教案可以幫助教師合理分配教學(xué)時間,確保教學(xué)進度。教案中的教學(xué)活動要靈活多樣,能夠激發(fā)學(xué)生的學(xué)習(xí)興趣。在編寫教案時,可以參考一些教學(xué)研究成果和教育理論。
圓錐的體積教案篇一
l.教學(xué)例2。
出示例題,讓學(xué)生讀題。提問:你們認為這道題要先求什么,再求這堆沙的重量?讓學(xué)生說說為什么要先求體積,才能求這堆沙的重量?這里底面直徑和高的數(shù)據(jù)怎樣獲得?指名板演,其他學(xué)生做在練習(xí)本上,集體訂正。
2.組織練習(xí)。
(1)做練一練。
指名一人板演,其余學(xué)生做在練習(xí)本上,集體訂正。
學(xué)生做在練習(xí)本上。集體訂正。
(3)討論練習(xí)三第7題。
底面周長相等,底面積就相等嗎?
圓錐的體積教案篇二
2、學(xué)生說,教師板書:
圓錐圓柱。
特征1個底面2個。
扇形側(cè)面展開長方形。
體積v=1/3shv=sh。
二、提出本節(jié)課練習(xí)的內(nèi)容和目標。
三、課堂練習(xí)。
(一)、基本訓(xùn)練。
1、填空課本1----2(獨立完成后校對)。
已知:底面積、直徑、周長與高求體積(小黑板出示)。
(二)、綜合訓(xùn)練:
1、判斷。
(2)長方體、正方體、圓柱和圓錐的體積公式都可用v=sh。
(3)一個圓柱形容器盛滿汽油有2.5升,這個容器的容積就是2.5升。
(4)圓錐的體積是否4立方厘米,底面積是6平方厘米,那么高是4厘米。
2、應(yīng)用:練習(xí)四第45題任選一題。
3、發(fā)展題:獨立思考后校對。
四課堂小結(jié):說說本節(jié)課的收獲。
圓錐的體積教案篇三
教學(xué)內(nèi)容:教材第20頁例2、練一練。
教學(xué)要求:使學(xué)生進-步掌握圓錐的體積計算方法,能根據(jù)不同的條件計算圓錐的體積,能應(yīng)用圓錐體積公式解決-些簡單的實際問題:
教學(xué)重點:進-步掌握圓錐的體積計算方法。
教學(xué)難點:根據(jù)不同的條件計算圓錐的體積。
圓錐的體積教案篇四
美國教育心理學(xué)家奧蘇伯爾說:如果我不得不把教育心理學(xué)還原為一條原理的話,影響學(xué)習(xí)的最重要的原因是學(xué)生已經(jīng)知道了什么,我們應(yīng)當(dāng)根據(jù)學(xué)生原有的知識狀況進行教學(xué)。本節(jié)課是學(xué)生在認識了圓錐特征的基礎(chǔ)上進行學(xué)習(xí)的。圓錐高的概念仍是本節(jié)課學(xué)習(xí)的一個重要知識儲備,因而有必要在復(fù)習(xí)階段利用直觀教具通過切、摸等活動,幫助學(xué)生理解透徹。學(xué)生分組操作時,肯定能借助倒水(或沙子)的實驗,親身感受等底等高的圓柱與圓錐體積間的3倍關(guān)系。但是他們不易發(fā)現(xiàn)隱藏在實驗中的等底等高的這一條件,這是實驗過程中的一個盲點。為凸現(xiàn)這一條件,可借助體積關(guān)系不是3倍的.實驗器材,引導(dǎo)學(xué)生經(jīng)歷去粗取精、去偽存真、由表及里、層層逼近的過程,進行深度信息加工。
圓錐的體積教案篇五
l.使學(xué)生認識圓錐的特征和各部分名稱,掌握高的特征,知道測量圓錐高的方法。
2.使學(xué)生理解和掌握圓錐體積的計算公式,并能正確地求出圓錐的體積。
3.培養(yǎng)學(xué)生初步的空間觀念和發(fā)展學(xué)生的思維能力。
演示得出圓錐體積等于等底等高圓柱體積的的教具。
理解和掌握圓錐體積的計算公式。
一、復(fù)習(xí)引新。
1.說出圓柱的體積計算公式。
2.我們已經(jīng)學(xué)過了長方體、正方體及圓柱體(邊說邊出示實物圖形)。在日常生活和生產(chǎn)中,我們還常常看到下面一些物體(出示教材第13頁插圖)。
這些物體的形狀都是圓錐體,簡稱圓錐。我們教材中所講的圓錐,都是直圓錐。今天這節(jié)課,就學(xué)習(xí)圓錐和圓錐的體積。(板書課題)。
二、教學(xué)新課。
1.認識圓錐。
我們在日常生活中,還見過哪些物體是這樣的圓錐體,誰能舉出一些例子?
2.根據(jù)教材第13頁插圖,和學(xué)生舉的例子通過幻燈片或其他方法抽象出立體圖。
3.利用學(xué)生課前做好的圓錐體及立體圖通過觀察、手摸認識圓錐的特點。
(1)圓錐的底面是個圓,圓錐的側(cè)面是一個曲面。
4.學(xué)生練習(xí)。
5.教學(xué)圓錐高的測量方法。(見課本第13頁有關(guān)內(nèi)容)。
6.讓學(xué)生根據(jù)上述方法測量自制圓錐的高。
7.實驗操作、推導(dǎo)圓錐體積計算公式。
(1)通過演示使學(xué)生知道什么叫等底等高。(具體方法可見教材第14頁上面的圖)。
(3)實驗操作,發(fā)現(xiàn)規(guī)律。
你發(fā)現(xiàn)圓錐體積與等底等高的圓柱體積之間有怎樣的關(guān)系?得出圓錐的體積是與它等底等高的圓柱體體積的。
得出只有等底等高的圓錐才是圓柱體積的。
(5)啟發(fā)引導(dǎo)推導(dǎo)出計算公式并用字母表示。
=底面積高。
用字母表示:v=sh。
8.教學(xué)例l。
(1)出示例1。
(2)審題后可讓學(xué)生根據(jù)圓錐體積計算公式自己試做。
(3)批改講評。注意些什么問題。
三、鞏固練習(xí)。
1.做練一練第2題。
指名一人板演,其余學(xué)生做在練習(xí)本上。集體訂正,強調(diào)要乘以。
2.做練習(xí)三第2題。
學(xué)生做在課本上。小黑板出示,指名口答,老師板書。錯的要求說明理由。
3.做練習(xí)三第3題。
讓學(xué)生做在課本上。小黑板出示、指名口答,老師板書。第(3)、(4)題讓學(xué)生說說是怎樣想的。
四、課堂小結(jié)。
這節(jié)課你學(xué)習(xí)了什么內(nèi)容?圓錐有怎樣的特征?圓錐的體積怎樣計算?為什么?
五、課堂作業(yè)。
練習(xí)三第4、5題。
圓錐的體積教案篇六
1.練習(xí)三第5題及數(shù)訓(xùn)。
2.出示圓錐形模型,提問:你有什么辦法算山它的體積嗎,需要測量哪些數(shù)據(jù)?怎樣測量直徑和高。請同學(xué)們回去測量你用第167頁圖制作的圓錐,求出它的體積來。
3.思考練習(xí)三第8、9題。
圓錐的體積教案篇七
1、使學(xué)生理解和掌握求圓錐體積的計算公式,并能正確求出圓錐的體積。
2、培養(yǎng)學(xué)生初步的空間觀念、邏輯思維能力、動手操作能力。
3、向?qū)W生滲透知識間"相互轉(zhuǎn)化"的辯證唯物主義思想,在聯(lián)系實際中對學(xué)生進行學(xué)習(xí)目的方面的思想教育。
圓錐的體積教案篇八
美國教育心理學(xué)家奧蘇伯爾說:如果我不得不把教育心理學(xué)還原為一條原理的話,影響學(xué)習(xí)的最重要的原因是學(xué)生已經(jīng)知道了什么,我們應(yīng)當(dāng)根據(jù)學(xué)生原有的知識狀況進行教學(xué)。本節(jié)課是學(xué)生在認識了圓錐特征的基礎(chǔ)上進行學(xué)習(xí)的。圓錐高的概念仍是本節(jié)課學(xué)習(xí)的一個重要知識儲備,因而有必要在復(fù)習(xí)階段利用直觀教具通過切、摸等活動,幫助學(xué)生理解透徹。學(xué)生分組操作時,肯定能借助倒水(或沙子)的實驗,親身感受等底等高的圓柱與圓錐體積間的3倍關(guān)系。但是他們不易發(fā)現(xiàn)隱藏在實驗中的等底等高的這一條件,這是實驗過程中的一個盲點。為凸現(xiàn)這一條件,可借助體積關(guān)系不是3倍的實驗器材,引導(dǎo)學(xué)生經(jīng)歷去粗取精、去偽存真、由表及里、層層逼近的過程,進行深度信息加工。
一、復(fù)習(xí)舊知,鋪墊孕伏。
1.(電腦出示一個透明的圓錐)仔細觀察,圓錐有哪些主要特征呢?
