一次函數(shù)與二元一次方程課教學設計(熱門19篇)

格式:DOC 上傳日期:2023-11-24 17:57:24
一次函數(shù)與二元一次方程課教學設計(熱門19篇)
時間:2023-11-24 17:57:24     小編:溫柔雨

批判是對事物進行全面評價和分析的一種思維方式,它可以幫助我們發(fā)現(xiàn)問題和提出改進的辦法??偨Y應該包括哪些方面的內(nèi)容,怎樣才能更加全面?想要寫一份優(yōu)秀的總結嗎?下面是小編為大家收集整理的范文,希望能給大家一些靈感。

一次函數(shù)與二元一次方程課教學設計篇一

知識目標:了解二元一次方程、二元一次方程組及其解等有關概念,并會判斷一組數(shù)是不是某個二元一次方程組的解。

能力目標:通過討論和練習,進一步培養(yǎng)學生的觀察、比較、分析的能力。

情感目標:通過對實際問題的分析,使學生進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學模型,培養(yǎng)學生良好的數(shù)學應用意識。

判斷一組數(shù)是不是某個二元一次方程組的解,培養(yǎng)學生良好的數(shù)學應用意識。

一、引入、實物投影。

2、請每個學習小組討論(討論2分鐘,然后發(fā)言)。

這個問題由于涉及到老牛和小馬的馱包裹的兩個未知數(shù),我們設老牛馱x個包裹,小馬馱y個包裹,老牛的包裹數(shù)比小馬多2個,由此得方程x-y=2,若老牛從小馬背上拿來1個包裹,這時老牛的包裹是小馬的2倍,得方程:x+1=2(y-1)。

師:同學們能用方程的。方法來發(fā)現(xiàn)、解決問題這很好,上面所列方程有幾個未知數(shù)?含未知數(shù)的項的次數(shù)是多少?(含有兩個未知數(shù),并且所含未知數(shù)項的次數(shù)是1)。

師:含有兩個未知數(shù),并且含未知數(shù)項的次數(shù)都是1的方程叫做二元一次方程。

一次函數(shù)與二元一次方程課教學設計篇二

本節(jié)課是在學生已經(jīng)學會從單個一次函數(shù)的圖象分析獲取信息,進而解決有關實際問題的基礎上展開的。因此,本節(jié)課的重點應該放在怎樣從兩個函數(shù)圖象的比較、分析中提取有用信息,弄清兩者之間的聯(lián)系,從而提高學生的識圖能力與解決實際問題的能力。難點在于怎樣抓住有用的特征去分析、比較。于是,本節(jié)課的基本思路是以學生熟悉的一次函數(shù)的圖象及性質(zhì)為鋪墊,以學生感興趣的現(xiàn)實問題作素材,以交流合作為主要形式展開學習活動。

例1:某種摩托車的油箱最多可儲油10升,加滿油后,油箱中的剩余油量y(升)與摩托車行駛路程x(千米)之間的關系引伸的問題帶來了挑戰(zhàn)性的懸念。只有讓學生在探索問題之中學會提出問題,才能最終體驗到數(shù)學的抽象,形成穩(wěn)定的學習興趣。

2、本節(jié)課充分體現(xiàn)了學生在自主探索與合作交流中學會學習這一理念,學生有足夠的自主探索時間,有與同學合作互動的空間,有與老師交流表達的機會。學生不是從老師那里獲取知識,而是在數(shù)學活動的過程中發(fā)現(xiàn)規(guī)律、體驗成功。

3、本節(jié)課通過函數(shù)圖象獲取信息,解決實際問題,培養(yǎng)學生的形象思維及數(shù)學應用能力,同時培養(yǎng)學生良好的環(huán)保意識和熱愛生活的意識及利用函數(shù)圖象解決簡單的實際問題通過方程與函數(shù)關系的研究,建立良好的知識聯(lián)系。

1、個別差生的積極性還未調(diào)動起來,還須探索出關注差生的方法來提高教學及格率。

2、在分析一次函數(shù)表達式時,在課本上用的“數(shù)形結合”方法可另外用“待定系數(shù)法”分析;以便學生能拓展思維。

一次函數(shù)與二元一次方程課教學設計篇三

2、了解二元一次方程和二元一次方程組的解并會檢驗一對數(shù)值是不是二元一次方程(組)的解。

重點:二元一次方程(組)的含義及檢驗一對數(shù)是否是某個二元一次方程(組)的解。

1、知識回顧:

(1)方程的概念;

(2)一元一次方程的概念;

(3)什么是方程的解?

(4)一元一次方程的解如何表示?

2、合作學習:

如果設需要票額為6角的郵票x張,需要票額為8角的郵票y張,你能列出方程嗎?

一次函數(shù)與二元一次方程課教學設計篇四

一.教學目標:

1.認知目標:

2)理解二元一次方程組的解的概念。

3)會用列表嘗試的方法找二元一次方程組的解。

2.能力目標:

1)滲透把實際問題抽象成數(shù)學模型的思想。

2)通過嘗試求解,培養(yǎng)學生的探索能力。

3.情感目標:

1)培養(yǎng)學生細致,認真的學習習慣。

2)在積極的教學評價中,促進師生的情感交流。

二.教學重難點。

難點:用列表嘗試的方法求出方程組的解。

三.教學過程。

(一)創(chuàng)設情景,引入課題。

1.本班共有40人,請問能確定男*各幾人嗎?為什么?

(1)如果設本班男生x人,*y人,用方程如何表示?(x+y=40)。

(2)這是什么方程?根據(jù)什么?

2.男生比*多了2人。設男生x人,*y人。方程如何表示?x,y的值是多少?

3.本班男生比*多2人且男*共40人。設該班男生x人,*y人。方程如何表示?

兩個方程中的x表示什么?類似的兩個方程中的y都表示?

象這樣,同一個未知數(shù)表示相同的量,我們就應用大括號把它們連起來組成一個方程組。

[設計意圖:從學生身邊取數(shù)據(jù),讓他們感受到生活中處處有數(shù)學]。

(二)探究新知,練習鞏固。

(1)請同學們看課本,了解二元一次方程組的的概念,并找出關鍵詞由教師板書。

[讓學生看書,引起他們對教材重視。找關鍵詞,加深他們對概念的了解。]。

x+y=3,x+y=200,。

2x-3=7,3x+4y=3。

y+z=5,x=y+10,。

2y+1=5,4x-y2=2。

學生作出判斷并要說明理由。

(1)由學生給出引例的答案,教師指出這就是此方程組的解。

(2)練習:把下列各組數(shù)的題序填入圖中適當?shù)奈恢茫?/p>

x=1;x=-2;x=;-x=。

y=0;y=2;y=1;y=。

方程x+y=0的解,方程2x+3y=2的解,方程組x+y=0的解。

2x+3y=2。

(3)既滿足第一個方程也滿足第二個方程的解叫作二元一次方程組的解。

(4)練習:已知x=0是方程組x-b=y的解,求a,b的值。

y=0.55x+2a=2y。

(三)合作探索,嘗試求解。

現(xiàn)在我們一起來探索如何尋找方程組的解呢?

