人生就像一場長跑,成功不僅僅是靠速度,更要有毅力和堅持不懈的努力。要有清晰的結構和條理,將總結分成不同的部分,包含必要的要點。如果你還不知道該如何寫一個優(yōu)秀的總結,以下范文或許能給你一些啟示。
二次根式教學設計篇一
這是八年級第十六章第三節(jié),學生是在已掌握最簡二次根式、合并同類二次根式以及二次根式的加減法的基礎上進一步學習二次根式的乘除法,同時為以后學習二次根式的混合運算作鋪墊。首先,情景引入:通過將大正方形中已知兩小正方形的面積,求剩下的長方形面積的問題引入二次根式的乘法及乘法法則;其次,通過例題1利用總結出二次根式的乘除法則進行計算同時注意結果要化簡;再次,利用乘除法關系引入二次根式的除法法則并用之計算;最后,通過二次根式的乘除法來解決實際問題。
總而言之:在二次根式的乘除法運算法則的學習和應用的過程中,滲透分析、概括、類比等數(shù)學思想方法,提高學生的思維品質和學習興趣。
此節(jié)教學過程中要注意:在學生學習過程中對二次根式的乘除法法則理解上問題不大,但常常忘記運算結果需要化簡,此外被開方數(shù)是多項式的乘除法運算上容易出錯。象練習冊第3題的(3)小題盡管課堂上練過一題,但還是有人錯。
初的一天,吳亞萍教授來學校指導,學校要求我準備一節(jié)新基礎的研討課。于是,我按我的理解與想法上了一堂形似的新基礎教學研討課,憑我的功底,課當然獲得了同事的好評,但吳教授的當頭一棒讓我震驚了。吳教授對“學生討論”的講述,評點讓我感覺到耳目一新。是的,教學這么多年,讓學生討論、活動卻沒有認真思考過它的價值??偸钦J為討論是一個教學的環(huán)節(jié),也是研討課的需要,卻不知道還有“假討論”、“白討論”一說。更不要說什么叫開放,如何開放,開放到什么程度的問題。那一天我被吳教授的評課折服了。課后,我再次回憶反思這堂課的問題,我深深感覺到差距。我再一次仔細閱讀了葉瀾教授和吳亞萍教授的相關著作。才真正體會到新基礎教育的理念要求是相當高的。
可以說是理想化的教育狀態(tài)。至今,我都不敢說我領悟了新基礎教育。我只是明白了新基礎教育對教師提出了更高的要求,不僅要求教師有扎實的功底,還要求教師對整個初中教學的內容要理解,甚至小學、高中的教學內容也要了解,這樣才可以為學生建立網(wǎng)狀的知識結構。更要求教師有靈活的應變能力,以靈活處理教學過程中出現(xiàn)的不可預測的資源。對備課也提出了更高的要求,不僅要備書本知識,更要備學生,對不同的班級,不同的學生都提出不同的要求。要預測不同學生可能出現(xiàn)的不同的問題。此時,我感覺自己是多么的貧乏。俗話說,知恥而后勇,我要努力去改變。
二次根式教學設計篇二
本節(jié)內容出自九年級數(shù)學上冊第二十一章第三節(jié)的第一課時,本節(jié)在研究最簡二次根式和二次根式的乘除的基礎上,來學習二次根式的加減運算法則和進一步完善二次根式的化簡。本小節(jié)重點是二次根式的加減運算,教材從一個實際問題引出二次根式的加減運算,使學生感到研究二次根式的加減運算是解決實際問題的需要。通過探索二次根式加減運算,并用其解決一些實際問題,來提高我們用數(shù)學解決實際問題的意識和能力。另外,通過本小節(jié)學習為后面學生熟練進行二次根式的加減運算以及加、減、乘、除混合運算打下了鋪墊。
本節(jié)課的內容是知識的延續(xù)和創(chuàng)新,學生積極主動的投入討論、交流、建構中,自主探索、動手操作、協(xié)作交流,全班學生具有較扎實的知識和創(chuàng)新能力,通過自學、小組討論大部分學生能夠達到教學目標,少部分學生有困難,基礎差、自學能力差,因此要提供賞識性評價教學策略,給予個別關照、心理暗示以及適當?shù)木窦睿朔员靶睦?,讓他們逐步樹立自尊心與自信心,從而完成自己的學習任務。
新課程有效課堂教學明確倡導,學生是學習的主人,在學生自學文本的基礎上動手實踐、自主探究、合作交流,來倡導新的學習觀,讓他們完成二次根式加減知識研究。教師從過去知識的傳授者轉變?yōu)閷W生的自主性、探究性、合作性學習活動的設計者和組織者,與學生零距離接觸共同探究。在教學過程中教師設置開放的、面向實際的、富有挑戰(zhàn)性的問題情境,使學生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結的能力,把“要我學”變成“我要學”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養(yǎng)成良好的學習習慣,掌握學習策略,并根據(jù)活動中示范和指導培養(yǎng)學生大膽闡述并討論觀點,說明所獲討論的有效性,并對推論進行評價。從而營造一個接納的、支持的、寬容的良好氛圍進行學習。
會化簡二次根式,了解同類二次根式的概念,會進行簡單的二次根式的加減法;通過加減運算解決生活的實際問題。
通過類比整式加減法運算體驗二次根式加減法運算的過程;學生經(jīng)歷由實際問題引入數(shù)學問題的過程,發(fā)展學生的抽象概括能力。
通過對二次根式加減法的探究,激發(fā)學生的探索熱情,讓學生充分參與到數(shù)學學習的過程中來,使他們體驗到成功的樂趣。
合并被開放數(shù)相同的同類二次根式,會進行簡單的二次根式的加減法。
難點:
關鍵問題:
了解同類二次根式的概念,合并同類二次根式,會進行二次根式的加減法。