2.復(fù)習(xí)高的概念。
(1)什么叫圓錐的高?
(2)請一位同學(xué)上來指出用橡皮泥制作的圓錐體模型的高。(提供刀片、橡皮泥模型等,幫助學(xué)生進行操作)。
評析:
圓錐特征的復(fù)習(xí)簡明扼要。圓錐高的復(fù)習(xí)頗具新意,通過動手操作,從而使抽象的高具體化、形象化。
二、創(chuàng)設(shè)情境,引發(fā)猜想。
1.電腦呈現(xiàn)出動畫情境(伴圖配音)。
夏天,森林里悶熱極了,小動物們都熱得喘不過氣來。一只小白兔去動物超市購物,在冷飲專柜熊伯伯那兒買了一個圓柱形的雪糕。這一切都被躲在一旁的狐貍看見了,它也去熊伯伯的專柜里買了一個圓錐形的雪糕。小白兔剛張開嘴,滿頭大汗的狐貍拿著一個圓錐形的雪糕一溜煙跑了過來。(圖中圓柱形和圓錐形的雪糕是等底等高的。)。
2.引導(dǎo)學(xué)生圍繞問題展開討論。
問題一:狐貍貪婪地問:小白兔,用我手中的雪糕跟你換一個,怎么樣?(如果這時小白兔和狐貍換了雪糕,你覺得小白兔有沒有上當(dāng)?)。
問題二:(動畫演示)狐貍手上又多了一個同樣大小的圓錐形雪糕。(小白兔這時和狐貍換雪糕,你覺得公平嗎?)。
問題三:如果你是森林中的小白兔,狐貍手中的圓錐形雪糕有幾個時,你才肯與它交換?(把你的想法與小組同學(xué)交流一下,再向全班同學(xué)匯報)。
過渡:小白兔究竟跟狐貍怎樣交換才公平合理呢?學(xué)習(xí)了圓錐的體積后,就會弄明白這個問題。
評析:
數(shù)學(xué)課程要關(guān)注學(xué)生的生活經(jīng)驗和已有的知識體驗,教師在引入新知時,創(chuàng)設(shè)了一個有趣的童話情境,使枯燥的數(shù)學(xué)問題變?yōu)榛钌纳瞵F(xiàn)實,讓數(shù)學(xué)課堂充滿生命活力。學(xué)生在判斷公平與不公平中蘊涵了對等底等高圓柱和圓錐體積關(guān)系的猜想,他們在這一情境中敢猜想、要猜想、樂猜想,在猜想中交流,在交流中感悟,自然地提出了一個富有挑戰(zhàn)性的數(shù)學(xué)問題,從而引發(fā)了學(xué)生進一步探究的強烈欲望。
三、自主探索,操作實驗。
下面,請同學(xué)們利用老師提供的實驗材料分組操作,自己發(fā)現(xiàn)屏幕上的圓柱與圓錐體積間的關(guān)系,解決電腦博士給我們提出的問題。
出示思考題:
(1)通過實驗,你們發(fā)現(xiàn)圓柱的體積和圓錐體積之間有什么關(guān)系?
(2)你們的小組是怎樣進行實驗的?
1.小組實驗。
圓錐的體積教案篇九
1.說出圓柱的體積計算公式。
2.我們已經(jīng)學(xué)過了長方體、正方體及圓柱體(邊說邊出示實物圖形)。在日常生活和生產(chǎn)中,我們還常??吹较旅嬉恍┪矬w(出示教材第16頁插圖)。這些物體的形狀都是圓錐體,簡稱圓錐。我們教材中所講的圓錐,都是直圓錐。今天這節(jié)課,就學(xué)習(xí)圓錐和圓錐的體積。(板書課題)。
圓錐的體積教案篇十
2、求下列各圓柱的體積。(口答)。
(1)底面積是5平方厘米,高是6厘米。
(2)底面半徑4分米,高是10分米。
(3)底面直徑2米,高是3米。
師:剛才我們復(fù)習(xí)了圓柱的體積公式并應(yīng)用這個公式計算出了圓柱的體積,那么圓柱和圓錐有什么關(guān)系呢?這節(jié)課我們就來研究圓錐的體積。(板書:圓錐的體積)。
二、新課教學(xué)。
師:圓錐的底面是什么形狀的?什么是圓錐的高?請拿出一個同學(xué)們自己做的圓錐講一講。
生:圓錐的底面是圓形的。
生:從圓錐的頂點到底面圓心的距離是圓錐的高。
師:你能上來指出這個圓錐的高嗎?
師:很好,因為圓錐的高我們一般無法到里面去測量,所以常常這樣量出它的高。
師:你們看到過哪些物體是圓錐形狀的?(略)。
師:對。在生活中有很多圓錐形的物體。
師:剛才我們已經(jīng)認識了圓錐?,F(xiàn)在我們再來研究圓錐的體積。請同學(xué)們拿出一對等底等高圓錐和圓柱。想一想用什么辦法能研究出等地等高的圓錐和圓柱的體積之間存在什么關(guān)系,然后把你的想法放在小組中交流,再分工進行實驗。下面我們采用實驗的方法來推導(dǎo)圓錐體的體積公式(邊說邊演示),先在圓錐內(nèi)裝滿水,然后把水倒入圓柱內(nèi),看看幾次可將圓柱倒?jié)M。現(xiàn)在我們分小組做實驗,大家邊做邊討論實驗要求,如有困難可以看書第23頁。
出示小黑板:
1、圓錐的體積和同它等底等高的圓柱的體積有什么關(guān)系?
學(xué)生分組做實驗,老師巡回指導(dǎo)。
生:圓柱的體積是圓錐體積的3倍。
生:圓錐的體積是同它等底等高的圓柱體權(quán)的1/3。
板書:圓錐的體積等于同它等底等高的圓柱體積的1/3。
師:得出這個結(jié)論的同學(xué)請舉手。(略)你們是怎么得出這個結(jié)論的呢?
生:我們先在圓錐內(nèi)裝滿沙,然后倒人圓柱內(nèi)。這樣倒了三次,正好將圓柱裝滿。所以,圓錐的體積是同它等底等高的圓柱體積的1/3。
師:說得很好。那么圓錐的體積怎么算呢?
生:可以先算出與它等底等高的圓柱的體積,用底面積乘以高,再除以3,就是圓錐的體積。
師:誰能說說圓錐的體積公式。
師:老師也做了一個同樣實驗請同學(xué)認真看一看。想一想有什么話對老師說嗎?請看電視。
師:請大家把書翻到第42頁,將你認為重要的字、詞、句圈圈劃劃,并說說理由。
生:我認為"圓錐的體積v等于和它等底等高的圓柱體積的三分之一。"這句話很重要。
生:我認為這句話中"等底等高"和"三分之一"這幾個字特別重要。
師:大家說得很對,那么為什么這幾個字特別重要?如果底和離不相等的圓錐和圓柱有沒有三分之一這個關(guān)系呢?我們也來做個實驗。大家還有兩個是等底不等高的圓錐和圓柱,請同學(xué)們用剛才做實驗的方法試試看。
師:等底不等高或者等高不等底的圓錐體積不是圓柱體積的1/3。師:可見圓錐的體積等于圓柱體積的三分之一的關(guān)鍵條件是等地等高。
師:下面我們就根據(jù)"等底等高的圓錐體積是圓柱體積的1/3"這個關(guān)系來解決下列問題。
例l:一個圓錐形零件,底面積是19平方厘米,高是12厘米。這個零件的體積是多少?