1.已知兩個整數(shù)x,y,試找出方程組3x+y=8的解。

2x+3y=10。

學生兩人一小組合作探索。并讓已經(jīng)找出方程組解的學生利用實物投影,講明自己的解題思路。

提煉方法:列表嘗試法。

一般思路:由一個方程取適當?shù)膞y的值,代到另一個方程嘗試。

2.據(jù)了解,某商店出售兩種不同星號的“紅雙喜”牌乒乓球。其中“紅雙喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同學一共買了4盒,剛好有15個球。

(1)設該同學“紅雙喜”二星乒乓球買了x盒,三星乒乓球買了y盒,請根據(jù)問題中的條件列出關于x、y的方程組。(2)用列表嘗試的方法解出這個方程組的解。

由學生獨立完成,并分析講解。

(四)課堂小結,布置作業(yè)。

1.這節(jié)課學哪些知識和方法?(二元一次方程組及解概念,列表嘗試法)。

2.你還有什么問題或想法需要和大家交流?

3.作業(yè)本。

教學設計說明:

1.本課設計主線有兩條。其一是知識線,內(nèi)容從二元一次方程組的概念到二元一次方程組解的概念再到列表嘗試法,環(huán)環(huán)相扣,層層遞進;第二是能力培養(yǎng)線,學生從看書理解二元一次方程組的概念到學會歸納解的概念,再到自主探索,用列表嘗試法解題,循序漸進,逐步提高。

2.“讓學生成為課堂的真正主體”是本課設計的主要理念。由學生給出數(shù)據(jù),得出結果,再讓他們在積極嘗試后進行講解,實現(xiàn)生生互評。把課堂的一切交給學生,相信他們能在已有的知識上進一步學習提高,教師只是點播和引導者。

3.本課在設計時對教材也進行了適當改動。例題方面考慮到數(shù)*時代,學生對膠卷已漸失興趣,所以改為學生比較熟悉的乒乓球為體裁。另一方面,充分挖掘練習的作用,為知識的落實打下軋實的基礎,為學生今后的進一步學習做好鋪墊。

2022初中語文優(yōu)秀教師教案范文-語文優(yōu)秀教案模板范文。

標準教案范文精選。

一次函數(shù)與二元一次方程課教學設計篇五

本節(jié)課是在學生已經(jīng)探究過一次函數(shù)、一元一次方程及一元一次不等式的聯(lián)系的基礎上進行的學習。本節(jié)教學內(nèi)容是《一次函數(shù)與一元二次方程(組)》,“一個二元一次方程對應一個一次函數(shù),一般地一個二元一次方程組對應兩個一次函數(shù),因而也對應兩條直線。如果一個二元一次方程組有唯一的解,那么這個解就是方程組對應的兩條直線的交點的坐標”。通過本節(jié)課的學習,讓學生能從函數(shù)的角度動態(tài)地分析方程(組),提高認識問題的水平。

本節(jié)課的引入。我通過一個一次函數(shù)形式問題提問,學生看出既是一次函數(shù),也是二元一次方程,由此創(chuàng)設情境,引出一次函數(shù)與方程有必然的關系,使學生主動投入到一次函數(shù)與二元一次方程(組)關系的探索活動中;緊接著,用一連串的問題引導學生自主探索、合作交流,從數(shù)和形兩個角度認識它們的關系,使學生真正掌握本節(jié)課的重點知識。

在探究過程中,我把學生分為一個函數(shù)組一個方程組,使學生能身臨其境感受知識,并及時的進行團結合作教育,把德育教育滲透在教學中。在探究中,我把握自己是組織者、引導者和合作者的身份,及時引導學生進行知識探究。但在實際操作過程中還是把握的不夠好,沒有很好的起到引導者的作用,缺乏情感性的鼓勵,沒有使大多數(shù)學生能完全積極融入到的知識的探討與學習中。

本節(jié)的圖象解法需要迅速畫出圖象,利用圖象解決問題。而我的失誤主要發(fā)生在畫圖象上。大部分學生不能迅速畫出圖象,并找準交點,這就使他們理解本節(jié)知識有了困難。

為了培養(yǎng)學生的發(fā)散思維和規(guī)范解題的習慣,我引導學生將“上網(wǎng)收費”問題延伸為拓展應用題,根據(jù)前面的例題教學,設置了兩個小問題:

(1)上網(wǎng)時間為多少時,按方式a比較劃算?

(2)上網(wǎng)時間為多少時,按方式b比較劃算?

前后呼應,使學生有效地理解本節(jié)課的難點。但在此題的探討過程中,我做的不夠好,沒有給學生充分思考的時間及學生探討解決問題的方法,有點操之過急,而且我當時也沒有采取補救措施,這是我的失誤,也是這節(jié)課的失敗之處。

一次失誤也反映了一位老師駕馭課題的能力,今后,在我的課堂教學中要注重培養(yǎng)這種能力,關注細節(jié),完善課堂和各個環(huán)節(jié),不留遺憾,提高教育教學質(zhì)量。

一次函數(shù)與二元一次方程課教學設計篇六

(2)通過“做一做”引入例1,進一步發(fā)展學生數(shù)形結合的意識和能力。

(1)在探究二元一次方程和一次函數(shù)的對應關系中,在體會近似解與準確解中,培養(yǎng)學生勤于思考、精益求精的精神。

(2)在經(jīng)歷同一數(shù)學知識可用不同的數(shù)學方法解決的過程中,培養(yǎng)學生的創(chuàng)新意識和變式能力。

(2)二元一次方程組和對應的兩條直線的關系。

數(shù)形結合和數(shù)學轉化的思想意識。

教具:多媒體課件、三角板。

學具:鉛筆、直尺、練習本、坐標紙。

第一環(huán)節(jié):設置問題情境,啟發(fā)引導(5分鐘,學生回答問題回顧知識)。

內(nèi)容:

1.方程x+y=5的解有多少個?是這個方程的解嗎?

2.點(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?

3.在一次函數(shù)y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?

4.以方程x+y=5的解為坐標的所有點組成的圖像與一次函數(shù)y=的圖像相同嗎?

由此得到本節(jié)課的第一個知識點:

(1)以二元一次方程的解為坐標的點都在相應的函數(shù)圖像上;

第二環(huán)節(jié)自主探索方程組的解與圖像之間的關系(10分鐘,教師引導學生解決)。

內(nèi)容:

1.解方程組。

2.上述方程移項變形轉化為兩個一次函數(shù)y=和y=2x,在同一直角坐標系內(nèi)分別作出這兩個函數(shù)的圖像。

(1)求二元一次方程組的解可以轉化為求兩條直線的交點的橫縱坐標;

(2)求兩條直線的交點坐標可以轉化為求這兩條直線對應的函數(shù)表達式聯(lián)立的二元一次方程組的解。

(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。

注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組。

第三環(huán)節(jié)典型例題(10分鐘,學生獨立解決)。

探究方程與函數(shù)的相互轉化。

內(nèi)容:例1用作圖像的方法解方程組。

例2如圖,直線與的交點坐標是。

第四環(huán)節(jié)反饋練習(10分鐘,學生解決全班交流)。

內(nèi)容:

1.已知一次函數(shù)與的圖像的交點為,則。

2.已知一次函數(shù)與的圖像都經(jīng)過點a(—2,0),且與軸分別交于b,c兩點,則的面積為()。

(a)4(b)5(c)6(d)7。

3.求兩條直線與和軸所圍成的三角形面積。

4.如圖,兩條直線與的交點坐標可以看作哪個方程組的解?

