教案還應(yīng)考慮教學(xué)過程中可能出現(xiàn)的問題,并提供相應(yīng)的解決方法。教案編寫需要教師認(rèn)真審視每一節(jié)課的內(nèi)容和重點(diǎn),確保教學(xué)的完整性和連貫性。以下是小編為大家收集的教案范例,供大家參考,希望對大家的教學(xué)工作有所幫助。
圓錐的體積教案篇一
l.教學(xué)例2。
出示例題,讓學(xué)生讀題。提問:你們認(rèn)為這道題要先求什么,再求這堆沙的重量?讓學(xué)生說說為什么要先求體積,才能求這堆沙的重量?這里底面直徑和高的數(shù)據(jù)怎樣獲得?指名板演,其他學(xué)生做在練習(xí)本上,集體訂正。
2.組織練習(xí)。
(1)做練一練。
指名一人板演,其余學(xué)生做在練習(xí)本上,集體訂正。
學(xué)生做在練習(xí)本上。集體訂正。
(3)討論練習(xí)三第7題。
底面周長相等,底面積就相等嗎?
圓錐的體積教案篇二
師:同學(xué)們,今天我們來學(xué)習(xí)“圓錐的體積”(板書課題)。
理解并掌握圓錐的體積計算公式,并能運(yùn)用公式解決實際問題。
認(rèn)真看課本第33頁到第34頁的例2和例3,邊看書,邊實驗,理解圓錐的體積計算方法,并將例3補(bǔ)充完整。想:
5分鐘后,比誰能正確地回答思考題并能做對檢測題!
檢測題。
完成課本第34頁“做一做”第1、2題。
小組合作,校正答案。
后教。
口答。
小組內(nèi)互相說。
當(dāng)堂訓(xùn)練。
1、必做題:
課本第35頁第5、6、7題。(做在作業(yè)本上)。
2、選做題:
有一個近似圓錐形的沙堆,底面周長是12.56米,高1.2米。把這些沙鋪在一個長4米、寬3米的長方形沙坑里,可以鋪多厚?(得數(shù)保留兩位小數(shù))。
圓錐的體積教案篇三
重點(diǎn)難點(diǎn)。
教學(xué)過程。
一、板書課題。
師:同學(xué)們,今天我們來學(xué)習(xí)“圓錐的體積”(板書課題)。
二、出示目標(biāo)。
理解并掌握圓錐的體積計算公式,并能運(yùn)用公式解決實際問題。
三、自學(xué)指導(dǎo)。
認(rèn)真看課本第33頁到第34頁的例2和例3,邊看書,邊實驗,理解圓錐的體積計算方法,并將例3補(bǔ)充完整。想:
2、圓錐的體積計算公式是什么?用字母如何表示?
5分鐘后,比誰能正確地回答思考題并能做對檢測題!
檢測題。
完成課本第34頁“做一做”第1、2題。
小組合作,校正答案。
后教。
口答。
小組內(nèi)互相說。
當(dāng)堂訓(xùn)練。
1、必做題:
課本第35頁第5、6、7題。(做在作業(yè)本上)。
2、選做題:
有一個近似圓錐形的沙堆,底面周長是12.56米,高1.2米。把這些沙鋪在一個長4米、寬3米的長方形沙坑里,可以鋪多厚?(得數(shù)保留兩位小數(shù))。
圓錐的體積教案篇四
2、學(xué)生說,教師板書:
圓錐圓柱。
特征1個底面2個。
扇形側(cè)面展開長方形。
體積v=1/3shv=sh。
二、提出本節(jié)課練習(xí)的內(nèi)容和目標(biāo)。
三、課堂練習(xí)。
(一)、基本訓(xùn)練。
1、填空課本1----2(獨(dú)立完成后校對)。
已知:底面積、直徑、周長與高求體積(小黑板出示)。
(二)、綜合訓(xùn)練:
1、判斷。
(2)長方體、正方體、圓柱和圓錐的體積公式都可用v=sh。
(3)一個圓柱形容器盛滿汽油有2.5升,這個容器的容積就是2.5升。
(4)圓錐的體積是否4立方厘米,底面積是6平方厘米,那么高是4厘米。
2、應(yīng)用:練習(xí)四第45題任選一題。
3、發(fā)展題:獨(dú)立思考后校對。
四課堂小結(jié):說說本節(jié)課的收獲。
圓錐的體積教案篇五
美國教育心理學(xué)家奧蘇伯爾說:如果我不得不把教育心理學(xué)還原為一條原理的話,影響學(xué)習(xí)的最重要的原因是學(xué)生已經(jīng)知道了什么,我們應(yīng)當(dāng)根據(jù)學(xué)生原有的知識狀況進(jìn)行教學(xué)。本節(jié)課是學(xué)生在認(rèn)識了圓錐特征的基礎(chǔ)上進(jìn)行學(xué)習(xí)的。圓錐高的概念仍是本節(jié)課學(xué)習(xí)的一個重要知識儲備,因而有必要在復(fù)習(xí)階段利用直觀教具通過切、摸等活動,幫助學(xué)生理解透徹。學(xué)生分組操作時,肯定能借助倒水(或沙子)的實驗,親身感受等底等高的圓柱與圓錐體積間的3倍關(guān)系。但是他們不易發(fā)現(xiàn)隱藏在實驗中的等底等高的這一條件,這是實驗過程中的一個盲點(diǎn)。為凸現(xiàn)這一條件,可借助體積關(guān)系不是3倍的.實驗器材,引導(dǎo)學(xué)生經(jīng)歷去粗取精、去偽存真、由表及里、層層逼近的過程,進(jìn)行深度信息加工。
圓錐的體積教案篇六
2、求下列各圓柱的體積。(口答)。
(1)底面積是5平方厘米,高是6厘米。
(2)底面半徑4分米,高是10分米。
(3)底面直徑2米,高是3米。
師:剛才我們復(fù)習(xí)了圓柱的體積公式并應(yīng)用這個公式計算出了圓柱的體積,那么圓柱和圓錐有什么關(guān)系呢?這節(jié)課我們就來研究圓錐的體積。(板書:圓錐的體積)。
二、新課教學(xué)。
師:圓錐的底面是什么形狀的?什么是圓錐的高?請拿出一個同學(xué)們自己做的圓錐講一講。
生:圓錐的底面是圓形的。
生:從圓錐的頂點(diǎn)到底面圓心的距離是圓錐的高。
師:你能上來指出這個圓錐的高嗎?
