最新初二數(shù)學(xué)教案一次函數(shù)(熱門23篇)

格式:DOC 上傳日期:2023-11-23 11:08:07
最新初二數(shù)學(xué)教案一次函數(shù)(熱門23篇)
時間:2023-11-23 11:08:07     小編:溫柔雨

教案是教師為指導(dǎo)學(xué)生學(xué)習(xí)而精心設(shè)計的一份教學(xué)計劃,它可以幫助教師合理安排教學(xué)內(nèi)容和教學(xué)活動,以達(dá)到預(yù)期的教學(xué)效果。一份好的教案應(yīng)該清晰明確,內(nèi)容充實,方法靈活?,F(xiàn)在我們需要準(zhǔn)備一份教案了吧?教案的教學(xué)過程應(yīng)當(dāng)靈活多樣,注重激發(fā)學(xué)生的學(xué)習(xí)興趣和參與度。如果你需要一些關(guān)于教案編寫的指導(dǎo),以下是一些教案范文,供你參考。

初二數(shù)學(xué)教案一次函數(shù)篇一

一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時,等號的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個變量,而代數(shù)式可以是多個變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。

初二數(shù)學(xué)教案一次函數(shù)篇二

教學(xué)設(shè)計思想:

本節(jié)主要學(xué)習(xí)了平行四邊形的幾種判定方法,以及平行四邊形性質(zhì)、判定的應(yīng)用——三角形的中位線定理。通過問題情境引入平行四邊形判定的研究,首先通過直觀猜測判定的方法,再次通過幾何證明來證明它的正確性。充分發(fā)揮學(xué)生的主觀能動性。

教學(xué)目標(biāo)。

知識與技能:

1.總結(jié)出平行四邊形的三種判定方法;。

2.應(yīng)用平行四邊形的判定解決實際問題;。

3.應(yīng)用平行四邊形的性質(zhì)與判定得出三角形中位線定理;。

4.總結(jié)三角形與平行四邊形的相互轉(zhuǎn)化,學(xué)會基本的添輔助線法。

過程與方法:

1.經(jīng)歷平行四邊形判別條件的探索過程,逐步掌握說理的基本方法。

2.經(jīng)歷探究三角形中位線定理的過程,體會轉(zhuǎn)化思想在數(shù)學(xué)中的重要性。

情感態(tài)度價值觀:

1.在探究活動中,發(fā)展合情推理意識,養(yǎng)成主動探究的習(xí)慣;。

2.通過探索式證明法開拓思路,發(fā)展思維能力;。

3.在解決平行四邊形問題的過程中,不斷滲透轉(zhuǎn)化思想。

教學(xué)重難點。

重點:1.平行四邊形的判別條件;2.應(yīng)用平行四邊形的性質(zhì)和判定得出三角形中位線定理。

難點:1.靈活應(yīng)用平行四邊形的判別條件;2.合理添加輔助線;3.三角形與平行四邊形之間的合理轉(zhuǎn)化。

教學(xué)方法。

小組討論、合作探究。

課時安排。

3課時。

教學(xué)媒體。

課件、

教學(xué)過程。

第一課時。

(一)引入。

初二數(shù)學(xué)教案一次函數(shù)篇三

2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解.

【能力目標(biāo)】通過學(xué)生的思考和操作,在力圖提示出方程與圖象之間的關(guān)系,引入二元一次方程組圖象解法,同時培養(yǎng)了學(xué)生初步的數(shù)形結(jié)合的意識和能力.

【情感目標(biāo)】通過學(xué)生的自主探索,提示出方程和圖象之間的對應(yīng)關(guān)系,加強了新舊知識的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新意識,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.

2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解。

【教學(xué)難點】方程和函數(shù)之間的對應(yīng)關(guān)系即數(shù)形結(jié)合的意識和能力。

初二數(shù)學(xué)教案一次函數(shù)篇四

2、把已知條件(自變量與函數(shù)對應(yīng)值)代入解析式,得到關(guān)于待定系數(shù)的方程(組);。

3、解方程(組),求出待定系數(shù);。

4、將求得的待定系數(shù)的值代回所設(shè)的函數(shù)解析式,從而得到所求函數(shù)解析式。

例、已知:一次函數(shù)的圖象經(jīng)過點(2,--1)和點(1,-2).

(1)求此一次函數(shù)的解析式;(2)求此一次函數(shù)與x軸、y軸的交點坐標(biāo)。

分析:一般一次函數(shù)有兩個待定字母k、b.要求解析式,只須將兩個獨立條件代入,再解方程組即可.凡涉及求兩個函數(shù)圖象的交點坐標(biāo)時,一般方法是將兩個函數(shù)的解析式組成方程組,求出方程組的解就求出了交點坐標(biāo).

解:(1)設(shè)函數(shù)解析式為y=kx+b.

(2)當(dāng)y=0時x=3,當(dāng)x=0時y=-3。可得直線與x軸交點(3,0)、與y軸交點(0,-3)。

評析:用待定系數(shù)法求函數(shù)解析式,求直線的交點均與解方程(組)有關(guān),因此必須重視函數(shù)與方程之間的關(guān)系.

初二數(shù)學(xué)教案一次函數(shù)篇五

課件出示教材第75頁圖4-1及相關(guān)問題,并由學(xué)生討論完成題目.

師:在現(xiàn)實生活中一個量隨另一個量的變化而變化的現(xiàn)象大量存在.函數(shù)就是研究一些量之間確定性依賴關(guān)系的數(shù)學(xué)模型.(板書課題)。

二、探究新知。

函數(shù)的相關(guān)概念.

(1)課件出示教材第76頁“做一做”第1題.

師:層數(shù)n和物體總數(shù)y之間是什么關(guān)系?

引導(dǎo)學(xué)生得出:只要給定層數(shù),就能求出物體總數(shù).

(2)課件出示教材第76頁“做一做”第2題.

師:在關(guān)系式t=t+273中,兩個變量中若知道其中一個,是否可以確定另外一個?

一般地,如果在一個變化過程中有兩個變量x和y,并且對于變量x的每一個值,變量y都有唯一的值與它對應(yīng),那么我們稱y是x的函數(shù),其中x是自變量.

表示函數(shù)的方法一般有:列表法、關(guān)系式法和圖象法.

對于自變量在可取值范圍內(nèi)的一個確定的值a,函數(shù)有唯一確定的對應(yīng)值,這個對應(yīng)值稱為當(dāng)自變量等于a時的函數(shù)值.

理解函數(shù)概念時應(yīng)注意:

(1)在某一變化過程中有兩個變量x與y.

(2)這兩個變量互相聯(lián)系,當(dāng)變量x取一個確定的值時,變量y的值就隨之確定.

(3)對于變量x的每一個值,變量y都有唯一的一個值與它對應(yīng),如在關(guān)系式y(tǒng)2=x(x0)中,當(dāng)x=9時,y對應(yīng)的值為3或-3,不唯一,則y不是x的函數(shù).

師:上述問題中,自變量能取哪些值?

指出要根據(jù)實際問題確定自變量的取值范圍.

初二數(shù)學(xué)教案一次函數(shù)篇六

知識與技能:

進(jìn)一步訓(xùn)練學(xué)生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實際問題;。

過程與方法。

在函數(shù)圖象信息獲取過程中,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合意識,發(fā)展形象思維;在解決實際問題過程中,進(jìn)一步發(fā)展學(xué)生的分析問題、解決問題的能力和數(shù)學(xué)應(yīng)用意識.

情感態(tài)度與價值觀:

在現(xiàn)實問題的解決中,使學(xué)生初步認(rèn)識數(shù)學(xué)與人類生活的密切聯(lián)系,從而培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.

教學(xué)重點。

教學(xué)難點。

從函數(shù)圖象中正確讀取信息。

教學(xué)過程:

一、情境引入。

一農(nóng)民帶上若干千克自產(chǎn)的土豆進(jìn)城出售,為了方便,他帶了一些零錢備用,按市場價售出一些后,又降價出售,售出的土豆千克數(shù)與他手中持有的錢數(shù)(含備用零錢)的關(guān)系,如圖所示,結(jié)合圖象回答下列問題.

(1)農(nóng)民自帶的零錢是多少?

(2)試求降價前y與x之間的關(guān)系。

(3)由表達(dá)式你能求出降價前每千克的土豆價格是多少?