第五環(huán)節(jié)課堂小結(5分鐘,師生共同總結)。

內(nèi)容:以“問題串”的形式,要求學生自主總結有關知識、方法:

1.二元一次方程和一次函數(shù)的。圖像的關系;

(1)以二元一次方程的解為坐標的點都在相應的函數(shù)圖像上;

2.方程組和對應的兩條直線的關系:

(1)方程組的解是對應的兩條直線的交點坐標;

(2)兩條直線的交點坐標是對應的方程組的解;

(1)代入消元法;

(2)加減消元法;

(3)圖像法。要強調(diào)的是由于作圖的不準確性,由圖像法求得的解是近似解。

第六環(huán)節(jié)作業(yè)布置。

習題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2。

一次函數(shù)與二元一次方程課教學設計篇七

(3)通過學生的思考和操作,力圖提示出方程與圖象之間的關系,引入二元一次方程組的圖象解法。同時培養(yǎng)學生初步的數(shù)形結合的意識和能力。

2.情感態(tài)度價值觀目標。

通過學生的自主探索,提示出方程和圖象之間的對應關系,加強新舊知識的聯(lián)系,培養(yǎng)學生的創(chuàng)新意識,激發(fā)了學生學習數(shù)學的興趣,使學生體驗數(shù)學活動充滿探索與創(chuàng)造。

前面已經(jīng)分別學習了一次函數(shù)和二元一次方程組,這節(jié)課研究二元一次方程組(數(shù))和一次函數(shù)(形)的關系,是這兩章知識的綜合運用。強化了部分與整體的內(nèi)在聯(lián)系,知識與知識的內(nèi)在聯(lián)系,并為今后解析幾何的學習奠定基礎。

2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解。

方程和函數(shù)之間的對應關系即數(shù)形結合的意識和能力。

學生操作——————自主探索的方法。

學生通過自己操作和思考,結合新舊知識的聯(lián)系,自主探索出方程與圖象之間的對應關系,以引入二元一次方程組的圖象解法,同時也建立了“數(shù)”————二元一次方程組和“形”————函數(shù)的圖象(直線)之間的對應關系,培養(yǎng)了學生數(shù)形結合的意識和能力。

一.故事引入。

迪卡兒的故事——————蜘蛛給予的啟示。

在蜘蛛爬行的啟示下,迪卡兒創(chuàng)建了直角坐標系,在坐標系下幾何圖形(形)和方程(數(shù))建立聯(lián)系。迪卡兒坐標系起到了橋梁和紐帶的作用。從而我們可以把圖形化成方程來研究,也可以用圖象來研究方程。

二.嘗試探疑。

1、y=x+1。

你們把我叫一次函數(shù),我也是二元一次方程啊!這是怎么回事,你知道嗎?

學生先是疑惑:方程就是方程,函數(shù)就是函數(shù),它們能有什么聯(lián)系呢?然后通過思考、交流,最后恍然大悟。初步感受一次函數(shù)與二元一次方程的內(nèi)在聯(lián)系。

2、函數(shù)y=x+1上的任意一點的坐標是否滿足方程x—y=—1?

學生會迫不及待地拿起筆來計算。從函數(shù)y=x+1圖象上找?guī)讉€點看它們的坐標是否滿足方程x—y=—1。結果都滿足。然后學生就會自主和同伴交流,問一問同伴函數(shù)y=x+1圖象上的點滿足不滿足方程x—y=—1。結果也都滿足。這樣他們就會搭成共識:函數(shù)y=x+1上的任意一點的坐標都滿足方程x—y=—1。

然后學生會用同樣的方法得出另一個結論:以方程x—y=—1的解為坐標的點一定在函數(shù)y=x+1的圖象上。然后開始思索函數(shù)y=x+1和方程x—y=—1到底有何關系呢?通過交流自動得出結論:以方程x—y=—1的解為坐標的點組成的圖象與一次函數(shù)y=x+1的圖象相同。

3。在同一坐標系下,化出y=x+1與y=4x—2的圖象,他們的交點坐標是什么?

方程組y=x+1的解是什么?二者有何關系?

y=4x—2。

y=x+1的解。

y=4x—2。

教師作最后總結:因為函數(shù)和方程有以上關系,所以我們就可以用圖象法解決方程問題,也可以用方程的方法解決圖象問題。

解方程組x—2y=—2。

2x—y=2。

學生會很快的用消元法解出來。

老師發(fā)問:誰還有其他的方法?如果有,鼓勵學生大膽提出。并給予口頭表揚。如果沒有人用其他的方法,老師提出問題:你能不能用圖象的方法求方程組的解呢?這時,學生就會去探索新的思路、方法。

一回憶方程與函數(shù)的關系,有了!方程組的解不就是兩個方程變形得到的兩個函數(shù)圖象的交點坐標嗎?學生就會迅速動筆用這種方法把方程解出來。作完之后,互相交流。學生總結一下做題步驟:

1。把兩個方程都化成函數(shù)表達式的形式。

2。畫出兩個函數(shù)的圖象。

3。畫出交點坐標,交點坐標即為方程組的解。

問題又出來了,有的同學的解是x=2有的同學的解是x=2。1y=2。1。

y=1。9有的同學的解是……雖然都和消元法得到的結果相近,但各不相同。

老師提問:你能說一下用圖象法解方程組的不足嗎?

學生爭先恐后的回答:用這種方法求的解是近似值。不準確。學生提出疑問:既然不準確,那學習它有什么用呢?用消元法就足夠了!

教師解釋一下:在現(xiàn)實生活和生產(chǎn)中,我們會遇到特別復雜的方程,用消元法解不太容易,我們就可以用電腦繪制成函數(shù)圖象,很容易找出交點坐標。教師可以用z+z智能教育平臺演示一下。

[點評]用作圖象的方法解方程組,這體現(xiàn)了兩個知識點的內(nèi)在聯(lián)系。學數(shù)學知識,探索知識點之間的聯(lián)系,可起到化新為舊的作用,達到事半功倍的效果。逐步讓學生學會這種學習新知識的技巧。

四.引申。

方程組x+y=2。

x+y=5解的情況如何?你能從函數(shù)的角度解釋一下嗎?

