思考過去,展望未來,總結(jié)是必要的!總結(jié)要寫得客觀中帶有一些主觀評價,該如何衡量呢?總結(jié)范文可以給我們提供一些寫作思路和參考案例。
一次函數(shù)教學設計篇一
1、本節(jié)課首先從最簡單的正比例函數(shù)入手、從正比例函數(shù)的定義、函數(shù)關系式、引入次函數(shù)的概念。
2、八年級數(shù)學中的一次函數(shù)是中學數(shù)學中的一種最簡單、最基本的函數(shù),是反映現(xiàn)實世界的數(shù)量關系和變化規(guī)律的常見數(shù)學模型之一,也是學生今后進一步學習初、高中其它函數(shù)和高中解析幾何中的直線方程的基礎。
1、雖然這是一節(jié)全新的數(shù)學概念課,學生沒有接觸過。但是,孩子們已經(jīng)具備了函數(shù)的一些知識,如正比例函數(shù)的概念及性質(zhì),這些都為學習本節(jié)內(nèi)容做好了鋪墊。
2、八年級數(shù)學中的一次函數(shù)是中學數(shù)學中的一種最簡單、最基本的函數(shù),是反映現(xiàn)實世界的數(shù)量關系和變化規(guī)律的常見數(shù)學模型之一,也是學生今后進一步學習其它函數(shù)的基礎。
3、學生認知障礙點:根據(jù)問題信息寫出一次函數(shù)的表達式。
1、理解一次函數(shù)與正比例函數(shù)的概念以及它們的關系,在探索過程中,發(fā)展抽象思維及概括能力,體驗特殊和一般的辯證關系。
2、能根據(jù)問題信息寫出一次函數(shù)的表達式。能利用一次函數(shù)解決簡單的實際問題。
3、經(jīng)歷利用一次函數(shù)解決實際問題的過程,逐步形成利用函數(shù)觀點認識現(xiàn)實世界的意識和能力。
2、會根據(jù)已知信息寫出一次函數(shù)的表達式。
一次函數(shù)教學設計篇二
《一次函數(shù)的應用》這節(jié)課的教學內(nèi)容是湘教版版八年級數(shù)學上冊第二章第三節(jié)的內(nèi)容。本節(jié)課討論了一次函數(shù)的某些應用,在這些實際應用中,備課時注意到與學生的實際生活相聯(lián)系,切實發(fā)生在學生的身邊的某些實際情境,并且注意用函數(shù)觀點來處理問題或?qū)栴}的解決用函數(shù)做出某種解釋,用以加深對函數(shù)的認識,并突出知識之間的內(nèi)在聯(lián)系。本節(jié)的主要內(nèi)容是讓學生逐步形成用函數(shù)的觀點處理問題意識,體驗數(shù)形結(jié)合的思想方法。
教學時,能夠達到三維目標的要求,突出重點把握難點。能夠讓學生經(jīng)歷數(shù)學知識的應用過程,關注對問題的分析過程,讓學生自己利用已經(jīng)具備的知識分析實例。用函數(shù)的觀點處理實際問題的關鍵在于分析實際情境,建立函數(shù)模型,并進一步提出明確的數(shù)學問題,注意分析的過程,即將實際問題置于已有的知識背景之中,用數(shù)學知識重新理解(這是什么?可以看成什么?),讓學生逐步學會用數(shù)學的眼光考察實際問題。同時,在解決問題的過程中,要充分利用函數(shù)的圖象,滲透數(shù)形結(jié)合的思想。
具體分析本節(jié)課,首先簡單的用幾分鐘時間回顧一下一次函數(shù)的基本理論,“學習理論是為了服務于實踐”的一句話,打開了本節(jié)課的課題,過渡自然。本節(jié)課用函數(shù)的觀點處理實際問題,主要圍繞著路程、價格這樣的實際問題,通過在速度一定的條件下路程與時間的關系,總價在單價一定的情形下,總價與數(shù)量的關系這幾個例題,認識到一次函數(shù)與實際問題的關系,在講解這幾個例子的時候,創(chuàng)設了學生熟悉的情境,如在建立一次函數(shù)模型進行預測的問題時,問學生:“你知道今年奧運會的撐桿跳高的記錄是多少?你能對它進行預測嗎?”,簡單的一句話引出問題,這樣更能引起學生的興趣,使學生更積極地參與到教學中來,因為情境熟悉,也能快速地與學生產(chǎn)生共鳴。創(chuàng)設了輕松和諧的教學環(huán)境與氛圍,師生互動較好,這樣能使學生主動開動思維,利用已有的知識順利的解決這幾個問題。