師:很好,因為圓錐的高我們一般無法到里面去測量,所以常常這樣量出它的高。
師:你們看到過哪些物體是圓錐形狀的?(略)。
師:對。在生活中有很多圓錐形的物體。
師:剛才我們已經(jīng)認(rèn)識了圓錐?,F(xiàn)在我們再來研究圓錐的體積。請同學(xué)們拿出一對等底等高圓錐和圓柱。想一想用什么辦法能研究出等地等高的圓錐和圓柱的體積之間存在什么關(guān)系,然后把你的想法放在小組中交流,再分工進(jìn)行實驗。下面我們采用實驗的方法來推導(dǎo)圓錐體的體積公式(邊說邊演示),先在圓錐內(nèi)裝滿水,然后把水倒入圓柱內(nèi),看看幾次可將圓柱倒?jié)M?,F(xiàn)在我們分小組做實驗,大家邊做邊討論實驗要求,如有困難可以看書第23頁。
出示小黑板:
1、圓錐的體積和同它等底等高的圓柱的體積有什么關(guān)系?
學(xué)生分組做實驗,老師巡回指導(dǎo)。
生:圓柱的體積是圓錐體積的3倍。
生:圓錐的體積是同它等底等高的圓柱體權(quán)的1/3。
板書:圓錐的體積等于同它等底等高的圓柱體積的1/3。
師:得出這個結(jié)論的同學(xué)請舉手。(略)你們是怎么得出這個結(jié)論的呢?
生:我們先在圓錐內(nèi)裝滿沙,然后倒人圓柱內(nèi)。這樣倒了三次,正好將圓柱裝滿。所以,圓錐的體積是同它等底等高的圓柱體積的1/3。
師:說得很好。那么圓錐的體積怎么算呢?
生:可以先算出與它等底等高的圓柱的體積,用底面積乘以高,再除以3,就是圓錐的體積。
師:誰能說說圓錐的體積公式。
師:老師也做了一個同樣實驗請同學(xué)認(rèn)真看一看。想一想有什么話對老師說嗎?請看電視。
師:請大家把書翻到第42頁,將你認(rèn)為重要的字、詞、句圈圈劃劃,并說說理由。
生:我認(rèn)為"圓錐的體積v等于和它等底等高的圓柱體積的三分之一。"這句話很重要。
生:我認(rèn)為這句話中"等底等高"和"三分之一"這幾個字特別重要。
師:大家說得很對,那么為什么這幾個字特別重要?如果底和離不相等的圓錐和圓柱有沒有三分之一這個關(guān)系呢?我們也來做個實驗。大家還有兩個是等底不等高的圓錐和圓柱,請同學(xué)們用剛才做實驗的方法試試看。
師:等底不等高或者等高不等底的圓錐體積不是圓柱體積的1/3。師:可見圓錐的體積等于圓柱體積的三分之一的關(guān)鍵條件是等地等高。
師:下面我們就根據(jù)"等底等高的圓錐體積是圓柱體積的1/3"這個關(guān)系來解決下列問題。
例l:一個圓錐形零件,底面積是19平方厘米,高是12厘米。這個零件的體積是多少?
(兩名學(xué)生板演,老師巡視)。
師:這位同學(xué)做的對不對?
生:對!
師:和他做的一-樣的同學(xué)請舉手。(絕大多數(shù)同學(xué)舉手)。
師:那么這位同學(xué)做錯在哪里呢?(指那位做錯的同學(xué)做的)。
生:他漏寫了1/3。用底面積乘以高算出來的是圓柱的體積,圓錐的體積還要再乘以1/3。
師:對了。剛才我們通過實驗知道了圓錐的體積等于同它等底等高的圓柱體積的三分之一,從而推導(dǎo)出圓錐的體積計算公式,即v=1/3sh。我們在用這個公式計算圓錐的體積時,要特別注意,1/3不能漏掉。
圓錐的體積教案篇七
1、理解和掌握圓錐體體積的計算方法,并能運(yùn)用公式求圓錐體的體積,并能解決簡單的實際問題。
2、通過動手實踐,自主探求圓錐體積的計算方法,培養(yǎng)學(xué)生初步的邏輯推理能力和創(chuàng)新意識,發(fā)展空間觀念。
3、激發(fā)學(xué)生熱愛生活,勇于探索、樂于與人合作的情趣。
圓錐的體積教案篇八
教學(xué)內(nèi)容:
教科書第20~21頁例5及相應(yīng)的試一試,練一練和練習(xí)四的第1~3題。
教學(xué)目標(biāo):
1.組織學(xué)生參與實驗,從而推導(dǎo)出圓錐體積的計算公式。
2.會運(yùn)用圓錐的體積計算公式計算圓錐的體積。
3.培養(yǎng)學(xué)生觀察、比較、分析、綜合的能力以及初步的空間觀念。
4.以小組形式參與學(xué)習(xí)過程,培養(yǎng)學(xué)生的合作意識。
5.滲透轉(zhuǎn)化的數(shù)學(xué)思想。
教學(xué)重點(diǎn):
理解和掌握圓錐體積的計算公式。
教學(xué)難點(diǎn):
理解圓柱和圓錐等底等高時體積間的倍數(shù)關(guān)系。
教學(xué)資源:
等底等高的圓柱和圓錐容器一套,一些沙或米等。
教學(xué)過程:
一、聯(lián)系舊知,設(shè)疑激趣,導(dǎo)入新課。
1.我們已經(jīng)知道了哪些立體圖形體積的求法?(學(xué)生回答時老師出示相應(yīng)的教具---長方體,正方體圓柱體,然后板書相應(yīng)的計算公式。)。
2.我們是用什么方法推出圓柱體積的計算公式的?(是把圓柱體轉(zhuǎn)化為長方體來推導(dǎo)的。板書:轉(zhuǎn)化)。
3.(出示教具)大家覺得這個圓錐與哪個立體圖形的關(guān)系最近呢?(老師比較學(xué)生指出的圓柱與圓錐的底和高,引導(dǎo)學(xué)生發(fā)現(xiàn)這個圓柱與圓錐等底等高。)。
5.它們的體積之間到底有什么關(guān)系呢?