學生用消元法開始解方程組,結果無解,怎么回事呢?學生會嘗試運用方程組的圖象解法。畫出兩個函數(shù)圖象。答案有了!圖象是平行的,沒有交點。所以方程組無解了。哇!太神奇了!方程的問題可以用圖象的方法解決了。

[點評]因為有了上面的用作圖象法解方程組,在這里,學生就會自覺地從函數(shù)的角度探究方程的問題,初步具有了數(shù)形結合的意識和能力。

五.課后小結。

本節(jié)課我們通過操作和思考,揭示了二元一次方程和函數(shù)圖象之間的對應關系,從而引入二元一次方程組的圖象解法,同時也建立了“數(shù)”————二元一次方程與“形”——————函數(shù)圖象之間的對應關系,培養(yǎng)了學生初步的數(shù)形結合的意識和能力。

六.作業(yè)。

1。用作圖象法解方程組2x+y=4。

2x—3y=12。

2。如圖,直線l、l相交于點a,試求出a點坐標。

一次函數(shù)與二元一次方程課教學設計篇八

過程與方法。

(2)通過“做一做”引入例1,進一步發(fā)展學生數(shù)形結合的意識和能力。

情感與態(tài)度。

(1)在探究二元一次方程和一次函數(shù)的對應關系中,在體會近似解與準確解中,培養(yǎng)學生勤于思考、精益求精的精神。

(2)在經(jīng)歷同一數(shù)學知識可用不同的數(shù)學方法解決的過程中,培養(yǎng)學生的創(chuàng)新意識和變式能力。

教學重點。

教學難點。

數(shù)形結合和數(shù)學轉化的思想意識。

教學準備。

教具:多媒體課件、三角板。

學具:鉛筆、直尺、練習本、坐標紙。

教學過程。

第一環(huán)節(jié):設置問題情境,啟發(fā)引導(5分鐘,學生回答問題回顧知識)。

內(nèi)容:

1.方程x+y=5的解有多少個?是這個方程的解嗎?

2.點(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?

3.在一次函數(shù)y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?

4.以方程x+y=5的解為坐標的所有點組成的圖像與一次函數(shù)y=的圖像相同嗎?

由此得到本節(jié)課的第一個知識點:

(2)一次函數(shù)圖像上的點的坐標都適合相應的二元一次方程。

第二環(huán)節(jié)自主探索方程組的解與圖像之間的關系(10分鐘,教師引導學生解決)。

內(nèi)容:

1.解方程組。

2.上述方程移項變形轉化為兩個一次函數(shù)y=和y=2x,在同一直角坐標系內(nèi)分別作出這兩個函數(shù)的圖像。

(1)求二元一次方程組的解可以轉化為求兩條直線的交點的橫縱坐標;

(2)求兩條直線的交點坐標可以轉化為求這兩條直線對應的函數(shù)表達式聯(lián)立的二元一次方程組的解。

(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。

注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組。

第三環(huán)節(jié)典型例題(10分鐘,學生獨立解決)。

探究方程與函數(shù)的相互轉化。

內(nèi)容:例1用作圖像的方法解方程組。

例2如圖,直線與的交點坐標是。

第四環(huán)節(jié)反饋練習(10分鐘,學生解決全班交流)。

內(nèi)容:

1.已知一次函數(shù)與的圖像的交點為,則。

2.已知一次函數(shù)與的圖像都經(jīng)過點a(—2,0),且與軸分別交于b,c兩點,則的面積為()。

(a)4(b)5(c)6(d)7。

3.求兩條直線與和軸所圍成的三角形面積。

4.如圖,兩條直線與的交點坐標可以看作哪個方程組的解?

第五環(huán)節(jié)課堂小結(5分鐘,師生共同總結)。

內(nèi)容:以“問題串”的形式,要求學生自主總結有關知識、方法:

(2)一次函數(shù)圖像上的點的坐標都適合相應的二元一次方程。

2.方程組和對應的兩條直線的關系:

(1)方程組的解是對應的兩條直線的交點坐標;

(2)兩條直線的交點坐標是對應的方程組的解;

(1)代入消元法;

(2)加減消元法;

(3)圖像法。要強調(diào)的是由于作圖的不準確性,由圖像法求得的解是近似解。

第六環(huán)節(jié)作業(yè)布置。

習題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2。

一次函數(shù)與二元一次方程課教學設計篇九

3、會將一個二元一次方程變形成用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式。

情感與態(tài)度目標。

2、通過對實際問題的分析,培養(yǎng)關注生活,進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學模型,培養(yǎng)良好的數(shù)學應用意識。

重點:二元一次方程的概念及二元一次方程的解的概念。

難點。

1、了解二元一次方程的解的不唯一性和相關性。即了解二元一次方程的解有無數(shù)個,但不是任意的兩個數(shù)是它的解。

2、把一個二元一次方程變形成用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質(zhì)是解一個含有字母系數(shù)的方程。

1、通過創(chuàng)設問題情境,讓學生在尋求問題解決的過程中認識二元一次方程,了解二元一次方程的特點,體會到二元一次方程的引入是解決實際問題的需要。

2、通過觀察、思考、交流等活動,激發(fā)學習情緒,營造學習氣氛,給學生一定的時間和空間,自主探討,了解二元一次方程的解的不唯一性和相關性。

3、通過學練結合,以游戲的形式讓學生及時鞏固所學知識。

創(chuàng)設情境導入新課。

1、一個數(shù)的3倍比這個數(shù)大6,這個數(shù)是多少?

師生互動探索新知。

1、發(fā)現(xiàn)新知。

根據(jù)它們的共同特征,你認為怎樣的方程叫做二元一次方程?(二元一次方程的定義:含有兩個未知數(shù),且含有未知數(shù)的項的次數(shù)都是一次的方程叫做二元一次方程。)。

2、鞏固新知。

相同點:方程兩邊都是整式,含有未知數(shù)的項的次數(shù)都是一次。

如果一個方程含有兩個未知數(shù),并且所含未知項都為1次方,那么這個整式方程就叫做二元一次方程,有無窮個解,若加條件限定有有限個解。

它山之石可以攻玉,以上就是為大家?guī)淼?篇《一次函數(shù)與二元一次方程課教學設計》,您可以復制其中的精彩段落、語句,也可以下載doc格式的文檔以便編輯使用。

一次函數(shù)與二元一次方程課教學設計篇十

本節(jié)課的教學設計反思是圍繞著今天“六個有效”的主題活動展開反思的。

學生已初步掌握了函數(shù)的概念、一次函數(shù)的圖象及性質(zhì),并了解了函數(shù)的三種表達方式:圖象法、列表法、解析式法。在此基礎上通過知識提問引導學生進一步掌握一次函數(shù)的相關知識并能靈活的應用到習題中,有效的“復習回顧”在本節(jié)課起到了承上啟下的作用。

根據(jù)實際的問題情境感受生活中的一次函數(shù),利用已知的條件,來確定一次函數(shù)中正比例函數(shù)表達式,并理解確定正比例函數(shù)表達式的方法和條件。

設置這個例題是物理學中的一個彈簧現(xiàn)象,目的在于讓學生從不同的情景中獲取信息來求一次函數(shù)表達式,一次函數(shù)表達式的確定需要兩個條件,能由條件利用“待定系數(shù)”法求出一些簡單的一次函數(shù)表達式,并能解決有關現(xiàn)實問題.并進一步體會函數(shù)表達式是刻畫現(xiàn)實世界的一個很好的數(shù)學模型,而且體現(xiàn)了數(shù)學這門學科的基礎性。

通過對求一次函數(shù)表達式方法的歸納和提升,加強學生對求一次函數(shù)表達式方法和步驟的理解,通過“感悟收獲”解決本節(jié)課的重點和難點。

通過分小組“比一比、練一練”的活動形式,不僅激發(fā)了學生學習數(shù)學知識的興趣,而且能將本節(jié)課的知識靈活的應用到習題中,提高了學生的解題能力和思維能力。