1.引導發(fā)現(xiàn)法:在教師的啟發(fā)引導下,鼓勵學生積極參與,與實際問題相結合,采用“問題—探索—發(fā)現(xiàn)”的研究模式,讓學生自主探索,合作學習,歸納結論,掌握規(guī)律。
2.類比法:由實際問題導入二次根式加減運算;類比合并同類項合并同類二次根式。
3.嘗試訓練法:通過學生嘗試,教師針對個別問題進行點撥指導,實現(xiàn)全優(yōu)的教育效果。
二次根式教學設計篇三
2學情分析。
本節(jié)內容主要是在做二次根式的除法運算時,分母含根號的處理方式上,學生可能會出現(xiàn)困難或容易失誤,在除法運算中,可以先計算后利用商的算術平方根的性質來進行,也可以先利用分式的性質,去掉分母中的根號,再結合乘法法則和積的算術平方根的性質來進行。二次根式的除法與分式的運算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運算。教學中不能只是列舉題型,應以各級各類習題為載體,引導學生把握運算過程,估計運算結果,明確運算方向。
3重點難點。
重點:二次根式的乘法法則與積的算術平方根的性質.。
難點:二次根式的除法法則與商的算術平方根的性質之間的關系和應用。
4教學過程。
4。1第一學時。
教學活動。
活動1【導入】復習提問,探究規(guī)律。
師生活動學生回答。
二次根式教學設計篇四
初次進行“信息技術與課程整合”課程的實驗,首先感到的一個字就是“累”。也許是缺乏經(jīng)驗的原因。盡管課前進行充分的準備,可是在實施的過程中,大概是傳統(tǒng)的單一型課程印記太深刻的緣故吧,總是擔心學生對知識點的掌握會產(chǎn)生問題!有意思的是一開始學生面對課堂上大量的可自由支配的時間也感到不會用。部分小組的學生缺乏動手探索的精神,總在觀察其他小組的進展,或是期待教師的提示。寄希望于有了現(xiàn)成的樣板后再進行模仿。使我猶感“二期課改”的必要性,絕不能再以“一言堂”、“啟發(fā)和灌輸”為教學模式了。
其次,變課堂上一對多的教學結構為學生之間鏈式學習結構,更能促進學生之間的合作與交流,使他們成為學習的主人。特別是其中一組同學,起初都不敢上機操作,你推我讓。在指導老師的幫助下,互相確定的了自己的優(yōu)勢與劣勢,進行了分工。有的負責搜索、有的負責整理、有的做筆記等等。在一段時間以后這個小組也能夠獨立的完成課題學習的任務。我想在合作學習的過程中,每個人都能認真傾聽他人的意見和見解,也是一種人際交往能力的提高。
在尋求學習資源的過程中,學生們在互相指點和幫助下,鞏固了計算機操作,并能100%應用搜索引擎進行查找,在交流心得體會的過程中,進一步學習別人的點滴經(jīng)驗,逐步提高信息技術的素養(yǎng)。
時間的緊迫仍舊是整合課程中的一個矛盾,由于小組內同學的信息技術水準參差不齊,如果僅有一兩個同學進行操作,雖然表面上也實現(xiàn)了小組的要求,可是又把學生之間的差距暴露了出來。因此只能夠人人進行嘗試,互相幫助,共同完成目標。當然由于事先已經(jīng)考慮到這一問題,因此部分教學內容可以留待下節(jié)課的解決。盡量保證學生獨立探究的時間,又要保證一定學習效率,這對教師的組織教學提出了很高的要求。
總之,作為一名教師,我感受到學生學習方式和習慣的小小變化,更感到自己在實驗課題方面研究上屬于較淺層次。自己也要多學習相關科研文章,設計好下一堂系列課。
二次根式教學設計篇五
重點:化二次根式為最簡二次根式的方法.
計算:
我們再看下面的問題:
簡,得到。
從上面例子可以看出,如果把二次根式先進行化簡,會對解決問題帶來方便.
答:
1.被開方數(shù)的因數(shù)是整數(shù)或整式;
2.被開方數(shù)中不含能開得盡方的因數(shù)或因式.
滿足上面兩個條件的二次根式叫做最簡二次根式.
(l)不是最簡二次根式.因為a3=a2·a,而a2可以開方,即被開方數(shù)中有開得盡方的因式.
整數(shù).
(3)是最簡二次根式.因為被開方數(shù)的因式x2+y2開不盡方,而且是整式.
(4)是最簡二次根式.因為被開方數(shù)的因式a-b開不盡方,而且是整式.
(5)是最簡二次根式.因為被開方數(shù)的因式5x開不盡方,而且是整式.
(6)不是最簡二次根式.因為被開方數(shù)中的因數(shù)8=22·2,含有開得盡的因數(shù)22.
指出:從(1),(2),(6)題可以看到如下兩個結論.
1.在二次根式的被開方數(shù)中,只要含有分數(shù)或小數(shù),就不是最簡二次根式;
2.在二次根式的被開方數(shù)中的每一個因式(或因數(shù)),如果冪的指數(shù)等于或大于2,也不是最簡二次根式.
分析:把被開方數(shù)分解因式或因數(shù),再利用積的算術平方根的性質。
分析:題(l)的被開方數(shù)是帶分數(shù),應把它變成假分數(shù),然后將分母有理化,把原式化成最簡二次根式.
題(2)及題(3)的被開方數(shù)是分式,先應用商的算術平方根的性質把原式表示為兩個根式的商的形式,再把分母有理化,把原式化成最簡二次根式.
通過例2、例3,請同學們總結出把二次根式化成最簡二次根式的方法.
答:如果被開方數(shù)是分式或分數(shù)(包括小數(shù))先利用商的算術平方根的性質,把它寫成分式的形式,然后利用分母有理化化簡.
