最新高一數(shù)學(xué)的教案(熱門(mén)19篇)

格式:DOC 上傳日期:2023-11-24 13:35:16
最新高一數(shù)學(xué)的教案(熱門(mén)19篇)
時(shí)間:2023-11-24 13:35:16     小編:碧墨

教案的編寫(xiě)需要考慮學(xué)生的學(xué)習(xí)需求和教學(xué)資源的充分利用。編寫(xiě)教案時(shí)如何考慮學(xué)生的評(píng)價(jià)和反饋,以及教師的自我評(píng)估?你是否想知道如何寫(xiě)一份優(yōu)秀的教案?以下是一些教案范文,希望能給你一些啟發(fā)。

高一數(shù)學(xué)的教案篇一

(2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;。

(3)能用邏輯聯(lián)結(jié)詞和簡(jiǎn)單命題構(gòu)成不同形式的復(fù)合命題;。

(4)能識(shí)別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡(jiǎn)單命題;。

(5)會(huì)用真值表判斷相應(yīng)的復(fù)合命題的真假;。

(6)在知識(shí)學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡(jiǎn)單推理的技能.

二、教學(xué)重點(diǎn)難點(diǎn):

重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對(duì)“或”的含義的理解.

三、教學(xué)過(guò)程。

1.新課導(dǎo)入。

在當(dāng)今社會(huì)中,人們從事任何工作、學(xué)習(xí),都離不開(kāi)邏輯.具有一定邏輯知識(shí)是構(gòu)成一個(gè)公民的文化素質(zhì)的重要方面.數(shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強(qiáng)調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識(shí),將會(huì)在我們學(xué)習(xí)的過(guò)程中不知不覺(jué)地經(jīng)常犯邏輯性的錯(cuò)誤.其實(shí),同學(xué)們?cè)诔踔幸呀?jīng)開(kāi)始接觸一些簡(jiǎn)易邏輯的知識(shí).

初一平面幾何中曾學(xué)過(guò)命題,請(qǐng)同學(xué)們舉一個(gè)命題的例子.(板書(shū):命題.)。

(從初中接觸過(guò)的“命題”入手,提出問(wèn)題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識(shí).)。

學(xué)生舉例:平行四邊形的對(duì)角線(xiàn)互相平.……(1)。

兩直線(xiàn)平行,同位角相等.…………(2)。

教師提問(wèn):“……相等的角是對(duì)頂角”是不是命題?……(3)。

(同學(xué)議論結(jié)果,答案是肯定的.)。

教師提問(wèn):什么是命題?

(學(xué)生進(jìn)行回憶、思考.)。

概念總結(jié):對(duì)一件事情作出了判斷的語(yǔ)句叫做命題.

(教師肯定了同學(xué)的回答,并作板書(shū).)。

由于判斷有正確與錯(cuò)誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.

(教師利用投__,和學(xué)生討論以下問(wèn)題.)。

例1判斷以下各語(yǔ)句是不是命題,若是,判斷其真假:

命題一定要對(duì)一件事情作出判斷,(3)、(4)沒(méi)有對(duì)一件事情作出判斷,所以它們不是命題.

初中所學(xué)的命題概念涉及邏輯知識(shí),我們今天開(kāi)始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡(jiǎn)易邏輯的知識(shí).

2.講授新課。

(片刻后請(qǐng)同學(xué)舉手回答,一共講了四個(gè)問(wèn)題.師生一道歸納如下.)。

(1)什么叫做命題?

可以判斷真假的語(yǔ)句叫做命題.

判斷一個(gè)語(yǔ)句是不是命題,關(guān)鍵看這語(yǔ)句有沒(méi)有對(duì)一件事情作出了判斷,疑問(wèn)句、祈使句都不是命題.有些語(yǔ)句中含有變量,如中含有變量,在不給定變量的值之前,我們無(wú)法確定這語(yǔ)句的真假(這種含有變量的語(yǔ)句叫做“開(kāi)語(yǔ)句”).

(2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.

“或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式.

對(duì)“或”的理解,可聯(lián)想到集合中“并集”的概念.中的“或”,它是指“”、“”中至少一個(gè)是成立的,即且;也可以且;也可以且.這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能.

對(duì)“且”的理解,可聯(lián)想到集合中“交集”的概念.中的“且”,是指“”、“這兩個(gè)條件都要滿(mǎn)足的意思.

對(duì)“非”的理解,可聯(lián)想到集合中的“補(bǔ)集”概念,若命題對(duì)應(yīng)于集合,則命題非就對(duì)應(yīng)著集合在全集中的補(bǔ)集.

命題可分為簡(jiǎn)單命題和復(fù)合命題.

不含邏輯聯(lián)結(jié)詞的命題叫做簡(jiǎn)單命題.簡(jiǎn)單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.

由簡(jiǎn)單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡(jiǎn)單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.

(4)命題的表示:用,,,,……來(lái)表示.

(教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對(duì)復(fù)合命題的概念作出分析和展開(kāi).)。

我們接觸的復(fù)合命題一般有“或”、“且”、“非”、“若則”等形式.

給出一個(gè)含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說(shuō)出構(gòu)成它的簡(jiǎn)單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個(gè)簡(jiǎn)單命題,寫(xiě)出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.

對(duì)于給出“若則”形式的復(fù)合命題,應(yīng)能找到條件和結(jié)論.

在判斷一個(gè)命題是簡(jiǎn)單命題還是復(fù)合命題時(shí),不能只從字面上來(lái)看有沒(méi)有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線(xiàn)、底邊上的高、底邊上的中線(xiàn)互相重合”,此命題字面上無(wú)“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無(wú)“或”,但它們都是復(fù)合命題.

3.鞏固新課。

例2判斷下列命題,哪些是簡(jiǎn)單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡(jiǎn)單命題.

(1);。

(2)0.5非整數(shù);。

(3)內(nèi)錯(cuò)角相等,兩直線(xiàn)平行;。

(4)菱形的對(duì)角線(xiàn)互相垂直且平分;。

(5)平行線(xiàn)不相交;。

(6)若,則.

(讓學(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對(duì)“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)。

例3寫(xiě)出下表中各給定語(yǔ)的否定語(yǔ)(用課件打出來(lái)).

若給定語(yǔ)為。

等于。

大于。

都是。

至多有一個(gè)。

至少有一個(gè)。

至多有#formatimgid_0#個(gè)。

其否定語(yǔ)分別為。

分析:“等于”的否定語(yǔ)是“不等于”;。

“大于”的否定語(yǔ)是“小于或者等于”;。

“是”的否定語(yǔ)是“不是”;。

“都是”的否定語(yǔ)是“不都是”;。

“至多有一個(gè)”的否定語(yǔ)是“至少有兩個(gè)”;。

“至少有一個(gè)”的否定語(yǔ)是“一個(gè)都沒(méi)有”;。

“至多有個(gè)”的否定語(yǔ)是“至少有個(gè)”.

(如果時(shí)間寬裕,可讓學(xué)生討論后得出結(jié)論.)。

置疑:“或”、“且”的否定是什么?(視學(xué)生的情況、課堂時(shí)間作適當(dāng)?shù)谋嫖雠c展開(kāi).)。

4.課堂練習(xí):第26頁(yè)練習(xí)1,2.

5.課外作業(yè):第29頁(yè)習(xí)題1.61,2.

