最新一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)(專業(yè)15篇)

格式:DOC 上傳日期:2023-11-24 13:37:20
最新一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)(專業(yè)15篇)
時(shí)間:2023-11-24 13:37:20     小編:BW筆俠

文學(xué)作品是人類情感和思想的表達(dá),從中我們可以感受到人性的復(fù)雜和多樣性。在寫總結(jié)時(shí),我們可以引用一些權(quán)威的資料和數(shù)據(jù),增強(qiáng)總結(jié)的可信度和說服力。讓我們一起來閱讀以下精選總結(jié)范文,對(duì)自己的總結(jié)能力進(jìn)行提升吧。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)篇一

過程與方法。

(2)通過“做一做”引入例1,進(jìn)一步發(fā)展學(xué)生數(shù)形結(jié)合的意識(shí)和能力。

情感與態(tài)度。

(1)在探究二元一次方程和一次函數(shù)的對(duì)應(yīng)關(guān)系中,在體會(huì)近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神。

(2)在經(jīng)歷同一數(shù)學(xué)知識(shí)可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和變式能力。

教學(xué)重點(diǎn)。

教學(xué)難點(diǎn)。

數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識(shí)。

教學(xué)準(zhǔn)備。

教具:多媒體課件、三角板。

學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙。

教學(xué)過程。

第一環(huán)節(jié):設(shè)置問題情境,啟發(fā)引導(dǎo)(5分鐘,學(xué)生回答問題回顧知識(shí))。

內(nèi)容:

1.方程x+y=5的解有多少個(gè)?是這個(gè)方程的解嗎?

2.點(diǎn)(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?

3.在一次函數(shù)y=的圖像上任取一點(diǎn),它的坐標(biāo)適合方程x+y=5嗎?

4.以方程x+y=5的解為坐標(biāo)的所有點(diǎn)組成的圖像與一次函數(shù)y=的圖像相同嗎?

由此得到本節(jié)課的第一個(gè)知識(shí)點(diǎn):

(2)一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程。

第二環(huán)節(jié)自主探索方程組的解與圖像之間的關(guān)系(10分鐘,教師引導(dǎo)學(xué)生解決)。

內(nèi)容:

1.解方程組。

2.上述方程移項(xiàng)變形轉(zhuǎn)化為兩個(gè)一次函數(shù)y=和y=2x,在同一直角坐標(biāo)系內(nèi)分別作出這兩個(gè)函數(shù)的圖像。

(1)求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點(diǎn)的橫縱坐標(biāo);

(2)求兩條直線的交點(diǎn)坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對(duì)應(yīng)的函數(shù)表達(dá)式聯(lián)立的二元一次方程組的解。

(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。

注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組。

第三環(huán)節(jié)典型例題(10分鐘,學(xué)生獨(dú)立解決)。

探究方程與函數(shù)的相互轉(zhuǎn)化。

內(nèi)容:例1用作圖像的方法解方程組。

例2如圖,直線與的交點(diǎn)坐標(biāo)是。

第四環(huán)節(jié)反饋練習(xí)(10分鐘,學(xué)生解決全班交流)。

內(nèi)容:

1.已知一次函數(shù)與的圖像的交點(diǎn)為,則。

2.已知一次函數(shù)與的圖像都經(jīng)過點(diǎn)a(—2,0),且與軸分別交于b,c兩點(diǎn),則的面積為()。

(a)4(b)5(c)6(d)7。

3.求兩條直線與和軸所圍成的三角形面積。

4.如圖,兩條直線與的交點(diǎn)坐標(biāo)可以看作哪個(gè)方程組的解?

第五環(huán)節(jié)課堂小結(jié)(5分鐘,師生共同總結(jié))。

內(nèi)容:以“問題串”的形式,要求學(xué)生自主總結(jié)有關(guān)知識(shí)、方法:

(2)一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程。

2.方程組和對(duì)應(yīng)的兩條直線的關(guān)系:

(1)方程組的解是對(duì)應(yīng)的兩條直線的交點(diǎn)坐標(biāo);

(2)兩條直線的交點(diǎn)坐標(biāo)是對(duì)應(yīng)的方程組的解;

(1)代入消元法;

(2)加減消元法;

(3)圖像法。要強(qiáng)調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解。

第六環(huán)節(jié)作業(yè)布置。

習(xí)題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)篇二

(3)通過學(xué)生的思考和操作,力圖提示出方程與圖象之間的關(guān)系,引入二元一次方程組的圖象解法。同時(shí)培養(yǎng)學(xué)生初步的數(shù)形結(jié)合的意識(shí)和能力。

2.情感態(tài)度價(jià)值觀目標(biāo)。

通過學(xué)生的自主探索,提示出方程和圖象之間的對(duì)應(yīng)關(guān)系,加強(qiáng)新舊知識(shí)的聯(lián)系,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,使學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)充滿探索與創(chuàng)造。

前面已經(jīng)分別學(xué)習(xí)了一次函數(shù)和二元一次方程組,這節(jié)課研究二元一次方程組(數(shù))和一次函數(shù)(形)的關(guān)系,是這兩章知識(shí)的綜合運(yùn)用。強(qiáng)化了部分與整體的內(nèi)在聯(lián)系,知識(shí)與知識(shí)的內(nèi)在聯(lián)系,并為今后解析幾何的學(xué)習(xí)奠定基礎(chǔ)。

2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解。

方程和函數(shù)之間的對(duì)應(yīng)關(guān)系即數(shù)形結(jié)合的意識(shí)和能力。

學(xué)生操作——————自主探索的方法。

學(xué)生通過自己操作和思考,結(jié)合新舊知識(shí)的聯(lián)系,自主探索出方程與圖象之間的對(duì)應(yīng)關(guān)系,以引入二元一次方程組的圖象解法,同時(shí)也建立了“數(shù)”————二元一次方程組和“形”————函數(shù)的圖象(直線)之間的對(duì)應(yīng)關(guān)系,培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí)和能力。

一.故事引入。

迪卡兒的故事——————蜘蛛給予的啟示。

在蜘蛛爬行的啟示下,迪卡兒創(chuàng)建了直角坐標(biāo)系,在坐標(biāo)系下幾何圖形(形)和方程(數(shù))建立聯(lián)系。迪卡兒坐標(biāo)系起到了橋梁和紐帶的作用。從而我們可以把圖形化成方程來研究,也可以用圖象來研究方程。

二.嘗試探疑。

1、y=x+1。

你們把我叫一次函數(shù),我也是二元一次方程??!這是怎么回事,你知道嗎?

學(xué)生先是疑惑:方程就是方程,函數(shù)就是函數(shù),它們能有什么聯(lián)系呢?然后通過思考、交流,最后恍然大悟。初步感受一次函數(shù)與二元一次方程的內(nèi)在聯(lián)系。

2、函數(shù)y=x+1上的任意一點(diǎn)的坐標(biāo)是否滿足方程x—y=—1?