(兩名學(xué)生板演,老師巡視)。
師:這位同學(xué)做的對不對?
生:對!
師:和他做的一-樣的同學(xué)請舉手。(絕大多數(shù)同學(xué)舉手)。
師:那么這位同學(xué)做錯在哪里呢?(指那位做錯的同學(xué)做的)。
生:他漏寫了1/3。用底面積乘以高算出來的是圓柱的體積,圓錐的體積還要再乘以1/3。
師:對了。剛才我們通過實驗知道了圓錐的體積等于同它等底等高的圓柱體積的三分之一,從而推導(dǎo)出圓錐的體積計算公式,即v=1/3sh。我們在用這個公式計算圓錐的體積時,要特別注意,1/3不能漏掉。
圓錐的體積教案篇十一
1、通過動手操作實驗,推導(dǎo)出圓錐體體積的計算公式。
2、理解并掌握體積公式,能運用公式求圓錐的體積,并會解決簡單的實際問題。
3、通過學(xué)生動腦、動手,培養(yǎng)學(xué)生的觀察、分析的綜合能力。
等底等高的圓柱體和圓錐體5套,大小不同的圓柱體和圓錐體5套、水槽5個,以及多媒體輔助教學(xué)課件。
一、復(fù)習(xí)舊知,做好鋪墊。
1、認識圓柱(課件演示),并說出怎樣計算圓柱的體積?(屏幕出示:圓柱體的體積=底面積×高)。
(1)底面積是5平方厘米,高6厘米,體積=?
(2)底面半徑是2分米,高10分米,體積=?
(3)底面直徑是6分米,高10分米,體積=?
3、認識圓錐(課件演示),并說出有什么特征?
二、溝通知識、探索新知。
教師導(dǎo)入:同學(xué)們,我們已經(jīng)認識了圓錐,掌握了它的特征,但是,對于圓錐的學(xué)習(xí)我們不能只停留在認識上,有關(guān)圓錐的知識還有很多有待于我們?nèi)W(xué)習(xí)、去探究。這節(jié)課我們就來研究“圓錐的體積”。(板書課題)。
學(xué)生回答,教師板書:
圓柱------(轉(zhuǎn)化)------長方體。
圓柱體積計算公式--------(推導(dǎo))長方體體積計算公式。
教師:借鑒這種方法,為了我們研究圓錐體體積的方便,每個組都準備了一個圓柱體和一個圓錐體。你們小組比比看,這兩個形體有什么相同的地方?學(xué)生操作比較后,再用課件演示。
(1)提問學(xué)生:你發(fā)現(xiàn)到什么?(圓柱和圓錐的底和高有什么關(guān)系?)。
(學(xué)生得出:底面積相等,高也相等。)。
教師:底面積相等,高也相等,用數(shù)學(xué)語言說就叫“等底等高”。
(板書:等底等高)。
教師:(把圓錐體套在透明的圓柱體里)是啊,圓錐體的體積小,那你估計一下這兩個形體的體積大小有什么樣的倍數(shù)關(guān)系?(指名發(fā)言)。
用水和圓柱體、圓錐體做實驗。怎樣做這個實驗由小組同學(xué)自己商量,但最后要向同學(xué)們匯報,你們組做實驗的圓柱體和圓錐體在體積大小上有什么樣的倍數(shù)關(guān)系。
(3)學(xué)生分組做實驗,并借助課件演示。
(教師深入小組中了解活動情況,對個別小組予以適當(dāng)?shù)膸椭?。
a、誰來匯報一下,你們組是怎樣做實驗的?
b、你們做實驗的圓柱體和圓錐體在體積大小上發(fā)現(xiàn)有什么倍數(shù)關(guān)系?
(學(xué)生發(fā)言:圓柱體的體積是圓錐體體積的3倍)。
教師:同學(xué)們得出這個結(jié)論非常重要,其他組也是這樣的嗎?
學(xué)生回答后,教師用教學(xué)課件演示實驗的`全過程,并啟發(fā)學(xué)生在小組內(nèi)有條理地表述圓錐體體積計算公式的推導(dǎo)過程。
教師:我們學(xué)過用字母表示數(shù),誰來把這個公式用字母表示一下?(指名發(fā)言,板書)。
學(xué)生回答后,教師整理歸納:不是任何一個圓錐體的體積都是任何一個圓柱體體積的。(教師拿起一個小圓錐、一個大圓柱)如果老師在這個大圓錐體里裝滿了水,往這個小圓柱體里倒,需要倒三次才能倒?jié)M嗎?(不需要)。
為什么你們做實驗的圓錐體里裝滿了水往圓柱體里倒,要倒三次才能倒?jié)M呢?(因為是等底等高的圓柱體和圓錐體。)。
(教師給體積公式與“等底等高”四個字上連線。)。
進一步完善體積計算公式:
=底面積×高×1/3。
v=1/3sh。
教師:現(xiàn)在我們得到的這個結(jié)論就更完整了。(指名反復(fù)敘述公式。)。
課件出示:
想一想,討論一下:?
(1)通過剛才的實驗,你發(fā)現(xiàn)了什么?
(2)要求圓錐的體積必須知道什么?
學(xué)生后討論回答。
三、應(yīng)用求體積、解決問題。
1、口答。
(1)有一個圓柱的體積是27立方分米,與它等底等高的圓錐體積是多少?
(2)有一個圓錐的體積是9立方分米,與它等底等高的圓柱體積是多少?
2、出示例題,學(xué)生讀題,理解題意,自己解決問題。
a、學(xué)生完成后,進行小組交流。
b、你是怎樣想的和怎樣解決問題的。(提問學(xué)生多人)。
c、教師板書:
1/3×19×12=76(立方厘米)。
3、練習(xí)題。
一個圓錐體,半徑為6cm,高為18cm。體積是多少?(學(xué)生在黑板上只列式,反饋。)。
我們已經(jīng)學(xué)會了求圓錐體的體積,現(xiàn)在我們來解決有關(guān)圓錐體體積的問題。
4、出示例2:要求學(xué)生自己讀題,理解題意。
在打谷場上,有一個近似于圓錐形的小麥堆,測得底面直徑是4米,高是1.2米,每立方米小麥約重735千克,這堆小麥約有多少千克?(得數(shù)保留整千克)。
(1)提問:從題目中你知道了什么?
(2)學(xué)生獨立完成后教師提問,并回答學(xué)生的質(zhì)疑:
3.14×(4÷2)2×1.2×1/3表示什么?為什么要先求圓錐的體積?得數(shù)保留整千克數(shù)是什么意思?….
5、比較:例1和例2有什么不同的地方?