如果被開方數(shù)是整式或整數(shù),先把它分解因式或分解因數(shù),然后把開得盡方的因式或因數(shù)開出來,從而將式子化簡.
的二次根式的式子有_____個.[]。
a.2b.3。
c.1d.0。
答案:
1.b。
2.b。
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式.
(2)如果被開方數(shù)含有分母,應去掉分母的根號.
答案:
二次根式教學設計篇六
本節(jié)的重點是的化簡。本章自始至終圍繞著與計算進行,而的化簡不但涉及到前面學習過的算術平方根、二次根式等概念與二次根式的運算性質,還要牽涉到絕對值以及各種非負數(shù)、因式分解等知識,在應用中常常需要對字母進行分類討論。
本節(jié)的難點是正確理解與應用公式。
這個公式的表達形式對學生來說,比較生疏,而實際運用時,則要牽涉到對字母取值范圍的討論,學生往往容易出現(xiàn)錯誤。
1.性質的引入方法很多,以下2種比較常用:
(1)設計問題引導啟發(fā):由設計的問題。
1)、、各等于什么?
2)、、各等于什么?
啟發(fā)、引導學生猜想出。
(2)從算術平方根的意義引入。
2.性質的鞏固有兩個方面需要注意:
(1)注意與性質進行對比,可出幾道類型不同的題進行比較;
(2)學生初次接觸這種形式的表示方式,在教學時要注意細分層次加以鞏固,如單個數(shù)字,單個字母,單項式,可進行因式分解的多項式,等等。
(第1課時)。
一、教學目標。
2.能夠利用二次根式的性質化簡二次根式。
3.通過本節(jié)的學習滲透分類討論的數(shù)學思想和方法。
對比、歸納、總結。
三、重點和難點。
1.重點:理解并掌握二次根式的性質。
2.難點:理解式子中的可以取任意實數(shù),并能根據(jù)字母的取值范圍正確地化簡有關的二次根式。
四、課時安排。
1課時。
五、教具學具準備。
投影儀、膠片、多媒體。
六、師生互動活動設計。
復習對比,歸納整理,應用提高,以學生活動為主。
七、教學過程。
一、導入新課。
我們知道,式子()表示非負數(shù)的算術平方根。
問:式子的意義是什么?被開方數(shù)中的表示的是什么數(shù)?
答:式子表示非負數(shù)的算術平方根,即,且,從而可以取任意實數(shù)。
二、新課。
計算下列各題,并回答以下問題:
(1);(2);(3);
(4);(5);(6)。
(7);(8)。
1.各小題中被開方數(shù)的冪的底數(shù)都是什么數(shù)?
2.各小題的結果和相應的被開方數(shù)的冪的底數(shù)有什么關系?
3.用字母表示被開方數(shù)的冪的底數(shù),將有怎樣的結論?并用語言敘述你的結論。
答:
(1);(2);(3);
(4);(5);(6)。
(7);(8).
1.(1),(2),(3)各題中的被開方數(shù)的冪的底數(shù)都是正數(shù);(4),(5),(6),(7)各題中的被開方數(shù)的冪的底數(shù)都是負數(shù);(8)題被開方數(shù)的冪的底數(shù)是0.
2.(1),(2),(3),(8)各題的計算結果和相應的被開方數(shù)的冪的底數(shù)都分別相等;(4),(5),(6),(7)各題的計算結果和相應的被開方數(shù)的冪的底數(shù)分別互為相反數(shù)。
3.用字母表示(1),(2),(3),(8)各題中被開方數(shù)的冪的底數(shù),有。
(),
用字母表示(4),(5),(6),(7)各題中被開方數(shù)的冪的底數(shù),有。
().
一個非負數(shù)的平方的算術平方根,等于這個非負數(shù)本身;一個負數(shù)的平方的算術平方根,等于這個負數(shù)的相反數(shù)。
問:請把上述討論結論,用一個式子表示。(注意表示條件和結論)。
答:
請同學回憶實數(shù)的絕對值的代數(shù)意義,它和上述二次根式的性質有什么聯(lián)系?
答:
填空:
1.當_________時,;
2.當時,,當時,;
3.若,則________;
4.當時,.
答:
1.當時,;
2.當時,,
當時,;
3.若,則;
4.當時,.
例1化簡().
分析:可以利用積的算術平方根的性質及二次根式的性質化簡。
解,因為,所以,所以。
指出:在化簡和運算過程中,把先寫成,再根據(jù)已知條件中的取值范圍,確定其結果。
例2化簡().
分析:根據(jù)二次根式的性質,當時,.
解.
例3化簡:(1)();(2)().
分析:根據(jù)二次根式的性質,當時,.
解(1).
(2).
注意:(1)題中的被開方數(shù),因為,所以.
(2)題中的被開方數(shù),因為,所以.
這里的取值范圍,在已知條件中沒有直接給出,但可以由已知條件分析而得出。
例4化簡.
分析:根據(jù)二次根式的性質,有。
所以要比較與3及1與的大小以確定及的符號,然后再進行化簡。
解因為,,所以。
所以。
三、課堂練習。
1.求下列各式的值:
(1);(2).
2.化簡:
(1);(2);
(3)();(4)().
3.化簡:
(1);(2);
(3);(4);
(5);(6)().
答案:
1.(1)0.1;(2).
2.(1);(2);(3);(4).
3.(1)4;(2)1.5;(3)0.09;(4)-1;(5)4;(6)-1.
四、小結。
1.二次根式的意義是,所以,因此,其中可以取任意實數(shù)。
2.化簡形如的二次根式,首先可把寫成的形式,再根據(jù)已知條件中字母的取值范圍,確定其結果。
3.在化簡中,注意運用題設中的隱含條件,如二次根式有意義的條件是被開方,這是隱含條件。
五、作業(yè)。
1.化簡:
(1);(2);
(3)();(4)();
(5);(6)(,);
(7)().
2.化簡:
(1);
(2)();
(3)(,).