二、問題解決。

l1反映了某公司產(chǎn)品的銷售收入與銷售量的關(guān)系,l2反映了該公司產(chǎn)品的銷售成本與銷售量的關(guān)系,根據(jù)圖意填空:

初二數(shù)學(xué)教案一次函數(shù)篇七

2、過程與方法。

經(jīng)歷探索一次函數(shù)的應(yīng)用問題,發(fā)展抽象思維、

3、情感、態(tài)度與價值觀。

培養(yǎng)變量與對應(yīng)的,形成良好的函數(shù)觀點,體會一次函數(shù)的應(yīng)用價值、

1、重點:一次函數(shù)的應(yīng)用、

2、難點:一次函數(shù)的應(yīng)用、

3、關(guān)鍵:從數(shù)形結(jié)合分析思路入手,提升應(yīng)用思維、

采用“講練結(jié)合”的教學(xué)方法,讓學(xué)生逐步地熟悉一次函數(shù)的。應(yīng)用、

y=。

拓展:若a城有肥料300噸,b城有肥料噸,其他條件不變,又應(yīng)怎樣調(diào)運?

課本p119練習(xí)、

由學(xué)生自我本節(jié)課的表現(xiàn)、

課本p120習(xí)題14、2第9,10,11題、

1、一次函數(shù)的應(yīng)用例:

練習(xí):

初二數(shù)學(xué)教案一次函數(shù)篇八

一、學(xué)生起點分析:

學(xué)生的知識技能基礎(chǔ):學(xué)生能夠正確解方程(組),初步掌握了一次函數(shù)及其圖像的基礎(chǔ)知識,已經(jīng)具備了函數(shù)的初步思想,對于數(shù)形結(jié)合的數(shù)學(xué)思想也有所接觸。

學(xué)生的活動經(jīng)驗基礎(chǔ):學(xué)生能夠根據(jù)已知條件準(zhǔn)確畫出一次函數(shù)圖象,能夠認(rèn)識和接受函數(shù)解析式與二元一次方程之間的互相轉(zhuǎn)換.在過去已有經(jīng)驗基礎(chǔ)上能夠加深對“數(shù)”和“形”間的相互轉(zhuǎn)化的認(rèn)識,有小組合作學(xué)習(xí)經(jīng)驗.

二、學(xué)習(xí)任務(wù)分析:

本節(jié)課的主要內(nèi)容是二元一次方程(組)與一次函數(shù)及其圖像的綜合應(yīng)用.通過探索“方程”與“函數(shù)圖像”的關(guān)系,培養(yǎng)學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想,通過學(xué)習(xí)二元一次方程方程組的解與直線交點坐標(biāo)之間的關(guān)系,使學(xué)生初步建立了“數(shù)”(二元一次方程)與“形”(一次函數(shù)的圖像)之間的對應(yīng)關(guān)系,進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力.因此確定本節(jié)課的教學(xué)目標(biāo)為:

2.掌握二元一次方程組和對應(yīng)的兩條直線之間的關(guān)系;。

3.發(fā)展學(xué)生數(shù)形結(jié)合的意識和能力,使學(xué)生在自主探索中學(xué)會不同數(shù)學(xué)知識間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法.

教學(xué)重點。

教學(xué)難點。

數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識.

四、教法學(xué)法。

1.教法學(xué)法。

啟發(fā)引導(dǎo)與自主探索相結(jié)合.

2.課前準(zhǔn)備。

教具:多媒體課件、三角板.

學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙.

五、教學(xué)過程。

本節(jié)課設(shè)計了六個教學(xué)環(huán)節(jié):第一環(huán)節(jié)設(shè)置問題情境,啟發(fā)引導(dǎo);第二環(huán)節(jié)自主探索,建立“方程與函數(shù)圖像”的模型;第三環(huán)節(jié)典型例題,探究方程與函數(shù)的相互轉(zhuǎn)化;第四環(huán)節(jié)反饋練習(xí);第五環(huán)節(jié)課堂小結(jié);第六環(huán)節(jié)作業(yè)布置.

初二數(shù)學(xué)教案一次函數(shù)篇九

一次函數(shù)的圖像與性質(zhì)的口訣:

一次函數(shù)是直線,圖像經(jīng)過三象限;。

正比例函數(shù)更簡單,經(jīng)過原點一直線;。

兩個系數(shù)k與b,作用之大莫小看,

k是斜率定夾角,b與y軸來相見,

k為正來右上斜,x增減y增減;。

k為負(fù)來左下展,變化規(guī)律正相反;。

k的絕對值越大,線離橫軸就越遠(yuǎn)。

初二數(shù)學(xué)教案一次函數(shù)篇十

1.經(jīng)歷平行四邊形判別條件的探索過程,發(fā)現(xiàn)平行四邊形的常用判別條件。

2.掌握平行四邊形的判別條件;對角線互相平分的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對邊分別相等的四邊形是平行四邊形。

3.逐步掌握說理的基本方法。

過程與方法目標(biāo)。

1.在探索平行四邊形的判別條件的過程中,發(fā)展學(xué)生的合情推理意識,主動探索的習(xí)慣。

2.鼓勵學(xué)生用多種方法進(jìn)行說理。

情感與態(tài)度目標(biāo)。

1.培養(yǎng)學(xué)生探索創(chuàng)新的能力,開拓學(xué)生思路,發(fā)展學(xué)生的思維能力。

2.培養(yǎng)學(xué)生合作學(xué)習(xí),增強學(xué)生的自我評價意識。

教材分析。

教材通過創(chuàng)設(shè)“釘制平行四邊形框架”這一情境,便于學(xué)生發(fā)現(xiàn)和探索平行四邊形的常用判別方法。如有條件可要求學(xué)生自己準(zhǔn)備,由學(xué)生自我操作。也可由教師演示。

教學(xué)重點:平行四邊形的判別方法。

教學(xué)難點:利用平行四邊形的判別方法進(jìn)行正確的說理。

學(xué)情分析。

初二學(xué)生對平面圖形的認(rèn)識能力正在形成,抽象思維還不夠,學(xué)習(xí)幾何知識處于現(xiàn)象描述和說理的過渡時期。因此,對這部分內(nèi)容的學(xué)習(xí),要引導(dǎo)學(xué)生學(xué)會正確的說理,理清楚四邊形在什么條件下用判定定理,在什么條件下用性質(zhì)定理。

教學(xué)流程。

一、創(chuàng)設(shè)情境,引入新課。

師:請同學(xué)們拿出課前準(zhǔn)備的小木條,幫助小明的爸爸釘制平行四邊形的框架。

學(xué)生活動:學(xué)生按小組進(jìn)行探索。

初二數(shù)學(xué)教案一次函數(shù)篇十一

2、能正確且較為熟練地運用去括號的符號法則去化簡代數(shù)式過程與方法目標(biāo)學(xué)習(xí)目標(biāo)。

1、通過觀察、合作交流、討論總結(jié)等活動得出去括號的符號法則,培養(yǎng)學(xué)生觀察、分析、總結(jié)的能力。

2、通過例題講解,和鞏固練習(xí),培養(yǎng)學(xué)生的計算能力班級:初一四班nn。

1、數(shù)學(xué)知識:

2、數(shù)學(xué)思想方法:布置作業(yè):板書設(shè)計nn教學(xué)反思nn。

初二數(shù)學(xué)教案一次函數(shù)篇十二

一、學(xué)生情況分析及改進(jìn)提高措施:

學(xué)生們經(jīng)過兩年的學(xué)習(xí),已經(jīng)具備了初步的邏輯思維能力和簡單的抽象概括能力,養(yǎng)成了一些良好的學(xué)習(xí)習(xí)慣,掌握了一些科學(xué)的學(xué)習(xí)方法,學(xué)會了獨立思考和與人溝通、協(xié)商、合作、交流的能力,學(xué)會了探究問題,并能根據(jù)具體情況提出合理的問題,還能正確解決問題的能力。無論是理解問題的.能力,還是分析、解決問題的能力均有所提高,基礎(chǔ)知識和基本技能打得也比較扎實,對數(shù)學(xué)學(xué)習(xí)有著濃厚的興趣,樂于參與到學(xué)習(xí)活動中去,特別是對一些動手操作,合作學(xué)習(xí),實踐活動等學(xué)習(xí)內(nèi)容尤為感興趣,因此,在教學(xué)中應(yīng)多設(shè)計一些活動,引導(dǎo)學(xué)生進(jìn)行獨立思考與合作交流,幫助學(xué)生積累參加數(shù)學(xué)學(xué)習(xí)活動的經(jīng)驗。