學(xué)生會(huì)迫不及待地拿起筆來計(jì)算。從函數(shù)y=x+1圖象上找?guī)讉€(gè)點(diǎn)看它們的坐標(biāo)是否滿足方程x—y=—1。結(jié)果都滿足。然后學(xué)生就會(huì)自主和同伴交流,問一問同伴函數(shù)y=x+1圖象上的點(diǎn)滿足不滿足方程x—y=—1。結(jié)果也都滿足。這樣他們就會(huì)搭成共識(shí):函數(shù)y=x+1上的任意一點(diǎn)的坐標(biāo)都滿足方程x—y=—1。

然后學(xué)生會(huì)用同樣的方法得出另一個(gè)結(jié)論:以方程x—y=—1的解為坐標(biāo)的點(diǎn)一定在函數(shù)y=x+1的圖象上。然后開始思索函數(shù)y=x+1和方程x—y=—1到底有何關(guān)系呢?通過交流自動(dòng)得出結(jié)論:以方程x—y=—1的解為坐標(biāo)的點(diǎn)組成的圖象與一次函數(shù)y=x+1的圖象相同。

3。在同一坐標(biāo)系下,化出y=x+1與y=4x—2的圖象,他們的交點(diǎn)坐標(biāo)是什么?

方程組y=x+1的解是什么?二者有何關(guān)系?

y=4x—2。

y=x+1的解。

y=4x—2。

教師作最后總結(jié):因?yàn)楹瘮?shù)和方程有以上關(guān)系,所以我們就可以用圖象法解決方程問題,也可以用方程的方法解決圖象問題。

解方程組x—2y=—2。

2x—y=2。

學(xué)生會(huì)很快的用消元法解出來。

老師發(fā)問:誰還有其他的方法?如果有,鼓勵(lì)學(xué)生大膽提出。并給予口頭表?yè)P(yáng)。如果沒有人用其他的方法,老師提出問題:你能不能用圖象的方法求方程組的解呢?這時(shí),學(xué)生就會(huì)去探索新的思路、方法。

一回憶方程與函數(shù)的關(guān)系,有了!方程組的解不就是兩個(gè)方程變形得到的兩個(gè)函數(shù)圖象的交點(diǎn)坐標(biāo)嗎?學(xué)生就會(huì)迅速動(dòng)筆用這種方法把方程解出來。作完之后,互相交流。學(xué)生總結(jié)一下做題步驟:

1。把兩個(gè)方程都化成函數(shù)表達(dá)式的形式。

2。畫出兩個(gè)函數(shù)的圖象。

3。畫出交點(diǎn)坐標(biāo),交點(diǎn)坐標(biāo)即為方程組的解。

問題又出來了,有的同學(xué)的解是x=2有的同學(xué)的解是x=2。1y=2。1。

y=1。9有的同學(xué)的解是……雖然都和消元法得到的結(jié)果相近,但各不相同。

老師提問:你能說一下用圖象法解方程組的不足嗎?

學(xué)生爭(zhēng)先恐后的回答:用這種方法求的解是近似值。不準(zhǔn)確。學(xué)生提出疑問:既然不準(zhǔn)確,那學(xué)習(xí)它有什么用呢?用消元法就足夠了!

教師解釋一下:在現(xiàn)實(shí)生活和生產(chǎn)中,我們會(huì)遇到特別復(fù)雜的方程,用消元法解不太容易,我們就可以用電腦繪制成函數(shù)圖象,很容易找出交點(diǎn)坐標(biāo)。教師可以用z+z智能教育平臺(tái)演示一下。

[點(diǎn)評(píng)]用作圖象的方法解方程組,這體現(xiàn)了兩個(gè)知識(shí)點(diǎn)的內(nèi)在聯(lián)系。學(xué)數(shù)學(xué)知識(shí),探索知識(shí)點(diǎn)之間的聯(lián)系,可起到化新為舊的作用,達(dá)到事半功倍的效果。逐步讓學(xué)生學(xué)會(huì)這種學(xué)習(xí)新知識(shí)的技巧。

四.引申。

方程組x+y=2。

x+y=5解的情況如何?你能從函數(shù)的角度解釋一下嗎?

學(xué)生用消元法開始解方程組,結(jié)果無解,怎么回事呢?學(xué)生會(huì)嘗試運(yùn)用方程組的圖象解法。畫出兩個(gè)函數(shù)圖象。答案有了!圖象是平行的,沒有交點(diǎn)。所以方程組無解了。哇!太神奇了!方程的問題可以用圖象的方法解決了。

[點(diǎn)評(píng)]因?yàn)橛辛松厦娴挠米鲌D象法解方程組,在這里,學(xué)生就會(huì)自覺地從函數(shù)的角度探究方程的問題,初步具有了數(shù)形結(jié)合的意識(shí)和能力。

五.課后小結(jié)。

本節(jié)課我們通過操作和思考,揭示了二元一次方程和函數(shù)圖象之間的對(duì)應(yīng)關(guān)系,從而引入二元一次方程組的圖象解法,同時(shí)也建立了“數(shù)”————二元一次方程與“形”——————函數(shù)圖象之間的對(duì)應(yīng)關(guān)系,培養(yǎng)了學(xué)生初步的數(shù)形結(jié)合的意識(shí)和能力。

六.作業(yè)。

1。用作圖象法解方程組2x+y=4。

2x—3y=12。

2。如圖,直線l、l相交于點(diǎn)a,試求出a點(diǎn)坐標(biāo)。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)篇三

本節(jié)課通過探索“方程”與“函數(shù)圖像”的關(guān)系,培養(yǎng)學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想,通過學(xué)習(xí)二元一次方程方程組的解與直線交點(diǎn)坐標(biāo)之間的關(guān)系,使學(xué)生初步建立了“數(shù)”(二元一次方程)與“形”(一次函數(shù)的圖像)之間的對(duì)應(yīng)關(guān)系,進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí)和能力.因此確定本節(jié)課的教學(xué)目標(biāo)為:

3.發(fā)展學(xué)生數(shù)形結(jié)合的意識(shí)和能力,使學(xué)生在自主探索中學(xué)會(huì)不同數(shù)學(xué)模型間的聯(lián)系.。

教學(xué)重點(diǎn)。

教學(xué)難點(diǎn)。

通過對(duì)數(shù)學(xué)模型關(guān)系的探究發(fā)展學(xué)生數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識(shí).。

1.教法學(xué)法。

啟發(fā)引導(dǎo)與自主探索相結(jié)合.。

2.課前準(zhǔn)備。

教具:多媒體課件、三角板.。

學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙.。

1.某水箱有5噸水,若用水管向外排水,每小時(shí)排水1噸,則x小時(shí)后還剩余y噸水.