答案:
1.(1)-30;(2);(3);
(4);(5);(6);(7).
2.(1)2;(2)0;(3).
二次根式教學設計篇七
這節(jié)課因為有了前面學習的基礎,所以學生學習起來并不難,本節(jié)課的重點是二次根式的乘除法法則,難點是靈活運用法則進行計算和化簡。
開始可以從二次根式的性質引入,將二次根式的性質反過來就是二次根式的乘除法法則:,利用這個法則,可以進行二次根式的乘法和除法運算。
本節(jié)課中的易錯點是運算的最后結果不是最簡結果,因為學生只顧著運用法則進行計算了,忽略了二次根式的化簡,舉例說明:,這個運算過程只是運用了法則,但沒有進行化簡,應該是。
本節(jié)課中的難點是對于分母中含有根號的式子不會化簡,這應該牽涉到分母有理化,分母有理化這個概念本章課本中沒有提及,但是課后練習和習題中也有涉及,如何處理呢?舉例說明:
隨堂練習中一個題目對于這個題目,很多學生表示都不知道從何下手,只有一些程度好的學生有自己的看法,我讓學生進行了講解:,學生能將分母中不含有根號,想到用來代替,然后再利用法則進行解答,真是聰明。學生的這種做法,我給予了充分的肯定,并表揚了這位同學。并且我也用分母有理化的思想進行了另一種方法的講解,因為后面我想補一節(jié)分母有理化,所以在這里只是展示了一下過程,這樣同樣能達到化簡的目的,然后讓學生對比了一下剛才那位同學的做法,沒有展開講。
剩下的時間我主要針對法則讓學生進行了練習,做正確的小組加分,不正確的進行點評,到下課時,學生基本掌握了二次根式的乘除法的計算。
學生比較容易理解這兩個法則,下面可以學習例2,主要是讓學生通過看課本來理解法則的`應用,在學生理解例題的基礎上,讓學生思考還有沒有其他方法來解決這些題目,以此來增加學生解題的思路與方法。在這里可以拿出1-2個題目來示范。
如,可以有兩種解法:
法一:這一種也是課本上的方法,是直接利用了二次根式的乘法法則。
法二:這是利用了二次根式的性質。
通過這個題目的講解,可讓學生靈活掌握二次根式的計算方法。
再一個就是二次根式的乘除法混合運算,課本上有一個例子,,通過這個例子引出一個公式:,算是對法則的一個延伸。學生通過這個公式,也可以進行一些二次根式的運算。
二次根式教學設計篇八
2、內容解析。
二次根式除法法則及商的算術平方根的探究,最簡二次根式的提出,為二次根式的運算指明了方向,學習了除法法則后,就有比較豐富的運算法則和公式依據(jù),將一個二次根式化成最簡二次根式,是加減運算的基礎。
基于以上分析,確定本節(jié)課的教學重點:二次根式的除法法則和商的算術平方根的性質,最簡二次根式。
1、教學目標。
(1)利用歸納類比的方法得出二次根式的除法法則和商的算術平方根的性質;
(3)理解最簡二次根式的概念、
2、目標解析。
(1)學生能通過運算,類比二次根式的乘法法則,發(fā)現(xiàn)并描述二次根式的除法法則;
(2)學生能理解除法法則逆用的意義,結合二次根式的概念、性質、乘除法法則,對簡單的二次根式進行運算。
(3)通過觀察二次根式的運算結果,理解最簡二次根式的特征,能將二次根式的運算結果化為最簡二次根式。
本節(jié)內容主要是在做二次根式的除法運算時,分母含根號的處理方式上,學生可能會出現(xiàn)困難或容易失誤,在除法運算中,可以先計算后利用商的算術平方根的性質來進行,也可以先利用分式的性質,去掉分母中的根號,再結合乘法法則和積的算術平方根的性質來進行、二次根式的除法與分式的運算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運算、教學中不能只是列舉題型,應以各級各類習題為載體,引導學生把握運算過程,估計運算結果,明確運算方向。
本節(jié)課的教學難點為:二次根式的除法法則與商的算術平方根的性質之間的關系和應用。
1、復習提問,探究規(guī)律。
問題1二次根式的乘法法則是什么內容?化簡二次根式的一般步驟怎樣?
師生活動學生回答。
【設計意圖】讓學生回憶探究乘法法則的過程,類比該過程,學生可以探究除法法則。
二次根式教學設計篇九
2.掌握把二次根式化為最簡二次根式的方法。
重點和難點。
過程設計。
計算:
我們再看下面的問題:
簡,得到。
從上面例子可以看出,如果把二次根式先進行化簡,會對解決問題帶來方便。
答:
1.被開方數(shù)的因數(shù)是整數(shù)或整式;
2.被開方數(shù)中不含能開得盡方的因數(shù)或因式。
滿足上面兩個條件的二次根式叫做最簡二次根式。
(l)不是最簡二次根式。因為a3=a2·a,而a2可以開方,即被開方數(shù)中有開得盡方的因式。
整數(shù)。
(3)是最簡二次根式。因為被開方數(shù)的因式x2+y2開不盡方,而且是整式。
(4)是最簡二次根式。因為被開方數(shù)的因式a-b開不盡方,而且是整式。
(5)是最簡二次根式。因為被開方數(shù)的因式5x開不盡方,而且是整式。
(6)不是最簡二次根式。因為被開方數(shù)中的因數(shù)8=22·2,含有開得盡的因數(shù)22.