高一數(shù)學(xué)的教案篇二

熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長(zhǎng)率、存款利息等問(wèn)題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問(wèn)題的能力,強(qiáng)化應(yīng)用儀式。

熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長(zhǎng)率、存款利息等問(wèn)題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問(wèn)題的能力,強(qiáng)化應(yīng)用儀式。

【復(fù)習(xí)要求】熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長(zhǎng)率、存款利息等問(wèn)題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問(wèn)題的能力,強(qiáng)化應(yīng)用儀式。

【方法規(guī)律】應(yīng)用數(shù)列知識(shí)界實(shí)際應(yīng)用問(wèn)題的關(guān)鍵是通過(guò)對(duì)實(shí)際問(wèn)題的綜合分析,確定其數(shù)學(xué)模型是等差數(shù)列,還是等比數(shù)列,并確定其首項(xiàng),公差或公比等基本元素,然后設(shè)計(jì)合理的計(jì)算方案,即數(shù)學(xué)建模是解答數(shù)列應(yīng)用題的關(guān)鍵。

一、基礎(chǔ)訓(xùn)練。

a、511b、512c、1023d、1024。

2、若一工廠(chǎng)的生產(chǎn)總值的月平均增長(zhǎng)率為p,則年平均增長(zhǎng)率為。

a、b、

c、d、

二、典型例題。

例4、流行性感冒簡(jiǎn)稱(chēng)流感是由流感病毒引起的急性呼吸道傳染病。某市去年11月分曾發(fā)生流感,據(jù)資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門(mén)采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內(nèi)感染該病毒的患者共有8670人,問(wèn)11月幾日,該市感染此病毒的新的患者人數(shù)最多?并求這一天的新患者人數(shù)。

高一數(shù)學(xué)的教案篇三

把實(shí)物圓柱放在講臺(tái)上讓學(xué)生畫(huà)。

2.學(xué)生畫(huà)完后展示自己的結(jié)果并與同學(xué)交流,比較誰(shuí)畫(huà)的效果更好,思考怎樣才能畫(huà)好物體的直觀(guān)圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。

(二)研探新知。

1.例1,用斜二測(cè)畫(huà)法畫(huà)水平放置的正六邊形的直觀(guān)圖,由學(xué)生閱讀理解,并思考斜二測(cè)畫(huà)法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見(jiàn)解,教師及時(shí)給予點(diǎn)評(píng)。

畫(huà)水平放置的多邊形的直觀(guān)圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫(huà)出多邊形來(lái),因此平面多邊形水平放置時(shí),直觀(guān)圖的畫(huà)法可以歸結(jié)為確定點(diǎn)的位置的畫(huà)法。強(qiáng)調(diào)斜二測(cè)畫(huà)法的步驟。

練習(xí)反饋。

根據(jù)斜二測(cè)畫(huà)法,畫(huà)出水平放置的正五邊形的直觀(guān)圖,讓學(xué)生獨(dú)立完成后,教師檢查。

2.例2,用斜二測(cè)畫(huà)法畫(huà)水平放置的圓的直觀(guān)圖。

教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫(huà)水平放置的多邊形的直觀(guān)圖一樣,畫(huà)水平放置的圓的直觀(guān)圖,也是要先畫(huà)出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。

教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書(shū)畫(huà)法。

3.探求空間幾何體的直觀(guān)圖的畫(huà)法。

(1)例3,用斜二測(cè)畫(huà)法畫(huà)長(zhǎng)、寬、高分別是4cm、3cm、2cm的長(zhǎng)方體abcd-a’b’c’d’的直觀(guān)圖。

教師引導(dǎo)學(xué)生完成,要注意對(duì)每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫(huà)好每一步,不能敷衍了事。

(2)投影出示幾何體的三視圖。

請(qǐng)說(shuō)出三視圖表示的幾何體?并用斜二測(cè)畫(huà)法畫(huà)出它的直觀(guān)圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握?qǐng)D形尺寸大小之間的關(guān)系。

4.平行投影與中心投影。

投影出示課本p23圖,讓學(xué)生觀(guān)察比較概括在平行投影下畫(huà)空間圖形與在中心投影下畫(huà)空間圖形的各自特點(diǎn)。

5.鞏固練習(xí),課本p25練習(xí)1,2,3。

三、歸納整理。

學(xué)生回顧斜二測(cè)畫(huà)法的關(guān)鍵與步驟。

四、作業(yè)。

1.書(shū)畫(huà)作業(yè),課本p25習(xí)題1—3a組和b組。

高一數(shù)學(xué)的教案篇四

1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.

(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.

(2)能從數(shù)和形兩個(gè)角度認(rèn)識(shí)單調(diào)性和奇偶性.

(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡(jiǎn)化一些函數(shù)圖象的繪制過(guò)程.

2.通過(guò)函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過(guò)函數(shù)奇偶性概念的形成過(guò)程,培養(yǎng)學(xué)生的觀(guān)察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.

3.通過(guò)對(duì)函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對(duì)數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂(lè)于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.

(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.

(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.

(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識(shí).教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.

(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過(guò),但只是從圖象上直觀(guān)觀(guān)察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語(yǔ)言去刻畫(huà)它.這種由形到數(shù)的翻譯,從直觀(guān)到抽象的轉(zhuǎn)變對(duì)高一的學(xué)生來(lái)說(shuō)是比較困難的,因此要在概念的形成上重點(diǎn)下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒(méi)有意識(shí)到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點(diǎn).

(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識(shí)出發(fā),通過(guò)問(wèn)題逐步向抽象的定義靠攏.如可以設(shè)計(jì)這樣的問(wèn)題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來(lái)解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語(yǔ)言表示出來(lái).在這個(gè)過(guò)程中對(duì)一些關(guān)鍵的詞語(yǔ)(某個(gè)區(qū)間,任意,都有)的理解與必要性的認(rèn)識(shí)就可以融入其中,將概念的形成與認(rèn)識(shí)結(jié)合起來(lái).

(2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號(hào),在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.

函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀(guān)察對(duì)應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開(kāi)始,逐漸讓在數(shù)軸上動(dòng)起來(lái),觀(guān)察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫(xiě)出來(lái).經(jīng)歷了這樣的過(guò)程,再得到等式時(shí),就比較容易體會(huì)它代表的是無(wú)數(shù)多個(gè)等式,是個(gè)恒等式.關(guān)于定義域關(guān)于原點(diǎn)對(duì)稱(chēng)的問(wèn)題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對(duì)稱(chēng)性,同時(shí)還可以借助圖象說(shuō)明定義域關(guān)于原點(diǎn)對(duì)稱(chēng)只是函數(shù)具備奇偶性的必要條件而不是充分條件.