在數(shù)學(xué)知識上已經(jīng)掌握了兩步計算式題和有余數(shù)的除法,還有統(tǒng)計知識,并學(xué)會了辨認(rèn)八個方位;掌握了萬以內(nèi)數(shù)的讀法、寫法和加、減法;還掌握了長度單位毫米、厘米、分米、米和千米的實際長度和簡單的換算以及實際測量,并能用以上這些相應(yīng)的知識解決實際生活中的問題。總之,這些技能和知識點都為本學(xué)期進(jìn)一步學(xué)習(xí)新知識打下了堅實的基礎(chǔ),他們愛學(xué)數(shù)學(xué)的熱情,以及對數(shù)學(xué)的感悟能力會在本學(xué)期進(jìn)一步得到發(fā)揚光大,他們的情感、態(tài)度、價值觀會沿著良性軌道螺旋式上升。

具體提高措施是:

1.從學(xué)生的年齡特點出發(fā),多采用情境活動式教學(xué),培養(yǎng)學(xué)生的參與意識。兩班學(xué)生都能根據(jù)教師給出的情境獲取相關(guān)的數(shù)學(xué)信息,并能根據(jù)有效信息提出數(shù)學(xué)問題,能積極投入到探索問題的活動中去,絕大部分學(xué)生能夠在課堂上主動的研究問題,獲取知識。

2.在課堂教學(xué)中,多增添一些與學(xué)生生活相關(guān)的利于孩子理解的問題,讓學(xué)生在解決問題的過程中能夠聯(lián)系到實際,便于對問題的理解。結(jié)合學(xué)生的生活實際,將問題生活化,讓學(xué)生從生活中獲取到更多的解決問題的素材。

3.課后練習(xí)注重增添以學(xué)習(xí)內(nèi)容為主的相關(guān)實踐練習(xí),加強各學(xué)科之間的聯(lián)系,少一些呆板的練習(xí),提高練習(xí)的實踐性和趣味性。在上學(xué)期的教學(xué)中,我發(fā)現(xiàn)學(xué)生們比較喜歡做不同科目之間有聯(lián)系的綜合性作業(yè),例如我把數(shù)學(xué)與科學(xué)課相結(jié)合,讓他們種豆子,了解植物的生長,并做記錄,再將每天的記錄制作成統(tǒng)計圖,學(xué)生完成作業(yè)的積極性特別高。我為了讓學(xué)生了解長度單位,讓他們從成語詞典上收集有關(guān)長度單位的成語,通過對詞語的理解把握其表示的長度。

4.加強學(xué)校教育和家庭教育的聯(lián)系。關(guān)注學(xué)生的平時學(xué)習(xí)情況,與學(xué)生家長多溝通交流。

二、本冊教材分析。

本冊教材充分體現(xiàn)了新《課程標(biāo)準(zhǔn)》的理念,以學(xué)生的數(shù)學(xué)活動實踐為學(xué)習(xí)內(nèi)容,教材創(chuàng)設(shè)了生動有趣的情境,引導(dǎo)學(xué)生在解決現(xiàn)實問題的過程中獲得對數(shù)學(xué)知識的理解和體驗。教學(xué)內(nèi)容主要包括(1)乘法;(2)除法;(3)觀察物體;(4)千克、克、噸;(5)、周長;(6)年、月、日;(7)可能性;(8)共有五個社會實踐活動,還有兩個整理復(fù)習(xí),一個總復(fù)習(xí)。具體特點是:

1.在數(shù)與代數(shù)的學(xué)習(xí)中,重視動手操作與抽象概括相結(jié)合,體驗乘、除法意義,發(fā)展了學(xué)生的數(shù)感和符號感。

2.在空間和圖形學(xué)習(xí)中,從學(xué)生的生活經(jīng)驗出發(fā),注重通過操作活動發(fā)展空間觀念。

3.教材為教師留下了創(chuàng)造空間,可結(jié)合自身教學(xué)要求,生發(fā)新的教學(xué)設(shè)想,內(nèi)化自己的教學(xué)設(shè)計。

三、總體教學(xué)目標(biāo):

(一)、知識與技能。

1.在單元學(xué)習(xí)中,學(xué)生通過“數(shù)一數(shù)”、“分一分”等活動,經(jīng)歷從具體情境中抽象出乘法除法算式,體會乘法與除法的意義。

2.學(xué)平面圖形的周長,會進(jìn)行周長的計算。

(二)、實踐能力培養(yǎng)。

1.觀察物體,引導(dǎo)學(xué)生經(jīng)歷觀察的過程,體驗從不同的位置觀察,所看到的物體可能是不一樣的。

2.結(jié)合生活情境,感受并認(rèn)識質(zhì)量單位。

3.經(jīng)歷對生活中某些現(xiàn)象進(jìn)行推理、判斷的過程,能對生活中的某些現(xiàn)象按一定的方法進(jìn)行邏輯推理、判斷其結(jié)果。

(三)、情感與態(tài)度。

1、讓學(xué)生在觀察和操作的學(xué)習(xí)活動中,能夠感受到思考的條理性和合理性。

2、教師重視對學(xué)生數(shù)學(xué)學(xué)習(xí)過程的評價,讓他們在感受到樂趣之外,應(yīng)具備必要的學(xué)習(xí)自信心,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。

教研專題:

創(chuàng)設(shè)課堂學(xué)習(xí)情境,有效培養(yǎng)創(chuàng)新意識。

個人專題:

在情境中培養(yǎng)學(xué)生的自主學(xué)習(xí)意識,提高課堂的有效性。

初二數(shù)學(xué)教案一次函數(shù)篇十三

本節(jié)內(nèi)容共安排2個課時完成。該節(jié)內(nèi)容是二元一次方程(組)與一次函數(shù)及其圖像的綜合應(yīng)用。通過探索方程與函數(shù)圖像的關(guān)系,培養(yǎng)學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想,通過二元一次方程方程組的圖像解法,使學(xué)生初步建立了數(shù)(二元一次方程)與形(一次函數(shù)的圖像(直線))之間的對應(yīng)關(guān)系,進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力。本節(jié)要注意的是由兩條直線求交點,其交點的橫縱坐標(biāo)為二元一次方程組的近似解,要得到準(zhǔn)確的結(jié)果,應(yīng)從圖像中獲取信息,確立直線對應(yīng)的函數(shù)表達(dá)式即方程,再聯(lián)立方程應(yīng)用代數(shù)方法求解,其結(jié)果才是準(zhǔn)確的.

學(xué)生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識,學(xué)習(xí)本節(jié)知識困難不大,關(guān)鍵是讓學(xué)生理解二元一次方程和一次函數(shù)之間的內(nèi)在聯(lián)系,體會數(shù)和形間的相互轉(zhuǎn)化,從中使學(xué)生進(jìn)一步感受到數(shù)的問題可以通過形來解決,形的問題也可以通過數(shù)來解決.

1.教學(xué)目標(biāo)

知識與技能目標(biāo)

(1) 初步理解二元一次方程和一次函數(shù)的關(guān)系;

(2) 掌握二元一次方程組和對應(yīng)的兩條直線之間的關(guān)系;

(3) 掌握二元一次方程組的圖像解法.

過程與方法目標(biāo)

(2) 通過做一做引入例1,進(jìn)一步發(fā)展學(xué)生數(shù)形結(jié)合的意識和能力.

(3) 情感與態(tài)度目標(biāo)

(1) 在探究二元一次方程和一次函數(shù)的對應(yīng)關(guān)系中,在體會近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神.

(2) 在經(jīng)歷同一數(shù)學(xué)知識可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識和變式能力.

2.教學(xué)重點

(1)二元一次方程和一次函數(shù)的關(guān)系;

(2)二元一次方程組和對應(yīng)的兩條直線的關(guān)系.

3.教學(xué)難點

數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識.

1.教法學(xué)法

啟發(fā)引導(dǎo)與自主探索相結(jié)合.

2.課前準(zhǔn)備

教具:多媒體課件、三角板.

學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙.

本節(jié)課設(shè)計了六個教學(xué)環(huán)節(jié):第一環(huán)節(jié) 設(shè)置問題情境,啟發(fā)引導(dǎo);第二環(huán)節(jié) 自主探索,建立方程與函數(shù)圖像的模型;第三環(huán)節(jié) 典型例題,探究方程與函數(shù)的相互轉(zhuǎn)化;第四環(huán)節(jié) 反饋練習(xí);第五環(huán)節(jié) 課堂小結(jié);第六環(huán)節(jié) 作業(yè)布置.