(2)例1是直接求體積,例2是求出體積后再求重量。
圓錐的體積教案篇十二
教學(xué)反思:
練習(xí)課應(yīng)該怎樣上?是不是學(xué)生只要會做書上的題目呢。我覺得應(yīng)該根據(jù)學(xué)生學(xué)習(xí)情況和教學(xué)內(nèi)容進行合理的拓展和有針對性的練習(xí)。
圓柱、圓錐體積的綜合練習(xí)是學(xué)生在活動中探索出圓柱、圓錐體積計算的方法和熟練掌握求圓柱、圓錐體積的'計算方法的基礎(chǔ)上進行教學(xué)的。在本節(jié)練習(xí)課教學(xué)中,我讓學(xué)生畫草圖幫助理解,經(jīng)過學(xué)生自主探索與合作交流,學(xué)生在運用公式解決生活中的實際問題的能力上有了一定的提高。同時解決了與生活經(jīng)驗密切聯(lián)系,具有挑戰(zhàn)性的問題,讓學(xué)生體驗到了成功的快樂。
不足的地方:學(xué)生在審題時不能關(guān)注細節(jié)。
圓錐的體積教案篇十三
本節(jié)課是北師大版義務(wù)教育標準實驗教科書六年級數(shù)學(xué)下冊第11頁—13頁的內(nèi)容,這節(jié)課是在學(xué)生對長方體,正方體,圓柱體,和圓錐體的特征都有了初步的認識和了解,并在學(xué)習(xí)了圓柱的體積的基礎(chǔ)上進行學(xué)習(xí)的,這就為本節(jié)課的學(xué)習(xí)奠定了扎實的基礎(chǔ),同時,也為初中階段進一步學(xué)習(xí)幾何圖形知識做了一個良好的鋪墊。為了做到有的放矢,我特制定以下學(xué)習(xí)目標:
1、使學(xué)生理解圓錐體積的推導(dǎo)過程,初步掌握圓錐體積的計算公式,并能正確計算圓錐的體積。
2、通過動手推導(dǎo)圓錐體積計算公式的過程,培養(yǎng)學(xué)生初步的空間觀念和動手操作能力。學(xué)習(xí)重點是:掌握圓錐體積的計算公式。學(xué)習(xí)難點是:正確探索出圓錐體積和圓柱體積之間的關(guān)系。
本節(jié)課我采用的教法是啟發(fā)式教學(xué)法,實驗活動法,歸納總結(jié)法。教學(xué)中,既要充分發(fā)揮學(xué)生的主體作用,又要調(diào)動學(xué)生積極主動地參與教學(xué)。
動手操作法,觀察發(fā)現(xiàn)法,自主探究法,合作交流法。
1、復(fù)習(xí)導(dǎo)入,引出課題:通過復(fù)習(xí)圓錐的特征、圓柱的體積計算方法引入新課,為學(xué)生學(xué)習(xí)新知做好鋪墊。
2、揭示課題,展示目標。
3、以舊引新,探究新知。
通過回憶圓柱體積計算公式的推導(dǎo)過程,提出問題:圓錐的體積該怎樣求呢?能不能也通過已學(xué)過的圖形來求呢?激起學(xué)生探究的欲望。此時我會拿出已經(jīng)準備好了的等底等高的圓柱形和圓錐形容器,然后提問以下幾個問題:這兩個容器有什么共同的特征?誰的體積更大?圓柱的體積和圓錐體積之間有沒有一定的數(shù)量關(guān)系?問學(xué)生:“你用什么辦法驗證自己的猜想呢?”這時候,肯定要有一部分聰明的或者已經(jīng)預(yù)習(xí)課本的同學(xué)會說:“將圓錐形容器裝滿沙或水,在倒入圓柱形容器,看幾次能倒?jié)M。”這時候就讓同學(xué)們以小組為單位,驗證他們的猜想。
教師只需要做最總結(jié):圓錐的體積等于和它等底等高的圓柱體積的三分之一。如果用v表示圓錐的體積,s表示底面積,h表示高,那么就能得出圓錐體積的計算公式為:v=1/3sh(板書,特別的用紅顏色粉筆寫出等底等高和公式)。
4、運用公式,解決問題。
通過“算一算”和“試一試”讓學(xué)生掌握公式的運用。
5、鞏固練習(xí),拓展深化,依次練習(xí)“練一練”中第1題,第4題和第5題。當(dāng)然在練習(xí)的過程中,要隨時關(guān)注學(xué)生所出現(xiàn)的問題,以便得到及時的解決。
6、質(zhì)疑問難,總結(jié)升華。
在此環(huán)節(jié)中,我會問學(xué)生“通過這節(jié)課的學(xué)習(xí),你們有哪些收獲,是怎樣推導(dǎo)出圓錐的體積的公式的。
圓錐的體積教案篇十四
今天,上完《圓錐和圓錐體積》一課,收獲很多。我們緊緊圍繞教學(xué)目標,通過引導(dǎo)學(xué)生觀察、猜測、操作、分析、推理、驗證概括,引導(dǎo)學(xué)生經(jīng)歷認識圓錐和探索圓錐體積計算公式的過程,讓學(xué)生親歷了知識的形成過程,讓學(xué)生思維的火花綻放在手指上。在教學(xué)中主要突出了以下幾點:
一、、引導(dǎo)學(xué)生經(jīng)歷猜想-------驗證的探究過程。
在本節(jié)課的教學(xué)中,學(xué)生有了圓柱體積公式的基礎(chǔ),鼓勵學(xué)生大膽猜想“圓錐的體積可能跟什么有關(guān)系?”并充分展示學(xué)生的思維成果“可能跟圓錐的底面積有關(guān)”“可能跟圓錐的高有關(guān)”“可能跟圓錐的側(cè)面積有關(guān)”這些都是都是基于學(xué)生已有知識經(jīng)驗的一種猜想,不一定正確,要得出實驗結(jié)論要通過實驗來驗證,很自然地引導(dǎo)學(xué)生經(jīng)歷猜想-----驗證------得出結(jié)論這一探究過程。同時,為使學(xué)生產(chǎn)生認知沖突,課前我們?yōu)閷W(xué)生準備了有形的材料,(等底等高、等底不等高、等高不等底、既不等高也不等底四組圓柱和圓錐)這樣的設(shè)計,讓學(xué)生通過四次試驗,發(fā)現(xiàn)每組中相同的情況:都有把空圓錐里盛滿沙子,3次正好注滿空圓柱的情況,而其他的實驗室沒有規(guī)律可循的,引導(dǎo)學(xué)生回頭觀察這種特殊情況圓柱和圓錐的關(guān)系,理解必須在等底等高的情況下,圓柱和圓錐才有倍數(shù)關(guān)系,獨立完成導(dǎo)學(xué)案上的填空,完成圓錐體積公式的推導(dǎo)。這樣的設(shè)計,為學(xué)生的主動探索和發(fā)現(xiàn)提供了時間和空間,有利于學(xué)生主動地建構(gòu)數(shù)學(xué)知識,使得學(xué)生在獨立思考、對比實驗、討論交流中提高數(shù)學(xué)素養(yǎng)。
二、在動手實驗中,積累數(shù)學(xué)活動經(jīng)驗。
新課標指出:動手實踐是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式,數(shù)學(xué)活動經(jīng)驗的積累是提高學(xué)生數(shù)學(xué)素養(yǎng)的重要標志。在這節(jié)課中,我們安排分組實驗,明確實驗要求,學(xué)生通過實驗,充分經(jīng)歷直觀感知、觀察發(fā)現(xiàn)、在教師引導(dǎo)的歸納類比數(shù)學(xué)活動中,得出只有在等底等高的情況下,圓錐體積才是圓柱體積的三分之一,沒有這一前提條件,這個結(jié)論是不成立的。在知識建構(gòu)的過程中,學(xué)生通過動手操作、合作交流的數(shù)學(xué)活動中,使得學(xué)生發(fā)現(xiàn)四組圓柱圓錐中共性的問題,初步建立數(shù)學(xué)模型,不斷在“做”的`過程和“思考”的過程中沉淀數(shù)學(xué)活動經(jīng)驗,感受數(shù)學(xué)帶來的成功的快樂和愉悅。
三、培養(yǎng)學(xué)生良好的數(shù)學(xué)習(xí)慣。
影出示習(xí)題:s=6.3平方米h=2米。
學(xué)生獨立完成,黑板上展示了6.3×2×=4.2(立方米)后,才有學(xué)生補充:(1)6.3×2÷3=4.2(立方米)(2)6.3×2×=4.2(立方米),只是先把6.3和3約分,來豐盈我們的數(shù)學(xué)課堂,為我們的的課堂教學(xué)提供了新的資源,也為算法優(yōu)化提供了素材。
回顧上過的這節(jié)課,總會留下一些缺憾:1、認識完圓錐的特征,丟掉了跟進練習(xí),沒能把和特征相關(guān)的知識及時鞏固。2、學(xué)生的小組活動組織不夠緊湊,實驗活動用時稍長。留下的缺憾會成為我們會在以后的教學(xué)中努力改進,讓我們的課堂涌動生命的活力。
學(xué)生的思路更清晰,學(xué)生思維的火花才會不斷閃現(xiàn)。
圓錐的體積教案篇十五
教材第11~17頁圓錐的認識和體積計算、例1。
l.使學(xué)生認識圓錐的特征和各部分名稱,掌握高的特征,知道測量圓錐高的方法。
2.使學(xué)生理解和掌握圓錐體積的計算公式,并能正確地求出圓錐的體積。
3.培養(yǎng)學(xué)生初步的空間觀念和發(fā)展學(xué)生的思維能力。
長方體、正方體、圓柱體等,根據(jù)教材第167頁自制的圓錐,演示測高、等底、等高的教具,演示得出圓錐體積等于等底等高圓柱體積的的教具。
理解和掌握圓錐體積的計算公式。
一、鋪墊孕伏:
2.我們已經(jīng)學(xué)過了長方體、正方體及圓柱體(邊說邊出示實物圖形)。在日常生活和生產(chǎn)中,我們還常??吹较旅嬉恍┪矬w(出示教材第16頁插圖)。這些物體的形狀都是圓錐體,簡稱圓錐。我們教材中所講的圓錐,都是直圓錐。今天這節(jié)課,就學(xué)習(xí)圓錐和圓錐的體積。(板書課題)。
二、自主探究:
1.認識圓錐。
我們在日常生活中,還見過哪些物體是這樣的圓錐體,誰能舉出一些例子?