在講解例題的同時,試著讓學生利用圖象解決問題,培養(yǎng)學生數(shù)形結(jié)合的思想,并提示學生注意自變量在實際情境中的取值范圍問題。而后,給學生幾分鐘的思考時間,讓他們通過平時對生活的細心觀察,生活中有關一次函數(shù)的有價值的問題,說出來與全班共同分享。這一環(huán)節(jié)的設置,不僅體現(xiàn)新教改的合作交流的思想,更主要的培養(yǎng)他們與人協(xié)作的能力。更好的發(fā)展了學生的主體性,讓他們也做了一回小老師,展示他們的個性,這樣有益于他們健康的人格的成長。最后在總結(jié)中讓學生體會到利用一次函數(shù)解決實際問題,關鍵在于建立數(shù)學函數(shù)模型,并布置了作業(yè)。從總體看整個教學環(huán)節(jié)也比較完整。
這節(jié)課如果能利用多媒體課件幻燈片的方式展示出來,例題的展示將會更快點,整節(jié)課將會更加豐滿。當然,在教學實施中我也考慮到了這一點,所以在講解例題的時候?qū)⒚總€例題的要點以簡短的板書形式展示出來,在一定程度上也節(jié)省了時間。
一次函數(shù)教學設計篇三
3、會將一個二元一次方程變形成用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式。
情感與態(tài)度目標。
2、通過對實際問題的分析,培養(yǎng)關注生活,進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學模型,培養(yǎng)良好的數(shù)學應用意識。
重點:二元一次方程的概念及二元一次方程的解的概念。
難點。
1、了解二元一次方程的解的不唯一性和相關性。即了解二元一次方程的解有無數(shù)個,但不是任意的兩個數(shù)是它的解。
2、把一個二元一次方程變形成用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質(zhì)是解一個含有字母系數(shù)的方程。
1、通過創(chuàng)設問題情境,讓學生在尋求問題解決的過程中認識二元一次方程,了解二元一次方程的特點,體會到二元一次方程的引入是解決實際問題的需要。
2、通過觀察、思考、交流等活動,激發(fā)學習情緒,營造學習氣氛,給學生一定的時間和空間,自主探討,了解二元一次方程的解的不唯一性和相關性。
3、通過學練結(jié)合,以游戲的形式讓學生及時鞏固所學知識。
創(chuàng)設情境導入新課。
1、一個數(shù)的3倍比這個數(shù)大6,這個數(shù)是多少?
師生互動探索新知。
1、發(fā)現(xiàn)新知。
根據(jù)它們的共同特征,你認為怎樣的方程叫做二元一次方程?(二元一次方程的定義:含有兩個未知數(shù),且含有未知數(shù)的項的次數(shù)都是一次的方程叫做二元一次方程。)。
2、鞏固新知。
相同點:方程兩邊都是整式,含有未知數(shù)的項的次數(shù)都是一次。
如果一個方程含有兩個未知數(shù),并且所含未知項都為1次方,那么這個整式方程就叫做二元一次方程,有無窮個解,若加條件限定有有限個解。
它山之石可以攻玉,以上就是為大家?guī)淼?篇《一次函數(shù)與二元一次方程課教學設計》,您可以復制其中的精彩段落、語句,也可以下載doc格式的文檔以便編輯使用。
一次函數(shù)教學設計篇四
知識目標:了解二元一次方程、二元一次方程組及其解等有關概念,并會判斷一組數(shù)是不是某個二元一次方程組的解。
能力目標:通過討論和練習,進一步培養(yǎng)學生的觀察、比較、分析的能力。
情感目標:通過對實際問題的分析,使學生進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學模型,培養(yǎng)學生良好的數(shù)學應用意識。
判斷一組數(shù)是不是某個二元一次方程組的解,培養(yǎng)學生良好的數(shù)學應用意識。
一、引入、實物投影。
2、請每個學習小組討論(討論2分鐘,然后發(fā)言)。
這個問題由于涉及到老牛和小馬的馱包裹的兩個未知數(shù),我們設老牛馱x個包裹,小馬馱y個包裹,老牛的包裹數(shù)比小馬多2個,由此得方程x-y=2,若老牛從小馬背上拿來1個包裹,這時老牛的包裹是小馬的2倍,得方程:x+1=2(y-1)。