二、實驗操作、推導(dǎo)圓錐體積計算公式。
1.課件出示例5。
(1)通過演示使學(xué)生知道什么叫等底等高。
(3)實驗操作,發(fā)現(xiàn)規(guī)律。
(用學(xué)具演示)在空圓錐里裝滿黃沙,然后倒入空圓柱里,看看倒幾次正好裝滿。(用有色水演示也可)從倒的次數(shù)看,你發(fā)現(xiàn)圓錐體積與等底等高的圓柱體積之間有怎樣的關(guān)系?得出圓錐的體積是與它等底等高的圓柱體體積的。
(4)是不是所有的圓柱和圓錐都有這樣的。關(guān)系?教師可出示不等底不等高的圓錐、圓柱,讓學(xué)生通過觀察實驗,得出只有等底等高的圓錐才是圓柱體積的。
2.教師課件演示。
3.學(xué)生討論實驗情況,匯報實驗結(jié)果。
4.啟發(fā)引導(dǎo)推導(dǎo)出計算公式并用字母表示。
圓錐的體積=等底等高的圓柱的體積1/3=底面積高1/3。
用字母表示:v=1/3sh。
5.教學(xué)試一試。
(1)出示題目。
(2)審題后可讓學(xué)生根據(jù)圓錐體積計算公式自己試做。
(3)批改講評。注意些什么問題。
三、發(fā)散練習(xí)、鞏固推展。
1.做練一練第1.2題。
指名一人板演,其余學(xué)生做在練習(xí)本上。集體訂正,強(qiáng)調(diào)要乘以1/3。
2.做練習(xí)四第1.2題。
學(xué)生做在課本上。之后學(xué)生反饋。錯的要求說明理由。
四、小結(jié)。
這節(jié)課你學(xué)習(xí)了什么內(nèi)容?圓錐有怎樣的特征?圓錐的體積怎樣計算?為什么?
學(xué)生交流。
五、作業(yè)。
練習(xí)四第3題。
圓錐的體積教案篇九
1、通過練習(xí)學(xué)生進(jìn)一步理解、掌握圓錐的特征及體積計算公式。
2、能正確運(yùn)用公式計算圓錐的體積,并解決一些簡單的實際問題。
3、培養(yǎng)學(xué)生認(rèn)真審題,仔細(xì)計算的習(xí)慣。
進(jìn)一步掌握圓錐的體積計算及應(yīng)用。
:圓錐體積公式的靈活運(yùn)用。
一、知識回顧。
1、前幾節(jié)課我們認(rèn)識了哪兩個圖形?你能說說有關(guān)它們的知識嗎?
2、學(xué)生說,教師板書:
圓錐圓柱。
特征1個底面2個。
扇形側(cè)面展開長方形。
體積v=1/3shv=sh。
二、提出本節(jié)課練習(xí)的內(nèi)容和目標(biāo)。
三、課堂練習(xí)。
(一)、基本訓(xùn)練。
1、填空課本1----2(獨(dú)立完成后校對)。
已知:底面積、直徑、周長與高求體積(小黑板出示)。
(二)、綜合訓(xùn)練:
1、判斷。
(1)圓錐的體積等于圓柱的1/3。
(2)長方體、正方體、圓柱和圓錐的體積公式都可用v=sh。
(3)一個圓柱形容器盛滿汽油有2.5升,這個容器的容積就是2.5升。
(4)圓錐的體積是否4立方厘米,底面積是6平方厘米,那么高是4厘米。
2、應(yīng)用:練習(xí)四第45題任選一題。
3、發(fā)展題:獨(dú)立思考后校對。
四課堂小結(jié):說說本節(jié)課的收獲。
圓錐的體積教案篇十
教學(xué)目的:
1、使學(xué)生掌握圓錐體積的計算公式,會用公式計算圓錐的體積,解決日常生活中有關(guān)簡單的實際問題。
2、讓學(xué)生經(jīng)歷猜想——驗證,合作——探究的教學(xué)過程,理解圓錐體積公式的推導(dǎo)過程,體驗轉(zhuǎn)化的思想。
3、培養(yǎng)學(xué)生動手操作、觀察、分析、推理能力,發(fā)展空間觀念,滲透事物是普遍聯(lián)系的唯物辯證思想。
[點(diǎn)評:知識與技能目標(biāo)的設(shè)計全面、具體、有針對性。不但使學(xué)生掌握圓錐體積的計算公式,而且培養(yǎng)了學(xué)生運(yùn)用圓錐體積公式解決生活中的實際問題的能力,使學(xué)生體會到數(shù)學(xué)與生活的密切聯(lián)系注。并注重對學(xué)生“猜想------驗證”、“合作------探究”等學(xué)習(xí)方式的培養(yǎng)及“轉(zhuǎn)化”數(shù)學(xué)思想方法的滲透;同時關(guān)注學(xué)生空間觀念的培養(yǎng)及唯物辯證思想的滲透。
教學(xué)重點(diǎn):掌握圓錐體積的計算公式,并能靈活利用公式求圓錐的體積。
教學(xué)難點(diǎn):理解圓錐體積公式的推導(dǎo)過程及解決生活中的實際問題。
教學(xué)過程:
一、創(chuàng)設(shè)情境導(dǎo)入新課。
2、引導(dǎo)學(xué)生自己想辦法用多種方法來求這個圓錐體容器的體積,有困難的同學(xué)可以同桌交流,共同研究。(組織學(xué)生先獨(dú)立思考,然后同桌討論交流,最后匯報自己的想法。)。