指出:從(1),(2),(6)題可以看到如下兩個結論。
1.在二次根式的被開方數(shù)中,只要含有分數(shù)或小數(shù),就不是最簡二次根式;
2.在二次根式的被開方數(shù)中的每一個因式(或因數(shù)),如果冪的指數(shù)等于或大于2,也不是最簡二次根式。
分析:把被開方數(shù)分解因式或因數(shù),再利用積的算術平方根的性質。
分析:題(l)的被開方數(shù)是帶分數(shù),應把它變成假分數(shù),然后將分母有理化,把原式化成最簡二次根式。
題(2)及題(3)的被開方數(shù)是分式,先應用商的算術平方根的性質把原式表示為兩個根式的商的形式,再把分母有理化,把原式化成最簡二次根式。
通過例2、例3,請同學們總結出把二次根式化成最簡二次根式的方法。
答:如果被開方數(shù)是分式或分數(shù)(包括小數(shù))先利用商的算術平方根的性質,把它寫成分式的形式,然后利用分母有理化化簡。
如果被開方數(shù)是整式或整數(shù),先把它分解因式或分解因數(shù),然后把開得盡方的因式或因數(shù)開出來,從而將式子化簡。
a.2b.3。
c.1d.0。
3.把下列各式化成最簡二次根式:
答案:
1.b。
2.b。
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式。
2.把一個式子化為最簡二次根式的方法是:
(2)如果被開方數(shù)含有分母,應去掉分母的根號。
1.把下列各式化成最簡二次根式:
2.把下列各式化成最簡二次根式:
答案:
二次根式教學設計篇十
教學目標:
掌握二次根式的概念;根據(jù)二次根式的概念掌握被開方數(shù)的取值范圍。
教學重難點:
重點:二次根式的概念以及二次根式有意義的條件;
難點:根據(jù)要求求滿足條件的字母的取值范圍。
教學方法:先學后教,當堂訓練。
課時安排:一課時。
教學過程:
1、知識回顧。
1、算數(shù)平方根:一般地,如果一個正數(shù)x的平方等于a,那么這個正數(shù)x叫做a的`算數(shù)平方根。
2、正數(shù)的算數(shù)平方根是正數(shù),0的算數(shù)平方根是0,負數(shù)沒有平方根。
2、板書課題。
3、出示學習目標。
4、出示自學指導。
自學教材2、3頁,完成下列各題:
1、完成第二頁思考題,找出二次根式的概念;
3、式子有意義的條件;
4、完成《基礎訓練》課前預習。
5、檢測。
3、式子有意義的條件。
4、課前預習講解。
6、練習。
1、教材3頁練習題;
2、習題16.1第1、7題;
3、《基礎訓練》課堂練習。
7、小結。
8、作業(yè)。
1、課本19頁第一題。
2、《基礎訓練》課后練習。
3、思考學習拓展。
9、教學反思。
1、因為學生已學習過算數(shù)平方根,所以對本節(jié)課知識能較快掌握;
2、本節(jié)課的關鍵在于掌握二次根式有意義的條件:被開方數(shù)大于等于0。同時結合之前所學知識能解答式子有意義時字母的取值范圍。
3、學習之初應加強練習,把課堂還給學生,發(fā)揮學生主動型。
二次根式教學設計篇十一
1、通過二次根式混合運算的學習,進一步了解二次根式運算法則,知道二次根式混合運算順序,會進行二次根式的混合運算。
2、在進行二次根式混合運算的過程中,體會類比思想,逐步養(yǎng)成認真仔細的學習品質,進一步提高運算能力。
教學難點:類比整式運算準確快速的進行二次根式的混合運算。
教學過程:
一、情境誘導。
二、練習指導。
(學生完成練習提綱,可以討論,老師做必要的板書準備,然后巡回指導,了解情況、)。
三、展示歸納。
1、學生匯報解題過程,生說師寫;。
2、發(fā)動其他學生評價補充完善;。
3、師畫龍點睛強調:。
(1)二次根式混合運算的運算順序跟有理數(shù)運算順序一樣,先乘方,再乘除,最后加減。
(2)二次根式混合運算與整式的運算有很多相似之處,因此可類比整式的運算進行二次根式的混合運算。
四、變式練習。
(先讓學生獨立完成,老師做必要的板書準備后巡回指導,了解情況;然后讓有一定問題的學生匯報展示,發(fā)動學生評價完善,老師強調關鍵地方,總結思想方法。)。
五、小結。
本節(jié)課你有哪些收獲?還有什么要提醒同學們注意的。(學生總結,百花齊放,老師不做限定,沒說到的,老師補充。)。
六、布置作業(yè)。
二次根式教學設計篇十二
(2)會進行簡單的二次根式的除法運算;。
2學情分析。
本節(jié)內容主要是在做二次根式的除法運算時,分母含根號的處理方式上,學生可能會出現(xiàn)困難或容易失誤,在除法運算中,可以先計算后利用商的算術平方根的性質來進行,也可以先利用分式的性質,去掉分母中的根號,再結合乘法法則和積的算術平方根的性質來進行。二次根式的除法與分式的運算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運算。教學中不能只是列舉題型,應以各級各類習題為載體,引導學生把握運算過程,估計運算結果,明確運算方向。
3重點難點。
重點:二次根式的乘法法則與積的算術平方根的性質.。
難點:二次根式的除法法則與商的算術平方根的性質之間的關系和應用。
4教學過程。
4。1第一學時。
教學活動。
活動1【導入】復習提問,探究規(guī)律。
問題1二次根式的乘法法則是什么內容?化簡二次根式的一般步驟怎樣?
師生活動學生回答。
【設計意圖】讓學生回憶探究乘法法則的過程,類比該過程,學生可以探究除法法則.。
2.觀察思考,理解法則。
問題2教材第8頁“探究”欄目,計算結果如何?有何規(guī)律?
師生活動學生回答,給出正確答案后,教師引導學生思考,并總結二次根式除法法則:。
問題3對比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?
師生活動學生思考,回答。學生能說明根據(jù)分數(shù)的意義知道,分母不為零就可以了。
【設計意圖】學生通過自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復雜的二次根式的運算時出現(xiàn)錯誤。
問題4對例題的運算你有什么看法?是如何進行的?