(1)請(qǐng)找出自變量和因變量。

(2)你能列出x,y的關(guān)系式嗎。

(3)x,y的取值范圍是什么。

(4)在平面直角坐標(biāo)系中畫出這個(gè)函數(shù)的圖形.(注意xy的取值范圍).

2.(1)方程x+y=5的解有多少個(gè)?你能寫出這個(gè)方程的幾個(gè)解嗎?

(3).在一次函數(shù)y=x5的圖像上任取一點(diǎn),它的坐標(biāo)適合方程x+y=5嗎?

x+y=5與y=x5表示的關(guān)系相同。

1.兩個(gè)一次函數(shù)圖象的交點(diǎn)坐標(biāo)是相應(yīng)的二元。

(2)兩個(gè)函數(shù)的交點(diǎn)坐標(biāo)適合哪個(gè)方程?

xy5(3).解方程組驗(yàn)證一下你的發(fā)現(xiàn)。2xy1。

練習(xí):隨堂練習(xí)1。鞏固由一次函數(shù)的交點(diǎn)坐標(biāo)找相應(yīng)的二元一次方程組的解。

xy2(1)解。

2xy5(2)以方程x+y=2。

(3)以方程2x+y=5(4)方程組的解為坐標(biāo)的點(diǎn)在圖象上是哪個(gè)點(diǎn)?

練習(xí):知識(shí)技能1。鞏固由方程組的解求相應(yīng)的一次函數(shù)的交點(diǎn)坐標(biāo)。更深入的體會(huì)二元一次方程組的解與一次函數(shù)交點(diǎn)坐標(biāo)之間的對(duì)應(yīng)關(guān)系。

第三環(huán)節(jié)模型應(yīng)用。

1.某公司要印制產(chǎn)品宣傳材料.

印刷廠的費(fèi)用。

(1)請(qǐng)分別表示出兩個(gè)印刷廠費(fèi)用與x的關(guān)系式。

(2)在同一直角坐標(biāo)系中畫出函數(shù)的圖象。

(3)如何根據(jù)印刷材料的份數(shù)選擇印刷廠比較合算?

第四環(huán)節(jié)模型特例。

想一想。

么?

(1)觀察發(fā)現(xiàn)直線平行無交點(diǎn);

(2)小組研究計(jì)算發(fā)現(xiàn)方程組無解;

(3)從側(cè)面驗(yàn)證了兩直線有交點(diǎn),對(duì)應(yīng)的方程組有解,反之也成立;

(4)歸納小結(jié):兩平行直線的k相等;方程組中兩方程未知數(shù)的系數(shù)對(duì)應(yīng)成比例方程組無解。

進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí)和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化.進(jìn)一步挖掘出兩直線平行與k的關(guān)系。

第五環(huán)節(jié)課堂小結(jié)。

內(nèi)容:以“問題串”的形式,要求學(xué)生自主總結(jié)有關(guān)知識(shí)、方法:

一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程.。

2.方程組和對(duì)應(yīng)的兩條直線的關(guān)系:

方程組的解是對(duì)應(yīng)的兩條直線的交點(diǎn)坐標(biāo);

兩條直線的交點(diǎn)坐標(biāo)是對(duì)應(yīng)的方程組的解;

第六環(huán)節(jié)作業(yè)布置。

習(xí)題5.7。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)篇四

本節(jié)課是在學(xué)生已經(jīng)學(xué)會(huì)從單個(gè)一次函數(shù)的圖象分析獲取信息,進(jìn)而解決有關(guān)實(shí)際問題的基礎(chǔ)上展開的。因此,本節(jié)課的重點(diǎn)應(yīng)該放在怎樣從兩個(gè)函數(shù)圖象的比較、分析中提取有用信息,弄清兩者之間的聯(lián)系,從而提高學(xué)生的識(shí)圖能力與解決實(shí)際問題的能力。難點(diǎn)在于怎樣抓住有用的特征去分析、比較。于是,本節(jié)課的基本思路是以學(xué)生熟悉的一次函數(shù)的圖象及性質(zhì)為鋪墊,以學(xué)生感興趣的現(xiàn)實(shí)問題作素材,以交流合作為主要形式展開學(xué)習(xí)活動(dòng)。

例1:某種摩托車的油箱最多可儲(chǔ)油10升,加滿油后,油箱中的剩余油量y(升)與摩托車行駛路程x(千米)之間的關(guān)系引伸的問題帶來了挑戰(zhàn)性的懸念。只有讓學(xué)生在探索問題之中學(xué)會(huì)提出問題,才能最終體驗(yàn)到數(shù)學(xué)的抽象,形成穩(wěn)定的學(xué)習(xí)興趣。

2、本節(jié)課充分體現(xiàn)了學(xué)生在自主探索與合作交流中學(xué)會(huì)學(xué)習(xí)這一理念,學(xué)生有足夠的自主探索時(shí)間,有與同學(xué)合作互動(dòng)的空間,有與老師交流表達(dá)的機(jī)會(huì)。學(xué)生不是從老師那里獲取知識(shí),而是在數(shù)學(xué)活動(dòng)的過程中發(fā)現(xiàn)規(guī)律、體驗(yàn)成功。

3、本節(jié)課通過函數(shù)圖象獲取信息,解決實(shí)際問題,培養(yǎng)學(xué)生的形象思維及數(shù)學(xué)應(yīng)用能力,同時(shí)培養(yǎng)學(xué)生良好的環(huán)保意識(shí)和熱愛生活的意識(shí)及利用函數(shù)圖象解決簡(jiǎn)單的實(shí)際問題通過方程與函數(shù)關(guān)系的研究,建立良好的知識(shí)聯(lián)系。

1、個(gè)別差生的積極性還未調(diào)動(dòng)起來,還須探索出關(guān)注差生的方法來提高教學(xué)及格率。

2、在分析一次函數(shù)表達(dá)式時(shí),在課本上用的“數(shù)形結(jié)合”方法可另外用“待定系數(shù)法”分析;以便學(xué)生能拓展思維。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)篇五

3、會(huì)將一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式。

情感與態(tài)度目標(biāo)。

2、通過對(duì)實(shí)際問題的分析,培養(yǎng)關(guān)注生活,進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型,培養(yǎng)良好的數(shù)學(xué)應(yīng)用意識(shí)。

重點(diǎn):二元一次方程的概念及二元一次方程的解的概念。

難點(diǎn)。

1、了解二元一次方程的解的不唯一性和相關(guān)性。即了解二元一次方程的解有無數(shù)個(gè),但不是任意的兩個(gè)數(shù)是它的解。

2、把一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式,其實(shí)質(zhì)是解一個(gè)含有字母系數(shù)的方程。

1、通過創(chuàng)設(shè)問題情境,讓學(xué)生在尋求問題解決的過程中認(rèn)識(shí)二元一次方程,了解二元一次方程的特點(diǎn),體會(huì)到二元一次方程的引入是解決實(shí)際問題的需要。

2、通過觀察、思考、交流等活動(dòng),激發(fā)學(xué)習(xí)情緒,營(yíng)造學(xué)習(xí)氣氛,給學(xué)生一定的時(shí)間和空間,自主探討,了解二元一次方程的解的不唯一性和相關(guān)性。

3、通過學(xué)練結(jié)合,以游戲的形式讓學(xué)生及時(shí)鞏固所學(xué)知識(shí)。

創(chuàng)設(shè)情境導(dǎo)入新課。

1、一個(gè)數(shù)的3倍比這個(gè)數(shù)大6,這個(gè)數(shù)是多少?