3、教師出示一個圓錐體的木塊引導(dǎo)學(xué)生明確前面所想的方法太麻繁、不實用。并鼓勵學(xué)生研究出一種簡便快捷的方法來求圓錐的體積。
二、經(jīng)歷體驗,探究新知。
(一)滲透轉(zhuǎn)化,幫助猜想。
1、先組織學(xué)生自由暢談圓錐的體積可能會與誰有關(guān)(圓柱)。先給學(xué)生獨(dú)立思考的時間,然后匯報。匯報時要闡述自己的理由。教師引導(dǎo)學(xué)生回憶圓柱體積公式的推導(dǎo)過程。
2、組織學(xué)生拿出準(zhǔn)備好的圓柱體鉛筆和轉(zhuǎn)筆刀來削鉛筆,同時教師也隨著學(xué)生一起來做。教師做好后要及時巡視,直到學(xué)生將鉛筆削得尖尖的為止。然后引導(dǎo)學(xué)生認(rèn)真觀察削好后的鉛筆是什么形體的?(此時的鉛筆是由圓柱和圓錐兩部分組成的)并組織學(xué)生通過觀察比較、討論交流得出兩種形體的底與高及體積之間的關(guān)系。(削好后的圓柱與圓錐等底不等高,體積無關(guān)。)此時,教師要參與到小組討論中,及時引導(dǎo)學(xué)生發(fā)現(xiàn)削好后的圓錐的體積與未削之前的這部分圓柱等底等高,并且體積也有關(guān)。組織學(xué)生自己的話來總結(jié)。最后,將自己的發(fā)現(xiàn)進(jìn)行匯報。
(二)小組合作,實驗驗證。
1、教師發(fā)給每組學(xué)生一個準(zhǔn)備好的等底等高的圓柱和圓錐、沙了,組織學(xué)生拿出等底等高的圓柱和圓錐進(jìn)行實驗。實驗前小組成員進(jìn)行組內(nèi)分工,有的進(jìn)行操作,有的記錄……實驗中教師要及時巡視指導(dǎo)并參與到小組實驗中去及時了解學(xué)生實驗的進(jìn)展情況。并指導(dǎo)幫助學(xué)生順利完成實驗。
2、實驗后組內(nèi)成員進(jìn)行交流。交流的過程中,要引導(dǎo)學(xué)生注重傾聽別人的想法,并說出自己不同的見解。
3、首先各小組派代表進(jìn)行匯報,其它小組可以補(bǔ)充。然后全班進(jìn)行交流實驗結(jié)果:得出等底等高的圓錐的體積是圓柱體積的1/3,圓柱的體積是圓錐體積的3倍。由圓柱體的體積公式推導(dǎo)出圓錐的體積公式。預(yù)設(shè)板書如下:
概括板書:
等底到高。
v圓柱=shv圓錐=1/3sh。
4、深化公式。組織學(xué)生討論給出不同的條件求圓錐的體積,如:半徑、直徑、周長。預(yù)設(shè)板書如下:
v=1/3πr2hv=1/3(c/2π)2hv=1/3(d/2)2h。
5、教師組織學(xué)生獨(dú)立完成書中例題后集體訂正。
(三)看書質(zhì)疑:你還有哪些不懂的問題或不同的見解可以提出來我們共同研究。
圓錐的體積教案篇十一
教學(xué)目標(biāo):
1、通過動手操作參與實驗,發(fā)現(xiàn)等底等高的圓柱體和圓錐體之間的關(guān)系,從而得出圓錐體的體積公式。
2、能運(yùn)用公式解答有關(guān)的實際問題。
3、滲透轉(zhuǎn)化、實驗、猜測、驗證等數(shù)學(xué)思想方法,培養(yǎng)動手能力和探索意識。
教學(xué)重點(diǎn):通過實驗的方法,得到計算圓錐體積的公式。
教學(xué)難點(diǎn):運(yùn)用圓錐體積公式正確地計算體積。
教學(xué)過程:
一、創(chuàng)設(shè)情境,引發(fā)猜想。
在一個悶熱的中午,小白兔買了一個圓柱形的雪糕,狐貍買了一個圓錐形的雪糕,這兩個雪糕是等底等高的。這是狐貍要用它的雪糕和小白兔換。你覺得小白兔有沒有上當(dāng)?如果狐貍用兩個雪糕和小白兔換你覺得公平嗎?假如你是小白兔,狐貍有幾個雪糕你才肯和它換呢?把你的想法與小組的同學(xué)交流一下,再向全班同學(xué)匯報。
小白兔究竟跟狐貍怎樣交換才公平合理呢?學(xué)習(xí)了“圓錐的體積”后,就會弄明白這個問題。
二、自主探索,操作實驗。
1、出示學(xué)習(xí)提綱。
(2)你們小組是怎樣進(jìn)行實驗的?
(3)你能根據(jù)實驗結(jié)果說出圓錐體的體積公式嗎?
(4)要求圓錐體積需要知道哪兩個條件?
2、小組合作學(xué)習(xí)。
3、回報交流。
公式:v=1/3sh。
4、問題解決。
小白兔和狐貍怎樣交換才能公平合理呢?它需要什么前提條件?
5、運(yùn)用公式解決問題。
教學(xué)例題1和例題2。
三、鞏固練習(xí) 。
(1)底面面積是7.8平方米,高是1.8米.
(2)底面半徑是4厘米,高是21厘米.
(3)底面直徑是6分米,高是6分米.
4、判斷對錯,并說明理由.
(1)圓柱的體積相當(dāng)于圓錐體積的3倍.(?。?。
(2)一個圓柱體木料,把它加工成最大的圓錐體,削去的部分的體積和圓錐的體積比是2?。?.( )。
(3)一個圓柱和一個圓錐等底等高,體積相差21立方厘米,圓錐的體積是7立方厘米.(?。?。
四、拓展延伸。
一個圓錐的底面周長是314厘米,高是9厘米,它的體積是多少立方厘米?