師:同學們能用方程的。方法來發(fā)現(xiàn)、解決問題這很好,上面所列方程有幾個未知數(shù)?含未知數(shù)的項的次數(shù)是多少?(含有兩個未知數(shù),并且所含未知數(shù)項的次數(shù)是1)。
師:含有兩個未知數(shù),并且含未知數(shù)項的次數(shù)都是1的方程叫做二元一次方程。
一次函數(shù)教學設計篇五
(2)通過“做一做”引入例1,進一步發(fā)展學生數(shù)形結(jié)合的意識和能力。
(1)在探究二元一次方程和一次函數(shù)的對應關系中,在體會近似解與準確解中,培養(yǎng)學生勤于思考、精益求精的精神。
(2)在經(jīng)歷同一數(shù)學知識可用不同的數(shù)學方法解決的過程中,培養(yǎng)學生的創(chuàng)新意識和變式能力。
(2)二元一次方程組和對應的兩條直線的關系。
數(shù)形結(jié)合和數(shù)學轉(zhuǎn)化的思想意識。
教具:多媒體課件、三角板。
學具:鉛筆、直尺、練習本、坐標紙。
第一環(huán)節(jié):設置問題情境,啟發(fā)引導(5分鐘,學生回答問題回顧知識)。
內(nèi)容:
1.方程x+y=5的解有多少個?是這個方程的解嗎?
2.點(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?
3.在一次函數(shù)y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標的所有點組成的圖像與一次函數(shù)y=的圖像相同嗎?
由此得到本節(jié)課的第一個知識點:
(1)以二元一次方程的解為坐標的點都在相應的函數(shù)圖像上;
第二環(huán)節(jié)自主探索方程組的解與圖像之間的關系(10分鐘,教師引導學生解決)。
內(nèi)容:
1.解方程組。
2.上述方程移項變形轉(zhuǎn)化為兩個一次函數(shù)y=和y=2x,在同一直角坐標系內(nèi)分別作出這兩個函數(shù)的圖像。
(1)求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點的橫縱坐標;
(2)求兩條直線的交點坐標可以轉(zhuǎn)化為求這兩條直線對應的函數(shù)表達式聯(lián)立的二元一次方程組的解。
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。
注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組。
第三環(huán)節(jié)典型例題(10分鐘,學生獨立解決)。
探究方程與函數(shù)的相互轉(zhuǎn)化。
內(nèi)容:例1用作圖像的方法解方程組。
例2如圖,直線與的交點坐標是。
第四環(huán)節(jié)反饋練習(10分鐘,學生解決全班交流)。
內(nèi)容:
1.已知一次函數(shù)與的圖像的交點為,則。
2.已知一次函數(shù)與的圖像都經(jīng)過點a(—2,0),且與軸分別交于b,c兩點,則的面積為()。
(a)4(b)5(c)6(d)7。
3.求兩條直線與和軸所圍成的三角形面積。
4.如圖,兩條直線與的交點坐標可以看作哪個方程組的解?
第五環(huán)節(jié)課堂小結(jié)(5分鐘,師生共同總結(jié))。
內(nèi)容:以“問題串”的形式,要求學生自主總結(jié)有關知識、方法:
1.二元一次方程和一次函數(shù)的。圖像的關系;
(1)以二元一次方程的解為坐標的點都在相應的函數(shù)圖像上;
2.方程組和對應的兩條直線的關系:
(1)方程組的解是對應的兩條直線的交點坐標;
(2)兩條直線的交點坐標是對應的方程組的解;
(1)代入消元法;
(2)加減消元法;
(3)圖像法。要強調(diào)的是由于作圖的不準確性,由圖像法求得的解是近似解。
第六環(huán)節(jié)作業(yè)布置。
習題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2。
一次函數(shù)教學設計篇六
1、問題導入:
請同學們思考后回答:
(1)找出問題中的變量并用字母表示,列出函數(shù)關系式、
(2)這兩個函數(shù)關系式有什么共同點?自變量的取值范圍各有什么限制?