高一數(shù)學(xué)的教案篇五

教學(xué)目的:

(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法。

(2)使學(xué)生初步了解“屬于”關(guān)系的意義。

(3)使學(xué)生初步了解有限集、無(wú)限集、空集的意義。

教學(xué)重點(diǎn):集合的基本概念及表示方法。

教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示。

一些簡(jiǎn)單的集合。

授課類(lèi)型:新授課。

課時(shí)安排:1課時(shí)。

教具:多媒體、實(shí)物投影儀。

內(nèi)容分析:

高一數(shù)學(xué)的教案篇六

(1)掌握斜二測(cè)畫(huà)法畫(huà)水平設(shè)置的平面圖形的直觀(guān)圖。

(2)采用對(duì)比的方法了解在平行投影下畫(huà)空間圖形與在中心投影下畫(huà)空間圖形兩種方法的各自特點(diǎn)。

2.過(guò)程與方法。

學(xué)生通過(guò)觀(guān)察和類(lèi)比,利用斜二測(cè)畫(huà)法畫(huà)出空間幾何體的直觀(guān)圖。

3.情感態(tài)度與價(jià)值觀(guān)。

(1)提高空間想象力與直觀(guān)感受。

(2)體會(huì)對(duì)比在學(xué)習(xí)中的作用。

(3)感受幾何作圖在生產(chǎn)活動(dòng)中的應(yīng)用。

高一數(shù)學(xué)的教案篇七

本節(jié)的重點(diǎn)是二次根式的化簡(jiǎn).本章自始至終圍繞著二次根式的化簡(jiǎn)與計(jì)算進(jìn)行,而二次根式的化簡(jiǎn)不但涉及到前面學(xué)習(xí)過(guò)的算術(shù)平方根、二次根式等概念與二次根式的運(yùn)算性質(zhì),還要牽涉到絕對(duì)值以及各種非負(fù)數(shù)、因式分解等知識(shí),在應(yīng)用中常常需要對(duì)字母進(jìn)行分類(lèi)討論.

本節(jié)的難點(diǎn)是正確理解與應(yīng)用公式.這個(gè)公式的表達(dá)形式對(duì)學(xué)生來(lái)說(shuō),比較生疏,而實(shí)際運(yùn)用時(shí),則要牽涉到對(duì)字母取值范圍的討論,學(xué)生往往容易出現(xiàn)錯(cuò)誤.

教法建議

1.性質(zhì)的引入方法很多,以下2種比較常用:

(1)設(shè)計(jì)問(wèn)題引導(dǎo)啟發(fā):由設(shè)計(jì)的問(wèn)題

1)、、各等于什么?

2)、、各等于什么?

啟發(fā)、引導(dǎo)學(xué)生猜想出

(2)從算術(shù)平方根的意義引入.

2.性質(zhì)的鞏固有兩個(gè)方面需要注意:

(1)注意與性質(zhì)進(jìn)行對(duì)比,可出幾道類(lèi)型不同的題進(jìn)行比較;

(2)學(xué)生初次接觸這種形式的表示方式,在教學(xué)時(shí)要注意細(xì)分層次加以鞏固,如單個(gè)數(shù)字,單個(gè)字母,單項(xiàng)式,可進(jìn)行因式分解的多項(xiàng)式,等等.

(第1課時(shí))

1.掌握二次根式的性質(zhì)

2.能夠利用二次根式的性質(zhì)化簡(jiǎn)二次根式

3.通過(guò)本節(jié)的學(xué)習(xí)滲透分類(lèi)討論的數(shù)學(xué)思想和方法

對(duì)比、歸納、總結(jié)

1.重點(diǎn):理解并掌握二次根式的性質(zhì)

2.難點(diǎn):理解式子中的可以取任意實(shí)數(shù),并能根據(jù)字母的取值范圍正確地化簡(jiǎn)有關(guān)的二次根式.

1課時(shí)

五、教b具學(xué)具準(zhǔn)備

投影儀、膠片、多媒體

復(fù)習(xí)對(duì)比,歸納整理,應(yīng)用提高,以學(xué)生活動(dòng)為主

一、導(dǎo)入新課

我們知道,式子()表示非負(fù)數(shù)的算術(shù)平方根.

問(wèn):式子的意義是什么?被開(kāi)方數(shù)中的表示的是什么數(shù)?

答:式子表示非負(fù)數(shù)的算術(shù)平方根,即,且,從而可以取任意實(shí)數(shù).

二、新課

計(jì)算下列各題,并回答以下問(wèn)題:

(1);(2);(3);

1.各小題中被開(kāi)方數(shù)的冪的底數(shù)都是什么數(shù)?

2.各小題的結(jié)果和相應(yīng)的被開(kāi)方數(shù)的冪的底數(shù)有什么關(guān)系?

3.用字母表示被開(kāi)方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語(yǔ)言敘述你的結(jié)論.

高一數(shù)學(xué)的教案篇八

所謂三維目標(biāo)是是指:“知識(shí)與技能”,“過(guò)程和方法”、“情感、態(tài)度、價(jià)值觀(guān)”。

知識(shí)與技能:既是課堂教學(xué)的出發(fā)點(diǎn),又是課堂教學(xué)的歸宿。我們?cè)诮虒W(xué)過(guò)程中,需要學(xué)生掌握什么,哪些些問(wèn)題需要重點(diǎn)掌握,哪些只需簡(jiǎn)單理解;技能是會(huì)與不會(huì)的問(wèn)題。屬顯性范疇,具有可測(cè)性,大都采用定量分析與評(píng)價(jià)、知識(shí)與技能是傳統(tǒng)教學(xué)合理的內(nèi)核,是我國(guó)傳統(tǒng)教育教學(xué)的優(yōu)勢(shì),應(yīng)該從傳統(tǒng)教學(xué)中繼承與發(fā)揚(yáng)。新課改不是不要雙基,而是不要過(guò)度的強(qiáng)調(diào)雙基,而舍棄弱化其它有價(jià)值的東西,導(dǎo)致非全面、不和藹的發(fā)展。

過(guò)程與方法:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的操作系統(tǒng)?!斑^(guò)程和方法”維度的目標(biāo)立足于讓學(xué)生會(huì)學(xué),新課程倡導(dǎo)對(duì)學(xué)與教的過(guò)程的體驗(yàn)、方法的選擇,是在知識(shí)與能力目標(biāo)基礎(chǔ)上對(duì)教學(xué)目標(biāo)的進(jìn)一步開(kāi)發(fā)。過(guò)程與方法是一個(gè)體驗(yàn)的過(guò)程、發(fā)現(xiàn)的過(guò)程,不但可以讓學(xué)生體驗(yàn)到科學(xué)發(fā)展的過(guò)程,我們更多地要讓學(xué)生掌握過(guò)程,不一定要統(tǒng)一的結(jié)果。

情感、態(tài)度與價(jià)值觀(guān):既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的動(dòng)力系統(tǒng)。“情感、態(tài)度和價(jià)值觀(guān)”,目標(biāo)立足于讓學(xué)生樂(lè)學(xué),新課程倡導(dǎo)對(duì)學(xué)與教的情感體驗(yàn)、態(tài)度形成、價(jià)值觀(guān)的體現(xiàn),是在知識(shí)與能力、過(guò)程與方法目標(biāo)基礎(chǔ)上對(duì)教學(xué)目標(biāo)深層次的開(kāi)拓,只有學(xué)生充分的認(rèn)識(shí)到他們肩負(fù)的責(zé)任,就能夠激發(fā)起他們的學(xué)習(xí)熱情,他們才會(huì)有濃厚的學(xué)習(xí)興趣,才能學(xué)有所成,將來(lái)回報(bào)社會(huì)。

三維目標(biāo)不是三個(gè)目標(biāo),也不是三種目標(biāo),是一個(gè)問(wèn)題的三個(gè)方面。三維目標(biāo)是三位一體不可分割的,他們是相輔相成的,相互促進(jìn)的。

高一數(shù)學(xué)的教案篇九

目標(biāo):

1.讓學(xué)生熟練掌握二次函數(shù)的圖象,并會(huì)判斷一元二次方程根的存在性及根的個(gè)數(shù);。

2.讓學(xué)生了解函數(shù)的零點(diǎn)與方程根的聯(lián)系;。

3.讓學(xué)生認(rèn)識(shí)到函數(shù)的圖象及基本性質(zhì)(特別是單調(diào)性)在確定函數(shù)零點(diǎn)中的作用;。