根據(jù)本班學生及教學情況在教學課堂后為了進一步鞏固課堂知識,布置一定量的作業(yè),難度不應過大,有效的作業(yè)更能拓展學生的思維,并體會解決問題的多樣性。

一次函數(shù)與二元一次方程課教學設計篇十一

本節(jié)課通過探索“方程”與“函數(shù)圖像”的關系,培養(yǎng)學生數(shù)學轉化的思想,通過學習二元一次方程方程組的解與直線交點坐標之間的關系,使學生初步建立了“數(shù)”(二元一次方程)與“形”(一次函數(shù)的圖像)之間的對應關系,進一步培養(yǎng)了學生數(shù)形結合的意識和能力.因此確定本節(jié)課的教學目標為:

3.發(fā)展學生數(shù)形結合的意識和能力,使學生在自主探索中學會不同數(shù)學模型間的聯(lián)系.。

教學重點。

教學難點。

通過對數(shù)學模型關系的探究發(fā)展學生數(shù)形結合和數(shù)學轉化的思想意識.。

1.教法學法。

啟發(fā)引導與自主探索相結合.。

2.課前準備。

教具:多媒體課件、三角板.。

學具:鉛筆、直尺、練習本、坐標紙.。

1.某水箱有5噸水,若用水管向外排水,每小時排水1噸,則x小時后還剩余y噸水.

(1)請找出自變量和因變量。

(2)你能列出x,y的關系式嗎。

(3)x,y的取值范圍是什么。

(4)在平面直角坐標系中畫出這個函數(shù)的圖形.(注意xy的取值范圍).

2.(1)方程x+y=5的解有多少個?你能寫出這個方程的幾個解嗎?

(3).在一次函數(shù)y=x5的圖像上任取一點,它的坐標適合方程x+y=5嗎?

x+y=5與y=x5表示的關系相同。

1.兩個一次函數(shù)圖象的交點坐標是相應的二元。

(2)兩個函數(shù)的交點坐標適合哪個方程?

xy5(3).解方程組驗證一下你的發(fā)現(xiàn)。2xy1。

練習:隨堂練習1。鞏固由一次函數(shù)的交點坐標找相應的二元一次方程組的解。

xy2(1)解。

2xy5(2)以方程x+y=2。

(3)以方程2x+y=5(4)方程組的解為坐標的點在圖象上是哪個點?

練習:知識技能1。鞏固由方程組的解求相應的一次函數(shù)的交點坐標。更深入的體會二元一次方程組的解與一次函數(shù)交點坐標之間的對應關系。

第三環(huán)節(jié)模型應用。

1.某公司要印制產(chǎn)品宣傳材料.

印刷廠的費用。

(1)請分別表示出兩個印刷廠費用與x的關系式。

(2)在同一直角坐標系中畫出函數(shù)的圖象。

(3)如何根據(jù)印刷材料的份數(shù)選擇印刷廠比較合算?

第四環(huán)節(jié)模型特例。

想一想。

么?

(1)觀察發(fā)現(xiàn)直線平行無交點;

(2)小組研究計算發(fā)現(xiàn)方程組無解;

(3)從側面驗證了兩直線有交點,對應的方程組有解,反之也成立;

(4)歸納小結:兩平行直線的k相等;方程組中兩方程未知數(shù)的系數(shù)對應成比例方程組無解。

進一步培養(yǎng)了學生數(shù)形結合的意識和能力,充分展示了方程與函數(shù)的相互轉化.進一步挖掘出兩直線平行與k的關系。

第五環(huán)節(jié)課堂小結。

內(nèi)容:以“問題串”的形式,要求學生自主總結有關知識、方法:

一次函數(shù)圖像上的點的坐標都適合相應的二元一次方程.。

2.方程組和對應的兩條直線的關系:

方程組的解是對應的兩條直線的交點坐標;

兩條直線的交點坐標是對應的方程組的解;

第六環(huán)節(jié)作業(yè)布置。

習題5.7。

一次函數(shù)與二元一次方程課教學設計篇十二

作為一位杰出的教職工,編寫教學設計是必不可少的,教學設計是把教學原理轉化為教學材料和教學活動的計劃。那么優(yōu)秀的教學設計是什么樣的呢?以下是小編為大家收集的二元一次方程與一次函數(shù)教學設計,歡迎閱讀與收藏。

2、能根據(jù)一次函數(shù)的圖像求二元一次方程組的近似值。

1、用作圖像法求二元一次方程組的近似值。

1、做圖像時要標準、精確,近似值才接近。

先自學課本,用心思考自主學習部分,努力獨立完成,再與其他同學討論未明白的內(nèi)容。課上展示,針對自己不明白問題多聽多問。

問題1、

(1)方程x+y=5的解有多少組?寫出其中的幾組解。

(3)在一次函數(shù)y=5—x的圖像上任取一點,它們的坐標適合方程x+y=5嗎?

(5)由以上的探究過程,你發(fā)現(xiàn)了什么?

問題2、

(3)由以上探究過程,我們發(fā)現(xiàn)解二元一次方程組的方法除了加減消元法和代入消元法,還可以用法解方程組;我們還發(fā)現(xiàn)可以利用解二元一次方程組的方法求兩條直線交點的坐標。

合作探究:

(1)用做圖像的方法解方程組。

(2)用解方程的方法求直線y=4—2x與直線y=2x—12交點。

一次函數(shù)與二元一次方程課教學設計篇十三

這節(jié)課,是一節(jié)平時課堂,學生進入錄播教室有些拘謹,回答問題不積極,并且因為學生的基礎問題,所以課堂有些不夠活躍,思路不夠開闊。盡管每節(jié)課認真準備充分,但是感覺這節(jié)課還是存在問題。

總體而言,在教學設計上我認為存在兩點不足,第一是在導入新課時,沒有很好的激發(fā)學生學習的積極性,學生學起來很平淡,第二就是在介紹數(shù)形結合思想時,是一筆帶過,而數(shù)形結合對于以后的解題和數(shù)學學習都是比較重要的思想方法,所以應該多花點時間在這個上面。

在教學過程中,特別是學生解二元一次方程組,本來說很簡單的,但很多學生計算都出現(xiàn)了問題,所以在后面的教學中,要加強學生的計算能力。但是對于數(shù)學課堂用好課件,非常好,能提高課堂容量,學生基本能求出,會找兩個點;對于利用表格信息確定函數(shù)解析式,學生不知道是求函數(shù)的解析式;利用點的坐標求函數(shù)解析式,可以借助圖形加以理解,所以基本達到教學目標。但是整體有待于優(yōu)化課堂設計。

將本文的word文檔下載到電腦,方便收藏和打印。

一次函數(shù)與二元一次方程課教學設計篇十四

(2)通過“做一做”引入例1,進一步發(fā)展學生數(shù)形結合的意識和能力.

(1)在探究二元一次方程和一次函數(shù)的對應關系中,在體會近似解與準確解中,培養(yǎng)學生勤于思考、精益求精的精神.

(2)在經(jīng)歷同一數(shù)學知識可用不同的數(shù)學方法解決的過程中,培養(yǎng)學生的創(chuàng)新意識和變式能力.