以上這些問題,請各小組討論一下,派代表回答、引出課題(板書課題)教師最后總結(jié)一次函數(shù)的概念、(板書)。
1、做一做:
我們已經(jīng)學習了用描點法畫函數(shù)的圖象,請同學運用描點法畫出下列函數(shù)的圖象(老師用多媒體打出題目)。根據(jù)學生的動手實踐、觀察與討論,得出結(jié)論:一次函數(shù)的圖象是一條直線、特別地,正比例函數(shù)的圖象是經(jīng)過原點的一條直線。
2、接下來教師提問:
(1)觀察所畫出的四個一次函數(shù)的圖象,比較各對一次函數(shù)的圖象有什么共同點,有什么不同點。
4、鞏固訓練:
(1)在同一平面直角坐標系中畫出下列函數(shù)的圖象。
將直線向上平移5個單位,得到直線_______________________、
(由學生到前板演)、
函數(shù)反映了客觀世界中量的變化規(guī)律,那么一次函數(shù)又有什么性質(zhì)呢?
1、請同學們來一起觀察大屏幕上函數(shù)圖象(教師用多媒體演示函數(shù)的圖象),并回答:當一個點在直線上從左右移動時,它的位置如何變化?你能從中得到函數(shù)值的變化與自變量的變化規(guī)律嗎?(教師運用現(xiàn)代化的教學手段來演示點的移動情況,進一步促進了學生對一次函數(shù)的變化規(guī)律理解)由學生討論出結(jié)果:也就是說,函數(shù)值隨自變量的增大而增大、(教師板書)。
一次函數(shù)教學設計篇七
2、教學目標的確定及依據(jù)。
根據(jù)教學大綱要求,結(jié)合教材,考慮到學生已有的認知結(jié)構(gòu)心理特征,我制定了如下的教學目標:
(1)知識目標:理解對數(shù)函數(shù)的意義;掌握對數(shù)函數(shù)的圖像與性質(zhì);初步學會用。
(2)能力目標:滲透類比、數(shù)形結(jié)合、分類討論等數(shù)學思想方法,培養(yǎng)學生觀察、
分析、歸納等邏輯思維能力.。
(3)情感目標:通過指數(shù)函數(shù)和對數(shù)函數(shù)在圖像與性質(zhì)上的對比,使學生欣賞數(shù)。
學的精確和美妙之處,調(diào)動學生學習數(shù)學的積極性.。
3、教學重點與難點。
難點:對數(shù)函數(shù)性質(zhì)中對于在a1與01兩種情況函數(shù)值的不同變化.。
學生在整個教學過程中始終是認知的主體和發(fā)展的主體,教師作為學生學習的指導者,應充分地調(diào)動學生學習的積極性和主動性,有效地滲透數(shù)學思想方法.根據(jù)這樣的原則和所要完成的教學目標,對于本節(jié)課我主要考慮了以下兩個方面:
1、教學方法:
(1)啟發(fā)引導學生實驗、觀察、聯(lián)想、思考、分析、歸納;
(2)采用“從特殊到一般”、“從具體到抽象”的方法;
(3)滲透類比、數(shù)形結(jié)合、分類討論等數(shù)學思想方法.。
2、教學手段:
計算機多媒體輔助教學.。
“授之以魚,不如授之以漁”,方法的掌握,思想的形成,才能使學生受益終身.本節(jié)課注重調(diào)動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:
(1)類比學習:與指數(shù)函數(shù)類比學習對數(shù)函數(shù)的圖像與性質(zhì).。
(2)探究定向性學習:學生在教師建立的情境下,通過思考、分析、操作、探索,