2.根據(jù)教材第16頁插圖,和學(xué)生舉的例子通過幻燈片或其他方法抽象出立體圖。
3.利用學(xué)生課前做好的圓錐體及立體圖通過觀察、手摸認識圓錐的特點。
(1)圓錐的底面是個圓,圓錐的側(cè)面是一個曲面。
4.學(xué)生練習(xí)。
口答練習(xí)三第1題。
5.教學(xué)圓錐高的測量方法。(見課本第17頁有關(guān)內(nèi)容)。
6.讓學(xué)生根據(jù)上述方法測量自制圓錐的高。
7.實驗操作、推導(dǎo)圓錐體積計算公式。
(1)通過演示使學(xué)生知道什么叫等底等高。(具體方法可見教材第18頁上面的圖)。
(3)實驗操作,發(fā)現(xiàn)規(guī)律。
在空圓錐里裝滿黃沙,然后倒入空圓柱里,看看倒幾次正好裝滿。(用有色水演示也可)從倒的次數(shù)看,你發(fā)現(xiàn)圓錐體積與等底等高的'圓柱體積之間有怎樣的關(guān)系?得出圓錐的體積是與它等底等高的圓柱體體積的。
(4)是不是所有的圓柱和圓錐都有這樣的關(guān)系?教師可出示不等底不等高的圓錐、圓柱,讓學(xué)生通過觀察實驗,得出只有等底等高的圓錐才是圓柱體積的。
(5)啟發(fā)引導(dǎo)推導(dǎo)出計算公式并用字母表示。
用字母表示:v=13sh。
8.教學(xué)例l。
(1)出示例1。
(2)審題后可讓學(xué)生根據(jù)圓錐體積計算公式自己試做。
(3)批改講評。注意些什么問題。
圓錐的體積教案篇十六
1、情感目標培養(yǎng)學(xué)生探索合作精神。
2、知識目標理解圓錐體積公式的推導(dǎo)過程,掌握圓錐體積的計算公式,以及運用公式計算圓錐體積。
3、能力目標培養(yǎng)學(xué)生的空間想象力,合作交往能力、創(chuàng)新思維以及動手操作能力。
理解圓錐體積公式的推導(dǎo)過程,掌握圓錐體積的計算公式。
公式推導(dǎo)過程中:圓柱體和圓錐體必須是等底等高,則它們之間才存在必然的關(guān)系。
活動目的:激發(fā)求知欲望。
課件播放:春天到了,萬物復(fù)蘇,春筍也從睡夢中醒來,三只可愛的小熊貓來到竹林中踩竹筍,它們都踩到了一只竹筍。熊貓都都說:今天我踩的竹筍是最大的。熊貓瞇瞇聽了不服氣的說:誰說的,第一大的應(yīng)該是我的竹筍。熊貓花花也不甘示弱的說:不對,不對,我的竹筍應(yīng)該是第一大!
師:竹林里的爭論還在繼續(xù)著,同學(xué)們,到底三只熊貓的竹筍誰的最大呢?讓我們來猜一猜吧!
師:我們光是猜,說服力并不強,那么能找到什么真正能解決問題的辦法嗎?
活動目的:通過師生、生生的'互動討論、交流、探究,從而發(fā)現(xiàn)圓錐的體積和圓柱的體積有關(guān)。
1、出示課題。
2、找圓錐體和學(xué)過的什么體有相似之處。
3、猜一猜,圓柱的體積和圓錐的體積的關(guān)系。
圓錐的體積教案篇十七
1、知識目標:使學(xué)生理解和掌握求圓錐體積的計算公式,并能正確求出圓錐的體積,《圓錐的體積》教案設(shè)計及反思。.
2、能力目標:培養(yǎng)學(xué)生初步的空間觀念,動手操作能力和邏輯思維能力。
3、情感目標:向?qū)W生滲透知識間可以相互轉(zhuǎn)化的辯證唯物主義思想,讓學(xué)生學(xué)習(xí)將新知識轉(zhuǎn)化為原有知識的學(xué)習(xí)方法.
教學(xué)重點:圓錐的體積計算
教學(xué)難點:圓錐的體積計算公式的推導(dǎo).
教學(xué)準備:圓錐形蘿卜、繩子,每個小組一個計算器、等底等高的圓柱和圓錐容器模型、沙土水等。
一、復(fù)習(xí)導(dǎo)入。師:同學(xué)們,你們知道桌上那個白蘿卜,它是什么形體嗎?(圓柱體),現(xiàn)在,如是假設(shè)它的底面積是5平方厘米,高是4厘米,你怎樣求它的體積呢?求出體積后,問:現(xiàn)在老師想請你們幫個忙,把它削成一個最大的圓錐,你們有辦法嗎?說一說什么樣的圓錐體才算最大呢?(與原來的圓柱體蘿卜等底等高)
二、探究新知1、實踐猜想.師:好,現(xiàn)在請同學(xué)們動手削蘿卜,比比哪一組削得最漂亮?學(xué)生削完后,問:誰來猜猜,現(xiàn)在削成的圓錐體積與剛才圓柱有什么關(guān)系呢?你是怎么猜測的?生1:我猜圓錐的體積可能等于原來那個蘿卜體積的,就是5立方厘米。
生2:我猜圓錐的體積可能等于原來那個蘿卜體積的,就是10立方厘米。我是根據(jù)我們以前學(xué)過的在長方形里剪一個最大的三角形,三角形的面積是長方形的,所以我認為圓錐的體積也是圓柱體積的。
生3: 我猜圓錐的體積可能等于原來那個蘿卜體積的,就是6立方厘米,是把削去的蘿卜拼起來和圓錐體蘿卜進行比較,發(fā)現(xiàn)削去的部分的體積大約是圓錐體積的2倍。
生5:我可以把削成的圓錐與削去的蘿卜都拿去稱,再比較它們的重量。.
生6:我把圓錐體蘿卜浸入盛有水的圓柱容器里,算出它的體積,再把削去部分的蘿卜也浸入盛有水的圓柱形容器里,根據(jù)水面上升的高度求出它的體積就知道了。.
生7:我可以把剛才那個圓柱體蘿卜和削成的圓錐休蘿卜分別挖成空心的然后把空圓錐蘿卜盛滿水倒入圓柱體蘿卜中,分別算出體積后進行比較。
生8:我可以用桌上的這些學(xué)具來驗證。.再讓學(xué)生比比哪種方法最合適?
4、解決問題,教案《《圓錐的體積》教案設(shè)計及反思》。課件出示例1,讓學(xué)生獨立完成。5、教師小結(jié)。
三、擴展應(yīng)用。(一)、基本練習(xí)。1、一個圓錐的底面積是25平方分米,高是9分米,它的體積是多少?2、測量圓錐體學(xué)具,求出體積,并說說高是怎么量的?3、一個圓錐的底面積直徑是20厘米,高是8厘米,它們體積是多少?(二)擴展練習(xí)。!、一個圓錐的體積是8立方分米,底面積是2平方分米,高是()分米?2、圓錐形的容器高12厘米,容器中盛滿水,如果水全部倒入等底的圓柱容器中,水面高是( )
四、歸納小結(jié)。師:通過這節(jié)課的學(xué)習(xí),你學(xué)會了什么?你是怎么學(xué)會的?
