最新《倒數(shù)的認(rèn)識》教學(xué)反思與評價(5篇)

格式:DOC 上傳日期:2023-03-11 12:20:35
最新《倒數(shù)的認(rèn)識》教學(xué)反思與評價(5篇)
時間:2023-03-11 12:20:35     小編:zdfb

無論是身處學(xué)校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。那么我們該如何寫一篇較為完美的范文呢?以下是我為大家搜集的優(yōu)質(zhì)范文,僅供參考,一起來看看吧

《倒數(shù)的認(rèn)識》教學(xué)反思與評價篇一

也給了我不少啟示:

當(dāng)新課程以全新的理念走進(jìn)課堂時,我們也應(yīng)積極參與,并努力超越,實現(xiàn)用活教材,落實新理念。那么如何用活教材呢?這節(jié)課上,我采用了開門見山式的教學(xué)方法,正確處理了“教教材”和“用教材”的關(guān)系。

1、在本課的引入中,我沒有采用多種鋪墊,而是直接通過讓學(xué)生計算教材中的三個乘法算式,觀察積的特點與算式中兩個因數(shù)的特點,直接對倒數(shù)形成了初步的認(rèn)識,更明白了只要調(diào)換分子與分母的位置就會得到一個新的分?jǐn)?shù)。然后讓學(xué)生對具有這樣特點的兩個分?jǐn)?shù)起名,學(xué)生不約而同的叫它們倒數(shù)。

2、變例題教學(xué)為學(xué)生舉例說明。學(xué)生在深入思考中得出結(jié)論,這就是學(xué)生學(xué)習(xí)的成果。我覺得,這樣做不僅增添了課堂活力,而且還讓學(xué)生經(jīng)歷了探索的過程,解決了學(xué)生的困惑,更讓學(xué)生體會到了成功的快樂。

3、豐富練習(xí)的形式。在充分利用教材的練習(xí)同時,我還適當(dāng)?shù)匮a(bǔ)充了練習(xí)的內(nèi)容,如在倒數(shù)意義揭示后,為了鞏固對概念的理解,進(jìn)行了一組針對性練習(xí)。

通過教學(xué),我感受到教師在教學(xué)中應(yīng)該相信學(xué)生的能力,并積極成為學(xué)生學(xué)習(xí)的合作者、幫助者和促進(jìn)者,正確處理好扶與放的關(guān)系。

1、給學(xué)生獨立思考的時間。相信學(xué)生能具有獨立思考的能力,教學(xué)中每一個問題的提出,要使學(xué)生不是坐等聽別人講,而是能養(yǎng)成先自己積極思考的習(xí)慣。教學(xué)中,我在讓學(xué)生舉例時不僅給學(xué)生充足的時間,而且讓學(xué)生把算式寫下來。

2、給學(xué)生合作學(xué)習(xí)的機(jī)會。當(dāng)學(xué)生有困惑時,教師要引導(dǎo)學(xué)生小組合作、互相學(xué)習(xí)、互相交流,在合作中交流、在合作中提高、在合作中解決困惑。

3、創(chuàng)設(shè)平等、和諧的課堂氛圍。新課標(biāo)強(qiáng)調(diào)學(xué)生在獲得對數(shù)學(xué)理解的同時,在思維能力、情感態(tài)度與價值觀等多方面得到進(jìn)步和發(fā)展。為此作為教學(xué)活動中合作者、組織者,在創(chuàng)設(shè)平等、和諧的課堂氛圍上應(yīng)多“扶”。

1、由于自己的性格所至,仍然存在著對學(xué)生不放心的思想,放手不夠大膽,總要講得面面俱到,導(dǎo)致后邊的教學(xué)時間倉促,在概括方法、比較大小時主要以教師為主,處理的比較匆忙,忽視了學(xué)生學(xué)習(xí)的主體性,在一定的程度束縛了學(xué)生的發(fā)展。

2、對于有些問題的處理完全可以放手讓學(xué)生進(jìn)行評價,這樣既能調(diào)動學(xué)生的積極性,還能使學(xué)生更深刻的掌握知識。

課堂教學(xué)是一門藝術(shù),如何使自己的教學(xué)相得益彰,需要我們不斷地進(jìn)行嘗試反思這樣才能不斷成長進(jìn)步。

《倒數(shù)的認(rèn)識》教學(xué)反思與評價篇二

本文所談的不是教學(xué)流程上的問題,而是通過倒數(shù)這個概念,談一談對概念教學(xué)的理解,從拆句的角度,乘積是1的兩個數(shù)互為倒數(shù)拆為:乘積是1、兩個數(shù)、互為倒數(shù)。