(3)主動合作式學習:學生在歸納得出對數(shù)函數(shù)的圖像與性質(zhì)時,通過小組討論,
使問題得以圓滿解決.。
1、溫故知新。
設計意圖:既復習了指數(shù)函數(shù)和反函數(shù)的有關知識,又與本節(jié)內(nèi)容有密切關系,
有利于引出新課.為學生理解新知清除了障礙,有意識地培養(yǎng)學生。
分析問題的能力.。
2、探求新知。
一次函數(shù)教學設計篇八
“指數(shù)函數(shù)”的教學共分兩個課時完成。第一課時為指數(shù)函數(shù)的定義,圖像及性質(zhì);第二課時為指數(shù)函數(shù)的應用?!爸笖?shù)函數(shù)”第一課時是在學習指數(shù)概念的基礎上學習指數(shù)函數(shù)的概念和性質(zhì),通過學習指數(shù)函數(shù)的定義,圖像及性質(zhì),可以進一步深化學生對函數(shù)概念的理解與認識,使學生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,并且為學習對數(shù)函數(shù)作好準備。
在講解指數(shù)函數(shù)的定義前,復習有關指數(shù)知識及簡單運算,然后由實例引入指數(shù)函數(shù)的概念,因為手工繪圖復雜且不夠精確,并且是本節(jié)課的教學關鍵,教學中,我借助電腦手段,通過描點作圖,觀察圖像,引導學生說出圖像特征及變化規(guī)律,并從而得出指數(shù)函數(shù)的性質(zhì),提高學生的形數(shù)結(jié)合的能力。
大部分學生數(shù)學基礎較差,理解能力,運算能力,思維能力等方面參差不齊;同時學生學好數(shù)學的自信心不強,學習積極性不高。針對這種情況,在教學中,我注意面向全體,發(fā)揮學生的主體性,引導學生積極地觀察問題,分析問題,激發(fā)學生的求知欲和學習積極性,指導學生積極思維、主動獲取知識,養(yǎng)成良好的學習方法。并逐步學會獨立提出問題、解決問題??傊{(diào)動學生的非智力因素來促進智力因素的發(fā)展,引導學生積極開動腦筋,思考問題和解決問題,從而發(fā)揚鉆研精神、勇于探索創(chuàng)新。
為了調(diào)動學生學習的積極性,使學生變被動學習為主動愉快的學習。教學中我引導學生從實例出發(fā)啟發(fā)出指數(shù)函數(shù)的定義,在概念理解上,用步步設問、課堂討論來加深理解。在指數(shù)函數(shù)圖像的畫法上,我借助電腦,演示作圖過程及圖像變化的動畫過程,從而使學生直接地接受并提高學生的學習興趣和積極性,很好地突破難點和提高教學效率,從而增大教學的容量和直觀性、準確性??傊咎谜n充分體現(xiàn)了“教師為主導,學生為主體”的教學原則。
一次函數(shù)教學設計篇九
對數(shù)函數(shù)(第二課時)是2006人教版高一數(shù)學(上冊)第二章第八節(jié)第二課時的內(nèi)容,本小節(jié)涉及對數(shù)函數(shù)相關知識,分三個課時,這里是第二課時復習鞏固對數(shù)函數(shù)圖像及性質(zhì),并用此解決三類對數(shù)比大小問題,是對已學內(nèi)容(指數(shù)函數(shù)、指數(shù)比大小、對數(shù)函數(shù))的延續(xù)和發(fā)展,同時也體現(xiàn)了數(shù)學的實用性,為后續(xù)學習起到奠定知識基礎、滲透方法的作用,因此本節(jié)內(nèi)容起到了一種承上啟下的作用.