師生活動學生利用法則直接運算,一般根號下不含分母和開得盡方的因數(shù)。
【設計意圖】讓學生初步利用二次根式的性質、乘除法法則進行簡單的運算。
問題5對比積的算術平方根的性質,商的算術平方根有沒有類似性質?
師生活動學生類比地發(fā)現(xiàn),商的算術平方根等于算術平方根的商,即。利用該性質可以進行二次根式的化簡。
活動2【講授】觀察思考,理解法則。
問題2教材第8頁“探究”欄目,計算結果如何?有何規(guī)律?
師生活動學生回答,給出正確答案后,教師引導學生思考,并總結二次根式除法法則:。
問題3對比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?
師生活動學生思考,回答。學生能說明根據(jù)分數(shù)的意義知道,分母不為零就可以了。
【設計意圖】學生通過自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復雜的二次根式的運算時出現(xiàn)錯誤。
問題4對例題的運算你有什么看法?是如何進行的?
師生活動學生利用法則直接運算,一般根號下不含分母和開得盡方的因數(shù)。
【設計意圖】讓學生初步利用二次根式的性質、乘除法法則進行簡單的運算。
問題5對比積的算術平方根的性質,商的算術平方根有沒有類似性質?
師生活動學生類比地發(fā)現(xiàn),商的算術平方根等于算術平方根的商,即。利用該性質可以進行二次根式的化簡。
活動3【活動】例題示范,學會應用。
例1計算:(1);(2);(3)。
師生活動提問:你有幾種方法去掉分母中的根號?去分母的依據(jù)分別是什么?
【設計意圖】通過具體問題,讓學生在實際運算中培養(yǎng)運算能力,訓練運算技能,
問題5你能從例題的解答過程中,總結一下二次根式的運算結果有什么特征嗎?
師生活動學生總結,師生共同補充、完善。要總結出:
(1)這些根式的被開方數(shù)都不含分母;
(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式;
(3)分母中不含根號;
【設計意圖】引導學生及時總結,提出最簡二次根式的概念,要強調,在二次根式的運算中,一般要把最后結果化為最簡二次根式。
問題6課件展示一組二次根式的計算、化簡題。
【設計意圖】讓學生用總結出的結論進行二次根式的運算。
活動4【練習】鞏固概念,學以致用。
例2教材第9頁例7。
再提問章引言中的問題現(xiàn)在能解決了嗎?
【設計意圖】鞏固性練習,同時培養(yǎng)學生應用二次根式的乘除運算法則解決實際問題的能力。
活動5【測試】目標檢測設計。
1.在、、中,最簡二次根式為。
【設計意圖】考查對最簡二次根式的概念的理解。
2.化簡下列各式為最簡二次根式:;。
【設計意圖】復習二次根式的運算法則和運算性質。鼓勵學生用不同方法進行計算。對于分母含二次根式的處理,要結合整式的乘法公式進行計算。
3.化簡:(1);(2)。
【設計意圖】綜合運用二次根式的概念、性質和運算法則進行二次根式的運算。
活動6【作業(yè)】布置作業(yè)。
教科書第10頁練習第1,2,3題;
教科書習題16。2第10,11題。
二次根式教學設計篇十三
(2)會進行簡單的二次根式的除法運算;。
本節(jié)內容主要是在做二次根式的`除法運算時,分母含根號的處理方式上,學生可能會出現(xiàn)困難或容易失誤,在除法運算中,可以先計算后利用商的算術平方根的性質來進行,也可以先利用分式的性質,去掉分母中的根號,再結合乘法法則和積的算術平方根的性質來進行。二次根式的除法與分式的運算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運算。教學中不能只是列舉題型,應以各級各類習題為載體,引導學生把握運算過程,估計運算結果,明確運算方向。
重點:二次根式的乘法法則與積的算術平方根的性質.。
難點:二次根式的除法法則與商的算術平方根的性質之間的關系和應用。
4。1第一學時。
問題1二次根式的乘法法則是什么內容?化簡二次根式的一般步驟怎樣?
師生活動學生回答。
【設計意圖】讓學生回憶探究乘法法則的過程,類比該過程,學生可以探究除法法則.。
2.觀察思考,理解法則。
問題2教材第8頁“探究”欄目,計算結果如何?有何規(guī)律?
師生活動學生回答,給出正確答案后,教師引導學生思考,并總結二次根式除法法則:。
問題3對比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?
師生活動學生思考,回答。學生能說明根據(jù)分數(shù)的意義知道,分母不為零就可以了。
【設計意圖】學生通過自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復雜的二次根式的運算時出現(xiàn)錯誤。
問題4對例題的運算你有什么看法?是如何進行的?
師生活動學生利用法則直接運算,一般根號下不含分母和開得盡方的因數(shù)。
【設計意圖】讓學生初步利用二次根式的性質、乘除法法則進行簡單的運算。
問題5對比積的算術平方根的性質,商的算術平方根有沒有類似性質?
師生活動學生類比地發(fā)現(xiàn),商的算術平方根等于算術平方根的商,即。利用該性質可以進行二次根式的化簡。
問題2教材第8頁“探究”欄目,計算結果如何?有何規(guī)律?
師生活動學生回答,給出正確答案后,教師引導學生思考,并總結二次根式除法法則:。
問題3對比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?
師生活動學生思考,回答。學生能說明根據(jù)分數(shù)的意義知道,分母不為零就可以了。
【設計意圖】學生通過自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復雜的二次根式的運算時出現(xiàn)錯誤。
問題4對例題的運算你有什么看法?是如何進行的?
師生活動學生利用法則直接運算,一般根號下不含分母和開得盡方的因數(shù)。
【設計意圖】讓學生初步利用二次根式的性質、乘除法法則進行簡單的運算。
問題5對比積的算術平方根的性質,商的算術平方根有沒有類似性質?