五、作業(yè)。
這節(jié)課,體現(xiàn)了以下幾個特點:
一、在“動”中獲新知?!皠印笔呛⒆拥奶煨裕课缓⒆佣汲錆M了“動”的欲望。由于幾何知識比較抽象,學(xué)生理解和掌握幾何圖形的概念、性質(zhì)、求積公式、形成空間觀念,都必須有大量具體的、形象的感性材料的積累。所以教材在編排這一知識塊的時候,就已安排了很多的實踐性練習(xí)。教學(xué)時,教者能充分利用這一特點,通過擺、剪、折、量、畫、分割、拼合等操作活動,使學(xué)生獲得鮮明、生動、形象的感性認識,在此基礎(chǔ)上,抽象概括出圓錐的體積計算方法,形成正確的空間觀念。
二、在“動”中求發(fā)展。在教學(xué)圓錐的體積時,教者先讓學(xué)生觀察并討論推導(dǎo)圓錐體積公式的實驗方法,當(dāng)學(xué)生由于受圓柱體積公式推導(dǎo)方法的影響,思維受阻時,教者向?qū)W生提議:用桌上學(xué)具來驗證。同時推薦一些實驗用品:水或沙、尺等。讓學(xué)生在實驗中選擇并設(shè)置疑問:圓錐體積與圓柱體積的關(guān)系。通過實際操作,學(xué)生不僅得出圓錐體積的計算公式。獲得了知識的結(jié)果,而且經(jīng)歷了知識面發(fā)展、發(fā)生的過程,同時加強并鞏固口頭和書面表達能力,發(fā)展解決數(shù)學(xué)問題的能力,增進對數(shù)學(xué)的理解力。
三、在“動”中學(xué)會與他人合作。學(xué)習(xí)是學(xué)生主體的主動建構(gòu)過程,其本質(zhì)是讓學(xué)生認識客觀世界,把書本中的知識結(jié)構(gòu)轉(zhuǎn)化為自己的認知結(jié)構(gòu)。這個過程是學(xué)生主體活動的過程,必須由學(xué)生親身參與,學(xué)生在動手中運用感官參與學(xué)習(xí),自覺主動地去操作、去學(xué)習(xí),在濃厚的動手實踐中不僅經(jīng)歷了知識的形成過程,而且也學(xué)會了如何與他人合作才能取得成功。
圓錐的體積教案篇十八
“圓錐的體積”是人教版小學(xué)數(shù)學(xué)第十二冊第二單元的內(nèi)容。是小學(xué)幾何初步知識的最后一個教學(xué)內(nèi)容,是學(xué)生在學(xué)習(xí)了平面圖形和長方體、正方體以及圓柱體這三種立體圖形的基礎(chǔ)上進行教學(xué)的。主要內(nèi)容包括理解圓錐體積計算公式和公式的具體運用。學(xué)生掌握這些知識,不僅有利于全面掌握長方體、正方體、圓柱和圓錐之間的本質(zhì)聯(lián)系,為學(xué)生學(xué)習(xí)初中的幾何知識打下基礎(chǔ),同時也可提高學(xué)生運用所學(xué)的數(shù)學(xué)知識和方法解決簡單實際問題的能力。
依據(jù)數(shù)學(xué)課程標準的理念,結(jié)合教材自身的特點和學(xué)生的認知規(guī)律,本節(jié)課需要達到的教學(xué)目標有以下幾點:
1.通過實驗,使學(xué)生理解和掌握求圓錐體積的計算公式,并能運用公式正確計算圓錐的體積。
2.培養(yǎng)學(xué)生初步的空間觀念、觀察、操作能力和邏輯思維能力。
3.向?qū)W生滲透“事物之間相互聯(lián)系”及“理論來源于實踐”的觀點。
其中,教學(xué)重點是使學(xué)生理解和掌握圓錐體積的計算公式;難點是通過實驗理解圓柱和圓錐等底等高時體積間的倍數(shù)關(guān)系。
根據(jù)本節(jié)課的內(nèi)容特點,同時也為了更好的完成教學(xué)目標,突出重點、突破難點,本節(jié)課,我主要采取讓學(xué)生做實驗的方法,通過動手操作、直觀演示,讓學(xué)生在充分感知中主動獲取知識,理解和掌握圓錐體積公式,這樣就克服了幾何形體計算公式教學(xué)中的重結(jié)論、輕過程,重記憶、輕理解的弊病。學(xué)生則在教師的引導(dǎo)下充分發(fā)揮自身的主體作用,通過自己的操作、實驗、觀察比較、討論小結(jié)推導(dǎo)出圓錐體積的計算公式,從而初步學(xué)會運用實驗的方法探索新知。
熟悉教材只是上好一節(jié)課的基礎(chǔ),而合理科學(xué)的教學(xué)程序才是上好一節(jié)課的關(guān)鍵。為了順利完成本節(jié)課的教學(xué)任務(wù),我精心設(shè)計了一下教學(xué)程序。主要分為以下幾個環(huán)節(jié):
一、情境引入;二、探究新知;三、綜合歸納;四、合理應(yīng)用;五、能力拓展;六、全課總結(jié)。
良好的導(dǎo)入是一節(jié)課成功的關(guān)鍵,它不僅能抓住學(xué)生的心弦,促使學(xué)生情緒高漲,步入智力興奮狀態(tài),還有助于幫助學(xué)生獲得良好的學(xué)習(xí)效果。
根據(jù)本節(jié)課圓錐體積公式的推導(dǎo)要用到等底等高的圓柱與圓錐這一具體情況,本環(huán)節(jié)我設(shè)計了這樣一個情境:今天我們班來了一位新朋友:淘氣。淘氣想請同學(xué)們幫忙解決一個小問題,同學(xué)們愿意嗎?事情是這樣的:淘氣的學(xué)校門口有一個賣瓜子的小攤,老板為了省事,不用稱稱著賣,而是用硬紙板做了兩個容器,(大屏幕出示底為12。56平方厘米,高為6厘米的等底等高的圓柱和圓錐形容器)老板總是這樣給同學(xué)們宣傳:我的這兩個容器,底一樣高也一樣,如果你用圓柱形容器買一元錢只能裝一次,如果用圓錐形容器買一元錢則可以裝兩次。同學(xué)們,請你們幫淘氣想一想,淘氣應(yīng)該用那種方法賣瓜子呢?問題拋出后,給同學(xué)們一定的思考時間,然后讓同學(xué)們各抒己見。同學(xué)們的想法不同,當(dāng)然答案也就不同,這是教師抓住時機再次提問:要想知道那種方法劃算,必須怎么辦?當(dāng)學(xué)生提出計算體積時,就會發(fā)現(xiàn)所學(xué)知識不夠用了,學(xué)生的求知欲望自然被調(diào)動起來,這時出示課題:圓錐的課題。
此時的學(xué)生極想知道圓錐體積的計算方法,這時教師給學(xué)生提出一個疑問:在我們學(xué)習(xí)圓柱體積時我們已經(jīng)清楚:長方體、正方體、圓柱的體積都可以用底面積乘高求得,那么圓錐的體積能否用底面積乘高來求呢?學(xué)生通過觀察等底等高的圓柱與圓錐不難發(fā)現(xiàn),底面積乘高求得的是圓柱的體積,這時教師再加以引導(dǎo):能否利用圓柱的體積來求圓錐的體積呢?為每組同學(xué)提供交流的時間,讓學(xué)生明白,只要弄清它們之間的關(guān)系,就能利用圓柱的體積求出圓錐的體積。究竟它們的體積之間有什么關(guān)系呢?先將圓錐放入圓柱中估計一下。我們要讓事實說話。
引導(dǎo)學(xué)生做實驗發(fā)現(xiàn)等底等高的圓柱與圓錐體積之間的關(guān)系。為了保證實驗?zāi)苡行蛴行У亻_展,實驗前要對學(xué)生提出明確的要求:
1、組長要明確分工,確定檢測員、操作員、記錄員。
2、各小組做兩次實驗,兩次方法可以相同也可以不同,要保證實驗過程及結(jié)果的準確性。
讓學(xué)生做兩次實驗的目的,是讓學(xué)生再次確定實驗的結(jié)果。當(dāng)學(xué)生完成后,請各組同學(xué)進行匯報交流。學(xué)生通過實驗會發(fā)現(xiàn)在等底等高的情況下圓錐體積是圓柱體積的1/3。教師板書。為了再次向?qū)W生強調(diào)等底等高,教師可以問學(xué)生:你們的學(xué)具都等底等高嗎?讓各組學(xué)生舉起自己的學(xué)具。老師發(fā)現(xiàn)我們各組之間的學(xué)具大小不同,結(jié)論怎么相同呢?使學(xué)生明白,在等底等高的情況下圓錐體積總是圓柱體積的1/3。這時教師再次質(zhì)疑:如果不等底等高還會存在這層關(guān)系嗎?小組之間交換圓錐再次做實驗,再次強調(diào)等底等高。
利用板書,讓學(xué)生觀察,圓錐的體積我們可以怎樣進行計算?得出公式:圓錐體積=底面積×高×1/3。