根據(jù)教學大綱的要求以及本節(jié)課的地位與作用,結(jié)合高一學生的認知特點確定教學目標如下:
學習目標:
2、運用對數(shù)函數(shù)的性質(zhì)比較兩個數(shù)的大小。
能力目標:
1、培養(yǎng)學生運用圖形解決問題的意識即數(shù)形結(jié)合能力。
2、學生運用已學知識,已有經(jīng)驗解決新問題的能力。
3、探索出方法,有條理闡述自己觀點的能力。
德育目標:
培養(yǎng)學生勤于思考、獨立思考、合作交流等良好的個性品質(zhì)。
教學中將在以下2個環(huán)節(jié)中突出教學重點:
1、利用學生預習后的心得交流,資源共享,互補不足。
2、通過適當?shù)木毩?,加強對解題方法的掌握及原理的理解。
教學中會在以下3個方面突破教學難點:
1、教師調(diào)整角色,讓學生成為學習的主人,教師在其中起引導作用即可。
2、小組合作探索新問題時,注重生生合作、師生互動,適時用語言鼓勵學生,增強學生參與討論的自信。
3、本節(jié)課采用多媒體輔助教學,節(jié)省時間,加快課程進度,增強了直觀形象性。
長處:高一學生經(jīng)過幾年的數(shù)學學習,已具備一定的數(shù)學素養(yǎng),對于已學知識或用過的數(shù)學思想、方法有一定的應用能力及應用意識,對于本節(jié)課而言,從知識上說,對數(shù)函數(shù)的圖像和性質(zhì)剛剛學過,本節(jié)課是知識的應用,從數(shù)學能力上說,指數(shù)比大小問題的解題思想和方法在這可借鑒,另外數(shù)形結(jié)合能力、小結(jié)概括能力、特殊到一般歸納能力已具備一點。
學生可能遇到的困難:本節(jié)課從教學內(nèi)容上來看,第三類對數(shù)比大小是課本以外補充的內(nèi)容,沒有預習心得,讓學生在課堂中快速通過合作探究來完成解題思路的構(gòu)建,有一定的挑戰(zhàn)性,從學生能力上來看,探索出方法,有條理闡述自己觀點的能力還需加強鍛煉,知識之間的聯(lián)系認識上還顯不足。
新課程強調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,在教育方式上,以學生為中心,讓學生成為學習的主人,教師在其中起引導作用即可?;诖?,本節(jié)課遵循此原則重點采用問題探究和啟發(fā)引導式的教學方法。從預習交流心得出發(fā),到探索新問題,再到題后的回顧總結(jié),一切以學生為中心,處處體現(xiàn)學生的主體地位,讓學生多說、多分析、多思考、多總結(jié),引導學生運用自己的語言闡述觀點,加強理解,在生生合作,師生互動中解決問題,為提高學生分析問題、解決問題能力打下基礎。本節(jié)課采用多媒體輔助教學,節(jié)省時間,加快課程進度,增強了直觀形象性。
1、課件展示本節(jié)課學習目標。
設計意圖:明確任務,激發(fā)興趣。
2、溫故知新(已填表形式復習對數(shù)函數(shù)的圖像和性質(zhì))。
設計意圖:復習已學知識和方法,為學生形成知識間的聯(lián)系和框架建立平臺,并為下一步的應用打下基礎。
3、預習后心得交流。
1)同底對數(shù)比大小。
2)既不同底數(shù),也不同真數(shù)的對數(shù)比大小。
設計意圖:通過學生的預習,自己總結(jié)方法及此方法適用的題型,有條理的闡述自己的學習心得,老師只需起引導作用,引導學生從題目表面上升到題目的實質(zhì),從而找到解決問題的有效方法。
4、合作探究——同真異底型的對數(shù)比大小。
以例3為例,學生分組合作探究解題方法,預計兩種:一是利用換底公式將此類型轉(zhuǎn)化為同底異真型,利用之前總結(jié)的方法解決此問題。二是利用具體對數(shù)的大小關系探究出不同底對數(shù)函數(shù)在同一直角坐標系中的圖像,以此來解決此類型比大小問題。
設計意圖:這一部分是本節(jié)課的難點,探究中充分發(fā)揮學生的主動性,培養(yǎng)主動學習的意識,同時也鍛煉學生各方面能力的很好機會,為以后的探究學習積累經(jīng)驗和方法,充分體現(xiàn)“授之以魚,不如授之以漁”的教學理念。另外數(shù)學問題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒有了反思,他們就錯過了解題的一次重要而有效益的方面。因此,本題解決后,讓學生反思明白,要想利用性質(zhì)解決問題,關鍵要做到“腦中有圖”,以“形”促“數(shù)”。
5、小結(jié)。
6、思考題。
以2009高考題為例,讓學生學以致用,增強數(shù)學學習興趣。
7、作業(yè)。
包括兩個方面:
1、書寫作業(yè)。
2、下節(jié)課前的預習作業(yè)。
通過本節(jié)課的教學實例來看,這種通過課本內(nèi)容預習,而后課堂交流學習成果的方法效果不錯,既能很好的完成教學任務,又能充分發(fā)揮學生學習的主動性。在自主探究時,學生分組討論過程中,我參與小組討論,對有能力的小組,在探究出一種方法后,可鼓勵完成更多的方法探究,對于能力較弱的小組,可給予適當?shù)奶崾?,使學生都能動起來,課堂都有所收獲,增強學生自信。另外,對于學生的總結(jié)回答,可能會比較慢,我一定會耐心聽,及時鼓勵,給予學生微笑和語言的鼓勵,效果很好。在小結(jié)環(huán)節(jié)中,對于高一學生自己小結(jié)的方法,是我一直的教學嘗試,由于只訓練了半學期,學生只能達到小結(jié)知識的程度,在以后的訓練中還會加入數(shù)學思想、數(shù)學方法的小結(jié)內(nèi)容,使這些數(shù)學名詞讓學生不再覺得抽象,而是變成具體的,可操作的、具體的解題工具。
一次函數(shù)教學設計篇十
1.能畫二次函數(shù)的圖象,并能夠比較它們與二次函數(shù)的圖象的異同,理解對二次函數(shù)圖象的影響.