五、談?wù)勈斋@。
六、作業(yè)。
圓錐的體積教案篇十二
教學(xué)內(nèi)容:
教材第11~17頁圓錐的認(rèn)識和體積計算、例1。
教學(xué)要求:
1、使學(xué)生認(rèn)識圓錐的特征和各部分名稱,掌握高的特征,知道測量圓錐高的方法。
2、使學(xué)生理解和掌握圓錐體積的計算公式,并能正確地求出圓錐的體積。
3、培養(yǎng)學(xué)生初步的空間觀念和發(fā)展學(xué)生的思維能力。
教具準(zhǔn)備:
長方體、正方體、圓柱體等,根據(jù)教材第167頁自制的圓錐,演示測高、等底、等高的教具,演示得出圓錐體積等于等底等高圓柱體積的的教具。
教學(xué)重點(diǎn):
教學(xué)難點(diǎn):
理解和掌握圓錐體積的計算公式。
教學(xué)過程:
一、鋪墊孕伏:
2、我們已經(jīng)學(xué)過了長方體、正方體及圓柱體(邊說邊出示實物圖形)。在日常生活和生產(chǎn)中,我們還常??吹较旅嬉恍┪矬w(出示教材第16頁插圖)。這些物體的形狀都是圓錐體,簡稱圓錐。我們教材中所講的圓錐,都是直圓錐。今天這節(jié)課,就學(xué)習(xí)圓錐和圓錐的體積。(板書課題)。
二、自主探究:
1、認(rèn)識圓錐。
我們在日常生活中,還見過哪些物體是這樣的圓錐體,誰能舉出一些例子?
2、根據(jù)教材第16頁插圖,和學(xué)生舉的例子通過幻燈片或其他方法抽象出立體圖。
3、利用學(xué)生課前做好的圓錐體及立體圖通過觀察、手摸認(rèn)識圓錐的特點(diǎn)。
(1)圓錐的底面是個圓,圓錐的側(cè)面是一個曲面。
4、學(xué)生練習(xí)。
口答練習(xí)三第1題。
5、教學(xué)圓錐高的測量方法。(見課本第17頁有關(guān)內(nèi)容)。
6、讓學(xué)生根據(jù)上述方法測量自制圓錐的高。
7、實驗操作、推導(dǎo)圓錐體積計算公式。
(1)通過演示使學(xué)生知道什么叫等底等高。(具體方法可見教材第18頁上面的圖)。
(3)實驗操作,發(fā)現(xiàn)規(guī)律。
在空圓錐里裝滿黃沙,然后倒入空圓柱里,看看倒幾次正好裝滿。(用有色水演示也可)從倒的次數(shù)看,你發(fā)現(xiàn)圓錐體積與等底等高的圓柱體積之間有怎樣的關(guān)系?得出圓錐的體積是與它等底等高的圓柱體體積的。
(4)是不是所有的圓柱和圓錐都有這樣的關(guān)系?教師可出示不等底不等高的圓錐、圓柱,讓學(xué)生通過觀察實驗,得出只有等底等高的圓錐才是圓柱體積的。
(5)啟發(fā)引導(dǎo)推導(dǎo)出計算公式并用字母表示。
用字母表示:v=13sh。
8、教學(xué)例。
(1)出示例1。
(2)審題后可讓學(xué)生根據(jù)圓錐體積計算公式自己試做。
(3)批改講評。注意些什么問題。
圓錐的體積教案篇十三
(1)圓柱的上、下兩個面都相等。()。
(2)圓錐的高和圓柱的高都有無數(shù)條。()。
(3)圓柱和圓錐的側(cè)面都是曲面,圓柱的側(cè)面展開后是一個長方形,圓錐的側(cè)面展開后是一個扇形。()。
(4)測量圓錐的高只要測出頂點(diǎn)到底面圓周上的一點(diǎn)就是圓錐的高。()。
二、填一填:
1.長方形繞它的長邊旋轉(zhuǎn)形成的(),長方形的長是這個圓柱的(),寬是這個圓柱的()。
2.直角三角形繞它的一條直角邊旋轉(zhuǎn)形成(),直角三角形的一條直角邊是這個圓錐的(),另一條直角邊是這個圓錐的()。
3.半圓繞它的直徑旋轉(zhuǎn)形成(),半圓的直徑是這個球的(),半圓的半徑也是這個球的(),半圓的圓心也就是這個圓的()。
三、
2.說出圓錐各部分名稱。
四、說說下面物體哪些是圓柱,哪些是圓錐。不選的,請你說出不選的理由。
圓錐的體積教案篇十四
聽了侯老師的《圓錐的體積》一課,收獲很多,下面我想重點(diǎn)談本節(jié)課的兩點(diǎn)成功之處,希望能與大家一起探討。
第一:為新知識的學(xué)習(xí)搭建合理平臺。
主要體現(xiàn)在侯老師能夠運(yùn)用原有知識來推動新知識的學(xué)習(xí),設(shè)計有獎問答和實驗等手段,讓學(xué)生大膽借鑒前面學(xué)習(xí)圓柱體積公式的方法來探究圓錐體積公式。利用遷移規(guī)律,讓學(xué)生從求圓柱體積的思路、方法中得到啟示,領(lǐng)悟出求圓錐體積的方法,使新舊知識得到整合。這種借鑒的學(xué)習(xí)方法,不僅使本節(jié)課的教學(xué)變得輕松,同時有利于學(xué)生更深刻地理解和掌握這種學(xué)習(xí)策略,有利于學(xué)生的進(jìn)一步學(xué)習(xí)和終身的發(fā)展。
第二:注重培養(yǎng)學(xué)生的實踐能力。