針對倒數(shù)這個概念,我認(rèn)為:內(nèi)涵是指向正例的,外延是指向反例的。比如:書上出示乘積是1的正例,我們需要出示商、和、差是1的反例;書上說的是兩個數(shù)互為倒數(shù),沒有出示3個數(shù)的反例。這兩個反例是針對倒數(shù)概念本身的。

學(xué)生在倒數(shù)的答案呈現(xiàn)上,習(xí)慣于用等號表示“的倒數(shù)是”這樣的錯誤,比如2=1/2,從數(shù)學(xué)表達(dá)式上說這是非常明顯的錯誤,學(xué)生確實犯了,而且每屆都有這樣的情況,在今年的教學(xué)中我已經(jīng)強(qiáng)調(diào)并且糾正了這樣的錯誤,這說明教學(xué)方式對于不同學(xué)生是不一樣的,學(xué)生本身的理解和態(tài)度的端正與否也是重要的問題,需要引起重視。

本節(jié)課需要重視的第二個問題就是1和0的問題,這兩個問題實際上牽涉到其他的概念:假分?jǐn)?shù)、整數(shù)、自然數(shù)。假分?jǐn)?shù)分為1和大于1的假分?jǐn)?shù);整數(shù)和自然數(shù)里都有0,在這個問題上需要處理好,學(xué)生的理解需要通過不同的方式來體現(xiàn)。

單獨的概念教學(xué),或者說倒數(shù)概念本身不是一個很復(fù)雜的問題,有關(guān)倒數(shù)的知識主要包括兩點:一點是倒數(shù)的意義,另一點是求倒數(shù)的方法。學(xué)生建立倒數(shù)的概念以后,求一個數(shù)的倒數(shù)就容易了。因此,例7十分重視概念的形成以及對概念的準(zhǔn)確把握。

相同的教學(xué)內(nèi)容,幾年的教學(xué)實踐下來,發(fā)現(xiàn):同樣的教學(xué)內(nèi)容,同樣的知識點,為什么會出現(xiàn)這么大的差別?究其原因就是因為我們需要關(guān)注概念結(jié)構(gòu)出現(xiàn)的次序,比如:整數(shù)的概念是復(fù)習(xí)、假分?jǐn)?shù)的概念是辨析。

皮亞杰理論中認(rèn)知發(fā)展的三個基本過程--同化、順應(yīng)、平衡,對于倒數(shù)概念來說,學(xué)生之前毫無經(jīng)驗,是屬于順應(yīng),其實順應(yīng)更類似一個質(zhì)變的過程,有對于知識結(jié)構(gòu)的擴(kuò)展和修正,會形成一個新的認(rèn)知圖式。

但是本節(jié)課的教學(xué)難度不大,原因是這個知識點本身是不難的,從形式到本質(zhì),需要考慮的問題主要就是0,所以我在教學(xué)的時候特別關(guān)注了數(shù)字0的問題,然后在書本上39頁第19題的處理上特別強(qiáng)調(diào)了數(shù)字1的問題。

從整個概念系統(tǒng)來說,同化和順應(yīng)是相互依存的,如:本節(jié)課中倒數(shù)的概念是順應(yīng),而用到的外圍概念是整數(shù)、自然數(shù)、假分?jǐn)?shù),我在學(xué)習(xí)的時候注重對概念本身的解讀,數(shù)包括自然數(shù)和整數(shù),倒數(shù)的形式是分?jǐn)?shù),但不是分?jǐn)?shù)的整數(shù)和小數(shù)需要先轉(zhuǎn)化為最簡分?jǐn)?shù)之后再處理。

在概念的形式實現(xiàn)之后的環(huán)節(jié)就是對倒數(shù)概念的辨析,如:題目a都有倒數(shù),這句話本身是有問題的,但是我們關(guān)注的點應(yīng)該是a這個數(shù)的取值范圍,是取正整數(shù)?負(fù)整數(shù)?0?非正整數(shù)?非負(fù)整數(shù)?自然數(shù)?這里都是學(xué)生需要考慮的問題,其實有沒有倒數(shù)的核心概念就是:0沒有倒數(shù),但是對于具體的表現(xiàn)形式是我們需要花時間去思量的問題。

《倒數(shù)的認(rèn)識》教學(xué)反思與評價篇三

此次于老師來聽課,我按照教學(xué)進(jìn)度選擇的內(nèi)容是第四單元知識鏈接教材中《倒數(shù)的認(rèn)識》一課,這一節(jié)課是在學(xué)生學(xué)習(xí)了分?jǐn)?shù)乘法的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,是為后面單元學(xué)習(xí)分?jǐn)?shù)除法知識做準(zhǔn)備。本節(jié)課的內(nèi)容不多,首先是用兩個數(shù)的乘積是1這樣的幾個算式來引出倒數(shù)的概念,然后是求一個數(shù)的倒數(shù)的方法。