第一環(huán)節(jié): 設(shè)置問題情境,啟發(fā)引導(dǎo)

內(nèi)容:1.方程x+y=5的解有多少個? 是這個方程的解嗎?

2.點(0,5),(5,0),(2,3)在一次函數(shù)y= 的圖像上嗎?

3.在一次函數(shù)y= 的圖像上任取一點,它的坐標(biāo)適合方程x+y=5嗎?

4.以方程x+y=5的解為坐標(biāo)的所有點組成的圖像與一次函數(shù)y= 的圖像相同嗎?

由此得到本節(jié)課的第一個知識點:

二元一次方程和一次函數(shù)的圖像有如下關(guān)系:

(1) 以二元一次方程的解為坐標(biāo)的點都在相應(yīng)的函數(shù)圖像上;

(2) 一次函數(shù)圖像上的點的坐標(biāo)都適合相應(yīng)的二元一次方程.

意圖:通過設(shè)置問題情景,讓學(xué)生感受方程x+y=5和一次函數(shù)y= 相互轉(zhuǎn)化,啟發(fā)引導(dǎo)學(xué)生總結(jié)二元一次方程與一次函數(shù)的對應(yīng)關(guān)系.

效果:以問題串的形式,啟發(fā)引導(dǎo)學(xué)生探索知識的形成過程,培養(yǎng)了學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想意識.

前面研究了一個二元一次方程和相應(yīng)的一個一次函數(shù)的關(guān)系,現(xiàn)在來研究兩個二元一次方程組成的方程組和相應(yīng)的兩個一次函數(shù)的關(guān)系.順其自然進(jìn)入下一環(huán)節(jié).

第二環(huán)節(jié) 自主探索方程組的解與圖像之間的關(guān)系

內(nèi)容:1.解方程組

2.上述方程移項變形轉(zhuǎn)化為兩個一次函數(shù)y= 和y=2x ,在同一直角坐標(biāo)系內(nèi)分別作出這兩個函數(shù)的`圖像.

(1) 求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點的橫縱坐標(biāo);

(2) 求兩條直線的交點坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對應(yīng)的函數(shù)表達(dá)式聯(lián)立的二元一次方程組的解.

(3) 解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.

注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組.

意圖:通過自主探索,使學(xué)生初步體會數(shù)(二元一次方程)與形(兩條直線)之間的對應(yīng)關(guān)系,為求兩條直線的交點坐標(biāo)打下基礎(chǔ).

效果:由學(xué)生自主學(xué)習(xí),十分自然地建立了數(shù)形結(jié)合的意識,學(xué)生初步感受到了數(shù)的問題可以轉(zhuǎn)化為形來處理,反之形的問題可以轉(zhuǎn)化成數(shù)來處理,培養(yǎng)了學(xué)生的創(chuàng)新意識和變式能力.

第三環(huán)節(jié) 典型例題

探究方程與函數(shù)的相互轉(zhuǎn)化

內(nèi)容:例1 用作圖像的方法解方程組

例2 如圖,直線 與 的交點坐標(biāo)是 .

意圖:設(shè)計例1進(jìn)一步揭示數(shù)的問題可以轉(zhuǎn)化成形來處理,但所求解為近似解.通過例2,讓學(xué)生深刻感受到由形來處理的困難性,由此自然想到求這兩條直線對應(yīng)的函數(shù)表達(dá)式,把形的問題轉(zhuǎn)化成數(shù)來處理.這兩例充分展示了數(shù)形結(jié)合的思想方法,為下一課時解決實際問題作了很好的鋪墊.

效果:進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化.

第四環(huán)節(jié) 反饋練習(xí)

內(nèi)容:1.已知一次函數(shù) 與 的圖像的交點為 ,則 .

2.已知一次函數(shù) 與 的圖像都經(jīng)過點a(2,0),且與 軸分別交于b,c兩點,則 的面積為( ).

(a)4 (b)5 (c)6 (d)7

3.求兩條直線 與 和 軸所圍成的三角形面積.

4.如圖,兩條直線 與 的交點坐標(biāo)可以看作哪個方程組的解?

意圖:4個練習(xí),意在及時檢測學(xué)生對本節(jié)知識的掌握情況.

效果:加深了兩條直線交點的坐標(biāo)就是對應(yīng)的函數(shù)表達(dá)式所組成的方程組的解的印象,培養(yǎng)了學(xué)生的計算能力和數(shù)學(xué)轉(zhuǎn)化的能力,使學(xué)生進(jìn)一步領(lǐng)悟到應(yīng)用數(shù)形結(jié)合的思想方法解題的重要性.

第五環(huán)節(jié) 課堂小結(jié)

內(nèi)容:以問題串的形式,要求學(xué)生自主總結(jié)有關(guān)知識、方法:

1.二元一次方程和一次函數(shù)的圖像的關(guān)系;

(1) 以二元一次方程的解為坐標(biāo)的點都在相應(yīng)的函數(shù)圖像上;

(2) 一次函數(shù)圖像上的點的坐標(biāo)都適合相應(yīng)的二元一次方程.

2.方程組和對應(yīng)的兩條直線的關(guān)系:

(1) 方程組的解是對應(yīng)的兩條直線的交點坐標(biāo);

(2) 兩條直線的交點坐標(biāo)是對應(yīng)的方程組的解;

3.解二元一次方程組的方法有3種:

(1)代入消元法;

(2)加減消元法;

(3)圖像法. 要強調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解.

意圖:旨在使本節(jié)課的知識點系統(tǒng)化、結(jié)構(gòu)化,只有結(jié)構(gòu)化的知識才能形成能力;使學(xué)生進(jìn)一步明確學(xué)什么,學(xué)了有什么用.

第六環(huán)節(jié) 作業(yè)布置

習(xí)題7.7

附: 板書設(shè)計

本節(jié)課在學(xué)生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識的基礎(chǔ)上,通過教師啟發(fā)引導(dǎo)和學(xué)生自主學(xué)習(xí)探索相結(jié)合的方法,進(jìn)一步揭示了二元一次方程和函數(shù)圖像之間的對應(yīng)關(guān)系,從而引出了二元一次方程組的圖像解法,以及應(yīng)用代數(shù)方法解決有關(guān)圖像問題,培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化.教學(xué)過程中教師一定要講清楚圖像解法的局限性,這是由于畫圖的不準(zhǔn)確性,所求的解往往是近似解.因此為了準(zhǔn)確地解決有關(guān)圖像問題常常把它轉(zhuǎn)化為代數(shù)問題來處理,如例2及反饋練習(xí)中的4個問題.

初二數(shù)學(xué)教案一次函數(shù)篇十四

正比例函數(shù)的概念.

2.內(nèi)容解析。

一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學(xué)習(xí)的重要內(nèi)容,正比例函數(shù)是特殊的一次函數(shù),也是初中學(xué)生接觸到的第一種函數(shù),要通過對正比例函數(shù)內(nèi)容的學(xué)習(xí),為后續(xù)類比學(xué)習(xí)一般一次函數(shù)打好基礎(chǔ),了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗.

對正比例函數(shù)概念的學(xué)習(xí),既要借助具體的函數(shù)進(jìn)一步加深對函數(shù)概念的理解,即實際問題的兩個變量中,當(dāng)一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的每一個確定的值,另一個變量都有唯一確定的值與之對應(yīng),這是理解正比例函數(shù)的核心;也要加強對正比例函數(shù)基本特征的認(rèn)識,即根據(jù)實際問題構(gòu)建的函數(shù)模型中,函數(shù)和自變量每一對對應(yīng)值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征.

本節(jié)課主要是通過對生活中大量實際問題的分析,寫出變量間的函數(shù)關(guān)系式,觀察比較概括出這些函數(shù)關(guān)系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對具體函數(shù)進(jìn)行辨析,對實際事例進(jìn)行分析,根據(jù)已知條件寫出正比例函數(shù)的解析式.

基于以上分析,確定本節(jié)課的教學(xué)重點:正比例函數(shù)的概念.

二、目標(biāo)和目標(biāo)解析。

1.目標(biāo)。

(1)經(jīng)歷正比例函數(shù)概念的形成過程,理解正比例函數(shù)的概念;。

(2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會函數(shù)建模思想.

2.目標(biāo)解析。

達(dá)成目標(biāo)(1)的標(biāo)志是:通過對實際問題的分析,知道自變量和對應(yīng)函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念.