數(shù)形結合和數(shù)學轉化的思想意識.

教具:多媒體課件、三角板.

學具:鉛筆、直尺、練習本、坐標紙.

第一環(huán)節(jié):設置問題情境,啟發(fā)引導(5分鐘,學生回答問題回顧知識)。

內(nèi)容:1.方程x+y=5的解有多少個?是這個方程的解嗎?

2.點(0,5),(5,0),(2,3)在一次函數(shù)y=的`圖像上嗎?

3.在一次函數(shù)y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?

4.以方程x+y=5的解為坐標的所有點組成的圖像與一次函數(shù)y=的圖像相同嗎?

由此得到本節(jié)課的第一個知識點:

(2)一次函數(shù)圖像上的點的坐標都適合相應的二元一次方程.

第二環(huán)節(jié)自主探索方程組的解與圖像之間的關系(10分鐘,教師引導學生解決)。

內(nèi)容:1.解方程組。

2.上述方程移項變形轉化為兩個一次函數(shù)y=和y=2x,在同一直角坐標系內(nèi)分別作出這兩個函數(shù)的圖像.

(1)求二元一次方程組的解可以轉化為求兩條直線的交點的橫縱坐標;。

(2)求兩條直線的交點坐標可以轉化為求這兩條直線對應的函數(shù)表達式聯(lián)立的二元一次方程組的解.

(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.

注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組.

第三環(huán)節(jié)典型例題(10分鐘,學生獨立解決)。

探究方程與函數(shù)的相互轉化。

內(nèi)容:例1用作圖像的方法解方程組。

例2如圖,直線與的交點坐標是.

第四環(huán)節(jié)反饋練習(10分鐘,學生解決全班交流)。

內(nèi)容:1.已知一次函數(shù)與的圖像的交點為,則.

2.已知一次函數(shù)與的圖像都經(jīng)過點a(—2,0),且與軸分別交于b,c兩點,則的面積為().

(a)4(b)5(c)6(d)7。

3.求兩條直線與和軸所圍成的三角形面積.

4.如圖,兩條直線與的交點坐標可以看作哪個方程組的解?

第五環(huán)節(jié)課堂小結(5分鐘,師生共同總結)。

內(nèi)容:以“問題串”的形式,要求學生自主總結有關知識、方法:

(2)一次函數(shù)圖像上的點的坐標都適合相應的二元一次方程.

2.方程組和對應的兩條直線的關系:

(1)方程組的解是對應的兩條直線的交點坐標;。

(2)兩條直線的交點坐標是對應的方程組的解;。

(1)代入消元法;。

(2)加減消元法;。

(3)圖像法.要強調(diào)的是由于作圖的不準確性,由圖像法求得的解是近似解.

第六環(huán)節(jié)作業(yè)布置。

習題組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2。

附:板書設計。

六、教學反思。

一次函數(shù)與二元一次方程課教學設計篇十五

教材通過引例對圖像方法與代數(shù)方法的比較,使學生了解解決應用問題的策略和方法是多樣性的,同時也使學生理解圖像方法與代數(shù)方法在解決具體問題中各自的優(yōu)劣,從而對方法作出正確的選擇.對于教材的這一方面的使用,教師應根據(jù)自己學生的特點,選擇合理的方式去讓學生理解不同方法去解決同一問題。

本節(jié)課主要要求學生能夠利用二元一次方程組解決一次函數(shù)的解析式問題,根據(jù)一次函數(shù)解析式進一步解決相關的一些問題。要讓學生理解為什么要用二元一次方程組去求解一次函數(shù)的解析式的必要性,從而掌握本堂課的基礎知識。在教學的過程中,要讓學生充分理解圖像方法和代數(shù)方法解決問題的特點,在這個基礎上,學生掌握用二元一次方程組解決一次函數(shù)的解析式問題才會有著堅實的理論基礎,有關這一方面的題目要讓學生充分討論,其理解才會深刻;同時要以這一部分的知識為載體,結合教材例題,在補充分段圖形題,甚至表格題,讓學生充分理解用方程的思想去解決函數(shù)問題。

一次函數(shù)與二元一次方程課教學設計篇十六

鹿泉市上莊鎮(zhèn)中學????張亞茹。

1.知識與能力目標。

(3)通過學生的思考和操作,力圖提示出方程與圖象之間的關系,引入二元一次方程組的圖象解法。同時培養(yǎng)學生初步的數(shù)形結合的意識和能力。

2.情感態(tài)度價值觀目標。

通過學生的自主探索,提示出方程和圖象之間的對應關系,加強新舊知識的聯(lián)系,培養(yǎng)學生的創(chuàng)新意識,激發(fā)了學生學習數(shù)學的興趣,使學生體驗數(shù)學活動充滿探索與創(chuàng)造。

前面已經(jīng)分別學習了一次函數(shù)和二元一次方程組,這節(jié)課研究二元一次方程組(數(shù))和一次函數(shù)(形)的關系,是這兩章知識的綜合運用。強化了部分與整體的內(nèi)在聯(lián)系,知識與知識的內(nèi)在聯(lián)系,并為今后解析幾何的學習奠定基礎。

2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解。

方程和函數(shù)之間的對應關系即數(shù)形結合的意識和能力。

學生操作------自主探索的方法。

學生通過自己操作和思考,結合新舊知識的聯(lián)系,自主探索出方程與圖象之間的對應關系,以引入二元一次方程組的圖象解法,同時也建立了“數(shù)”----二元一次方程組和“形”----函數(shù)的圖象(直線)之間的對應關系,培養(yǎng)了學生數(shù)形結合的意識和能力。

一.??故事引入。

迪卡兒的故事------蜘蛛給予的啟示。

在蜘蛛爬行的啟示下,迪卡兒創(chuàng)建了直角坐標系,在坐標系下幾何圖形(形)和方程(數(shù))建立聯(lián)系。迪卡兒坐標系起到了橋梁和紐帶的作用。從而我們可以把圖形化成方程來研究,也可以用圖象來研究方程。

二.??嘗試探疑。

學生先是疑惑:方程就是方程,函數(shù)就是函數(shù),它們能有什么聯(lián)系呢?然后通過思考、交流,最后恍然大悟。初步感受一次函數(shù)與二元一次方程的內(nèi)在聯(lián)系。

然后學生會用同樣的方法得出另一個結論:以方程x-y=-1的解為坐標的點一定在函數(shù)y=x+1的圖象上。然后開始思索函數(shù)y=x+1和方程x-y=-1到底有何關系呢?通過交流自動得出結論:

教師作最后總結:

解方程組?x-2y=-2??????。

2x-y=2。

學生會很快的用消元法解出來。

老師發(fā)問:誰還有其他的方法?如果有,鼓勵學生大膽提出。并給予口頭表揚。如果沒有人用其他的方法,老師提出問題:你能不能用圖象的方法求方程組的解呢?這時,學生就會去探索新的思路、方法。

一回憶方程與函數(shù)的關系,有了!方程組的解不就是兩個方程變形得到的兩個函數(shù)圖象的交點坐標嗎?學生就會迅速動筆用這種方法把方程解出來。作完之后,互相交流。學生總結一下做題步驟:

1.把兩個方程都化成函數(shù)表達式的形式。

2.畫出兩個函數(shù)的圖象。

3.畫出交點坐標,交點坐標即為方程組的解。

y=1.9??有的同學的解是……雖然都和消元法得到的結果相近,但各不相同。

老師提問:你能說一下用圖象法解方程組的不足嗎?

