明:在(3)中,我們得到了。
=1.與以前學(xué)習(xí)過的倒數(shù)概念一樣,我們說。
與-2互為倒數(shù)。一般地,在有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù)。
追問:在(2)中,8和-8互為相反數(shù)。由此,你能說說如何得到一個數(shù)的相反數(shù)嗎?
設(shè)計意圖:本例既作為鞏固乘法法則,又引出了倒數(shù)的概念(因為這個概念很容易理解),同時說明了求一個數(shù)的相反數(shù)與乘-1之間的關(guān)系(反過來有-8=8×(―1)).
設(shè)計意圖:利用有理數(shù)乘法解決實際問題,體現(xiàn)數(shù)學(xué)的應(yīng)用價值。
小結(jié)、布置作業(yè)。
請同學(xué)們帶著下列問題回顧本節(jié)課的內(nèi)容:
(2)用有理數(shù)乘法法則進(jìn)行兩個有理數(shù)的乘法運算的基本步驟是什么?
(3)舉例說明如何從正數(shù)、0的乘法運算出發(fā),歸納出正數(shù)乘負(fù)數(shù)的法則。
(4)你能舉例說明符號法則“負(fù)負(fù)得正”的合理性嗎?
設(shè)計意圖:引導(dǎo)學(xué)生從知識內(nèi)容和學(xué)習(xí)過程兩個方面進(jìn)行小結(jié)。
作業(yè):教科書第30頁,練習(xí)1,2,3;第37頁,習(xí)題1.4第1題。
五、目標(biāo)檢測設(shè)計。
1.判斷下列運算結(jié)果的符號:
(1)5×(-3);。
(2)(-3)×3;。
(3)(-2)×(-7);。
(4)(+0.5)×(+0.7).
設(shè)計意圖:檢測學(xué)生對有理數(shù)乘法的符號法則的理解。
2計算:
(1)6×(-9);。
(2)(-6)×0.25;。
(3)(-0.5)×(-8);。
(4)0×(-6);。
設(shè)計意圖:檢測學(xué)生對有理數(shù)乘法法則的理解情況。
初中數(shù)學(xué)有理數(shù)乘法教案篇十九
1、知識與技能目標(biāo):經(jīng)歷有理數(shù)乘法法則探究的過程,學(xué)習(xí)兩個有理數(shù)相乘的法則。
3、情感目標(biāo):通過小組合作,培養(yǎng)與他人合作的精神。
教學(xué)難點:如何觀察給定的乘法算式,從哪幾個角度概況算式的規(guī)律。
2、出幾道小學(xué)里已經(jīng)做過的兩數(shù)相乘的題目,并計算。
(一)創(chuàng)設(shè)情境,引入新知。
問題:根據(jù)課前準(zhǔn)備,小學(xué)我們計算的兩個數(shù)相乘都是正數(shù)乘正數(shù)或者正數(shù)乘零,現(xiàn)在我們知道有理數(shù)包括正數(shù)、負(fù)數(shù)和零三類,根據(jù)這種分類,你能說出兩個有理數(shù)相乘會出現(xiàn)哪幾種情況?(根據(jù)學(xué)生回答板書各種類型)。
預(yù)設(shè):學(xué)生可能會把正數(shù)乘負(fù)數(shù)、負(fù)數(shù)乘正數(shù)當(dāng)作一種情況,教師可引導(dǎo)為兩種。
(二)觀察歸納,學(xué)習(xí)法則(設(shè)計說明:法則的得出分兩部分)。
第一部分分類探究(說明:3組探究重點是探究1)。
探究1(師生共同活動)。
問題1、觀察下面熟識的算式,你能發(fā)現(xiàn)什么規(guī)律?
3×3=9。
3×2=6。
3×1=3。
3×0=0。
預(yù)設(shè):如果學(xué)生有困難,可以提示學(xué)生觀察兩個因數(shù)有什么變化規(guī)律,積有什么變化規(guī)律。
這樣會得到規(guī)律:左邊因數(shù)都是3,右邊因數(shù)依次減1,而積依次減3。
問題2、根據(jù)這個規(guī)律,你能填寫下面的結(jié)論嗎?