師生活動學生類比地發(fā)現(xiàn),商的算術平方根等于算術平方根的商,即。利用該性質可以進行二次根式的化簡。
例1計算:(1);(2);(3)。
師生活動提問:你有幾種方法去掉分母中的根號?去分母的依據(jù)分別是什么?
【設計意圖】通過具體問題,讓學生在實際運算中培養(yǎng)運算能力,訓練運算技能,
問題5你能從例題的解答過程中,總結一下二次根式的運算結果有什么特征嗎?
師生活動學生總結,師生共同補充、完善。要總結出:
(1)這些根式的被開方數(shù)都不含分母;
(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式;
(3)分母中不含根號;
【設計意圖】引導學生及時總結,提出最簡二次根式的概念,要強調,在二次根式的運算中,一般要把最后結果化為最簡二次根式。
問題6課件展示一組二次根式的計算、化簡題。
【設計意圖】讓學生用總結出的結論進行二次根式的運算。
例2教材第9頁例7。
再提問章引言中的問題現(xiàn)在能解決了嗎?
【設計意圖】鞏固性練習,同時培養(yǎng)學生應用二次根式的乘除運算法則解決實際問題的能力。
1.在、、中,最簡二次根式為。
【設計意圖】考查對最簡二次根式的概念的理解。
2.化簡下列各式為最簡二次根式:;。
【設計意圖】復習二次根式的運算法則和運算性質。鼓勵學生用不同方法進行計算。對于分母含二次根式的處理,要結合整式的乘法公式進行計算。
3.化簡:(1);(2)。
【設計意圖】綜合運用二次根式的概念、性質和運算法則進行二次根式的運算。
教科書第10頁練習第1,2,3題;
教科書習題16。2第10,11題。
二次根式教學設計篇十四
2、掌握把二次根式化為最簡二次根式的方法。
重點:化二次根式為最簡二次根式的方法。
計算:
我們再看下面的問題:
簡,得到。
從上面例子可以看出,如果把二次根式先進行化簡,會對解決問題帶來方便。
答:
1、被開方數(shù)的因數(shù)是整數(shù)或整式;
2、被開方數(shù)中不含能開得盡方的因數(shù)或因式。
滿足上面兩個條件的二次根式叫做最簡二次根式。
例1試判斷下列各式中哪些是最簡二次根式,哪些不是?為什么?
解
(1)不是最簡二次根式。因為a3=a2·a,而a2可以開方,即被開方數(shù)中有開得盡方的因式。整數(shù)。
(3)是最簡二次根式。因為被開方數(shù)的因式x2+y2開不盡方,而且是整式。
(4)是最簡二次根式。因為被開方數(shù)的因式a-b開不盡方,而且是整式。
(5)是最簡二次根式。因為被開方數(shù)的因式5x開不盡方,而且是整式。
(6)不是最簡二次根式。因為被開方數(shù)中的因數(shù)8=22·2,含有開得盡的因數(shù)22。
指出:從(1),(2),(6)題可以看到如下兩個結論。
1、在二次根式的被開方數(shù)中,只要含有分數(shù)或小數(shù),就不是最簡二次根式;
2、在二次根式的被開方數(shù)中的每一個因式(或因數(shù)),如果冪的指數(shù)等于或大于2,也不是最簡二次根式。
例2把下列各式化為最簡二次根式:
分析:把被開方數(shù)分解因式或因數(shù),再利用積的算術平方根的性質。
例3把下列各式化成最簡二次根式:
分析:題(1)的被開方數(shù)是帶分數(shù),應把它變成假分數(shù),然后將分母有理化,把原式化成最簡二次根式。
題(2)及題(3)的被開方數(shù)是分式,先應用商的算術平方根的性質把原式表示為兩個根式的商的形式,再把分母有理化,把原式化成最簡二次根式。
通過例2、例3,請同學們總結出把二次根式化成最簡二次根式的方法。
答:如果被開方數(shù)是分式或分數(shù)(包括小數(shù))先利用商的算術平方根的性質,把它寫成分式的形式,然后利用分母有理化化簡。
如果被開方數(shù)是整式或整數(shù),先把它分解因式或分解因數(shù),然后把開得盡方的因式或因數(shù)開出來,從而將式子化簡。
a、2b、3。
c、1d、0。
3、把下列各式化成最簡二次根式:
答案:
1、b。
2、b。
1、最簡二次根式必須滿足兩個條件:
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式。
2、把一個式子化為最簡二次根式的方法是:
(2)如果被開方數(shù)含有分母,應去掉分母的根號。
1、把下列各式化成最簡二次根式:
2、把下列各式化成最簡二次根式:
二次根式教學設計篇十五
2.會運用積和商的算術平方根的性質,把一個二次根式化為最簡二次根式。
教學重點。
教學難點。
一個二次根式化成最簡二次根式的方法。
教學過程。
1.把下列各根式化簡,并說出化簡的根據(jù):
2.引導學生觀察考慮:
化簡前后的根式,被開方數(shù)有什么不同?
化簡前的被開方數(shù)有分數(shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。
3.啟發(fā)學生回答:
二次根式,請同學們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?
1.總結學生回答的內容后,給出最簡二次根式定義:
滿足下列兩個條件的二次根式叫做最簡二次根式:
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡的因數(shù)或因式。
最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應化為因式連乘積的形式。
2.練習:
下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:
3.例題:
例1把下列各式化成最簡二次根式:
例2把下列各式化成最簡二次根式:
4.總結。
把二次根式化成最簡二次根式的根據(jù)是什么?應用了什么方法?