學生爭先恐后的回答:用這種方法求的解是近似值。不準確。學生提出疑問:既然不準確,那學習它有什么用呢?用消元法就足夠了!

教師解釋一下:在現(xiàn)實生活和生產(chǎn)中,我們會遇到特別復雜的方程,用消元法解不太容易,我們就可以用電腦繪制成函數(shù)圖象,很容易找出交點坐標。教師可以用z+z智能教育平臺演示一下。

[點評]用作圖象的方法解方程組,這體現(xiàn)了兩個知識點的內(nèi)在聯(lián)系。學數(shù)學知識,探索知識點之間的聯(lián)系,可起到化新為舊的作用,達到事半功倍的效果。逐步讓學生學會這種學習新知識的技巧。

四.??引申。

方程組??x+y=2。

x+y=5??解的情況如何?你能從函數(shù)的角度解釋一下嗎?

學生用消元法開始解方程組,結果無解,怎么回事呢?學生會嘗試運用方程組的圖象解法。畫出兩個函數(shù)圖象。答案有了!圖象是平行的,沒有交點。所以方程組無解了。哇!太神奇了!方程的問題可以用圖象的方法解決了。

[點評]因為有了上面的用作圖象法解方程組,在這里,學生就會自覺地從函數(shù)的角度探究方程的問題,初步具有了數(shù)形結合的意識和能力。

五.??課后小結。

本節(jié)課我們通過操作和思考,揭示了二元一次方程和函數(shù)圖象之間的對應關系,從而引入二元一次方程組的圖象解法,同時也建立了“數(shù)”----二元一次方程與“形”------函數(shù)圖象之間的對應關系,培養(yǎng)了學生初步的數(shù)形結合的意識和能力。

六.??作業(yè)?。

1.???用作圖象法解方程組2x+y=4。

2x-3y=12。

2.如圖,直線l、l相交于點a,試求出a點坐標。

這節(jié)課由故事引入,激發(fā)了學生極大的學習興趣。然后提出了三個尖銳的問題,讓學生嘗試探索,在探索中既體會到了探索的艱辛,又體會到了成功的喜悅。在應用和引申過程中,盡量讓學生自主的發(fā)現(xiàn)問題,自主的解決問題。學生在緊張、愉快中完成了這節(jié)課的學習。

一次函數(shù)與二元一次方程課教學設計篇十七

函數(shù)、方程和不等式都是人們刻畫現(xiàn)實世界的重要數(shù)學模型。用函數(shù)的觀點看方程(組)與不等式,學生不僅能加深對方程(組)、不等式的理解,提高認識問題的水平,而且能從函數(shù)的角度將三者統(tǒng)一起來,感受數(shù)學的統(tǒng)一美,學生在探索過程中體驗到的數(shù)形結合以及數(shù)學建模思想,既是對前面所學知識的升華,同時也對今后學習高中的解析幾何有著十分重要的意義。

情感態(tài)度方面:在探究活動中培養(yǎng)學生嚴謹?shù)目茖W態(tài)度和勇于探索的科學精神,在師生、生生的交流活動中,學會與人合作,學會傾聽、欣賞和感悟,體驗數(shù)學的價值,建立自信。

從以上目標可以看出,學生既要通過對一次函數(shù)與二元一次方程(組)關系的探究,習得知識、培養(yǎng)能力,又要用此關系解決相關實際問題,因此,本節(jié)課的教學重點應是一次函數(shù)與二元一次方程(組)關系的探索??紤]到八年級學生的數(shù)學應用意識不強,本節(jié)課的難點應是綜合運用方程(組)、不等式和函數(shù)的知識解決相關實際問題。而關鍵則是通過問題情境的設計,激發(fā)學生的求知欲,引導學生探索、交流,引導學生發(fā)現(xiàn)、分析、解決問題。

《數(shù)學課程標準》明確指出“數(shù)學教學是數(shù)學活動的教學”,“學生是數(shù)學學習的主人”。教師的職責在于向?qū)W生提供從事數(shù)學活動的機會,在活動中激發(fā)學生的學習潛能,引導學生自由探索、合作交流與實踐創(chuàng)新。對于認知主體來說,八年級學生樂于探索,富于幻想,但他們的數(shù)學推理能力以及對知識的主動遷移能力較弱,為幫助學生更好地構建新的認知結構,促進學生的主動發(fā)展,本節(jié)課我采用情境—探究式教學法,以“情境――問題――探究――交流――應用――反思――提高”的模式展開,以學生為中心,使其在“生動活潑、民主開放、主動探索”的氛圍中愉快學習。

本著重實際、重探究、重過程、重交流的教學宗旨,我將本節(jié)課的教學設計成以下六個環(huán)節(jié):情景導入——探究合作——解決問題——鞏固提高——歸納小結——布置作業(yè)。

這節(jié)課,我首先用貼近學生實際、學生感興趣的問題——上網(wǎng)交費問題引導學生進入本節(jié)課的學習,充分調(diào)動學生的積極性。課件展示學生回答的用列方程組解答的過程,并提出問題:“同學們在解這個二元一次方程組時,基本上都是用的代入法或加減法,那么解二元一次方程組還有其它的方法嗎?”學生討論后可能會感到束手無策,感到原有的知識不夠用了。一石激起千層浪,問題提出來后,如何解決呢?此時,作為教師,應把握好組織者、引導者和合作者的身份,不要急于發(fā)表自己的意見,而應啟發(fā)學生去思、鼓勵學生去探、激勵學生去說,努力給學生造成“心求通而未能得,口欲言而不能說”的態(tài)勢,從而喚起學生強烈的學習熱情,使他們主動積極地投入到探索活動中來。另外,此問題的設置也為后面例題的講解作好鋪墊,有利于教學難點的突破。

為使學生更好地掌握本節(jié)課的重點知識,我遵循從特殊到一般,再從一般到特殊的認知規(guī)律,設計了以下問題“你們能否將方程轉化為一次函數(shù)的形式呢?”“如果能,你們能在平面直角坐標系中能畫出它的圖象嗎?”在學生將方程轉化為一次函數(shù)的形式并畫出圖象后,我引導學生觀察直線上的幾個點,發(fā)現(xiàn)它們的坐標都是方程的解,緊接著問“直線上任意一點的坐標一定是方程的解嗎?”“是否任意的二元一次方程都可以轉化為一次函數(shù)的形式呢?”“是否所有直線上任意一點的坐標都是它所對應的二元一次方程的解呢?”學生先獨立思考,然后小組討論,不難發(fā)現(xiàn):每個二元一次方程都對應一個一次函數(shù),于是也就對應一條直線。一連串的問題由淺入深,環(huán)環(huán)相扣,引導學生發(fā)現(xiàn)一次函數(shù)與二元一次方程在數(shù)與形兩個方面的關系,為探索二元一次方程組的解與直線交點坐標的關系作好鋪墊。