達(dá)成目標(biāo)(2)的標(biāo)志是:能根據(jù)實際問題中的已知條件確定變量間的正比例函數(shù)關(guān)系式,將實際問題抽象為函數(shù)模型,體會函數(shù)建模思想.

三、教學(xué)問題診斷分析。

正比例函數(shù)是是初中學(xué)生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學(xué)生對函數(shù)基本概念理解未必深刻,在對實際問題進(jìn)行分析過程中,需進(jìn)一步強化對函數(shù)概念的理解:即實際問題的兩個變量中,當(dāng)一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的每一個確定的值,另一個變量都有唯一確定的值與之對應(yīng);對正比例函數(shù)概念的理解關(guān)鍵是對正比例函數(shù)基本特征的認(rèn)識,要通過大量實例分析,寫出變量間的函數(shù)關(guān)系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對對應(yīng)值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念.對正比例函數(shù)基本特征的認(rèn)識和正比例函數(shù)概念的抽象歸納過程學(xué)生有一定難度.

因此本節(jié)課的教學(xué)難點是:對正比例函數(shù)基本特征的認(rèn)識和正比例函數(shù)概念的抽象歸納過程.

四、教學(xué)過程設(shè)計。

1.情境引入,初步感知。

引言。

上一節(jié)我們已經(jīng)學(xué)習(xí)了關(guān)于函數(shù)的最基礎(chǔ)的知識,知道了變量與函數(shù)、函數(shù)的圖象及函數(shù)的三種表示方法,從這節(jié)課開始,我們將重點研究一種最基本的具體函數(shù)——一次函數(shù),本節(jié)課先研究特殊的一次函數(shù)——正比例函數(shù).

問題12011年開始運營的京滬高速鐵路全長1318km.設(shè)列車的平均速度為300km/h.考慮以下問題:

師生活動:教師引導(dǎo)學(xué)生分析問題中的數(shù)量關(guān)系,這是典型的行程問題,數(shù)量關(guān)系是學(xué)生熟悉的“路程=速度×?xí)r間”.

設(shè)計意圖:讓學(xué)生真切感受數(shù)學(xué)與實際的聯(lián)系,即數(shù)學(xué)理論來源于實際又服務(wù)于實際.幫助學(xué)生逐步提高將實際問題抽象為函數(shù)模型的能力,初步體會函數(shù)建模思想.

設(shè)計意圖:由于自變量t是列車運行時間,作為實際問題,自變量的取值是受限制的,應(yīng)對其取值范圍作出說明.

對問題(2)的分析解答過程讓學(xué)生回答下列問題:

追問1這個問題中兩個變量之間的對應(yīng)關(guān)系是函數(shù)關(guān)系嗎?如果是,試說明理由.

設(shè)計意圖:讓學(xué)生感受量與量之間的函數(shù)關(guān)系,體會函數(shù)關(guān)系蘊涵在實際問題中,激發(fā)學(xué)生探究興趣.對理由的說明學(xué)生可能有障礙,此時教師要引導(dǎo)學(xué)生回顧函數(shù)概念的學(xué)習(xí)過程,用函數(shù)的概念來回答:問題中的兩個變量,當(dāng)其中的變量t變化時,另一個變量y隨著t的變化而變化,并且對于變量t的每一個?定的值,另一個變量y都有唯一確定的值與之對應(yīng).

追問2請你寫出y與t之間的函數(shù)解析式,并分析解析式在結(jié)構(gòu)上是什么形式?

追問3對于自變量t和函數(shù)y的每一對對應(yīng)值,y與t的比值,

初二數(shù)學(xué)教案一次函數(shù)篇十五

不知道大家有沒有過這樣的情況:在遇到一個難題的時候,絞盡腦汁的去想解題方法,仍舊解不出來,參照答案之后,才發(fā)現(xiàn),原來是某某定理理解的不到位,某某公式記得不全面。

將筆記上的重點知識標(biāo)記出,進(jìn)行一下系統(tǒng)的記憶之后,可以對一個的找一些專題進(jìn)行一下系統(tǒng)的訓(xùn)練,最好多找一些綜合題,因為綜合題考查的知識點較多,更能夠發(fā)現(xiàn)自己的薄弱項。從而進(jìn)行強化,讓自己無懈可擊。

同學(xué)們可以跟自己的同桌或者同學(xué)進(jìn)行合作,互相出題為難對方,一個會出題的人必定會解題,如果題出的非常嚴(yán)謹(jǐn),證明你已經(jīng)升華了。

鍛煉出題的能力也可以培養(yǎng)自己對知識、對考試的不同認(rèn)識,讓自己站在出題老師的角度上去思考一道題的解題方法與技巧,視野會更加的開闊。

初二數(shù)學(xué)教案一次函數(shù)篇十六

知識技能:理解一次函數(shù)與二元一次方程(組)的關(guān)系,會用圖象法解二元一次方程組。

情感態(tài)度:在探究活動中培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度和勇于探索的科學(xué)精神,在師生、生生的交流活動中,學(xué)會與人合作,學(xué)會傾聽、欣賞和感悟,體驗數(shù)學(xué)的價值,建立自信心。

教學(xué)重難點。

難點:綜合運用方程(組)、不等式和函數(shù)的知識解決實際問題。

教學(xué)過程。

(一)引入新課。

學(xué)生已經(jīng)學(xué)習(xí)過列方程(組)解應(yīng)用題,因此可能列出一元一次方程或二元一次方程組,用方程模型解決問題。結(jié)合前面對一次函數(shù)與一元一次方程、一元一次不等式之間關(guān)系的探究,我自然地提出問題:一次函數(shù)與二元一次方程組之間是否也有聯(lián)系呢?,從而揭示課題。

(二)進(jìn)行新課。

(3)是否直線上任意一點的坐標(biāo)都是它所對應(yīng)的二元一次方程的解?

此時教師留給學(xué)生充分探索交流的時間與空間,對學(xué)生可能出現(xiàn)的疑問給予幫助,師生共同歸納出:從形的角度看,解方程組相當(dāng)于確定兩條直線交點的坐標(biāo)。

進(jìn)一步歸納出:從數(shù)的角度看,解方程組相當(dāng)于考慮自變量為何值時兩個函數(shù)的值相等,以及這個函數(shù)值是何值。

3、列一元二次不等式。

解法1:設(shè)上網(wǎng)時間為分,若按方式a則收元;若按方式b則收元。然后在同一坐標(biāo)系中分別畫出這兩個函數(shù)的圖象,計算出交點坐標(biāo),結(jié)合圖象,利用直線上點位置的高低直觀地比較函數(shù)值的大小,得到當(dāng)一個月內(nèi)上網(wǎng)時間少于400分時,選擇方式a省錢;當(dāng)上網(wǎng)時間等于400分時,選擇方式a、b沒有區(qū)別;當(dāng)上網(wǎng)時間多于400分時,選擇方式b省錢。

解法2:設(shè)上網(wǎng)時間為分,方式b與方式a兩種計費的差額為元,得到一次函數(shù):,即,然后畫出函數(shù)的圖象,計算出直線與軸的交點坐標(biāo),類似地用點位置的高低直觀地找到答案。

注意:所畫的函數(shù)圖象都是射線。

4、習(xí)題。

(1)、以方程的解為坐標(biāo)的所有點都在一次函數(shù)_____的圖象上。

(2)、方程組的解是________,由此可知,一次函數(shù)與的圖象必有一個交點,且交點坐標(biāo)是________。

5、旅游問題。

古城荊州歷史悠久,文化燦爛。

初二數(shù)學(xué)教案一次函數(shù)篇十七

1.知識與能力目標(biāo)。

(3)通過學(xué)生的思考和操作,力圖提示出方程與圖象之間的關(guān)系,引入二元一次方程組的圖象解法。同時培養(yǎng)學(xué)生初步的數(shù)形結(jié)合的意識和能力。

2.情感態(tài)度價值觀目標(biāo)。

通過學(xué)生的自主探索,提示出方程和圖象之間的對應(yīng)關(guān)系,加強新舊知識的聯(lián)系,培養(yǎng)學(xué)生的創(chuàng)新意識,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,使學(xué)生體驗數(shù)學(xué)活動充滿探索與創(chuàng)造。

教材分析。

前面已經(jīng)分別學(xué)習(xí)了一次函數(shù)和二元一次方程組,這節(jié)課研究二元一次方程組(數(shù))和一次函數(shù)(形)的關(guān)系,是這兩章知識的綜合運用。強化了部分與整體的內(nèi)在聯(lián)系,知識與知識的內(nèi)在聯(lián)系,并為今后解析幾何的學(xué)習(xí)奠定基礎(chǔ)。