這節(jié)課的重點(diǎn)是通過實驗來探究圓錐體積公式的由來,侯老師主要引導(dǎo)學(xué)生做了三個實驗。一是比較圓柱和圓錐是等底等高,強(qiáng)調(diào)圓柱和圓錐是等底等高這個必要條件;二是做用裝滿小米的圓柱在空圓錐中倒的實驗,使學(xué)生理解等底等高的圓柱和圓錐存在著一定的倍數(shù)關(guān)系;三是特別設(shè)計了一組不等底或不等高的圓柱和圓錐來做倒米實驗,再次強(qiáng)調(diào)只有等底等高的圓柱和圓錐存在著的倍數(shù)關(guān)系。在實驗前,讓學(xué)生了解實驗要求,并且提出三個實驗?zāi)康模海?、圓錐的底面與圓柱的底面有什么關(guān)系?他們的高有什么關(guān)系?你是怎么知道的?2、圓錐的體積和與它等底等高的圓柱體積有什么關(guān)系?3、怎樣計算圓錐的體積?計算公式是什么?)以實驗?zāi)康臑橹骶€,讓學(xué)生小組合作,通過動手操作,有眼睛觀察,動腦筋思考,多種感官一起參與活動,由直觀到抽象,層層深入,探索出圓錐體積公式的由來,從而理解和掌握了圓錐體積的計算公式,培養(yǎng)了學(xué)生的觀察能力、操作能力和初步的空間觀念,克服了幾何形體公式計算教學(xué)中的重結(jié)論、輕過程,重記憶、輕理解,重知識、輕能力的弊病。這樣的學(xué)習(xí),學(xué)生學(xué)得活,記得牢,既發(fā)揮教師的主導(dǎo)作用,又體現(xiàn)了學(xué)生的主體地位。學(xué)生在學(xué)習(xí)過程中,是一個探索者、研究者、合作者、發(fā)現(xiàn)者,并且獲得了富有成效的學(xué)習(xí)體驗。
不過這節(jié)課也存在一些不足,教學(xué)環(huán)節(jié)的銜接和時間的分配有些不恰當(dāng),教學(xué)方法沒有多樣化,欠缺改革創(chuàng)新。例如:在教學(xué)新課時,像傳統(tǒng)教學(xué)那樣,直接拿出圓柱和圓錐容器的教具,讓學(xué)生根據(jù)實驗要求和目的,進(jìn)行倒米實驗。我認(rèn)為在實驗前,一定要為學(xué)生創(chuàng)設(shè)良好的問題情景,如(你覺得圓錐體積的大小與它的什么有關(guān)?你認(rèn)為圓錐的體積和什么圖形的`體積關(guān)系最密切?猜一猜它們的體積有什么關(guān)系呢?你們想知道它們的關(guān)系嗎?)通過師生交流、問答、猜想等形式,強(qiáng)化問題意識,激發(fā)學(xué)生的思維,使學(xué)生產(chǎn)生強(qiáng)烈的求知欲望。這時候,學(xué)生就迫切希望通過實驗來證實自己的猜想,所以做起實驗來就興趣盎然。這樣學(xué)生的思維被激活了,學(xué)習(xí)的積極性提高了,興趣變濃了,課堂氣氛變得熱烈,那么教學(xué)效率,教學(xué)效果就可想而知了。
當(dāng)然,我相信#老師通過這次的鍛煉,在今后的教學(xué)道路上一定會越走越寬廣。謝謝大家!
圓錐的體積教案篇十五
今天,上完《圓錐和圓錐體積》一課,收獲很多。我們緊緊圍繞教學(xué)目標(biāo),通過引導(dǎo)學(xué)生觀察、猜測、操作、分析、推理、驗證概括,引導(dǎo)學(xué)生經(jīng)歷認(rèn)識圓錐和探索圓錐體積計算公式的過程,讓學(xué)生親歷了知識的形成過程,讓學(xué)生思維的火花綻放在手指上。在教學(xué)中主要突出了以下幾點(diǎn):
一、、引導(dǎo)學(xué)生經(jīng)歷猜想-------驗證的探究過程。
在本節(jié)課的教學(xué)中,學(xué)生有了圓柱體積公式的基礎(chǔ),鼓勵學(xué)生大膽猜想“圓錐的體積可能跟什么有關(guān)系?”并充分展示學(xué)生的思維成果“可能跟圓錐的底面積有關(guān)”“可能跟圓錐的高有關(guān)”“可能跟圓錐的側(cè)面積有關(guān)”這些都是都是基于學(xué)生已有知識經(jīng)驗的一種猜想,不一定正確,要得出實驗結(jié)論要通過實驗來驗證,很自然地引導(dǎo)學(xué)生經(jīng)歷猜想-----驗證------得出結(jié)論這一探究過程。同時,為使學(xué)生產(chǎn)生認(rèn)知沖突,課前我們?yōu)閷W(xué)生準(zhǔn)備了有形的材料,(等底等高、等底不等高、等高不等底、既不等高也不等底四組圓柱和圓錐)這樣的設(shè)計,讓學(xué)生通過四次試驗,發(fā)現(xiàn)每組中相同的情況:都有把空圓錐里盛滿沙子,3次正好注滿空圓柱的情況,而其他的實驗室沒有規(guī)律可循的,引導(dǎo)學(xué)生回頭觀察這種特殊情況圓柱和圓錐的關(guān)系,理解必須在等底等高的情況下,圓柱和圓錐才有倍數(shù)關(guān)系,獨(dú)立完成導(dǎo)學(xué)案上的填空,完成圓錐體積公式的推導(dǎo)。這樣的設(shè)計,為學(xué)生的主動探索和發(fā)現(xiàn)提供了時間和空間,有利于學(xué)生主動地建構(gòu)數(shù)學(xué)知識,使得學(xué)生在獨(dú)立思考、對比實驗、討論交流中提高數(shù)學(xué)素養(yǎng)。
二、在動手實驗中,積累數(shù)學(xué)活動經(jīng)驗。
新課標(biāo)指出:動手實踐是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式,數(shù)學(xué)活動經(jīng)驗的積累是提高學(xué)生數(shù)學(xué)素養(yǎng)的重要標(biāo)志。在這節(jié)課中,我們安排分組實驗,明確實驗要求,學(xué)生通過實驗,充分經(jīng)歷直觀感知、觀察發(fā)現(xiàn)、在教師引導(dǎo)的歸納類比數(shù)學(xué)活動中,得出只有在等底等高的情況下,圓錐體積才是圓柱體積的三分之一,沒有這一前提條件,這個結(jié)論是不成立的。在知識建構(gòu)的過程中,學(xué)生通過動手操作、合作交流的數(shù)學(xué)活動中,使得學(xué)生發(fā)現(xiàn)四組圓柱圓錐中共性的問題,初步建立數(shù)學(xué)模型,不斷在“做”的`過程和“思考”的過程中沉淀數(shù)學(xué)活動經(jīng)驗,感受數(shù)學(xué)帶來的成功的快樂和愉悅。