師生互動(dòng)探索新知。

1、發(fā)現(xiàn)新知。

根據(jù)它們的共同特征,你認(rèn)為怎樣的方程叫做二元一次方程?(二元一次方程的定義:含有兩個(gè)未知數(shù),且含有未知數(shù)的項(xiàng)的次數(shù)都是一次的方程叫做二元一次方程。)。

2、鞏固新知。

相同點(diǎn):方程兩邊都是整式,含有未知數(shù)的項(xiàng)的次數(shù)都是一次。

如果一個(gè)方程含有兩個(gè)未知數(shù),并且所含未知項(xiàng)都為1次方,那么這個(gè)整式方程就叫做二元一次方程,有無窮個(gè)解,若加條件限定有有限個(gè)解。

它山之石可以攻玉,以上就是為大家?guī)淼?篇《一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)》,您可以復(fù)制其中的精彩段落、語(yǔ)句,也可以下載doc格式的文檔以便編輯使用。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)篇六

作為一位杰出的教職工,編寫教學(xué)設(shè)計(jì)是必不可少的,教學(xué)設(shè)計(jì)是把教學(xué)原理轉(zhuǎn)化為教學(xué)材料和教學(xué)活動(dòng)的計(jì)劃。那么優(yōu)秀的教學(xué)設(shè)計(jì)是什么樣的呢?以下是小編為大家收集的二元一次方程與一次函數(shù)教學(xué)設(shè)計(jì),歡迎閱讀與收藏。

2、能根據(jù)一次函數(shù)的圖像求二元一次方程組的近似值。

1、用作圖像法求二元一次方程組的近似值。

1、做圖像時(shí)要標(biāo)準(zhǔn)、精確,近似值才接近。

先自學(xué)課本,用心思考自主學(xué)習(xí)部分,努力獨(dú)立完成,再與其他同學(xué)討論未明白的內(nèi)容。課上展示,針對(duì)自己不明白問題多聽多問。

問題1、

(1)方程x+y=5的解有多少組?寫出其中的幾組解。

(3)在一次函數(shù)y=5—x的圖像上任取一點(diǎn),它們的坐標(biāo)適合方程x+y=5嗎?

(5)由以上的探究過程,你發(fā)現(xiàn)了什么?

問題2、

(3)由以上探究過程,我們發(fā)現(xiàn)解二元一次方程組的方法除了加減消元法和代入消元法,還可以用法解方程組;我們還發(fā)現(xiàn)可以利用解二元一次方程組的方法求兩條直線交點(diǎn)的坐標(biāo)。

合作探究:

(1)用做圖像的方法解方程組。

(2)用解方程的方法求直線y=4—2x與直線y=2x—12交點(diǎn)。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)篇七

“解二元一次方程組”是“二元一次方程組”一章中很重要的知識(shí),占有重要的地位、通過本節(jié)課的教學(xué),使學(xué)生會(huì)用代入消元法和加減消元法解二元一次方程組;了解“消元”思想。

教學(xué)后發(fā)現(xiàn),大部分學(xué)生能掌握二元一次議程組的解法,教學(xué)一開始給出了一個(gè)二元一次方程組。提問:含有兩個(gè)未知數(shù)的方程我們沒有學(xué)習(xí)過怎樣解,那么我們學(xué)過解什么類型的方程?答:一元一次方程。

提問:那可怎么辦呢?這時(shí),學(xué)生通過交流,教師只要略加指導(dǎo),方法自然得出,這其中也體現(xiàn)了化歸思想,教學(xué)的最后給出了一個(gè)三元一次方程組,同樣也沒有學(xué)過它的解法,那學(xué)過什么類型的方程組,這時(shí)又怎么辦呢?與教學(xué)開始時(shí)方法一樣,但這時(shí)不需點(diǎn)拔、指導(dǎo),學(xué)生按“消元”“化歸”的思想,化“三元”為“二元”,化“二元”為“一元”,這對(duì)學(xué)生今后獨(dú)立解決總是無疑是種好的方法。

有個(gè)別同學(xué)在選擇方法上:是用代入法還是加減法,很猶豫,解答起來速度較慢,只要多加練習(xí),一定會(huì)即快又準(zhǔn)。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)篇八

本課內(nèi)容是在學(xué)生掌握了二元一次方程組有關(guān)概念之后的學(xué)習(xí)內(nèi)容,用代入消元法解二元一次方程組是學(xué)生接觸到的解方程組的第一種方法,是解二元一次方程組的方法之一,消元體現(xiàn)了“化未知為已知”的重要思想,它是學(xué)習(xí)本章的重點(diǎn)和難點(diǎn)。學(xué)完以后可以幫助我們解決一些實(shí)際的問題,也是為了今后學(xué)習(xí)函數(shù)、線性方程組及高次方程組奠定了基礎(chǔ)。

2.理解代入消元法的基本思想;了解化“未知為已知”的轉(zhuǎn)化過程,體會(huì)化歸思想。

三、教學(xué)重難點(diǎn)。

2.難點(diǎn):在“消元”的過程中能夠判斷消去哪個(gè)未知數(shù),使得解方程組的運(yùn)算轉(zhuǎn)為較簡(jiǎn)便的過程。

四、教學(xué)過程。

(1)復(fù)習(xí)引入。

設(shè)計(jì)意圖:讓學(xué)生復(fù)習(xí)鞏固二元一次方程組和二元一次方程組解的概念,追問其他一個(gè)拋磚引玉的效果,激起學(xué)生的學(xué)習(xí)興趣,引出課題。

(2)探究新知。

此過程通過播放洋蔥視頻中的代入消元法片段視頻,播放致列出二元一次方程組和一元一次后點(diǎn)擊暫停,先讓學(xué)生考慮想清楚兩個(gè)問題。

一個(gè)問題是為什么能用一元一次方程解決的實(shí)際問題我們要用二元一次方程組來解決?第二個(gè)問題觀察二元一次方程組和一元一次方程組之間有何異同?學(xué)生想清楚這兩個(gè)問題后,滲透消元的思想,然后繼續(xù)播放視頻讓學(xué)生知道二元一次方程組完整的解題過程,并在每一步做出相應(yīng)的解釋,怎么變化而來。

播放視頻完后先讓學(xué)生自主總結(jié)歸納解二元一次方程組的基本步驟,教師引導(dǎo)總結(jié)。接著完成配套的3個(gè)習(xí)題,強(qiáng)化訓(xùn)練。

(3)例題講解。

讓學(xué)生嘗試解答。

設(shè)計(jì)意圖:讓學(xué)生通過例1和例2的對(duì)比,引出如何選擇變化有利于計(jì)算的問題。

預(yù)想大部分學(xué)生例2會(huì)存在這樣的問題到底選擇哪個(gè)方程變形,當(dāng)學(xué)生做出例1,猶豫例2時(shí),提出這樣兩個(gè)問題:

(1)在解二元一次方程組的步驟中變形的過程我們應(yīng)當(dāng)如何變形?把一個(gè)方程變形為用含x的式子表示y(或含y的式子表示x)。

(2)選擇哪個(gè)方程變形比較簡(jiǎn)便呢?