緊接著問學生:“你能用剛才的方法研究另一個方程2x—y=1嗎?”學生在同一坐標系中畫出一次函數(shù)y=2x—1的圖象后,發(fā)現(xiàn)兩條直線有一個交點,我又問“這個交點坐標與這兩條直線所對應的方程的解有什么關系?與這兩個方程組成的方程組的解又有什么關系?”此時,學生慢慢體會到:既然每個二元一次方程都對應一條直線,二元一次方程的每一個解又對應直線上的每一個點,那么兩個二元一次方程的公共解就對應著兩條直線的公共點,也就是說,二元一次方程組的解不就是對應著兩條直線的交點嗎?這個時期,教師應留給學生充分探索交流的時間與空間,對學生可能出現(xiàn)的疑問給予及時幫助,師生共同歸納出:用畫圖象的'方法可以解二元一次方程組,從而解決了本節(jié)課開頭所提出的問題。然后共同歸納:從“形”的角度看,解方程組相當于確定兩條直線交點的坐標。這告訴我們,既可用畫圖象的方法可以解二元一次方程組,也可用解方程組的方法求兩條直線交點的坐標。利用剛才已有的探究經(jīng)驗,學生很容易想到此問題的探究還可以從數(shù)的角度看,進一步歸納出:從“數(shù)”的角度看,解方程組相當于考慮自變量為何值時兩個函數(shù)的值相等,這個函數(shù)值是何值。

這樣,學生經(jīng)過自主探索、合作交流,從數(shù)和形兩個角度認識了一次函數(shù)與二元一次方程組的關系,真正掌握本節(jié)課的重點知識,并使學習過程成為一種再創(chuàng)造的過程。學生從一個個小問題的回答,到最后的歸納,充分享受學習、探究帶來的快樂,此時教師應充分肯定學生的探究成果,及時對學生進行鼓勵,關注學生的情感體驗。

為滿足學生學以致用、爭強好勝的心理需求,我特意設計了兩個搶答題,既加強了對所學知識的消化理解,又調(diào)動了學生的積極性,更讓他們在搶答中品味到了成功的快樂。趁著學生高漲的情緒,我迅速引入開頭部分意猶未盡的上網(wǎng)收費問題,加以變式,再次激起學生強烈的求知欲望和主人翁的學習姿態(tài)。經(jīng)過一番探索,學生可能想到:要選擇合理的收費方式就需要對它們所收費用的大小進行比較,因此一定會有學生用過去的知識——方程或不等式解決問題,對于這部分學生的想法要給予充分的肯定表揚,然后繼續(xù)提問“你能用今天所學的圖象法來解決這個問題嗎?”引導學生建立函數(shù)模型進行探索。

學生在同一坐標系中分別畫出兩個一次函數(shù)的圖象后,我引導學生觀察圖象的特征,學生討論后發(fā)現(xiàn)當0≤x400時,紅色點在藍色點的上方;當x=400時,紅色點與藍色點重合;當x400時,紅色點在藍色點的下方,這樣利用直線上點位置的高低直觀地比較函數(shù)值的大小,從而找到答案。為避免圖象法作圖誤差造成的不足,可引導學生通過代數(shù)計算求出交點坐標。為培養(yǎng)學生一題多解的能力,我啟發(fā)學生用作差法,類似地用點位置的高低直觀地找到y(tǒng)0,y=0及y0時所對應的x的范圍,進而得到答案。通過對實際問題的探究,學生可以發(fā)現(xiàn)圖象法的直觀性,體會數(shù)形結合這一思想方法的應用,并學會用函數(shù)的觀點,動態(tài)地分析不等式和方程(組)。

為了鞏固學生的學習成果,我把剛剛結束不久的鐵山礦冶文化旅游節(jié)帶進課堂,讓學生欣賞一組美麗的黃石礦冶文化景點圖片,在學生體驗家鄉(xiāng)美好的輕松愉快氛圍中,我再一次出示了一個與之有關的旅游購票問題,并鼓勵學生用不同的方法進行解答,進一步培養(yǎng)學生應用數(shù)學的意識,從而更好地促進學生對本節(jié)課難點的理解和應用,幫助學生不斷完善新的認知結構。

在課堂臨近尾聲時,引導學生對本節(jié)課所學進行小結,鼓勵學生從數(shù)學知識、數(shù)學方法和數(shù)學情感等方面進行自我評價。嘗試開放式課堂教學,以真正體現(xiàn)學生的主體地位,使課堂活動民主化,多樣化。

本節(jié)課的作業(yè)由必做題和選做題組成,體現(xiàn)分層教學,讓不同的學生在數(shù)學上得到不同的發(fā)展。

這節(jié)課,我始終貫穿以學生為主體的原則,突出數(shù)形結合的思想,體現(xiàn)數(shù)學建模的價值,滲透應用數(shù)學的意識,關注學生個性的發(fā)展,讓每一個學生在課堂上都有所感悟,都有著各自的數(shù)學體驗,不同的學生在數(shù)學的各個不同方面上都得到不同的發(fā)展。

一次函數(shù)與二元一次方程課教學設計篇十八

學習目標:

2、能根據(jù)一次函數(shù)的圖像求二元一次方程組的近似值。

學習重點:

學習難點:

1、做圖像時要標準、精確,近似值才接近。

學習方法:

先自學課本,用心思考自主學習部分,努力獨立完成,再與其他同學討論未明白的內(nèi)容。課上展示,針對自己不明白問題多聽多問。

自主學習部分:

問題1.(1)方程x+y=5的解有多少組?寫出其中的幾組解。

(3)在一次函數(shù)y=5-x的圖像上任取一點,它們的坐標適合方程x+y=5嗎?

(5)由以上的探究過程,你發(fā)現(xiàn)了什么?

(3)由以上探究過程,我們發(fā)現(xiàn)解二元一次方程組的方法除了加減消元法和代入消元法,還可以用法解方程組;我們還發(fā)現(xiàn)可以利用解二元一次方程組的方法求兩條直線交點的坐標。

合作探究:

(1)用做圖像的方法解方程組。

(2)用解方程的方法求直線y=4-2x與直線y=2x-12交點。

一次函數(shù)與二元一次方程課教學設計篇十九

2.能根據(jù)一次函數(shù)的圖像求二元一次方程組的近似值。

1.做圖像時要標準、精確,近似值才接近。

先自學課本,用心思考自主學習部分,努力獨立完成,再與其他同學討論未明白的內(nèi)容。課上展示,針對自己不明白問題多聽多問。

自主學習部分:

問題1.(1)方程x+y=5的解有多少組?寫出其中的幾組解。

(3)在一次函數(shù)y=5-x的圖像上任取一點,它們的坐標適合方程x+y=5嗎?

(5)由以上的探究過程,你發(fā)現(xiàn)了什么?

(3)由以上探究過程,我們發(fā)現(xiàn)解二元一次方程組的方法除了加減消元法和代入消元法,還可以用法解方程組;我們還發(fā)現(xiàn)可以利用解二元一次方程組的方法求兩條直線交點的坐標。

合作探究:

(1)用做圖像的方法解方程組。

(2)用解方程的方法求直線y=4-2x與直線y=2x-12交點。

【本文地址:http://www.mlvmservice.com/zuowen/14710324.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