本節(jié)課我的教學(xué)思路是:

第一大環(huán)節(jié):利用課前三分鐘的口算練習(xí)這一素材,可以按照乘積是否是1進(jìn)行分組整理,再將乘積是1的一類進(jìn)行二次分類,分成分?jǐn)?shù)乘法與小數(shù)乘法,先從比較直觀的分?jǐn)?shù)乘法入手研究因數(shù)的特征,繼而過渡到小數(shù)乘法算式中因數(shù)的特征,由發(fā)現(xiàn)到猜想再到舉例驗證,繼而得出倒數(shù)的概念。

第二大環(huán)節(jié),由如何求一個數(shù)的倒數(shù)入手?引導(dǎo)學(xué)生交流方法,并在練習(xí)中鞏固求倒數(shù)的方法。

上完這節(jié)課,我的第一感覺是領(lǐng)著孩子繞著知識點走了一遍,用能力的孩子可能真的.理解了倒數(shù)的意義,而大部分的孩子可能只是學(xué)會了求倒數(shù)的方法,至于是否真正理解了倒數(shù)的意義,還處于模棱兩可的狀態(tài)。結(jié)合著于老師的點評,再回頭看我這節(jié)課的設(shè)計流程,還真是存在著很大的問題:

一、概念上存在偏差

本節(jié)課在研究分?jǐn)?shù)乘法這組算式的特征之后,我引導(dǎo)學(xué)生用“顛倒數(shù)”這樣的一個詞來反復(fù)描述兩個分?jǐn)?shù)的特征,而忽視了乘積是1的這一個大的背景。而如果從“為什么它們的乘積是1”這一個大問題入手,學(xué)生會順藤摸瓜,思考它們因數(shù)之間存在的特殊關(guān)系。

正是因為本節(jié)課,我一直在強(qiáng)調(diào)分?jǐn)?shù)的分子與分母相互顛倒這一點,造成學(xué)生沒有真正從意義上理解倒數(shù)的意義,才會出現(xiàn)在+()=1這個加法算式中,有的學(xué)生填這一錯誤。

二、小步引領(lǐng),走馬觀花

為了鞏固求一個數(shù)的倒數(shù),在練習(xí)這一環(huán)節(jié)我分四類設(shè)計并總結(jié)出:(1)真分?jǐn)?shù)的倒數(shù)都是大于1的假分?jǐn)?shù);(2)大于1的假分?jǐn)?shù)的倒數(shù)都是真分?jǐn)?shù);(3)分?jǐn)?shù)單位的倒數(shù)都是自然數(shù);(4)非零整數(shù)的倒數(shù)都是幾分之一。

反過頭來再看,真如于老師所說的那樣,學(xué)生根本沒有深刻的記憶,只是走馬觀花,但是如果按照于老師的建議,利用數(shù)軸的形式,在數(shù)軸上表示,我想即方便學(xué)生直觀認(rèn)識,也加深了學(xué)生的認(rèn)識。

非常感謝于老師能在百忙之中來聽評課,感謝于老師的指點,借著這次聽課的東風(fēng),在教學(xué)路上且思且行!

《倒數(shù)的認(rèn)識》教學(xué)反思與評價篇四

《倒數(shù)的認(rèn)識》是在學(xué)生掌握了整數(shù)乘法、分?jǐn)?shù)加法和減法計算、分?jǐn)?shù)乘法的意義和計算法則、分?jǐn)?shù)乘法應(yīng)用題等知識的基礎(chǔ)上進(jìn)行教學(xué)的。理解倒數(shù)的意義和會求一個數(shù)的倒數(shù)是學(xué)生學(xué)習(xí)分?jǐn)?shù)除法的前提。學(xué)生只有學(xué)好這部分知識,才能更好地掌握后面的分?jǐn)?shù)除法的計算和應(yīng)用題。

《倒數(shù)的認(rèn)識》這一課的核心內(nèi)容是“倒數(shù)的意義和求法”?!暗箶?shù)的意義”屬于概念的教學(xué),我認(rèn)為,只有讓學(xué)生關(guān)注基礎(chǔ)知識本身,讓學(xué)生在深入剖析“倒數(shù)的意義”的過程中,學(xué)會數(shù)學(xué)思考,體會解決問題所帶來的成功體驗,才能使學(xué)習(xí)真正成為學(xué)生的需要。