教學(xué)重點。

教學(xué)難點。

方程和函數(shù)之間的對應(yīng)關(guān)系即數(shù)形結(jié)合的意識和能力。

教學(xué)方法。

學(xué)生操作------自主探索的方法。

學(xué)生通過自己操作和思考,結(jié)合新舊知識的聯(lián)系,自主探索出方程與圖象之間的對應(yīng)關(guān)系,以引入二元一次方程組的圖象解法,同時也建立了“數(shù)”----二元一次方程組和“形”----函數(shù)的圖象(直線)之間的對應(yīng)關(guān)系,培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力。

教學(xué)過程。

一、故事引入。

迪卡兒的故事------蜘蛛給予的啟示。

在蜘蛛爬行的啟示下,迪卡兒創(chuàng)建了直角坐標(biāo)系,在坐標(biāo)系下幾何圖形(形)和方程(數(shù))建立聯(lián)系。迪卡兒坐標(biāo)系起到了橋梁和紐帶的作用。從而我們可以把圖形化成方程來研究,也可以用圖象來研究方程。

二、嘗試探疑。

1、y=x+1。

你們把我叫一次函數(shù),我也是二元一次方程??!這是怎么回事,你知道嗎?

學(xué)生先是疑惑:方程就是方程,函數(shù)就是函數(shù),它們能有什么聯(lián)系呢?然后通過思考、交流,最后恍然大悟。初步感受一次函數(shù)與二元一次方程的內(nèi)在聯(lián)系。

2、函數(shù)y=x+1上的任意一點的坐標(biāo)是否滿足方程x-y=-1?

學(xué)生會迫不及待地拿起筆來計算。從函數(shù)y=x+1圖象上找?guī)讉€點看它們的坐標(biāo)是否滿足方程x-y=-1。結(jié)果都滿足。然后學(xué)生就會自主和同伴交流,問一問同伴函數(shù)y=x+1圖象上的點滿足不滿足方程x-y=-1。結(jié)果也都滿足。這樣他們就會搭成共識:函數(shù)y=x+1上的任意一點的坐標(biāo)都滿足方程x-y=-1。

然后學(xué)生會用同樣的方法得出另一個結(jié)論:以方程x-y=-1的解為坐標(biāo)的點一定在函數(shù)y=x+1的圖象上。然后開始思索函數(shù)y=x+1和方程x-y=-1到底有何關(guān)系呢?通過交流自動得出結(jié)論:以方程x-y=-1的解為坐標(biāo)的點組成的圖象與一次函數(shù)y=x+1的圖象相同。

3.在同一坐標(biāo)系下,化出y=x+1與y=4x-2的圖象,他們的交點坐標(biāo)是什么?

方程組y=x+1的解是什么?二者有何關(guān)系?

y=4x-2。

y=x+1的解。

y=4x-2。

教師作最后總結(jié):因為函數(shù)和方程有以上關(guān)系,所以我們就可以用圖象法解決方程問題,也可以用方程的方法解決圖象問題。

解方程組x-2y=-2。

2x-y=2。

學(xué)生會很快的用消元法解出來。

老師發(fā)問:誰還有其他的方法?如果有,鼓勵學(xué)生大膽提出。并給予口頭表揚。如果沒有人用其他的`方法,老師提出問題:你能不能用圖象的方法求方程組的解呢?這時,學(xué)生就會去探索新的思路、方法。

一回憶方程與函數(shù)的關(guān)系,有了!方程組的解不就是兩個方程變形得到的兩個函數(shù)圖象的交點坐標(biāo)嗎?學(xué)生就會迅速動筆用這種方法把方程解出來。作完之后,互相交流。學(xué)生總結(jié)一下做題步驟:

1.把兩個方程都化成函數(shù)表達(dá)式的形式。

2.畫出兩個函數(shù)的圖象。

3.畫出交點坐標(biāo),交點坐標(biāo)即為方程組的解。

問題又出來了,有的同學(xué)的解是x=2有的同學(xué)的解是x=2.1y=2.1。

y=1.9有的同學(xué)的解是……雖然都和消元法得到的結(jié)果相近,但各不相同。

老師提問:你能說一下用圖象法解方程組的不足嗎?

學(xué)生爭先恐后的回答:用這種方法求的解是近似值。不準(zhǔn)確。學(xué)生提出疑問:既然不準(zhǔn)確,那學(xué)習(xí)它有什么用呢?用消元法就足夠了!

教師解釋一下:在現(xiàn)實生活和生產(chǎn)中,我們會遇到特別復(fù)雜的方程,用消元法解不太容易,我們就可以用電腦繪制成函數(shù)圖象,很容易找出交點坐標(biāo)。教師可以用z+z智能教育平臺演示一下。

用作圖象的方法解方程組,這體現(xiàn)了兩個知識點的內(nèi)在聯(lián)系。學(xué)數(shù)學(xué)知識,探索知識點之間的聯(lián)系,可起到化新為舊的作用,達(dá)到事半功倍的效果。逐步讓學(xué)生學(xué)會這種學(xué)習(xí)新知識的技巧。

四、引申。

方程組x+y=2。

x+y=5解的情況如何?你能從函數(shù)的角度解釋一下嗎?

學(xué)生用消元法開始解方程組,結(jié)果無解,怎么回事呢?學(xué)生會嘗試運用方程組的圖象解法。畫出兩個函數(shù)圖象。答案有了!圖象是平行的,沒有交點。所以方程組無解了。哇!太神奇了!方程的問題可以用圖象的方法解決了。

因為有了上面的用作圖象法解方程組,在這里,學(xué)生就會自覺地從函數(shù)的角度探究方程的問題,初步具有了數(shù)形結(jié)合的意識和能力。

五、課后小結(jié)。

本節(jié)課我們通過操作和思考,揭示了二元一次方程和函數(shù)圖象之間的對應(yīng)關(guān)系,從而引入二元一次方程組的圖象解法,同時也建立了“數(shù)”----二元一次方程與“形”------函數(shù)圖象之間的對應(yīng)關(guān)系,培養(yǎng)了學(xué)生初步的數(shù)形結(jié)合的意識和能力。

六、作業(yè)。

1.用作圖象法解方程組2x+y=4。

2x-3y=12。

2.如圖,直線l、l相交于點a,試求出a點坐標(biāo)。

教學(xué)反思。

這節(jié)課由故事引入,激發(fā)了學(xué)生極大的學(xué)習(xí)興趣。然后提出了三個尖銳的問題,讓學(xué)生嘗試探索,在探索中既體會到了探索的艱辛,又體會到了成功的喜悅。在應(yīng)用和引申過程中,盡量讓學(xué)生自主的發(fā)現(xiàn)問題,自主的解決問題。學(xué)生在緊張、愉快中完成了這節(jié)課的學(xué)習(xí)。

初二數(shù)學(xué)教案一次函數(shù)篇十八

學(xué)生的知識技能基礎(chǔ):在學(xué)習(xí)本節(jié)之前,學(xué)生已經(jīng)掌握了有理數(shù)、合并同類項、去括號等法則,能熟練的進(jìn)行簡單的整式的加、減法運算整式的運算,知道方程的解的意義,能熟練的求解一元一次方程,了解了二元一次方程以及解的意義、二元一次方程組及其解的意義,能通過代人消元法求解二元一次方程組.

學(xué)生活動經(jīng)驗基礎(chǔ):在相關(guān)知識的學(xué)習(xí)過程中,學(xué)生已經(jīng)經(jīng)歷了列整式、列一元一次方程并求解,列二元一次方程組解決了一些簡單的現(xiàn)實問題,感受到了方程是刻畫現(xiàn)實世界數(shù)量關(guān)系的有效模型,通過解一元一次方程和用代入消元法解二元一次方程組獲得了解二元一次方程的基本經(jīng)驗和基本技能;同時在以前的數(shù)學(xué)學(xué)習(xí)中學(xué)生已經(jīng)經(jīng)歷了很多合作學(xué)習(xí)的過程,具有了一定的合作學(xué)習(xí)的經(jīng)驗,具備了一定的合作與交流的能力.

二、教學(xué)任務(wù)分析。

教科書基于學(xué)生對前面解一元一次方程和用代入消元法解二元一次方程組基礎(chǔ)之上,提出了本課的具體學(xué)習(xí)任務(wù):會用加減消元法解二元一次方程組,了解解二元一次方程組的“消元”思想,初步體現(xiàn)數(shù)學(xué)研究中“化未知為已知”的化歸思想.