用字母表示:v=1/3sh。
然后請同學(xué)們仔細閱讀所得的結(jié)論,你認為哪些字、詞比較關(guān)鍵?為什么?要求圓錐的體積必須知道哪些條件?對公式的辨析不僅可以使學(xué)生深入理解公式,而且可以避免學(xué)生在運用公式時出現(xiàn)錯誤。
上課時的情境激發(fā)了學(xué)生的求知欲望,如果能夠解決這一問題,一定能讓學(xué)生獲得成功的體驗,因此本環(huán)節(jié)我安排學(xué)生解決的第一個問題是:采用哪種方法更劃算?讓學(xué)生利用條件計算圓柱與圓錐的體積。這樣做不僅前后呼應(yīng),而且也能讓學(xué)生再次深入理解圓錐的計算公式。
第二個問題,則是利用例2改編的一個情境:淘氣的同學(xué)晶晶看到同學(xué)們幫淘氣解決了問題,也想請同學(xué)們幫個忙,利用多媒體出示:麥收季節(jié),晶晶家把收的小麥堆成了一個近似圓錐形的小麥堆,測得底面直徑是4米,高是1。2米,每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數(shù)保留整數(shù))。教師做簡單引導(dǎo):要解決這一問題必須先求什么?然后讓學(xué)生獨立完成,再利用展臺展示個別學(xué)生的解題過程,并請學(xué)生談一談自己的解題思路。
此時學(xué)生可能已經(jīng)有些滿足,如果繼續(xù)毫無意思的練習(xí),必將降低其學(xué)習(xí)的積極性,為此這一環(huán)節(jié)我就將練習(xí)題起了兩個有趣的名字:火眼金睛和智力大比拼,以此來激發(fā)學(xué)生的學(xué)習(xí)興趣。同時培養(yǎng)學(xué)生用所學(xué)知識解決實際問題的能力。這實際上是對圓錐等于與它等底等高圓柱體積的1/3的又一次體會。
1、火眼金睛。
火眼金睛其實是幾道判斷題,希望同學(xué)們能像孫悟空一樣利用自己的火眼金睛能識別出幾句話的對錯呢。
1)、圓錐體積是圓柱體積的1/3。()。
2)、如果圓柱圓錐等底等高,圓柱體積是圓錐的3倍,圓錐體積是圓柱體積的2/3。()。
3)、等底等高的`圓柱與圓錐,圓錐體積比圓柱體積小2/3。()。
通過這樣幾句話的判斷,可以讓學(xué)生深入的思考等底等高的圓柱與圓錐體積之間的關(guān)系,教師也可以從學(xué)生判斷的正誤上了解一下學(xué)生是否對這類應(yīng)用題已經(jīng)掌握。
2、智力大比拼。
智力大比拼則是在判斷題的基礎(chǔ)上,來解決一道實際問題,題目是這樣的:有一個高9厘米,底面積是20平方厘米的圓柱形容器,里面裝滿了水,用一個與它等底等高的實心圓錐擠壓,最后能擠出多少水?還剩多少水?如果有學(xué)生不明白題意,可利用手中的學(xué)具進行直觀演示。這樣也更有利于學(xué)生理解等底等高的圓柱與圓錐體積之間的關(guān)系。
學(xué)生學(xué)了一節(jié)課,究竟學(xué)會了什么,讓他自己說說看,當(dāng)然,從學(xué)生的回答中教師也可以看出自己的教學(xué)任務(wù)是否完成,課上的是否成功。
圓錐的體積教案篇十九
1、推導(dǎo)出圓錐體積的計算公式。
2、會運用圓錐的體積公式計算圓錐的體積。
圓錐體積公式的推導(dǎo)過程。
一、板書課題
師:同學(xué)們,今天我們來學(xué)習(xí)“圓錐的體積”(板書課題)。
二、出示目標
理解并掌握圓錐的體積計算公式,并能運用公式解決實際問題。
三、自學(xué)指導(dǎo)
認真看課本第33頁到第34頁的例2和例3,邊看書,邊實驗,理解圓錐的'體積計算方法,并將例3補充完整。想:
1、圓錐的體積與圓柱的體積有什么關(guān)系?
2、圓錐的體積計算公式是什么?用字母如何表示?
5分鐘后,比誰能正確地回答思考題并能做對檢測題!
檢測題
完成課本第34頁“做一做”第1、2題。
小組合作,校正答案
后教
口答
小組內(nèi)互相說。
當(dāng)堂訓(xùn)練
1、必做題:
課本第35頁第5、6、7題。(做在作業(yè)本上)
2、選做題:
有一個近似圓錐形的沙堆,底面周長是12.56米,高1.2米。把這些沙鋪在一個長4米、寬3米的長方形沙坑里,可以鋪多厚?(得數(shù)保留兩位小數(shù))
圓錐的體積教案篇二十
聽了侯老師的《圓錐的體積》一課,收獲很多,下面我想重點談本節(jié)課的兩點成功之處,希望能與大家一起探討。
第一:為新知識的學(xué)習(xí)搭建合理平臺。
主要體現(xiàn)在侯老師能夠運用原有知識來推動新知識的學(xué)習(xí),設(shè)計有獎問答和實驗等手段,讓學(xué)生大膽借鑒前面學(xué)習(xí)圓柱體積公式的方法來探究圓錐體積公式。利用遷移規(guī)律,讓學(xué)生從求圓柱體積的思路、方法中得到啟示,領(lǐng)悟出求圓錐體積的方法,使新舊知識得到整合。這種借鑒的學(xué)習(xí)方法,不僅使本節(jié)課的教學(xué)變得輕松,同時有利于學(xué)生更深刻地理解和掌握這種學(xué)習(xí)策略,有利于學(xué)生的進一步學(xué)習(xí)和終身的發(fā)展。
第二:注重培養(yǎng)學(xué)生的實踐能力。
這節(jié)課的重點是通過實驗來探究圓錐體積公式的由來,侯老師主要引導(dǎo)學(xué)生做了三個實驗。一是比較圓柱和圓錐是等底等高,強調(diào)圓柱和圓錐是等底等高這個必要條件;二是做用裝滿小米的圓柱在空圓錐中倒的實驗,使學(xué)生理解等底等高的圓柱和圓錐存在著一定的倍數(shù)關(guān)系;三是特別設(shè)計了一組不等底或不等高的圓柱和圓錐來做倒米實驗,再次強調(diào)只有等底等高的圓柱和圓錐存在著的倍數(shù)關(guān)系。在實驗前,讓學(xué)生了解實驗要求,并且提出三個實驗?zāi)康模海?、圓錐的底面與圓柱的底面有什么關(guān)系?他們的高有什么關(guān)系?你是怎么知道的?2、圓錐的體積和與它等底等高的圓柱體積有什么關(guān)系?3、怎樣計算圓錐的體積?計算公式是什么?)以實驗?zāi)康臑橹骶€,讓學(xué)生小組合作,通過動手操作,有眼睛觀察,動腦筋思考,多種感官一起參與活動,由直觀到抽象,層層深入,探索出圓錐體積公式的由來,從而理解和掌握了圓錐體積的計算公式,培養(yǎng)了學(xué)生的觀察能力、操作能力和初步的空間觀念,克服了幾何形體公式計算教學(xué)中的重結(jié)論、輕過程,重記憶、輕理解,重知識、輕能力的弊病。這樣的學(xué)習(xí),學(xué)生學(xué)得活,記得牢,既發(fā)揮教師的主導(dǎo)作用,又體現(xiàn)了學(xué)生的主體地位。學(xué)生在學(xué)習(xí)過程中,是一個探索者、研究者、合作者、發(fā)現(xiàn)者,并且獲得了富有成效的學(xué)習(xí)體驗。
不過這節(jié)課也存在一些不足,教學(xué)環(huán)節(jié)的銜接和時間的分配有些不恰當(dāng),教學(xué)方法沒有多樣化,欠缺改革創(chuàng)新。例如:在教學(xué)新課時,像傳統(tǒng)教學(xué)那樣,直接拿出圓柱和圓錐容器的教具,讓學(xué)生根據(jù)實驗要求和目的,進行倒米實驗。我認為在實驗前,一定要為學(xué)生創(chuàng)設(shè)良好的問題情景,如(你覺得圓錐體積的大小與它的什么有關(guān)?你認為圓錐的體積和什么圖形的`體積關(guān)系最密切?猜一猜它們的體積有什么關(guān)系呢?你們想知道它們的關(guān)系嗎?)通過師生交流、問答、猜想等形式,強化問題意識,激發(fā)學(xué)生的思維,使學(xué)生產(chǎn)生強烈的求知欲望。這時候,學(xué)生就迫切希望通過實驗來證實自己的猜想,所以做起實驗來就興趣盎然。這樣學(xué)生的思維被激活了,學(xué)習(xí)的積極性提高了,興趣變濃了,課堂氣氛變得熱烈,那么教學(xué)效率,教學(xué)效果就可想而知了。
當(dāng)然,我相信#老師通過這次的鍛煉,在今后的教學(xué)道路上一定會越走越寬廣。謝謝大家!