4。培養(yǎng)學(xué)生動(dòng)手操作的能力。

二、教學(xué)重點(diǎn)、難點(diǎn)。

重點(diǎn):零點(diǎn)的概念及存在性的判定;

難點(diǎn):零點(diǎn)的確定。

三、復(fù)習(xí)引入。

例1:判斷方程x2-x-6=0解的存在。

分析:考察函數(shù)f(x)=x2-x-6,其。

圖像為拋物線(xiàn)容易看出,f(0)=-60,。

f(4)0,f(-4)0。

由于函數(shù)f(x)的圖像是連續(xù)曲線(xiàn),因此,

點(diǎn)b(0,-6)與點(diǎn)c(4,6)之間的那部分曲線(xiàn)。

必然穿過(guò)x軸,即在區(qū)間(0,4)內(nèi)至少有點(diǎn)。

x1使f(x1)=0;同樣,在區(qū)間(-4,0)內(nèi)也至。

少有點(diǎn)x2,使得f(x2)=0,而方程至多有兩。

個(gè)解,所以在(-4,0),(0,4)內(nèi)各有一解。

定義:對(duì)于函數(shù)y=f(x),我們把使f(x)=0的實(shí)數(shù)x叫函數(shù)y=f(x)的零點(diǎn)。

抽象概括。

y=f(x)的圖像與x軸的交點(diǎn)的橫坐標(biāo)叫做該函數(shù)的零點(diǎn),即f(x)=0的解。

若y=f(x)的圖像在[a,b]上是連續(xù)曲線(xiàn),且f(a)f(b)0,則在(a,b)內(nèi)至少有一個(gè)零點(diǎn),即f(x)=0在(a,b)內(nèi)至少有一個(gè)實(shí)數(shù)解。

f(x)=0有實(shí)根(等價(jià)與y=f(x))與x軸有交點(diǎn)(等價(jià)與)y=f(x)有零點(diǎn)。

所以求方程f(x)=0的根實(shí)際上也是求函數(shù)y=f(x)的零點(diǎn)。

3、我們所研究的大部分函數(shù),其圖像都是連續(xù)的曲線(xiàn);

4、但此結(jié)論反過(guò)來(lái)不成立,如:在[-2,4]中有根,但f(-2)0,f(4)0,f(-2)f(4)。

5、缺少條件在[a,b]上是連續(xù)曲線(xiàn)則不成立,如:f(x)=1/x,有f(-1)xf(1)0但沒(méi)有零點(diǎn)。

四、知識(shí)應(yīng)用。

解:f(x)=3x-x2的圖像是連續(xù)曲線(xiàn),因?yàn)椤?/p>

f(-1)=3-1-(-1)2=-2/30,f(0)=30-(0)2=-10,。

練習(xí):求函數(shù)f(x)=lnx+2x-6有沒(méi)有零點(diǎn)?

例3判定(x-2)(x-5)=1有兩個(gè)相異的實(shí)數(shù)解,且有一個(gè)大于5,一個(gè)小于2。

解:考慮函數(shù)f(x)=(x-2)(x-5)-1,有。

f(5)=(5-2)(5-5)-1=-1。

f(2)=(2-2)(2-5)-1=-1。

又因?yàn)閒(x)的圖像是開(kāi)口向上的拋物線(xiàn),所以?huà)佄锞€(xiàn)與橫軸在(5,+)內(nèi)有一個(gè)交點(diǎn),在(-,2)內(nèi)也有一個(gè)交點(diǎn),所以方程式(x-2)(x-5)=1有兩個(gè)相異數(shù)解,且一個(gè)大于5,一個(gè)小于2。

練習(xí):關(guān)于x的方程2x2-3x+2m=0有兩個(gè)實(shí)根均在[-1,1]內(nèi),求m的取值范圍。

五、課后作業(yè)。

p133第2,3題。

高一數(shù)學(xué)的教案篇十

一、三維目標(biāo):

知識(shí)與技能:使學(xué)生理解奇函數(shù)、偶函數(shù)的概念,學(xué)會(huì)運(yùn)用定義判斷函數(shù)的奇偶性。

過(guò)程與方法:通過(guò)設(shè)置問(wèn)題情境培養(yǎng)學(xué)生判斷、推斷的能力。

情感態(tài)度與價(jià)值觀(guān):通過(guò)繪制和展示優(yōu)美的函數(shù)圖象來(lái)陶冶學(xué)生的情操。通過(guò)組織學(xué)生分組討論,培養(yǎng)學(xué)生主動(dòng)交流的合作精神,使學(xué)生學(xué)會(huì)認(rèn)識(shí)事物的特殊性和一般性之間的關(guān)系,培養(yǎng)學(xué)生善于探索的思維品質(zhì)。

二、學(xué)習(xí)重、難點(diǎn):

重點(diǎn):函數(shù)的奇偶性的概念。

難點(diǎn):函數(shù)奇偶性的判斷。

三、學(xué)法指導(dǎo):

學(xué)生在獨(dú)立思考的基礎(chǔ)上進(jìn)行合作交流,在思考、探索和交流的過(guò)程中獲得對(duì)函數(shù)奇偶性的全面的體驗(yàn)和理解。對(duì)于奇偶性的應(yīng)用采取講練結(jié)合的方式進(jìn)行處理,使學(xué)生邊學(xué)邊練,及時(shí)鞏固。

四、知識(shí)鏈接:

1、復(fù)習(xí)在初中學(xué)習(xí)的軸對(duì)稱(chēng)圖形和中心對(duì)稱(chēng)圖形的定義:

2、分別畫(huà)出函數(shù)f(x)=x3與g(x)=x2的圖象,并說(shuō)出圖象的對(duì)稱(chēng)性。

五、學(xué)習(xí)過(guò)程:

函數(shù)的奇偶性:

(1)對(duì)于函數(shù),其定義域關(guān)于原點(diǎn)對(duì)稱(chēng):

如果______________________________________,那么函數(shù)為偶函數(shù)。

(2)奇函數(shù)的圖象關(guān)于__________對(duì)稱(chēng),偶函數(shù)的圖象關(guān)于_________對(duì)稱(chēng)。

(3)奇函數(shù)在對(duì)稱(chēng)區(qū)間的增減性;偶函數(shù)在對(duì)稱(chēng)區(qū)間的增減性。

六、達(dá)標(biāo)訓(xùn)練:

a1、判斷下列函數(shù)的奇偶性。

(1)f(x)=x4;(2)f(x)=x5;。

(3)f(x)=x+(4)f(x)=。

a2、二次函數(shù)()是偶函數(shù),則b=___________。

b3、已知,其中為常數(shù),若,則。

_______。

b4、若函數(shù)是定義在r上的奇函數(shù),則函數(shù)的圖象關(guān)于()。

(a)軸對(duì)稱(chēng)(b)軸對(duì)稱(chēng)(c)原點(diǎn)對(duì)稱(chēng)(d)以上均不對(duì)。

b5、如果定義在區(qū)間上的函數(shù)為奇函數(shù),則=_____。

c6、若函數(shù)是定義在r上的奇函數(shù),且當(dāng)時(shí),,那么當(dāng)。

時(shí),=_______。

d7、設(shè)是上的奇函數(shù),,當(dāng)時(shí),,則等于()。

(a)0.5(b)(c)1.5(d)。

d8、定義在上的奇函數(shù),則常數(shù)____,_____。

七、學(xué)習(xí)小結(jié):