當被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進行因數(shù)或因式分解,根據(jù)積的算術平方根的性質,把開得盡方的因數(shù)或因式用它的算術平方根代替移到根號外面去。
當被開方數(shù)是分數(shù)或分式時,根據(jù)分式的基本性質和商的算術平方根的性質化去分母。
此方法是先根據(jù)分式的基本性質把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。
1.把下列各式化成最簡二次根式:
2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。
二次根式教學設計篇十六
一、案例背景:
本節(jié)是九年級上學期數(shù)學的起始課。二次根式的學習,是對代數(shù)式的進一步學習。本節(jié)主要經(jīng)歷二次根式的發(fā)生過程及對二次根式的理解。掌握求二次根式的值和二次根式根號內字母的取值范圍。為以后的運用二次根式的運算解決實際問題打好基礎。
二、案例描述:
1、學習任務分析:
通過對數(shù)和平方根、算術平方根的復習,鼓勵學生經(jīng)歷觀察、歸納、類比等方法理解二次根式的概念。在解決實際問題的時候,注意轉化思想的滲透。體會分析問題、解決問題的方法,積累數(shù)學活動經(jīng)驗。比如求二次根式根號內的字母的取值范圍,就是將問題轉化為不等式來解決。注意學生數(shù)學書寫格式的規(guī)范,為以后的學習打好基礎。為了使學生更好地掌握這一部分內容,遵循啟發(fā)式教學原則,用復習以前學過的知識導入新課。設計合作學習活動,引導學生操作、觀察、探索、交流、發(fā)現(xiàn)、思維,解決實際問題的過程,真正把學生放到主體位置。
2、學生的認知起點分析:
學生已掌握數(shù)的平方根和算術平方根。這為經(jīng)歷二次根式概念的發(fā)生過程做好準備。另外,學生對數(shù)的算術平方根的理解作為基礎,經(jīng)歷跟此根式概念的發(fā)生過程,引導學生對二次根式概念的理解。
案例反思:
以往對這類問題的回答都是全班回答,有些學生反面信息不能體現(xiàn)出來。采取的措施是全班舉手勢回答,可以做二次根式的被開方數(shù)舉“布”,若不能舉“拳頭”。使班級能夠全面參與,避免集體回答所體現(xiàn)不出的問題。
2.合作活動:
第一位同學——出題者:請你按表中的要求寫完后,按順時針方向交給下一位同學;
第二位同學——解題者:請你按表中的要求解完后,按順時針方向交給下一位同學;
第四位同學——復查者:請你一定要把好關哦!
出題者姓名:解題者姓名:
第一個二次根式:1.要使式子的值為實數(shù),求x的取值范圍.2.寫出x的一個值,使式子的值為有理數(shù),并求出這個有理數(shù)。3.寫出x的一個值,使式子的值為無理數(shù),并求出這個無理數(shù)。
第二個二次根式:1.要使式子的值為實數(shù),求x的取值范圍。2.寫出x的一個值,使式子的值為有理數(shù),并求出這個有理數(shù)。3.寫出x的一個值,使式子的值為無理數(shù),并求出這個無理數(shù)。
批改者姓名:復查者姓名:
《課程標準》突出了學生在學習中的地位--學生是學習的主人,同時,教師的地位、角色發(fā)生了變化,從“主導”變成了“學生學習活動的組織者、引導者和合作者”。合作活動的安排就是對這一課程標準的體現(xiàn)。
二次根式教學設計篇十七
1、通過二次根式混合運算的學習,進一步了解二次根式運算法則,知道二次根式混合運算順序,會進行二次根式的混合運算。
2、在進行二次根式混合運算的過程中,體會類比思想,逐步養(yǎng)成認真仔細的學習品質,進一步提高運算能力。
教學難點:類比整式運算準確快速的進行二次根式的混合運算。
教學過程:
(學生完成練習提綱,可以討論,老師做必要的板書準備,然后巡回指導,了解情況、)。
1、學生匯報解題過程,生說師寫;。
2、發(fā)動其他學生評價補充完善;。
3、師畫龍點睛強調:。
(1)二次根式混合運算的運算順序跟有理數(shù)運算順序一樣,先乘方,再乘除,最后加減。
(2)二次根式混合運算與整式的運算有很多相似之處,因此可類比整式的運算進行二次根式的混合運算。
(先讓學生獨立完成,老師做必要的板書準備后巡回指導,了解情況;然后讓有一定問題的學生匯報展示,發(fā)動學生評價完善,老師強調關鍵地方,總結思想方法。)。
本節(jié)課你有哪些收獲?還有什么要提醒同學們注意的。(學生總結,百花齊放,老師不做限定,沒說到的,老師補充。)。
二次根式教學設計篇十八
1、通過二次根式混合運算的學習,進一步了解二次根式運算法則,知道二次根式混合運算順序,會進行二次根式的混合運算。
2、在進行二次根式混合運算的過程中,體會類比思想,逐步養(yǎng)成認真仔細的學習品質,進一步提高運算能力。
教學難點:類比整式運算準確快速的進行二次根式的混合運算。
教學過程:
(學生完成練習提綱,可以討論,老師做必要的.板書準備,然后巡回指導,了解情況、)。
1、學生匯報解題過程,生說師寫;。
2、發(fā)動其他學生評價補充完善;。
3、師畫龍點睛強調:。
(1)二次根式混合運算的運算順序跟有理數(shù)運算順序一樣,先乘方,再乘除,最后加減。
(2)二次根式混合運算與整式的運算有很多相似之處,因此可類比整式的運算進行二次根式的混合運算。
(先讓學生獨立完成,老師做必要的板書準備后巡回指導,了解情況;然后讓有一定問題的學生匯報展示,發(fā)動學生評價完善,老師強調關鍵地方,總結思想方法。)。
本節(jié)課你有哪些收獲?還有什么要提醒同學們注意的。(學生總結,百花齊放,老師不做限定,沒說到的,老師補充。)。
將本文的word文檔下載到電腦,方便收藏和打印。
【本文地址:http://www.mlvmservice.com/zuowen/15506566.html】