2.能說出二次函數(shù)圖象的開口方向、對稱軸、頂點坐標、增減性、最值.
3.經(jīng)歷探索二次函數(shù)的圖象的作法和性質(zhì)的過程,進一步獲得將表格、表達式、圖象三者聯(lián)系起來的經(jīng)驗,體會數(shù)形結(jié)合思想在數(shù)學中的應用.
4.通過學生自己的探索活動,達到對拋物線自身特點的認識和對二次函數(shù)性質(zhì)的理解.
一次函數(shù)教學設計篇十一
對數(shù)函數(shù)的教學共分兩個部分完成。第一部分為對數(shù)函數(shù)的定義,圖像及性質(zhì);第二部分為對數(shù)函數(shù)的應用。對數(shù)函數(shù)是在學習對數(shù)概念的基礎上學習對數(shù)函數(shù)的概念和性質(zhì),通過學習對數(shù)函數(shù)的定義,圖像及性質(zhì),可以進一步深化學生對函數(shù)概念的理解與認識,使學生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,并且為學習對數(shù)函數(shù)以及對數(shù)函數(shù)的應用作好準備。
在教學過程中,我類比指數(shù)函數(shù)圖象和性質(zhì)的研究,研究了對數(shù)函數(shù)圖象和性質(zhì)。同學們課堂上能積極主動參與獲得性質(zhì)的過程。我用了三節(jié)課就對數(shù)函數(shù)的圖象和性質(zhì),圖象和性質(zhì)的應用進行講解。但是從作業(yè)和課堂效果看來。同學們沒有指數(shù)函數(shù)的性質(zhì)和圖象掌握的好。特反思如下:
1、學生對對數(shù)函數(shù)概念的理解及對數(shù)的運算不過關。學生在做這些運算時有時不能靈活運用公式例如換底公式,有時學生會想當然地自己“發(fā)明”公式。導致部分題目出現(xiàn)運算錯誤或不會。
2、在利用對數(shù)函數(shù)的單調(diào)性比較兩個對數(shù)式的大小書寫格式不規(guī)范,因此在解題的過程中就把真數(shù)和底數(shù)混亂了,這說明同學們用函數(shù)的觀點解決問題的思想方法還沒形成。
3、在解有關求定義域的問題時,學生不能很好的掌握底數(shù)a的取值范圍以及真數(shù)必修大于0.
4、同學們對對數(shù)與指數(shù)的互化不是很熟練。導致有關指數(shù)與對數(shù)互化題目出現(xiàn)錯誤。尤其是解決有關對數(shù)和指數(shù)混合式子的有關計算時困難很大,問題最多。還有在解決有關對數(shù)型函數(shù)定義域問題時,更不會用對數(shù)函數(shù)的單調(diào)性去解決。
以上這些原因我通過認真的反思,同時參考學生提出的意見,決定講兩節(jié)習題課,針對學生存在的共性問題解決,找出他們的盲點,同時加強練習力度。從練習中發(fā)現(xiàn)問題,再通過系統(tǒng)講解,直到絕大部分學生理解掌握為止。
一次函數(shù)教學設計篇十二
冪函數(shù)的圖象和性質(zhì)
畫冪函數(shù)的圖象并由圖象概括其性質(zhì)
教學內(nèi)容問題、任務師生活動設計意圖
1.某種蔬菜每千克1元,若購買千克,需要支付元是函數(shù)嗎?