本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時(shí),必須注意首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng)。單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個(gè)難點(diǎn),需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個(gè)性質(zhì)。

八、課后反思:

高一數(shù)學(xué)的教案篇十一

使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來(lái)公民所必要的數(shù)學(xué)素養(yǎng),以滿(mǎn)足個(gè)人發(fā)展與社會(huì)進(jìn)步的需要。具體目標(biāo)如下。

1.獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們?cè)诤罄m(xù)學(xué)習(xí)中的作用。通過(guò)不同形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。

2.提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。

3.提高數(shù)學(xué)地提出、分析和解決問(wèn)題(包括簡(jiǎn)單的實(shí)際問(wèn)題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。

4.發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。

5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹(shù)立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。 6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹(shù)立辯證唯物主義和歷史唯物主義世界觀(guān)。

我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)(a版)》,它在堅(jiān)持我國(guó)數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時(shí)代性,典型性和可接受性等到,具有如下特點(diǎn):

1.親和力:以生動(dòng)活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。

2.問(wèn)題性:以恰時(shí)恰點(diǎn)的問(wèn)題引導(dǎo)數(shù)學(xué)活動(dòng),培養(yǎng)問(wèn)題意識(shí),孕育創(chuàng)新精神。

3.科學(xué)性與思想性:通過(guò)不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類(lèi)比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問(wèn)題的方式,提高數(shù)學(xué)思維能力,培育理性精神。

4.時(shí)代性與應(yīng)用性:以具有時(shí)代性和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動(dòng),發(fā)展應(yīng)用意識(shí)。

1. 選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語(yǔ)言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對(duì)數(shù)學(xué)的親切感,引發(fā)學(xué)生看個(gè)究竟的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的。

2. 通過(guò)觀(guān)察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。

3. 在教學(xué)中強(qiáng)調(diào)類(lèi)比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。

兩個(gè)班一個(gè)普高一個(gè)職高,學(xué)習(xí)情況良好,但學(xué)生自覺(jué)性差,自我控制能力弱,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺(jué)性。班級(jí)存在的最大問(wèn)題是計(jì)算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點(diǎn)在于培養(yǎng)學(xué)生的計(jì)算能力,同時(shí)要進(jìn)一步提高其思維能力。同時(shí),由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時(shí)適機(jī)補(bǔ)充一些內(nèi)容。因此時(shí)間上可能仍然吃緊。同時(shí),其底子薄弱,因此在教學(xué)時(shí)只能注重基礎(chǔ)再基礎(chǔ),爭(zhēng)取每一堂課落實(shí)一個(gè)知識(shí)點(diǎn),掌握一個(gè)知識(shí)點(diǎn)。

1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話(huà)等途徑樹(shù)立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀(guān)作用下上升和進(jìn)步。

2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對(duì)比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀(guān)圖形,說(shuō)明抽象的知識(shí);注意從已有的`知識(shí)出發(fā),啟發(fā)學(xué)生思考。

3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問(wèn)題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問(wèn)題的習(xí)慣,進(jìn)行辨證唯物主義教育。

4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問(wèn)題的能力。

5、自始至終貫徹教學(xué)四環(huán)節(jié),針對(duì)不同的教材內(nèi)容選擇不同教法。

6、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。

俗話(huà)說(shuō)的好,好的教學(xué)計(jì)劃是教學(xué)成功的一半,作為一名優(yōu)異的教師,做好一定的教學(xué)計(jì)劃很有必要。

總結(jié):制定教學(xué)計(jì)劃的主要目的是為了全面了解學(xué)生的數(shù)學(xué)學(xué)習(xí)歷程,激勵(lì)學(xué)生的學(xué)習(xí)和改進(jìn)教師的教學(xué)。希望上面的,能受到大家的歡迎!

高一數(shù)學(xué)的教案篇十二

解決集合元素的問(wèn)題時(shí),我們一定要注意集合中的元素要滿(mǎn)足互異性,以免產(chǎn)生增根。

3、注意特殊集合——空集。

空集是不含任何元素的集合。我們規(guī)定空集是任何集合的子集,是任何非空集合的真子集。因而,在涉及集合之間關(guān)系的問(wèn)題時(shí)要特別注意空集。

4、利用特殊工具——韋恩圖和數(shù)軸。

集合的表示方法可分為列舉法、描述法、圖示法。列舉法一般表示有限集,描述法一般表示無(wú)限集,用于書(shū)寫(xiě)最終結(jié)果。在運(yùn)算過(guò)程中,一般用數(shù)軸表示連續(xù)型元素的集合,用韋恩圖表示離散型元素的集合。圖形語(yǔ)言可以幫我們快捷而直觀(guān)的找出答案,提高解題速度。

高一數(shù)學(xué)的教案篇十三

各位評(píng)委、各位專(zhuān)家,大家好!今天,我說(shuō)課的內(nèi)容是人民教育出版社全日制普通高級(jí)中學(xué)教科書(shū)(必修)《數(shù)學(xué)》第一章第五節(jié)“一元二次不等式解法”。

下面從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)、效果評(píng)價(jià)六方面進(jìn)行說(shuō)課。

一、教材分析。

(一)教材的地位和作用。

“一元二次不等式解法”既是初中一元一次不等式解法在知識(shí)上的延伸和發(fā)展,又是本章集合知識(shí)的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識(shí)的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀(guān)察能力、概括能力、探究能力及創(chuàng)新意識(shí)。

(二)教學(xué)內(nèi)容。

本節(jié)內(nèi)容分2課時(shí)學(xué)習(xí)。本課時(shí)通過(guò)二次函數(shù)的圖象探索一元二次不等式的解集。通過(guò)復(fù)習(xí)“三個(gè)一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個(gè)二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫(huà)、看、說(shuō)、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂(lè)趣。

二、教學(xué)目標(biāo)分析。

根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:

知識(shí)目標(biāo)——理解“三個(gè)二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

能力目標(biāo)——通過(guò)看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

情感目標(biāo)——?jiǎng)?chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)生觀(guān)察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識(shí)及主體作用。

三、重難點(diǎn)分析。

一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問(wèn)題的重要工具。本節(jié)課的重點(diǎn)確定為:一元二次不等式的解法。

要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識(shí)方程的解,不等式的解集與函數(shù)圖象上對(duì)應(yīng)點(diǎn)的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒(méi)有專(zhuān)門(mén)研究過(guò)這類(lèi)問(wèn)題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點(diǎn)確定為:“三個(gè)二次”的關(guān)系。要突破這個(gè)難點(diǎn),讓學(xué)生歸納“三個(gè)一次”的關(guān)系作鋪墊。

四、教法與學(xué)法分析。

教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動(dòng)手畫(huà)、動(dòng)眼看、動(dòng)腦想、動(dòng)口說(shuō)、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會(huì),教給了學(xué)生獲取知識(shí)的途徑、思考問(wèn)題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì)逐步感受到數(shù)學(xué)的美,會(huì)產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

(二)教法分析。

本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。

建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動(dòng)的建構(gòu)活動(dòng),學(xué)生應(yīng)與一定的知識(shí)背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識(shí),這樣獲取的知識(shí),不但便于保持,而且易于遷移到陌生的問(wèn)題情景中。

本節(jié)課采用“誘思引探教學(xué)法”。把問(wèn)題作為出發(fā)點(diǎn),指導(dǎo)學(xué)生“畫(huà)、看、說(shuō)、用”。較好地探求一元二次不等式的解法。