再一次激起學(xué)生的學(xué)習(xí)興趣,接著播放洋蔥視頻繼續(xù)代入消元法片段視頻,讓學(xué)生清楚的知道在不同的二元一次方程組中在變形的過程選擇那一個(gè)方程,選擇那一個(gè)未知數(shù)變形能簡(jiǎn)便的進(jìn)行運(yùn)算。

五、課堂小結(jié)。

1.這節(jié)課你學(xué)到了哪些知識(shí)和方法?

2.你還有什么問題或想法需要和大家交流分享?

一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)篇九

知識(shí)技能:理解一次函數(shù)與二元一次方程(組)的關(guān)系,會(huì)用圖象法解二元一次方程組。

情感態(tài)度:在探究活動(dòng)中培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度和勇于探索的科學(xué)精神,在師生、生生的交流活動(dòng)中,學(xué)會(huì)與人合作,學(xué)會(huì)傾聽、欣賞和感悟,體驗(yàn)數(shù)學(xué)的價(jià)值,建立自信心。

教學(xué)重難點(diǎn)。

難點(diǎn):綜合運(yùn)用方程(組)、不等式和函數(shù)的知識(shí)解決實(shí)際問題。

教學(xué)過程。

(一)引入新課。

學(xué)生已經(jīng)學(xué)習(xí)過列方程(組)解應(yīng)用題,因此可能列出一元一次方程或二元一次方程組,用方程模型解決問題。結(jié)合前面對(duì)一次函數(shù)與一元一次方程、一元一次不等式之間關(guān)系的探究,我自然地提出問題:一次函數(shù)與二元一次方程組之間是否也有聯(lián)系呢?,從而揭示課題。

(二)進(jìn)行新課。

(3)是否直線上任意一點(diǎn)的坐標(biāo)都是它所對(duì)應(yīng)的二元一次方程的解?

此時(shí)教師留給學(xué)生充分探索交流的時(shí)間與空間,對(duì)學(xué)生可能出現(xiàn)的疑問給予幫助,師生共同歸納出:從形的角度看,解方程組相當(dāng)于確定兩條直線交點(diǎn)的坐標(biāo)。

進(jìn)一步歸納出:從數(shù)的角度看,解方程組相當(dāng)于考慮自變量為何值時(shí)兩個(gè)函數(shù)的值相等,以及這個(gè)函數(shù)值是何值。

3、列一元二次不等式。

解法1:設(shè)上網(wǎng)時(shí)間為分,若按方式a則收元;若按方式b則收元。然后在同一坐標(biāo)系中分別畫出這兩個(gè)函數(shù)的圖象,計(jì)算出交點(diǎn)坐標(biāo),結(jié)合圖象,利用直線上點(diǎn)位置的高低直觀地比較函數(shù)值的大小,得到當(dāng)一個(gè)月內(nèi)上網(wǎng)時(shí)間少于400分時(shí),選擇方式a省錢;當(dāng)上網(wǎng)時(shí)間等于400分時(shí),選擇方式a、b沒有區(qū)別;當(dāng)上網(wǎng)時(shí)間多于400分時(shí),選擇方式b省錢。

解法2:設(shè)上網(wǎng)時(shí)間為分,方式b與方式a兩種計(jì)費(fèi)的差額為元,得到一次函數(shù):,即,然后畫出函數(shù)的圖象,計(jì)算出直線與軸的交點(diǎn)坐標(biāo),類似地用點(diǎn)位置的高低直觀地找到答案。

注意:所畫的函數(shù)圖象都是射線。

4、習(xí)題。

(1)、以方程的解為坐標(biāo)的所有點(diǎn)都在一次函數(shù)_____的圖象上。

(2)、方程組的解是________,由此可知,一次函數(shù)與的圖象必有一個(gè)交點(diǎn),且交點(diǎn)坐標(biāo)是________。

5、旅游問題。

古城荊州歷史悠久,文化燦爛。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)篇十

學(xué)習(xí)目標(biāo):

2、能根據(jù)一次函數(shù)的圖像求二元一次方程組的近似值。

學(xué)習(xí)重點(diǎn):

學(xué)習(xí)難點(diǎn):

1、做圖像時(shí)要標(biāo)準(zhǔn)、精確,近似值才接近。

學(xué)習(xí)方法:

先自學(xué)課本,用心思考自主學(xué)習(xí)部分,努力獨(dú)立完成,再與其他同學(xué)討論未明白的內(nèi)容。課上展示,針對(duì)自己不明白問題多聽多問。

自主學(xué)習(xí)部分:

問題1.(1)方程x+y=5的解有多少組?寫出其中的幾組解。

(3)在一次函數(shù)y=5-x的圖像上任取一點(diǎn),它們的坐標(biāo)適合方程x+y=5嗎?

(5)由以上的探究過程,你發(fā)現(xiàn)了什么?

(3)由以上探究過程,我們發(fā)現(xiàn)解二元一次方程組的方法除了加減消元法和代入消元法,還可以用法解方程組;我們還發(fā)現(xiàn)可以利用解二元一次方程組的方法求兩條直線交點(diǎn)的坐標(biāo)。

合作探究:

(1)用做圖像的方法解方程組。

(2)用解方程的方法求直線y=4-2x與直線y=2x-12交點(diǎn)。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)篇十一

3、學(xué)會(huì)開放性地尋求設(shè)計(jì)方案,培養(yǎng)分析。

教學(xué)難點(diǎn)用方程組刻畫和解決實(shí)際問題的過程。

知識(shí)重點(diǎn)經(jīng)歷和體驗(yàn)用方程組解決實(shí)際問題的過程。

教學(xué)過程(師生活動(dòng))設(shè)計(jì)理念。

(出示問題)據(jù)以往的統(tǒng)計(jì)資料,甲、乙兩種作物的單位面積產(chǎn)量的比是1:1:5,現(xiàn)要在一塊長(zhǎng)200m,寬100m的長(zhǎng)方形土地上種植這兩種作物,怎樣把這塊地分為兩個(gè)長(zhǎng)方形,使甲、乙兩種作物的總產(chǎn)量的比是3:4(結(jié)果取整數(shù))?以學(xué)生身邊的實(shí)際問題展開學(xué)習(xí),突出數(shù)學(xué)與現(xiàn)實(shí)的聯(lián)系,培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí)。

探索分析。

研究策略以上問題有哪些解法?