三、培養(yǎng)學(xué)生良好的數(shù)學(xué)習(xí)慣。
影出示習(xí)題:s=6.3平方米h=2米。
學(xué)生獨(dú)立完成,黑板上展示了6.3×2×=4.2(立方米)后,才有學(xué)生補(bǔ)充:(1)6.3×2÷3=4.2(立方米)(2)6.3×2×=4.2(立方米),只是先把6.3和3約分,來豐盈我們的數(shù)學(xué)課堂,為我們的的課堂教學(xué)提供了新的資源,也為算法優(yōu)化提供了素材。
回顧上過的這節(jié)課,總會留下一些缺憾:1、認(rèn)識完圓錐的特征,丟掉了跟進(jìn)練習(xí),沒能把和特征相關(guān)的知識及時鞏固。2、學(xué)生的小組活動組織不夠緊湊,實驗活動用時稍長。留下的缺憾會成為我們會在以后的教學(xué)中努力改進(jìn),讓我們的課堂涌動生命的活力。
學(xué)生的思路更清晰,學(xué)生思維的火花才會不斷閃現(xiàn)。
圓錐的體積教案篇十六
本節(jié)課是北師大版義務(wù)教育標(biāo)準(zhǔn)實驗教科書六年級數(shù)學(xué)下冊第11頁—13頁的內(nèi)容,這節(jié)課是在學(xué)生對長方體,正方體,圓柱體,和圓錐體的特征都有了初步的認(rèn)識和了解,并在學(xué)習(xí)了圓柱的體積的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,這就為本節(jié)課的學(xué)習(xí)奠定了扎實的基礎(chǔ),同時,也為初中階段進(jìn)一步學(xué)習(xí)幾何圖形知識做了一個良好的鋪墊。為了做到有的放矢,我特制定以下學(xué)習(xí)目標(biāo):
1、使學(xué)生理解圓錐體積的推導(dǎo)過程,初步掌握圓錐體積的計算公式,并能正確計算圓錐的體積。
2、通過動手推導(dǎo)圓錐體積計算公式的過程,培養(yǎng)學(xué)生初步的空間觀念和動手操作能力。學(xué)習(xí)重點(diǎn)是:掌握圓錐體積的計算公式。學(xué)習(xí)難點(diǎn)是:正確探索出圓錐體積和圓柱體積之間的關(guān)系。
本節(jié)課我采用的教法是啟發(fā)式教學(xué)法,實驗活動法,歸納總結(jié)法。教學(xué)中,既要充分發(fā)揮學(xué)生的主體作用,又要調(diào)動學(xué)生積極主動地參與教學(xué)。
動手操作法,觀察發(fā)現(xiàn)法,自主探究法,合作交流法。
1、復(fù)習(xí)導(dǎo)入,引出課題:通過復(fù)習(xí)圓錐的特征、圓柱的體積計算方法引入新課,為學(xué)生學(xué)習(xí)新知做好鋪墊。
2、揭示課題,展示目標(biāo)。
3、以舊引新,探究新知。
通過回憶圓柱體積計算公式的推導(dǎo)過程,提出問題:圓錐的體積該怎樣求呢?能不能也通過已學(xué)過的圖形來求呢?激起學(xué)生探究的欲望。此時我會拿出已經(jīng)準(zhǔn)備好了的等底等高的圓柱形和圓錐形容器,然后提問以下幾個問題:這兩個容器有什么共同的特征?誰的體積更大?圓柱的體積和圓錐體積之間有沒有一定的數(shù)量關(guān)系?問學(xué)生:“你用什么辦法驗證自己的猜想呢?”這時候,肯定要有一部分聰明的或者已經(jīng)預(yù)習(xí)課本的同學(xué)會說:“將圓錐形容器裝滿沙或水,在倒入圓柱形容器,看幾次能倒?jié)M?!边@時候就讓同學(xué)們以小組為單位,驗證他們的猜想。
教師只需要做最總結(jié):圓錐的體積等于和它等底等高的圓柱體積的三分之一。如果用v表示圓錐的體積,s表示底面積,h表示高,那么就能得出圓錐體積的計算公式為:v=1/3sh(板書,特別的用紅顏色粉筆寫出等底等高和公式)。
4、運(yùn)用公式,解決問題。
通過“算一算”和“試一試”讓學(xué)生掌握公式的運(yùn)用。
5、鞏固練習(xí),拓展深化,依次練習(xí)“練一練”中第1題,第4題和第5題。當(dāng)然在練習(xí)的過程中,要隨時關(guān)注學(xué)生所出現(xiàn)的問題,以便得到及時的解決。
6、質(zhì)疑問難,總結(jié)升華。
在此環(huán)節(jié)中,我會問學(xué)生“通過這節(jié)課的學(xué)習(xí),你們有哪些收獲,是怎樣推導(dǎo)出圓錐的體積的公式的。
圓錐的體積教案篇十七
1、知識目標(biāo):使學(xué)生理解和掌握求圓錐體積的計算公式,并能正確求出圓錐的體積,《圓錐的體積》教案設(shè)計及反思。.
2、能力目標(biāo):培養(yǎng)學(xué)生初步的空間觀念,動手操作能力和邏輯思維能力。
3、情感目標(biāo):向?qū)W生滲透知識間可以相互轉(zhuǎn)化的辯證唯物主義思想,讓學(xué)生學(xué)習(xí)將新知識轉(zhuǎn)化為原有知識的學(xué)習(xí)方法.