《課程標(biāo)準(zhǔn)(2011年版)》把方程與方程組的重點放在解法和應(yīng)用上,特別強調(diào)體會方程是刻畫現(xiàn)實世界數(shù)量關(guān)系的有效模型,如何解方程與方程組時方程與方程組教學(xué)的主體和重點.對于二元一次方程組來講,強調(diào)“消元”的思想和方法,應(yīng)是貫穿于始終的一條主線,通過“消元”,將二元一次方程轉(zhuǎn)化為一元一次方程實現(xiàn)求解的目的,體現(xiàn)了化繁為簡,以簡馭繁的基本策略,對促進(jìn)了學(xué)生理性思維的發(fā)展具有重要意義.通過第一課時是學(xué)習(xí),學(xué)生已經(jīng)能夠解一般的二元一次方程組,但對于有些方程用代人消元法解可能比較繁雜,用加減消元法要簡單一些,同時加減消元法在學(xué)生將來的矩陣運算中有廣泛的應(yīng)用。因此這個課時就進(jìn)一步學(xué)習(xí)二元一次方程組的加減消元法.

加減消元法是解二元一次方程組的基本方法之一,它要求兩個方程中必須有某一個未知數(shù)的系數(shù)的絕對值相等(或利用等式的基本性質(zhì)在方程兩邊同時乘以一個適當(dāng)?shù)牟粸?的數(shù)或式,使兩個方程中某一個未知數(shù)的系數(shù)的絕對值相等),然后利用等式的基本性質(zhì)在方程兩邊同時相加或相減消元.

為此,本節(jié)課的教學(xué)目標(biāo)是:

本節(jié)課的教學(xué)重點是:

本節(jié)課的教學(xué)難點是:

在解題過程中進(jìn)一步體會“消元”思想和“化未知為已知”的化歸思想.

三、教學(xué)過程設(shè)計。

本節(jié)課設(shè)計了五個教學(xué)環(huán)節(jié):第一環(huán)節(jié):情境引入;第二環(huán)節(jié):講授新知;第三環(huán)節(jié):鞏固新知;第四環(huán)節(jié):課堂小結(jié);第五環(huán)節(jié):布置作業(yè).

第一環(huán)節(jié):情境引入。

內(nèi)容:鞏固練習(xí),在練習(xí)中發(fā)現(xiàn)新的解決方法。

怎樣解下面的二元一次方程組呢?(學(xué)生在練習(xí)本上做,教師巡視、引導(dǎo)、解疑,注意發(fā)現(xiàn)學(xué)生在解答過程中出現(xiàn)的新的想法,可以讓用不同方法解題的學(xué)生將他們的方法板演在黑板上,完后進(jìn)行評析,并為加減消元法的出現(xiàn)鋪路.)。

初二數(shù)學(xué)教案一次函數(shù)篇十九

一、學(xué)生起點分析:

學(xué)生已了解方程的基本概念和性質(zhì),并能熟練解二元一次方程,也能整體系統(tǒng)地審清題意,能從具體問題的數(shù)量關(guān)系中找出等量關(guān)系并列出二元一次方程組;學(xué)生也基本能夠運用方程的思想解決實際問題。初中二年級的學(xué)生,正處于少年期,已具備了初步的抽象、概括和分析問題解決問題能力,要培養(yǎng)他們敢于面對挑戰(zhàn)和勇于克服困難的意志.鼓勵他們大膽嘗試,敢于發(fā)表自己的看法,以從中獲得成功的體驗,激發(fā)學(xué)習(xí)激情.

二、教學(xué)任務(wù)分析:

基于以上對學(xué)生情況的分析,特制定以下教學(xué)任務(wù):

1、在具體問題的解決過程中提高學(xué)生的解二元一次方程組的技能;。

3、進(jìn)一步豐富學(xué)生數(shù)學(xué)學(xué)習(xí)的成功體驗,激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的好奇心,進(jìn)一步形成積極參與數(shù)學(xué)活動、主動與他人合作交流的意識.

4、通過\'雞兔同籠\',把同學(xué)們帶入古代的數(shù)學(xué)問題情景,學(xué)生體會到數(shù)學(xué)中的\'趣\';進(jìn)一步強調(diào)課堂與生活的聯(lián)系,突出顯示數(shù)學(xué)教學(xué)的實際價值,培養(yǎng)學(xué)生的人文精神;通過對祖國文明史的了解,培養(yǎng)學(xué)生愛國主義精神,樹立為中華崛起而學(xué)習(xí)的信心.

教學(xué)重點。

教學(xué)難點。

1、讀懂古算題;。

2、根據(jù)題意找出等量關(guān)系,列出方程.

三、教學(xué)過程設(shè)計。

本節(jié)課設(shè)計了五個教學(xué)環(huán)節(jié):第一環(huán)節(jié):引入課題;第二環(huán)節(jié):典型例題;第三環(huán)節(jié):闖關(guān)練習(xí);第四環(huán)節(jié):反饋練習(xí);第五環(huán)節(jié):感悟和收獲;第六環(huán)節(jié):作業(yè)布置.

第一環(huán)節(jié):引入課題。

活動內(nèi)容1:例1今有雉(兔)同籠,上有三十五頭,下有九十四足,問雉兔各幾何?

提問:

(1)\'上有三十五頭\'的意思是什么?\'下有九十四足\'呢?

(2)你能解決這個有趣的問題嗎?

寫出解題過程,讓學(xué)生討論對不對,有沒有不同的思路和觀點;最后在學(xué)生充分討論的基礎(chǔ)上,老師用多媒體課件,給出正確的答案.)。

初二數(shù)學(xué)教案一次函數(shù)篇二十

【知識目標(biāo)】了解二元一次方程、二元一次方程組及其解等有關(guān)概念,并會判斷一組數(shù)是不是某個二元一次方程組的解。

【能力目標(biāo)】通過討論和練習(xí),進(jìn)一步培養(yǎng)學(xué)生的觀察、比較、分析的能力。

【情感目標(biāo)】通過對實際問題的分析,使學(xué)生進(jìn)一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識。

【難點】判斷一組數(shù)是不是某個二元一次方程組的解,培養(yǎng)學(xué)生良好的。數(shù)學(xué)應(yīng)用意識。

【教學(xué)過程】。

一、引入、實物投影。

2、請每個學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言)。

[1]?[2]?[3]。

初二數(shù)學(xué)教案一次函數(shù)篇二十一

11.如圖,圖中的曲線表示小華星期天騎自行車外出離家的距離與時間的關(guān)系,小華八點離開家,十四點回到家,根據(jù)這個曲線圖,請回答下列問題:

(1)到達(dá)離家最遠(yuǎn)的地方是幾點?離家多遠(yuǎn)?

(2)何時開始第一次休息?休息多長時間?

(3)小華在往返全程中,在什么時間范圍內(nèi)平均速度最快?最快速度是多少?

(4)小華何時離家21千米?(寫出計算過程)。

初二數(shù)學(xué)教案一次函數(shù)篇二十二

一,填空題:

1。為鼓勵節(jié)約用水,某市規(guī)定:每月每戶用水不超過10立方米,按每立方米1。5元收取水費若每月每戶用水超過10立方米,則超過部分每立方米另加收0。5元。設(shè)每月每戶的用水量為(立方米),應(yīng)繳水費為(元),試寫出當(dāng)用水量超過10立方米時,水費(元)與(立方米)之間的函數(shù)關(guān)系式:_____________________。若某戶某月交水費25元,則該用戶當(dāng)月用水__________立方米。

2。某市市內(nèi)電話費(元)與通話時間。

t(分鐘)之間的函數(shù)關(guān)系圖象如圖。

所示,則通話7分鐘需付電話費元。

3,直線可以由直線向平移個單位得到。

二,選擇題。

1。汽車開始行駛時,油箱內(nèi)有油40升,如果每小時耗油5升,則油箱內(nèi)的余油量q(升)與行駛時間t(小時)之間的函數(shù)關(guān)系的圖象應(yīng)是()。