學(xué)生自主探索,合作交流,整理思路:

(2)先求兩個(gè)小長(zhǎng)方形的面積比,再計(jì)算分割線的位置.。

(3)設(shè)未知數(shù),列方程組求解.。

……。

學(xué)生經(jīng)討論后發(fā)現(xiàn)列方程組求解較為方便.多角度分析問題,多策略解決問題,提高思維的發(fā)散性。

合作交流。

解決問題引導(dǎo)學(xué)生回顧列方程解決實(shí)際問題的基本思路。

(1)設(shè)未知數(shù)。

(2)找相等關(guān)系。

(3)列方程組。

(4)檢驗(yàn)并作答。

解這個(gè)方程組得。

過長(zhǎng)方形土地的長(zhǎng)邊上離一端約106m處,把這塊地分。

為兩個(gè)長(zhǎng)方形.較大一塊地種甲作物,較小一塊地種乙作物.。

你還能設(shè)計(jì)別的種植方案嗎?

用類似的方法,可沿平行于線段ab的方向分割長(zhǎng)。

方形.。

教師巡視、指導(dǎo),師生共同講評(píng).。

比較分析,加深對(duì)方程組的認(rèn)識(shí)。

畫圖,數(shù)形結(jié)合,輔助學(xué)生分析。

進(jìn)一步滲透模型化的思想。

引發(fā)學(xué)生思考,尋求解決途徑。

拓展探究。

按以下步驟展開問題的討論:

(l)學(xué)生獨(dú)立思考,構(gòu)建數(shù)學(xué)模型.。

(2)小組討論達(dá)成共識(shí).。

(3)學(xué)生板書講解.。

(4)對(duì)方程組的解進(jìn)行探究和討論,從而得到實(shí)際問題的結(jié)果.。

(5)針對(duì)以上結(jié)論,你能再提出幾個(gè)探索性問題嗎?以學(xué)生學(xué)習(xí)生活中遇到的。

問題展開討論,鞏固用二元一次。

小結(jié)與作業(yè)。

小結(jié)提高提問:通過本節(jié)課的討論,你對(duì)用方程解決實(shí)際的方法又有何新的`認(rèn)識(shí)?

學(xué)生思考后回答、整理.。

布置作業(yè)12、必做題:教科書116頁(yè)習(xí)題8.3第1(2)、4題。

13、選做題:教科書117頁(yè)習(xí)題8.3第7題。

14、備15、選題:

(3)解方程組。

小彬看見了,說:“我來試一試.”結(jié)果小彬七拼八湊,拼成如圖2那樣的正方形.咳,怎么中間還留下一個(gè)洞,恰好是邊長(zhǎng)2mm的小正方形!

你能幫他們解開其中的奧秘嗎?

提示學(xué)生先動(dòng)手實(shí)踐,再分析討論.。

分層次布1作業(yè).其中“必。

做題”面向全體學(xué)生,鞏固知識(shí)、

方法,加深理解廠選做題”面向。

部分學(xué)有余力的學(xué)生,給他們一。

定的時(shí)間和空間,相互合作,自主探究,增強(qiáng)實(shí)踐能力.備選通供教師參考.。

本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)。

本課所提供的例題、練習(xí)題、作業(yè)題突出體現(xiàn)以下特點(diǎn):

2、探索性.問題解決的策略不易獲得,問題中的數(shù)量關(guān)系不易發(fā)現(xiàn),問題中的未知數(shù)不。

易設(shè)定,這為學(xué)生開展探究活動(dòng)提供了機(jī)會(huì).。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)篇十二

1.知識(shí)與能力目標(biāo)。

(3)通過學(xué)生的思考和操作,力圖提示出方程與圖象之間的關(guān)系,引入二元一次方程組的圖象解法。同時(shí)培養(yǎng)學(xué)生初步的數(shù)形結(jié)合的意識(shí)和能力。

2.情感態(tài)度價(jià)值觀目標(biāo)。

通過學(xué)生的自主探索,提示出方程和圖象之間的對(duì)應(yīng)關(guān)系,加強(qiáng)新舊知識(shí)的聯(lián)系,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,使學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)充滿探索與創(chuàng)造。

教材分析。

前面已經(jīng)分別學(xué)習(xí)了一次函數(shù)和二元一次方程組,這節(jié)課研究二元一次方程組(數(shù))和一次函數(shù)(形)的關(guān)系,是這兩章知識(shí)的綜合運(yùn)用。強(qiáng)化了部分與整體的內(nèi)在聯(lián)系,知識(shí)與知識(shí)的內(nèi)在聯(lián)系,并為今后解析幾何的學(xué)習(xí)奠定基礎(chǔ)。

教學(xué)重點(diǎn)。

教學(xué)難點(diǎn)。

方程和函數(shù)之間的對(duì)應(yīng)關(guān)系即數(shù)形結(jié)合的意識(shí)和能力。

教學(xué)方法。

學(xué)生操作------自主探索的方法。

學(xué)生通過自己操作和思考,結(jié)合新舊知識(shí)的聯(lián)系,自主探索出方程與圖象之間的對(duì)應(yīng)關(guān)系,以引入二元一次方程組的圖象解法,同時(shí)也建立了“數(shù)”----二元一次方程組和“形”----函數(shù)的圖象(直線)之間的對(duì)應(yīng)關(guān)系,培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí)和能力。

教學(xué)過程。

一、故事引入。

迪卡兒的故事------蜘蛛給予的啟示。

在蜘蛛爬行的啟示下,迪卡兒創(chuàng)建了直角坐標(biāo)系,在坐標(biāo)系下幾何圖形(形)和方程(數(shù))建立聯(lián)系。迪卡兒坐標(biāo)系起到了橋梁和紐帶的作用。從而我們可以把圖形化成方程來研究,也可以用圖象來研究方程。

二、嘗試探疑。

1、y=x+1。

你們把我叫一次函數(shù),我也是二元一次方程啊!這是怎么回事,你知道嗎?

學(xué)生先是疑惑:方程就是方程,函數(shù)就是函數(shù),它們能有什么聯(lián)系呢?然后通過思考、交流,最后恍然大悟。初步感受一次函數(shù)與二元一次方程的內(nèi)在聯(lián)系。

2、函數(shù)y=x+1上的任意一點(diǎn)的坐標(biāo)是否滿足方程x-y=-1?