高一數(shù)學(xué)的教案篇十四

拿到試卷后可以先快速瀏覽一下所有題目,根據(jù)積累的考試經(jīng)驗(yàn),大致估計(jì)一下每部分應(yīng)該分配的時(shí)間。對(duì)于能夠很快做出來(lái)的.題目,一定要拿到應(yīng)得的分?jǐn)?shù)。

二、確定每部分的答題時(shí)間。

1、考試時(shí)占用了很多時(shí)間卻一點(diǎn)也沒(méi)有做出來(lái)的題目。對(duì)于這類(lèi)題目,你以后考試時(shí)就應(yīng)該盡量減少時(shí)間,或者放棄,等以后學(xué)習(xí)進(jìn)階了再?lài)L試著做。

2、考試時(shí)花了過(guò)多的時(shí)間才做出來(lái)的題目。對(duì)于這類(lèi)題目,你以后平時(shí)做題時(shí)要盡量加快速度,或者通過(guò)“反復(fù)訓(xùn)練”等提高反應(yīng)速度,這樣,你下次考試時(shí)能用較少的時(shí)間做出來(lái)。

三、碰到難題時(shí)。

1、你可以先用“直覺(jué)”最快的找到解題思路;。

2、如果“直覺(jué)”不管用,你可以聯(lián)想以前做過(guò)的類(lèi)似的題目,從而找到解題思路;。

3、如果這樣也不行,你可以猜測(cè)一下這道題目可能涉及到的知識(shí)點(diǎn)和解題技巧。

4、對(duì)于花了一定時(shí)間仍然不能做出來(lái)的題目,要勇于放棄。

四、卷面整潔、字跡清楚、注意小節(jié)。

做到卷面整潔、字跡清楚,把標(biāo)點(diǎn)、符號(hào)、解題步驟等小的地方盡量做好,不要丟掉應(yīng)得的每一分。

高一數(shù)學(xué)的教案篇十五

2、掌握標(biāo)準(zhǔn)方程中的幾何意義。

3、能利用上述知識(shí)進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線(xiàn)的草圖以及解決簡(jiǎn)單的實(shí)際問(wèn)題。

1、焦點(diǎn)在x軸上,虛軸長(zhǎng)為12,離心率為的雙曲線(xiàn)的標(biāo)準(zhǔn)方程為、

2、頂點(diǎn)間的距離為6,漸近線(xiàn)方程為的雙曲線(xiàn)的標(biāo)準(zhǔn)方程為、

3、雙曲線(xiàn)的漸進(jìn)線(xiàn)方程為、

4、設(shè)分別是雙曲線(xiàn)的半焦距和離心率,則雙曲線(xiàn)的一個(gè)頂點(diǎn)到它的一條漸近線(xiàn)的距離是、

探究1、類(lèi)比橢圓的幾何性質(zhì)寫(xiě)出雙曲線(xiàn)的幾何性質(zhì),畫(huà)出草圖并,說(shuō)出它們的不同、

探究2、雙曲線(xiàn)與其漸近線(xiàn)具有怎樣的關(guān)系、

練習(xí):已知雙曲線(xiàn)經(jīng)過(guò),且與另一雙曲線(xiàn),有共同的漸近線(xiàn),則此雙曲線(xiàn)的標(biāo)準(zhǔn)方程是、

例1根據(jù)以下條件,分別求出雙曲線(xiàn)的標(biāo)準(zhǔn)方程、

(1)過(guò)點(diǎn),離心率、

(2)、是雙曲線(xiàn)的左、右焦點(diǎn),是雙曲線(xiàn)上一點(diǎn),且,,離心率為、

例3(理)求離心率為,且過(guò)點(diǎn)的雙曲線(xiàn)標(biāo)準(zhǔn)方程、

2、橢圓的離心率為,則雙曲線(xiàn)的離心率為、

3、雙曲線(xiàn)的漸進(jìn)線(xiàn)方程是,則雙曲線(xiàn)的離心率等于=、

4、設(shè)雙曲線(xiàn)的半焦距為,直線(xiàn)過(guò)、兩點(diǎn),且原點(diǎn)到直線(xiàn)的距離為,求雙曲線(xiàn)的離心率、

將本文的word文檔下載到電腦,方便收藏和打印。

高一數(shù)學(xué)的教案篇十六

教學(xué)目標(biāo):理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號(hào)及術(shù)語(yǔ)。

教學(xué)過(guò)程:

一、閱讀下列語(yǔ)句:

1)全體自然數(shù)0,1,2,3,4,5,

2)代數(shù)式.

3)拋物線(xiàn)上所有的點(diǎn)。

4)今年本校高一(1)(或(2))班的全體學(xué)生。

5)本校實(shí)驗(yàn)室的所有天平。

6)本班級(jí)全體高個(gè)子同學(xué)。

7)著名的科學(xué)家。

上述每組語(yǔ)句所描述的對(duì)象是否是確定的?

二、1)集合:

2)集合的元素:

3)集合按元素的個(gè)數(shù)分,可分為1)__________2)_________。

三、集合中元素的'三個(gè)性質(zhì):

四、元素與集合的關(guān)系:1)____________2)____________。

五、特殊數(shù)集專(zhuān)用記號(hào):

4)有理數(shù)集______5)實(shí)數(shù)集_____6)空集____。

六、集合的表示方法:

1)。

2)。

3)。

七、例題講解:

例1、中三個(gè)元素可構(gòu)成某一個(gè)三角形的三邊長(zhǎng),那么此三角形一定不是()。

a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形。

例2、用適當(dāng)?shù)姆椒ū硎鞠铝屑希缓笳f(shuō)出它們是有限集還是無(wú)限集?

1)地球上的四大洋構(gòu)成的集合;。

2)函數(shù)的全體值的集合;。

3)函數(shù)的全體自變量的集合;。

4)方程組解的集合;。

5)方程解的集合;。

6)不等式的解的集合;。

7)所有大于0且小于10的奇數(shù)組成的集合;。

8)所有正偶數(shù)組成的集合;。

例3、用符號(hào)或填空:

1)______q,0_____n,_____z,0_____。

2)______,_____。

3)3_____,

4)設(shè),,則。

例4、用列舉法表示下列集合;。

1.

2.

3.

4.

例5、用描述法表示下列集合。

1.所有被3整除的數(shù)。

2.圖中陰影部分點(diǎn)(含邊界)的坐標(biāo)的集合。

課堂練習(xí):。

例7、已知:,若中元素至多只有一個(gè),求的取值范圍。

思考題:數(shù)集a滿(mǎn)足:若,則,證明1):若2,則集合中還有另外兩個(gè)元素;2)若則集合a不可能是單元素集合。

小結(jié):

作業(yè)班級(jí)姓名學(xué)號(hào)。

1.下列集合中,表示同一個(gè)集合的是()。

a.m=,n=b.m=,n=。

c.m=,n=d.m=,n=。

2.m=,x=,y=,,.則()。

a.b.c.d.

3.方程組的解集是____________________.

4.在(1)難解的題目,(2)方程在實(shí)數(shù)集內(nèi)的解,(3)直角坐標(biāo)平面內(nèi)第四象限的一些點(diǎn),(4)很多多項(xiàng)式。能夠組成集合的序號(hào)是________________.

5.設(shè)集合a=,b=,

c=,d=,e=。

其中有限集的個(gè)數(shù)是____________.