(a)(b)(c)(d)。

2。如圖,oa,ba分別表示甲,乙兩名學(xué)生運動的一次函數(shù)圖象,圖中s和t分別。

表示運動路程和時間,根據(jù)圖象判斷快者的速度比慢者的速度每秒快()。

a,2。5米b,2米c,1。5米d,1米。

3。(四川省)汽車由重慶駛往相距400千米的成都,如果汽車的平均速度是100千米/時,那么汽車距成都的路程s(千米)與行駛時間t(小時)的關(guān)系用圖象表示應(yīng)為()。

abcd。

a。1個b。2個c。3個d。4個。

5兩個一次函數(shù)和圖象的交點坐標(biāo)是()。

(a)(2,3)(b)(2―3)(c)(―2,3)(d)(―2,―3)。

三解答題;。

1,已知正比例函數(shù)的`圖像與一次函數(shù)的圖像交于點p(3,―6)。

(1)求,的值;(2)如果一次函數(shù)與軸交于點a,求a點的坐標(biāo)。

2,先在同一直角坐標(biāo)系中畫出一次函數(shù)的圖象,并求出這兩條直線與橫軸圍成三角形的面積。

3,已知一次函數(shù)的圖象與正比例平行,且通過點m(0,4)。

若點(―8,m)和(n,5)在一次函數(shù)的圖象上,試求m,n的值。

求,的解析式。

求點a,b,c,d的坐標(biāo)。

初二數(shù)學(xué)教案一次函數(shù)篇二十三

二元一次方程組是新人教版七年級數(shù)學(xué)(下)第八章第一節(jié)的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了一元一次方程,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容主要學(xué)習(xí)和二元一次方程組有關(guān)的四個概念。本節(jié)內(nèi)容既是前面知識的深化和應(yīng)用,又是今后用二元一次方程組解決生活中的實際問題的預(yù)備知識,占據(jù)重要的地位,是學(xué)生新的方程建模的基礎(chǔ)課,為今后學(xué)習(xí)一次函數(shù)以及其他學(xué)科(如:物理)的學(xué)習(xí)奠定基礎(chǔ),同時建模的思想方法對學(xué)生今后的發(fā)展有引導(dǎo)作用,因此本節(jié)課具有承上啟下的作用。

2.教學(xué)目標(biāo)。

[知識技能]。

掌握二元一次方程、二元一次方程組及它們的解的概念,通過實例認(rèn)識二元一次方程和二元一次方程組也是反映數(shù)量關(guān)系的重要數(shù)學(xué)模型。

[數(shù)學(xué)思考]。

體會實際問題中二元一次方程組是反映現(xiàn)實世界多個量之間相等關(guān)系的一種有效的數(shù)學(xué)模型,能感受二元一次方程(組)的重要作用。

[解決問題]。

通過對本節(jié)知識點的學(xué)習(xí),提高分析問題、解決問題和邏輯思維能力。

[情感態(tài)度]。

引導(dǎo)學(xué)生對情境問題的觀察、思考,激發(fā)學(xué)生的好奇心和求知欲,并在運用數(shù)學(xué)知識解答問題的活動中獲取成功的體驗,建立學(xué)習(xí)的自信心。

3.教學(xué)重點與難點。

按照《課程標(biāo)準(zhǔn)》的要求,根據(jù)上述地位與作用的分析及教學(xué)目標(biāo),本節(jié)課中相關(guān)概念的掌握是教學(xué)重點。

七年級學(xué)生思維活躍,好奇心強,希望平等交流研討,厭煩空洞的說教。因此,在教學(xué)過程中,積極采用形象生動、形式多樣的教學(xué)方法和學(xué)生廣泛的、積極主動參與的學(xué)習(xí)方式,激發(fā)他們的興趣。一方面通過學(xué)案與課件,使他們的注意力始終集中在課堂上;另一方面創(chuàng)造條件和機會,讓學(xué)生自主練習(xí),合作交流,培養(yǎng)學(xué)生學(xué)習(xí)的主動性、與人合作的精神,激發(fā)學(xué)生的興趣和求知欲,感受成功的樂趣。

1.教法。

數(shù)學(xué)課程標(biāo)準(zhǔn)明確指出:有效的數(shù)學(xué)學(xué)習(xí)活動不能單純地依賴模仿與記憶,動手實踐、自主探究與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。所以我在教學(xué)中不只傳授知識,更要激發(fā)學(xué)生的創(chuàng)造思維,引導(dǎo)學(xué)生探究,發(fā)現(xiàn)結(jié)論的方法。正所謂“教是為了不教”。所以我采用引導(dǎo)發(fā)現(xiàn)法為主,情景問答法、討論法、活動競賽法、利用多媒體課件輔助教學(xué)等完成本節(jié)的教學(xué),真正做到教師的主導(dǎo)地位。

2.學(xué)法。

學(xué)生是學(xué)習(xí)的主體,所以本節(jié)教學(xué)中,引導(dǎo)學(xué)生自主探究、歸納總結(jié),運用自主探索與合作交流開拓自己的創(chuàng)造思維。這樣調(diào)動學(xué)生的積極性,激發(fā)學(xué)生興趣,使學(xué)生由被動學(xué)習(xí)變?yōu)榉e極主動的探究,這也符合數(shù)學(xué)的直觀性和形象性。

為了達(dá)到本節(jié)課的教學(xué)目標(biāo),突出重點,突破難點,我把教學(xué)過程設(shè)計為五個環(huán)節(jié):

1、創(chuàng)設(shè)情境,引入概念。

nba籃球聯(lián)賽情景再現(xiàn),利用世界男籃亞裔球星林書豪激勵學(xué)生相信自已能夠創(chuàng)造奇跡的勵志教育,感受數(shù)學(xué)來源于生活,調(diào)動學(xué)生順利引入新課。

2、觀察歸納,形成概念。

概念的教學(xué),不糾纏于其語言本身,而是通過類比整合形成新的概念。由于學(xué)生對一元一次方程概念已經(jīng)很了解,我主要采用了類比的方法,弱化概念的教學(xué),強化對概念的正確理解,通過學(xué)案與課件相結(jié)合的方式,以題組形式分層漸進(jìn)式訓(xùn)練,讓學(xué)生明晰概念,鞏固概念,強化概念,提升能力。

3、拓展延伸,深入概念。

知識的掌握,能力的提升是一個不斷循序上升的過程,而教學(xué)過程更是一個生動活沷,主動和富有個性的過程,讓學(xué)生認(rèn)真聽講、積極思考,動腦動口,自主探索,合作交流。

4、當(dāng)堂檢測,強化概念。

通過課堂隨機選題的形式答題,通過合作小組交流,全班展示交流,使學(xué)生互相學(xué)習(xí)、互相促進(jìn)、互相競爭,將小組的認(rèn)知成果轉(zhuǎn)化為全班同學(xué)的共同認(rèn)知成果,從而營造寬松、民主、競爭、快樂的學(xué)習(xí)氛圍,讓學(xué)生體驗到學(xué)習(xí)的快樂,成功的喜悅,從而充分體現(xiàn)數(shù)學(xué)教學(xué)主要是學(xué)生數(shù)學(xué)活動教學(xué)的基本理念。

5、反思小結(jié),回歸概念。

知識性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,培養(yǎng)學(xué)生形成完整的知識體系,養(yǎng)成及時反思的習(xí)慣。

美國國家研究委員會在《人人關(guān)心數(shù)學(xué)教育的未來》的報告中指出“沒有一個人能教好數(shù)學(xué),好的教師不是在教數(shù)學(xué),而是在激發(fā)學(xué)生自已去學(xué)數(shù)學(xué)”。只有學(xué)生通過自已的思考建立對數(shù)學(xué)的理解力,才能真正的學(xué)好數(shù)學(xué)。本節(jié)課,我致力于讓學(xué)生自已去發(fā)現(xiàn)數(shù)學(xué),研究數(shù)學(xué),加強數(shù)學(xué)思想、方法及科學(xué)研究方法的指導(dǎo),引導(dǎo)學(xué)生不斷從“學(xué)會數(shù)學(xué)”到“會學(xué)數(shù)學(xué)”,但教無止境,課堂仍然留有遺憾,在今后的教學(xué)中,我將從這樣的三個方面加強對課堂的研究:一是加強對學(xué)法研究、學(xué)情研究,讓教學(xué)方式與內(nèi)容更符合學(xué)生認(rèn)知規(guī)律,更貼近學(xué)生實際;二是重視學(xué)生課堂的學(xué)習(xí)感受,營造民主、開放、合作、競爭的學(xué)習(xí)氛圍;;三是提高教學(xué)機智、不斷創(chuàng)新優(yōu)化教學(xué)方法,科學(xué)、合理、靈活地處理課堂上生成的問題。

【本文地址:http://www.mlvmservice.com/zuowen/14360718.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