學(xué)生會(huì)迫不及待地拿起筆來計(jì)算。從函數(shù)y=x+1圖象上找?guī)讉€(gè)點(diǎn)看它們的坐標(biāo)是否滿足方程x-y=-1。結(jié)果都滿足。然后學(xué)生就會(huì)自主和同伴交流,問一問同伴函數(shù)y=x+1圖象上的點(diǎn)滿足不滿足方程x-y=-1。結(jié)果也都滿足。這樣他們就會(huì)搭成共識(shí):函數(shù)y=x+1上的任意一點(diǎn)的坐標(biāo)都滿足方程x-y=-1。

然后學(xué)生會(huì)用同樣的方法得出另一個(gè)結(jié)論:以方程x-y=-1的解為坐標(biāo)的點(diǎn)一定在函數(shù)y=x+1的圖象上。然后開始思索函數(shù)y=x+1和方程x-y=-1到底有何關(guān)系呢?通過交流自動(dòng)得出結(jié)論:以方程x-y=-1的解為坐標(biāo)的點(diǎn)組成的圖象與一次函數(shù)y=x+1的圖象相同。

3.在同一坐標(biāo)系下,化出y=x+1與y=4x-2的圖象,他們的交點(diǎn)坐標(biāo)是什么?

方程組y=x+1的解是什么?二者有何關(guān)系?

y=4x-2。

y=x+1的解。

y=4x-2。

教師作最后總結(jié):因?yàn)楹瘮?shù)和方程有以上關(guān)系,所以我們就可以用圖象法解決方程問題,也可以用方程的方法解決圖象問題。

解方程組x-2y=-2。

2x-y=2。

學(xué)生會(huì)很快的用消元法解出來。

老師發(fā)問:誰還有其他的方法?如果有,鼓勵(lì)學(xué)生大膽提出。并給予口頭表?yè)P(yáng)。如果沒有人用其他的`方法,老師提出問題:你能不能用圖象的方法求方程組的解呢?這時(shí),學(xué)生就會(huì)去探索新的思路、方法。

一回憶方程與函數(shù)的關(guān)系,有了!方程組的解不就是兩個(gè)方程變形得到的兩個(gè)函數(shù)圖象的交點(diǎn)坐標(biāo)嗎?學(xué)生就會(huì)迅速動(dòng)筆用這種方法把方程解出來。作完之后,互相交流。學(xué)生總結(jié)一下做題步驟:

1.把兩個(gè)方程都化成函數(shù)表達(dá)式的形式。

2.畫出兩個(gè)函數(shù)的圖象。

3.畫出交點(diǎn)坐標(biāo),交點(diǎn)坐標(biāo)即為方程組的解。

問題又出來了,有的同學(xué)的解是x=2有的同學(xué)的解是x=2.1y=2.1。

y=1.9有的同學(xué)的解是……雖然都和消元法得到的結(jié)果相近,但各不相同。

老師提問:你能說一下用圖象法解方程組的不足嗎?

學(xué)生爭(zhēng)先恐后的回答:用這種方法求的解是近似值。不準(zhǔn)確。學(xué)生提出疑問:既然不準(zhǔn)確,那學(xué)習(xí)它有什么用呢?用消元法就足夠了!

教師解釋一下:在現(xiàn)實(shí)生活和生產(chǎn)中,我們會(huì)遇到特別復(fù)雜的方程,用消元法解不太容易,我們就可以用電腦繪制成函數(shù)圖象,很容易找出交點(diǎn)坐標(biāo)。教師可以用z+z智能教育平臺(tái)演示一下。

用作圖象的方法解方程組,這體現(xiàn)了兩個(gè)知識(shí)點(diǎn)的內(nèi)在聯(lián)系。學(xué)數(shù)學(xué)知識(shí),探索知識(shí)點(diǎn)之間的聯(lián)系,可起到化新為舊的作用,達(dá)到事半功倍的效果。逐步讓學(xué)生學(xué)會(huì)這種學(xué)習(xí)新知識(shí)的技巧。

四、引申。

方程組x+y=2。

x+y=5解的情況如何?你能從函數(shù)的角度解釋一下嗎?

學(xué)生用消元法開始解方程組,結(jié)果無解,怎么回事呢?學(xué)生會(huì)嘗試運(yùn)用方程組的圖象解法。畫出兩個(gè)函數(shù)圖象。答案有了!圖象是平行的,沒有交點(diǎn)。所以方程組無解了。哇!太神奇了!方程的問題可以用圖象的方法解決了。

因?yàn)橛辛松厦娴挠米鲌D象法解方程組,在這里,學(xué)生就會(huì)自覺地從函數(shù)的角度探究方程的問題,初步具有了數(shù)形結(jié)合的意識(shí)和能力。

五、課后小結(jié)。

本節(jié)課我們通過操作和思考,揭示了二元一次方程和函數(shù)圖象之間的對(duì)應(yīng)關(guān)系,從而引入二元一次方程組的圖象解法,同時(shí)也建立了“數(shù)”----二元一次方程與“形”------函數(shù)圖象之間的對(duì)應(yīng)關(guān)系,培養(yǎng)了學(xué)生初步的數(shù)形結(jié)合的意識(shí)和能力。

六、作業(yè)。

1.用作圖象法解方程組2x+y=4。

2x-3y=12。

2.如圖,直線l、l相交于點(diǎn)a,試求出a點(diǎn)坐標(biāo)。

教學(xué)反思。

這節(jié)課由故事引入,激發(fā)了學(xué)生極大的學(xué)習(xí)興趣。然后提出了三個(gè)尖銳的問題,讓學(xué)生嘗試探索,在探索中既體會(huì)到了探索的艱辛,又體會(huì)到了成功的喜悅。在應(yīng)用和引申過程中,盡量讓學(xué)生自主的發(fā)現(xiàn)問題,自主的解決問題。學(xué)生在緊張、愉快中完成了這節(jié)課的學(xué)習(xí)。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)篇十三

教材通過引例對(duì)圖像方法與代數(shù)方法的比較,使學(xué)生了解解決應(yīng)用問題的策略和方法是多樣性的,同時(shí)也使學(xué)生理解圖像方法與代數(shù)方法在解決具體問題中各自的優(yōu)劣,從而對(duì)方法作出正確的選擇.對(duì)于教材的這一方面的使用,教師應(yīng)根據(jù)自己學(xué)生的特點(diǎn),選擇合理的方式去讓學(xué)生理解不同方法去解決同一問題。