3×(-1)=。
3×(-2)=。
3×(-3)=。
問題3這組數(shù)據(jù)的規(guī)律,對其他組類似規(guī)律的數(shù)據(jù)也成立嗎?自己根據(jù)這個規(guī)律構(gòu)造一組數(shù)試一試。
歸納可得:(板書)正數(shù)乘正數(shù),結(jié)果為正,絕對值相乘;正數(shù)乘負(fù)數(shù),結(jié)果為負(fù),絕對值相乘。
階段性學(xué)習(xí)方法小結(jié):回想探究1的結(jié)論,我們是怎樣一步步得到的?
(讓學(xué)生充分發(fā)表見解,教師適當(dāng)引導(dǎo),得出主要環(huán)節(jié):觀察-猜想-歸納)。
(說明:設(shè)計意圖有兩個,一是初一學(xué)生學(xué)法意識的形成,二是為探究2,3的學(xué)習(xí)做好引導(dǎo))。
探究2(小組討論)。
根據(jù)剛才得到的規(guī)律,你能得出下面的結(jié)果嗎?能據(jù)此總結(jié)出規(guī)律嗎?
3×3=9。
2×3=6。
1×3=3。
0×3=0。
(-1)×3=。
(-2)×3=。
(-3)×3=。
(選一組代表上講臺分析,得出結(jié)論)。
歸納小結(jié):(負(fù)數(shù)乘正數(shù),結(jié)果為負(fù),絕對值相乘)。
探究3(同桌交流)、
利用上面的規(guī)律填空,并說出其中的規(guī)律。
(-3)×3=。
(-3)×2=。
(-3)×1=。
(-3)×0=。
(-3)×(-1)=。
(-3)×(-2)=。
(-3)×(-3)=。
由學(xué)生總結(jié)得出:負(fù)數(shù)乘負(fù)數(shù),結(jié)果為正,絕對值相乘。
第二部分歸納總結(jié)。
問題1:總結(jié)上面所有的情況,你能試著說出有理數(shù)乘法的法則嗎?
兩數(shù)相乘,同號得正,異號得負(fù),再把絕對值相乘。任何數(shù)與0相乘,都得0。
問題2:你認(rèn)為根據(jù)有理數(shù)乘法法則進(jìn)行有理數(shù)乘法運算時,應(yīng)按照怎樣的步驟進(jìn)行運算?可類比加法的運算方法。
(說明:向?qū)W生滲透分類討論及類比思想,再次形成學(xué)法體系)。
(三)例題示范,學(xué)會應(yīng)用。
說說這節(jié)課你有什么收獲?你還有什么問題存在?
初中數(shù)學(xué)有理數(shù)乘法教案篇二十
(1)—2345。
(2)2(—3)4(—5)6789(—10)、
2、下列各式的積為什么是正的?
(1)(—2)(—3)456。
(2)—2345(—6)78(—9)(—10)、
p38、觀察。
幾個不是0的數(shù)相乘,積的符號與負(fù)因數(shù)的個數(shù)之間有什么關(guān)系?
(見p38、思考)。
p39、例3。
p39、觀察。
p39、練習(xí)。
p46、7、(1),(2)(3),8,9,10,11、
1、(1)若a=3,a與2a哪個大?若a=0呢?又若a=—3呢?
(2)a與2a哪個大?
(3)判斷:9a一定大于2a;
(4)判斷:9a一定不小于2a、
(5)判斷:9a有可能小于2a、
2、幾個數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定這句話錯在哪里?
3、若ab,則acbc嗎?為什么?請舉例說明、
4、若mn=0,那么一定有()。
5、利用乘法法則完成下表,你能發(fā)現(xiàn)什么規(guī)律?
3210—1—2—3。
39630—3。
2622。
1321。
—1。
—2。
—3。
【本文地址:http://www.mlvmservice.com/zuowen/15674763.html】