6.設(shè),則集合中所有元素的和為。

7.設(shè)x,y,z都是非零實(shí)數(shù),則用列舉法將所有可能的值組成的集合表示為。

8.已知f(x)=x2-ax+b,(a,br),a=,b=,。

若a=,試用列舉法表示集合b=。

9.把下列集合用另一種方法表示出來(lái):

(1)(2)。

(3)(4)。

10.設(shè)a,b為整數(shù),把形如a+b的一切數(shù)構(gòu)成的集合記為m,設(shè),試判斷x+y,x-y,xy是否屬于m,說(shuō)明理由。

11.已知集合a=。

(1)若a中只有一個(gè)元素,求a的值,并求出這個(gè)元素;。

(2)若a中至多只有一個(gè)元素,求a的取值集合。

12.若-3,求實(shí)數(shù)a的值。

【總結(jié)】20xx年已經(jīng)到來(lái),新的一年數(shù)學(xué)網(wǎng)會(huì)為您整理更多更好的文章,希望本文:集合含義及其表示能給您帶來(lái)幫助!

高一數(shù)學(xué)的教案篇十七

突出重點(diǎn).培養(yǎng)能力.。

三、課堂練習(xí)。

教材第13頁(yè)練習(xí)1、2、3、4.。

【助練習(xí)】第13頁(yè)練習(xí)4(1)中用一個(gè)方向的斜平行線(xiàn)段表示,用另一方向的平行線(xiàn)段表示如圖:

凡有陰影部分即為所求.。

四、小結(jié)。

提綱式(略).再一次突出交集和并集兩個(gè)概念中“且”,“或”的含義的不同.。

五、作業(yè)。

習(xí)題1至8.。

筆練結(jié)合板書(shū).。

傾聽(tīng).修改練習(xí).掌握方法.。

觀(guān)察.思考.傾聽(tīng).理解.記憶.。

傾聽(tīng).理解.記憶.。

回憶、再現(xiàn)內(nèi)容.。

落實(shí)。

介紹解題技能技巧.。

內(nèi)容條理化.。

課堂教學(xué)設(shè)計(jì)說(shuō)明。

2.反演律可根據(jù)學(xué)生實(shí)際酌情使用.。

高一數(shù)學(xué)的教案篇十八

1.知識(shí)與技能:掌握畫(huà)三視圖的基本技能,豐富學(xué)生的空間想象力。

2.過(guò)程與方法:通過(guò)學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。

3.情感態(tài)度與價(jià)值觀(guān):提高學(xué)生空間想象力,體會(huì)三視圖的作用。

二、教學(xué)重點(diǎn):畫(huà)出簡(jiǎn)單幾何體、簡(jiǎn)單組合體的三視圖;

難點(diǎn):識(shí)別三視圖所表示的空間幾何體。

三、學(xué)法指導(dǎo):觀(guān)察、動(dòng)手實(shí)踐、討論、類(lèi)比。

四、教學(xué)過(guò)程。

(一)創(chuàng)設(shè)情景,揭開(kāi)課題。

展示廬山的風(fēng)景圖——“橫看成嶺側(cè)看成峰,遠(yuǎn)近高低各不同”,這說(shuō)明從不同的角度看同一物體視覺(jué)的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀(guān)看物體。

(二)講授新課。

1、中心投影與平行投影:

中心投影:光由一點(diǎn)向外散射形成的投影;

平行投影:在一束平行光線(xiàn)照射下形成的投影。

正投影:在平行投影中,投影線(xiàn)正對(duì)著投影面。

2、三視圖:

正視圖:光線(xiàn)從幾何體的前面向后面正投影,得到的投影圖;

側(cè)視圖:光線(xiàn)從幾何體的左面向右面正投影,得到的投影圖;

俯視圖:光線(xiàn)從幾何體的上面向下面正投影,得到的投影圖。

三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱(chēng)為幾何體的三視圖。

三視圖的畫(huà)法規(guī)則:長(zhǎng)對(duì)正,高平齊,寬相等。

長(zhǎng)對(duì)正:正視圖與俯視圖的長(zhǎng)相等,且相互對(duì)正;

高平齊:正視圖與側(cè)視圖的高度相等,且相互對(duì)齊;

寬相等:俯視圖與側(cè)視圖的寬度相等。

3、畫(huà)長(zhǎng)方體的三視圖:

正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀(guān)察到有幾何體的正投影圖,它們都是平面圖形。

長(zhǎng)方體的三視圖都是長(zhǎng)方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長(zhǎng)相等。

4、畫(huà)圓柱、圓錐的三視圖:

5、探究:畫(huà)出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。

(三)鞏固練習(xí)。

課本p15練習(xí)1、2;p20習(xí)題1.2[a組]2。

(四)歸納整理。

請(qǐng)學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖。

(五)布置作業(yè)。

課本p20習(xí)題1.2[a組]1。

高一數(shù)學(xué)的教案篇十九

對(duì)數(shù)函數(shù)(第二課時(shí))是20__人教版高一數(shù)學(xué)(上冊(cè))第二章第八節(jié)第二課時(shí)的內(nèi)容,本小節(jié)涉及對(duì)數(shù)函數(shù)相關(guān)知識(shí),分三個(gè)課時(shí),這里是第二課時(shí)復(fù)習(xí)鞏固對(duì)數(shù)函數(shù)圖像及性質(zhì),并用此解決三類(lèi)對(duì)數(shù)比大小問(wèn)題,是對(duì)已學(xué)內(nèi)容(指數(shù)函數(shù)、指數(shù)比大小、對(duì)數(shù)函數(shù))的延續(xù)和發(fā)展,同時(shí)也體現(xiàn)了數(shù)學(xué)的實(shí)用性,為后續(xù)學(xué)習(xí)起到奠定知識(shí)基礎(chǔ)、滲透方法的作用,因此本節(jié)內(nèi)容起到了一種承上啟下的作用。

二、教學(xué)目標(biāo)。

根據(jù)教學(xué)大綱的要求以及本節(jié)課的地位與作用,結(jié)合高一學(xué)生的認(rèn)知特點(diǎn)確定教學(xué)目標(biāo)如下:

學(xué)習(xí)目標(biāo):

1、復(fù)習(xí)鞏固對(duì)數(shù)函數(shù)的圖像及性質(zhì)。

2、運(yùn)用對(duì)數(shù)函數(shù)的性質(zhì)比較兩個(gè)數(shù)的大小。

能力目標(biāo):

1、培養(yǎng)學(xué)生運(yùn)用圖形解決問(wèn)題的意識(shí)即數(shù)形結(jié)合能力。

2、學(xué)生運(yùn)用已學(xué)知識(shí),已有經(jīng)驗(yàn)解決新問(wèn)題的能力。

3、探索出方法,有條理闡述自己觀(guān)點(diǎn)的能力。

德育目標(biāo):

培養(yǎng)學(xué)生勤于思考、獨(dú)立思考、合作交流等良好的個(gè)性品質(zhì)。

三、教材的重點(diǎn)及難點(diǎn)。

教學(xué)中將在以下2個(gè)環(huán)節(jié)中突出教學(xué)重點(diǎn):

1、利用學(xué)生預(yù)習(xí)后的心得交流,資源共享,互補(bǔ)不足。

2、通過(guò)適當(dāng)?shù)木毩?xí),加強(qiáng)對(duì)解題方法的掌握及原理的理解。

教學(xué)中會(huì)在以下3個(gè)方面突破教學(xué)難點(diǎn):

1、教師調(diào)整角色,讓學(xué)生成為學(xué)習(xí)的主人,教師在其中起引導(dǎo)作用即可。

2、小組合作探索新問(wèn)題時(shí),注重生生合作、師生互動(dòng),適時(shí)用語(yǔ)言鼓勵(lì)學(xué)生,增強(qiáng)學(xué)生參與討論的自信。