圓錐的體積教案篇二十一
教學(xué)目標:
1、通過動手操作參與實驗,發(fā)現(xiàn)等底等高的圓柱體和圓錐體之間的關(guān)系,從而得出圓錐體的體積公式。
2、能運用公式解答有關(guān)的實際問題。
3、滲透轉(zhuǎn)化、實驗、猜測、驗證等數(shù)學(xué)思想方法,培養(yǎng)動手能力和探索意識。
教學(xué)重點:通過實驗的方法,得到計算圓錐體積的公式。
教學(xué)難點:運用圓錐體積公式正確地計算體積。
教學(xué)過程:
一、創(chuàng)設(shè)情境,引發(fā)猜想。
在一個悶熱的中午,小白兔買了一個圓柱形的雪糕,狐貍買了一個圓錐形的雪糕,這兩個雪糕是等底等高的。這是狐貍要用它的雪糕和小白兔換。你覺得小白兔有沒有上當(dāng)?如果狐貍用兩個雪糕和小白兔換你覺得公平嗎?假如你是小白兔,狐貍有幾個雪糕你才肯和它換呢?把你的想法與小組的同學(xué)交流一下,再向全班同學(xué)匯報。
小白兔究竟跟狐貍怎樣交換才公平合理呢?學(xué)習(xí)了“圓錐的體積”后,就會弄明白這個問題。
二、自主探索,操作實驗。
1、出示學(xué)習(xí)提綱。
(2)你們小組是怎樣進行實驗的?
(3)你能根據(jù)實驗結(jié)果說出圓錐體的體積公式嗎?
(4)要求圓錐體積需要知道哪兩個條件?
2、小組合作學(xué)習(xí)。
3、回報交流。
公式:v=1/3sh。
4、問題解決。
小白兔和狐貍怎樣交換才能公平合理呢?它需要什么前提條件?
5、運用公式解決問題。
教學(xué)例題1和例題2。
三、鞏固練習(xí) 。
(1)底面面積是7.8平方米,高是1.8米.
(2)底面半徑是4厘米,高是21厘米.
(3)底面直徑是6分米,高是6分米.
4、判斷對錯,并說明理由.
(1)圓柱的體積相當(dāng)于圓錐體積的3倍.(?。?。
(2)一個圓柱體木料,把它加工成最大的圓錐體,削去的部分的體積和圓錐的體積比是2?。?.(?。?。
(3)一個圓柱和一個圓錐等底等高,體積相差21立方厘米,圓錐的體積是7立方厘米.(?。?。
四、拓展延伸。
一個圓錐的底面周長是314厘米,高是9厘米,它的體積是多少立方厘米?
五、談?wù)勈斋@。
六、作業(yè)。
圓錐的體積教案篇二十二
教學(xué)內(nèi)容:
教材第11~17頁圓錐的認識和體積計算、例1。
教學(xué)要求:
1、使學(xué)生認識圓錐的特征和各部分名稱,掌握高的特征,知道測量圓錐高的方法。
2、使學(xué)生理解和掌握圓錐體積的計算公式,并能正確地求出圓錐的體積。
3、培養(yǎng)學(xué)生初步的空間觀念和發(fā)展學(xué)生的思維能力。
教具準備:
長方體、正方體、圓柱體等,根據(jù)教材第167頁自制的圓錐,演示測高、等底、等高的教具,演示得出圓錐體積等于等底等高圓柱體積的的教具。
教學(xué)重點:
教學(xué)難點:
理解和掌握圓錐體積的計算公式。
教學(xué)過程:
一、鋪墊孕伏:
2、我們已經(jīng)學(xué)過了長方體、正方體及圓柱體(邊說邊出示實物圖形)。在日常生活和生產(chǎn)中,我們還常??吹较旅嬉恍┪矬w(出示教材第16頁插圖)。這些物體的形狀都是圓錐體,簡稱圓錐。我們教材中所講的圓錐,都是直圓錐。今天這節(jié)課,就學(xué)習(xí)圓錐和圓錐的體積。(板書課題)。
二、自主探究:
1、認識圓錐。
我們在日常生活中,還見過哪些物體是這樣的圓錐體,誰能舉出一些例子?
2、根據(jù)教材第16頁插圖,和學(xué)生舉的例子通過幻燈片或其他方法抽象出立體圖。
3、利用學(xué)生課前做好的圓錐體及立體圖通過觀察、手摸認識圓錐的特點。
(1)圓錐的底面是個圓,圓錐的側(cè)面是一個曲面。
4、學(xué)生練習(xí)。
口答練習(xí)三第1題。
5、教學(xué)圓錐高的測量方法。(見課本第17頁有關(guān)內(nèi)容)。
6、讓學(xué)生根據(jù)上述方法測量自制圓錐的高。
7、實驗操作、推導(dǎo)圓錐體積計算公式。
(1)通過演示使學(xué)生知道什么叫等底等高。(具體方法可見教材第18頁上面的圖)。
(3)實驗操作,發(fā)現(xiàn)規(guī)律。
在空圓錐里裝滿黃沙,然后倒入空圓柱里,看看倒幾次正好裝滿。(用有色水演示也可)從倒的次數(shù)看,你發(fā)現(xiàn)圓錐體積與等底等高的圓柱體積之間有怎樣的關(guān)系?得出圓錐的體積是與它等底等高的圓柱體體積的。
(4)是不是所有的圓柱和圓錐都有這樣的關(guān)系?教師可出示不等底不等高的圓錐、圓柱,讓學(xué)生通過觀察實驗,得出只有等底等高的圓錐才是圓柱體積的。
(5)啟發(fā)引導(dǎo)推導(dǎo)出計算公式并用字母表示。
用字母表示:v=13sh。
8、教學(xué)例。
(1)出示例1。
(2)審題后可讓學(xué)生根據(jù)圓錐體積計算公式自己試做。
(3)批改講評。注意些什么問題。
圓錐的體積教案篇二十三
(1)圓柱的上、下兩個面都相等。()。
(2)圓錐的高和圓柱的高都有無數(shù)條。()。
(3)圓柱和圓錐的側(cè)面都是曲面,圓柱的側(cè)面展開后是一個長方形,圓錐的側(cè)面展開后是一個扇形。()。
(4)測量圓錐的高只要測出頂點到底面圓周上的一點就是圓錐的高。()。
二、填一填:
1.長方形繞它的長邊旋轉(zhuǎn)形成的(),長方形的長是這個圓柱的(),寬是這個圓柱的()。
2.直角三角形繞它的一條直角邊旋轉(zhuǎn)形成(),直角三角形的一條直角邊是這個圓錐的(),另一條直角邊是這個圓錐的()。
3.半圓繞它的直徑旋轉(zhuǎn)形成(),半圓的直徑是這個球的(),半圓的半徑也是這個球的(),半圓的圓心也就是這個圓的()。
三、
2.說出圓錐各部分名稱。
四、說說下面物體哪些是圓柱,哪些是圓錐。不選的,請你說出不選的理由。
【本文地址:http://www.mlvmservice.com/zuowen/14700458.html】