本節(jié)課我在設(shè)計教學(xué)時力求充分發(fā)揮學(xué)生學(xué)習(xí)的主動性和積極性,引導(dǎo)學(xué)生自主探索與交流合作中再現(xiàn)知識發(fā)生的過程,提高學(xué)生的觀察分析和概括歸納的能力,實現(xiàn)知識技能與學(xué)生智能的同步發(fā)展。通過這節(jié)課的實際教學(xué),結(jié)合新課標(biāo),也給了我不少啟示。

1、在課的導(dǎo)入部分,聯(lián)系學(xué)生熟悉的生活情景,由倒影和一些有趣的文字引出本節(jié)課所要探究的問題――倒數(shù),從形象直觀上感受顛倒位置,既激發(fā)了學(xué)生的探究興趣,為學(xué)生學(xué)習(xí)新知識做了充分的準(zhǔn)備,為學(xué)生較好理解倒數(shù)的意義做了鋪墊。

2、變例題教學(xué)為學(xué)生自學(xué)課本,發(fā)現(xiàn)求一個數(shù)的倒數(shù)的方法,然后通過舉例,檢查學(xué)生的掌握情況,再總結(jié)出求一個數(shù)的倒數(shù)的方法。

3、豐富練習(xí)的形式。在充分利用教材的練習(xí)同時,我還適當(dāng)?shù)匮a(bǔ)充了練習(xí)的內(nèi)容,使學(xué)生在練習(xí)中鞏固,在練習(xí)中提高。比如設(shè)計的“比較大小”,在比較大小之后,讓學(xué)生找找其中的規(guī)律,為接下來的分?jǐn)?shù)除法做鋪墊?!安乱徊隆?,不僅用到了倒數(shù)的知識,也聯(lián)系到前面學(xué)的分?jǐn)?shù)乘法應(yīng)用題。

1、給學(xué)生獨立思考的時間,相信學(xué)生能具有獨立思考的能力,教學(xué)中每一個問題的提出,要使學(xué)生不是坐等聽別人講,而是能養(yǎng)成先自己積極思考的習(xí)慣。

2、給學(xué)生合作學(xué)習(xí)的機(jī)會;當(dāng)學(xué)生有困惑時,教師可以充分發(fā)揮學(xué)生集體智慧,引導(dǎo)學(xué)生小組合作、互相學(xué)習(xí)、互相交流,在合作中交流、在合作中提高、在合作中解決困惑。在教學(xué)中,我對于探求“整數(shù)有沒有倒數(shù)”、“0和1有沒有倒數(shù)”、“小數(shù)有沒有倒數(shù)”這幾個環(huán)節(jié),充分發(fā)揮學(xué)生合作交流的作用,去共同解決問題。

《倒數(shù)的認(rèn)識》教學(xué)反思與評價篇五

本課所學(xué)內(nèi)容相對于學(xué)生來說,確實簡單易懂,難度較低,大部分學(xué)生都基本掌握了相關(guān)知識,并能較好地完成各項習(xí)題。

課前學(xué)生掌握情況預(yù)知不夠準(zhǔn)確,所設(shè)計的教學(xué)課件與教學(xué)預(yù)案相對落后,較低地估計了學(xué)生對本課知識的掌握情況。

本課的教學(xué)重點為:理解倒數(shù)的意義,掌握求一個數(shù)的倒數(shù)的方法。教學(xué)難點為:熟練地寫出一個數(shù)的倒數(shù)。在本次課堂教學(xué)過程中,都一一解決,達(dá)到了教學(xué)預(yù)設(shè)目標(biāo)。

雖說對學(xué)生掌握情況的預(yù)設(shè)不足,但課前的隨機(jī)應(yīng)變,使得本課的教學(xué)又出了“新彩”,將一堂新授課,變?yōu)轭A(yù)習(xí)成果匯報課,充分發(fā)揮了學(xué)生的積極主動性,引學(xué)生在課堂上暢所欲言,并在熱烈的討論中,識記知識點,強(qiáng)調(diào)重點,攻破難點。學(xué)生在這樣的氛圍中,感受到數(shù)學(xué)的學(xué)習(xí)是如此的輕松、有趣,課前的預(yù)習(xí)是如此的有成就,進(jìn)而引得學(xué)生以更大的積極性,投入到數(shù)學(xué)的學(xué)習(xí)中來。我個人認(rèn)為課堂教學(xué)做得比較成功。

總的來說,本節(jié)課的教學(xué)有得也有失,最大的失就是沒有十分準(zhǔn)確地預(yù)知學(xué)生的情況,此失很有可能成為以后教學(xué)的重大失誤,所以,我一定吸取教訓(xùn),避免此類事情再次發(fā)生。

【本文地址:http://www.mlvmservice.com/zuowen/1557971.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