本節(jié)課主要要求學(xué)生能夠利用二元一次方程組解決一次函數(shù)的解析式問題,根據(jù)一次函數(shù)解析式進(jìn)一步解決相關(guān)的一些問題。要讓學(xué)生理解為什么要用二元一次方程組去求解一次函數(shù)的解析式的必要性,從而掌握本堂課的基礎(chǔ)知識(shí)。在教學(xué)的過程中,要讓學(xué)生充分理解圖像方法和代數(shù)方法解決問題的特點(diǎn),在這個(gè)基礎(chǔ)上,學(xué)生掌握用二元一次方程組解決一次函數(shù)的解析式問題才會(huì)有著堅(jiān)實(shí)的理論基礎(chǔ),有關(guān)這一方面的題目要讓學(xué)生充分討論,其理解才會(huì)深刻;同時(shí)要以這一部分的知識(shí)為載體,結(jié)合教材例題,在補(bǔ)充分段圖形題,甚至表格題,讓學(xué)生充分理解用方程的思想去解決函數(shù)問題。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)篇十四

【知識(shí)目標(biāo)】了解二元一次方程、二元一次方程組及其解等有關(guān)概念,并會(huì)判斷一組數(shù)是不是某個(gè)二元一次方程組的解。

【能力目標(biāo)】通過討論和練習(xí),進(jìn)一步培養(yǎng)學(xué)生的觀察、比較、分析的能力。

【情感目標(biāo)】通過對(duì)實(shí)際問題的分析,使學(xué)生進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識(shí)。

【難點(diǎn)】判斷一組數(shù)是不是某個(gè)二元一次方程組的解,培養(yǎng)學(xué)生良好的。數(shù)學(xué)應(yīng)用意識(shí)。

【教學(xué)過程】。

一、引入、實(shí)物投影。

2、請(qǐng)每個(gè)學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言)。

[1]?[2]?[3]。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)篇十五

本節(jié)教學(xué)內(nèi)容是《二元一次方程與一次函數(shù)》,這節(jié)課以“回顧,提問”為先導(dǎo),以“操作,思考”為手段,以“數(shù),形結(jié)合”為要求,以“引導(dǎo),探究”為主線,處處呈現(xiàn)出師生互動(dòng),生生互動(dòng)的景象,較好地體現(xiàn)了新的課程理念與要求,充分讓學(xué)生自主探究,合作交流,時(shí)刻注重學(xué)生學(xué)習(xí)過程的體驗(yàn)與評(píng)價(jià)。新的課程標(biāo)準(zhǔn)提出:數(shù)學(xué)教學(xué)活動(dòng)必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的生活經(jīng)驗(yàn)基礎(chǔ)之上,教師應(yīng)幫助他們?cè)谧灾魈剿鞯倪^程中真正理解和掌握基本的數(shù)學(xué)知識(shí)與技能、教學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。由此,我設(shè)計(jì)了本節(jié)課的教學(xué)設(shè)計(jì),基于上完課后的感想,我對(duì)本節(jié)課有如下的反思:

1、從舊識(shí)引入,自然過渡。

這節(jié)課由復(fù)習(xí)一次函數(shù)解析式和二元一次方程的形式引入,再提出x+y=5是一次函數(shù)還是二元一次方程這一問題,進(jìn)而引出本節(jié)課的第一個(gè)內(nèi)容,激發(fā)了學(xué)生的興趣,使他們更快的融入課堂。

2、在操作中,提出問題,深化認(rèn)識(shí)。

對(duì)于此階段學(xué)生來說,他們樂于探索,富于幻想,但他們的數(shù)學(xué)推理能力以及對(duì)知識(shí)的主動(dòng)遷移能力較弱,為幫助學(xué)生更好地構(gòu)建新的認(rèn)知結(jié)構(gòu),促進(jìn)學(xué)生主動(dòng)發(fā)現(xiàn)問題,本節(jié)課我讓學(xué)生親自動(dòng)手操作畫出一次函數(shù)的圖像,并解出二元一次方程的解,在畫圖過程中發(fā)現(xiàn):“以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上”,接著引導(dǎo)學(xué)生反思:“一次函數(shù)圖像的點(diǎn)坐標(biāo)都適合相應(yīng)的二元一次方程嗎?”通過舉例、驗(yàn)證,得出結(jié)論。同樣,在探索二元一次方程組與一次函數(shù)關(guān)系時(shí),也是在操作中發(fā)現(xiàn)問題,這樣就給了學(xué)生充分體驗(yàn)、自主探索知識(shí)的機(jī)會(huì),使他們?cè)谧灾魈剿?、合作交流中找到了快樂,深化了認(rèn)識(shí)。

3、以能力培養(yǎng)為核心,引導(dǎo)探索為主線,數(shù)形結(jié)合為要求。

能力的培養(yǎng)是以自主探究為平臺(tái),我通過讓學(xué)生小組交流合作并討論來解答幾個(gè)問題,進(jìn)而得出結(jié)論,培養(yǎng)了他們的發(fā)現(xiàn)、分析、解決問題、歸納總結(jié)的能力。再由二元一次方程與一次函數(shù)的關(guān)系進(jìn)一步擴(kuò)展到二元一次方程組與一次函數(shù)的關(guān)系,層層遞進(jìn),學(xué)生基本掌握了本節(jié)課的重點(diǎn)、難點(diǎn)問題。通過總結(jié)二元一次方程組的解法:加減、消元、圖像法,通過分析他們的優(yōu)缺點(diǎn)可知圖像法得出的解是近似的這一結(jié)論,讓學(xué)生又體會(huì)到了數(shù)學(xué)的嚴(yán)謹(jǐn)性。在教學(xué)過程中,我充分滲透了數(shù)形結(jié)合的思想,讓學(xué)生體會(huì)了數(shù)學(xué)的美。

1、學(xué)生自己畫圖時(shí)不好確定交點(diǎn)坐標(biāo),在做這樣的題時(shí),就一定會(huì)存在如何確定交點(diǎn)的精確度問題,從而使學(xué)生會(huì)認(rèn)為應(yīng)用圖像法來解二元一次方程組的方法無用處,進(jìn)而不重視本節(jié)課的內(nèi)容。

2、教學(xué)過程中,在探索二元一次方程與一次函數(shù)關(guān)系時(shí),提出的問題與ppt課件中展示的問題部分重復(fù)了,浪費(fèi)了一些時(shí)間,板書設(shè)計(jì)不夠簡(jiǎn)潔。

1、對(duì)于交點(diǎn)坐標(biāo)問題,應(yīng)該跟同學(xué)們講解清楚,我們要求的是掌握這個(gè)解二元一次方程組的圖像解法,我們借助科學(xué)技術(shù)很容易畫出一次函數(shù)的圖像,也就容易找到交點(diǎn)的精確坐標(biāo)。此外,一般來說如果考試當(dāng)中是會(huì)給出交點(diǎn)的坐標(biāo)。

2、重新整理資料,將一些重復(fù)問題刪去,提取結(jié)論中一些重點(diǎn)語(yǔ)句,關(guān)鍵詞,板書做到精煉。

【本文地址:http://www.mlvmservice.com/zuowen/14638354.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