3、本節(jié)課采用多媒體輔助教學(xué),節(jié)省時(shí)間,加快課程進(jìn)度,增強(qiáng)了直觀(guān)形象性。

四、學(xué)生學(xué)情分析。

長(zhǎng)處:高一學(xué)生經(jīng)過(guò)幾年的數(shù)學(xué)學(xué)習(xí),已具備一定的數(shù)學(xué)素養(yǎng),對(duì)于已學(xué)知識(shí)或用過(guò)的數(shù)學(xué)思想、方法有一定的應(yīng)用能力及應(yīng)用意識(shí),對(duì)于本節(jié)課而言,從知識(shí)上說(shuō),對(duì)數(shù)函數(shù)的圖像和性質(zhì)剛剛學(xué)過(guò),本節(jié)課是知識(shí)的應(yīng)用,從數(shù)學(xué)能力上說(shuō),指數(shù)比大小問(wèn)題的解題思想和方法在這可借鑒,另外數(shù)形結(jié)合能力、小結(jié)概括能力、特殊到一般歸納能力已具備一點(diǎn)。

學(xué)生可能遇到的困難:本節(jié)課從教學(xué)內(nèi)容上來(lái)看,第三類(lèi)對(duì)數(shù)比大小是課本以外補(bǔ)充的內(nèi)容,沒(méi)有預(yù)習(xí)心得,讓學(xué)生在課堂中快速通過(guò)合作探究來(lái)完成解題思路的構(gòu)建,有一定的挑戰(zhàn)性,從學(xué)生能力上來(lái)看,探索出方法,有條理闡述自己觀(guān)點(diǎn)的能力還需加強(qiáng)鍛煉,知識(shí)之間的聯(lián)系認(rèn)識(shí)上還顯不足。

五、教法特點(diǎn)。

新課程強(qiáng)調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,在教育方式上,以學(xué)生為中心,讓學(xué)生成為學(xué)習(xí)的主人,教師在其中起引導(dǎo)作用即可。基于此,本節(jié)課遵循此原則重點(diǎn)采用問(wèn)題探究和啟發(fā)引導(dǎo)式的教學(xué)方法。從預(yù)習(xí)交流心得出發(fā),到探索新問(wèn)題,再到題后的回顧總結(jié),一切以學(xué)生為中心,處處體現(xiàn)學(xué)生的主體地位,讓學(xué)生多說(shuō)、多分析、多思考、多總結(jié),引導(dǎo)學(xué)生運(yùn)用自己的語(yǔ)言闡述觀(guān)點(diǎn),加強(qiáng)理解,在生生合作,師生互動(dòng)中解決問(wèn)題,為提高學(xué)生分析問(wèn)題、解決問(wèn)題能力打下基礎(chǔ)。本節(jié)課采用多媒體輔助教學(xué),節(jié)省時(shí)間,加快課程進(jìn)度,增強(qiáng)了直觀(guān)形象性。

六、教學(xué)過(guò)程分析。

1、課件展示本節(jié)課學(xué)習(xí)目標(biāo)。

設(shè)計(jì)意圖:明確任務(wù),激發(fā)興趣。

2、溫故知新(已填表形式復(fù)習(xí)對(duì)數(shù)函數(shù)的圖像和性質(zhì))。

設(shè)計(jì)意圖:復(fù)習(xí)已學(xué)知識(shí)和方法,為學(xué)生形成知識(shí)間的聯(lián)系和框架建立平臺(tái),并為下一步的應(yīng)用打下基礎(chǔ)。

3、預(yù)習(xí)后心得交流。

1)同底對(duì)數(shù)比大小。

2)既不同底數(shù),也不同真數(shù)的對(duì)數(shù)比大小。

設(shè)計(jì)意圖:通過(guò)學(xué)生的預(yù)習(xí),自己總結(jié)方法及此方法適用的題型,有條理的闡述自己的學(xué)習(xí)心得,老師只需起引導(dǎo)作用,引導(dǎo)學(xué)生從題目表面上升到題目的實(shí)質(zhì),從而找到解決問(wèn)題的有效方法。

4、合作探究——同真異底型的對(duì)數(shù)比大小。

以例3為例,學(xué)生分組合作探究解題方法,預(yù)計(jì)兩種:一是利用換底公式將此類(lèi)型轉(zhuǎn)化為同底異真型,利用之前總結(jié)的方法解決此問(wèn)題。二是利用具體對(duì)數(shù)的大小關(guān)系探究出不同底對(duì)數(shù)函數(shù)在同一直角坐標(biāo)系中的圖像,以此來(lái)解決此類(lèi)型比大小問(wèn)題。

設(shè)計(jì)意圖:這一部分是本節(jié)課的難點(diǎn),探究中充分發(fā)揮學(xué)生的主動(dòng)性,培養(yǎng)主動(dòng)學(xué)習(xí)的意識(shí),同時(shí)也鍛煉學(xué)生各方面能力的很好機(jī)會(huì),為以后的探究學(xué)習(xí)積累經(jīng)驗(yàn)和方法,充分體現(xiàn)“授之以魚(yú),不如授之以漁”的教學(xué)理念。另外數(shù)學(xué)問(wèn)題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒(méi)有了反思,他們就錯(cuò)過(guò)了解題的一次重要而有效益的方面。因此,本題解決后,讓學(xué)生反思明白,要想利用性質(zhì)解決問(wèn)題,關(guān)鍵要做到“腦中有圖”,以“形”促“數(shù)”。

5、小結(jié)。

6、思考題。

以20__高考題為例,讓學(xué)生學(xué)以致用,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣。

7、作業(yè)。

包括兩個(gè)方面:

1、書(shū)寫(xiě)作業(yè)。

2、下節(jié)課前的預(yù)習(xí)作業(yè)。

通過(guò)本節(jié)課的教學(xué)實(shí)例來(lái)看,這種通過(guò)課本內(nèi)容預(yù)習(xí),而后課堂交流學(xué)習(xí)成果的方法效果不錯(cuò),既能很好的完成教學(xué)任務(wù),又能充分發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性。在自主探究時(shí),學(xué)生分組討論過(guò)程中,我參與小組討論,對(duì)有能力的小組,在探究出一種方法后,可鼓勵(lì)完成更多的方法探究,對(duì)于能力較弱的小組,可給予適當(dāng)?shù)奶崾荆箤W(xué)生都能動(dòng)起來(lái),課堂都有所收獲,增強(qiáng)學(xué)生自信。另外,對(duì)于學(xué)生的總結(jié)回答,可能會(huì)比較慢,我一定會(huì)耐心聽(tīng),及時(shí)鼓勵(lì),給予學(xué)生微笑和語(yǔ)言的鼓勵(lì),效果很好。在小結(jié)環(huán)節(jié)中,對(duì)于高一學(xué)生自己小結(jié)的方法,是我一直的教學(xué)嘗試,由于只訓(xùn)練了半學(xué)期,學(xué)生只能達(dá)到小結(jié)知識(shí)的程度,在以后的訓(xùn)練中還會(huì)加入數(shù)學(xué)思想、數(shù)學(xué)方法的小結(jié)內(nèi)容,使這些數(shù)學(xué)名詞讓學(xué)生不再覺(jué)得抽象,而是變成具體的,可操作的、具體的解題工具。

【本文地址:http://www.mlvmservice.com/zuowen/14637718.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