教學(xué)重點(diǎn):圓錐的體積計算
教學(xué)難點(diǎn):圓錐的體積計算公式的推導(dǎo).
教學(xué)準(zhǔn)備:圓錐形蘿卜、繩子,每個小組一個計算器、等底等高的圓柱和圓錐容器模型、沙土水等。
一、復(fù)習(xí)導(dǎo)入。師:同學(xué)們,你們知道桌上那個白蘿卜,它是什么形體嗎?(圓柱體),現(xiàn)在,如是假設(shè)它的底面積是5平方厘米,高是4厘米,你怎樣求它的體積呢?求出體積后,問:現(xiàn)在老師想請你們幫個忙,把它削成一個最大的圓錐,你們有辦法嗎?說一說什么樣的圓錐體才算最大呢?(與原來的圓柱體蘿卜等底等高)
二、探究新知1、實踐猜想.師:好,現(xiàn)在請同學(xué)們動手削蘿卜,比比哪一組削得最漂亮?學(xué)生削完后,問:誰來猜猜,現(xiàn)在削成的圓錐體積與剛才圓柱有什么關(guān)系呢?你是怎么猜測的?生1:我猜圓錐的體積可能等于原來那個蘿卜體積的,就是5立方厘米。
生2:我猜圓錐的體積可能等于原來那個蘿卜體積的,就是10立方厘米。我是根據(jù)我們以前學(xué)過的在長方形里剪一個最大的三角形,三角形的面積是長方形的,所以我認(rèn)為圓錐的體積也是圓柱體積的。
生3: 我猜圓錐的體積可能等于原來那個蘿卜體積的,就是6立方厘米,是把削去的蘿卜拼起來和圓錐體蘿卜進(jìn)行比較,發(fā)現(xiàn)削去的部分的體積大約是圓錐體積的2倍。
生5:我可以把削成的圓錐與削去的蘿卜都拿去稱,再比較它們的重量。.
生6:我把圓錐體蘿卜浸入盛有水的圓柱容器里,算出它的體積,再把削去部分的蘿卜也浸入盛有水的圓柱形容器里,根據(jù)水面上升的高度求出它的體積就知道了。.
生7:我可以把剛才那個圓柱體蘿卜和削成的圓錐休蘿卜分別挖成空心的然后把空圓錐蘿卜盛滿水倒入圓柱體蘿卜中,分別算出體積后進(jìn)行比較。
生8:我可以用桌上的這些學(xué)具來驗證。.再讓學(xué)生比比哪種方法最合適?
4、解決問題,教案《《圓錐的體積》教案設(shè)計及反思》。課件出示例1,讓學(xué)生獨(dú)立完成。5、教師小結(jié)。
三、擴(kuò)展應(yīng)用。(一)、基本練習(xí)。1、一個圓錐的底面積是25平方分米,高是9分米,它的體積是多少?2、測量圓錐體學(xué)具,求出體積,并說說高是怎么量的?3、一個圓錐的底面積直徑是20厘米,高是8厘米,它們體積是多少?(二)擴(kuò)展練習(xí)。!、一個圓錐的體積是8立方分米,底面積是2平方分米,高是()分米?2、圓錐形的容器高12厘米,容器中盛滿水,如果水全部倒入等底的圓柱容器中,水面高是( )
四、歸納小結(jié)。師:通過這節(jié)課的學(xué)習(xí),你學(xué)會了什么?你是怎么學(xué)會的?
五、作業(yè)。
這節(jié)課,體現(xiàn)了以下幾個特點(diǎn):
一、在“動”中獲新知?!皠印笔呛⒆拥奶煨?,每位孩子都充滿了“動”的欲望。由于幾何知識比較抽象,學(xué)生理解和掌握幾何圖形的概念、性質(zhì)、求積公式、形成空間觀念,都必須有大量具體的、形象的感性材料的積累。所以教材在編排這一知識塊的時候,就已安排了很多的實踐性練習(xí)。教學(xué)時,教者能充分利用這一特點(diǎn),通過擺、剪、折、量、畫、分割、拼合等操作活動,使學(xué)生獲得鮮明、生動、形象的感性認(rèn)識,在此基礎(chǔ)上,抽象概括出圓錐的體積計算方法,形成正確的空間觀念。
二、在“動”中求發(fā)展。在教學(xué)圓錐的體積時,教者先讓學(xué)生觀察并討論推導(dǎo)圓錐體積公式的實驗方法,當(dāng)學(xué)生由于受圓柱體積公式推導(dǎo)方法的影響,思維受阻時,教者向?qū)W生提議:用桌上學(xué)具來驗證。同時推薦一些實驗用品:水或沙、尺等。讓學(xué)生在實驗中選擇并設(shè)置疑問:圓錐體積與圓柱體積的關(guān)系。通過實際操作,學(xué)生不僅得出圓錐體積的計算公式。獲得了知識的結(jié)果,而且經(jīng)歷了知識面發(fā)展、發(fā)生的過程,同時加強(qiáng)并鞏固口頭和書面表達(dá)能力,發(fā)展解決數(shù)學(xué)問題的能力,增進(jìn)對數(shù)學(xué)的理解力。
三、在“動”中學(xué)會與他人合作。學(xué)習(xí)是學(xué)生主體的主動建構(gòu)過程,其本質(zhì)是讓學(xué)生認(rèn)識客觀世界,把書本中的知識結(jié)構(gòu)轉(zhuǎn)化為自己的認(rèn)知結(jié)構(gòu)。這個過程是學(xué)生主體活動的過程,必須由學(xué)生親身參與,學(xué)生在動手中運(yùn)用感官參與學(xué)習(xí),自覺主動地去操作、去學(xué)習(xí),在濃厚的動手實踐中不僅經(jīng)歷了知識的形成過程,而且也學(xué)會了如何與他人合作才能取得成功。
【本文地址:http://www.mlvmservice.com/zuowen/14736449.html】