2.正方形的邊長為,那么它的面積是的函數(shù)嗎?
3.立方體的邊長為,那么它的體積是的函數(shù)嗎?
4.正方形的面積為,那么它的邊長是的函數(shù)嗎?
5.某人內(nèi)騎車 內(nèi)行進了1,那么他騎車的平均速度是函數(shù)嗎?
6.這五個函數(shù)有什么共同特征?
7.給出冪函數(shù)的定義
8.下列函數(shù)是冪函數(shù)嗎?
9.冪函數(shù)的定義和指數(shù)函數(shù)的定義有什么區(qū)別?
10. 已知冪函數(shù)的圖象過點(4, ),求這個函數(shù)的解析式?
11. 觀察冪函數(shù)的圖象
12.作函數(shù)的圖象。
13. 作函數(shù)的圖象。
14.作函數(shù)的圖象。
15.根據(jù)所作函數(shù)的圖象,分別討論這些函數(shù)的性質(zhì)。
16.你能證明冪函數(shù)在[0,+ 上是增函數(shù)嗎?
17.從整體上把握冪函數(shù)的圖象。
作業(yè)p79習題1、2、3
師:投影展示問題,引導學生根據(jù)函數(shù)的定義進行分析。
生:根據(jù)函數(shù)定義思考并回答。
師:板書這5個函數(shù)表達式。
師生:從形式上分析:是指數(shù)冪的形式,其中底數(shù)是自變量,指數(shù)是常數(shù)。
師:板書定義。
生:根據(jù)冪函數(shù)的形式進行辨別。
生:對比指數(shù)函數(shù)的定義,指出區(qū)別。
師生:用待定系數(shù)法共同完成。
師:幾何畫板展示冪函數(shù)圖象,隨著指數(shù) 的改變,冪函數(shù)圖象的形態(tài)和位置都發(fā)生改變。
生:觀察指數(shù)的變化和圖象的變化
師:冪函數(shù)的圖象因指數(shù) 不同而形態(tài)各異,遠比指數(shù)函數(shù)的.圖象復雜。但我們可以通過討論其中有代表性的幾個函數(shù)來了解冪函數(shù)的圖象特征。生:在同一坐標系中作出三個函數(shù)的圖象。
師:巡視指導。
師:用幾何畫板作出三個函數(shù)的圖象。
生:對照檢查,注意所作圖象的特征。
師:提示橫坐標取值: 。巡視學生作圖情況。
生:列表,并描點作圖。
師:投影函數(shù)圖象。
師:指導作圖:取橫坐標0。
生:作圖。
師:投影圖象。
師:引導學生根據(jù)函數(shù)的圖象,指出函數(shù)的性質(zhì)。
生:指出函數(shù)性質(zhì)并完成課本第78頁表格。
生:嘗試證明。
師生:共同完成證明。
師:幾何畫板動態(tài)展示冪函數(shù)在第一象限的圖象,引導學生觀察圖象的變化。師生共同歸納圖象的主要特征:在 上:減函數(shù) :猛增:增函數(shù) :緩增通過實際問題,引入冪函數(shù)。由特殊到一般的提練、概括。形式定義,注意辨別。對比,加深印象,避免與指數(shù)函數(shù)混淆。進一步加強理解冪函數(shù)定義。對冪函數(shù)的圖象作整體感知,了解冪函數(shù)的圖象和性質(zhì)與指數(shù) 關系密切。三個函數(shù)都是初中學過的,描三個點作出簡圖,把握圖象的主要特征。數(shù)形結(jié)合。
一次函數(shù)教學設計篇十三
教學目標:
2、能較熟練地運用指數(shù)函數(shù)的性質(zhì)解決指數(shù)函數(shù)的平移問題。
教學重點:
教學難點:
教學過程:
一、情境創(chuàng)設。
二、數(shù)學應用與建構(gòu)。
例1、解不等式:
小結(jié):解關于指數(shù)的不等式與判斷幾個指數(shù)值的大小一樣,是指數(shù)性質(zhì)的運用,關鍵是底數(shù)所在的范圍。
例2、說明下列函數(shù)的圖象與指數(shù)函數(shù)y=2x的圖象的關系,并畫出它們的`示意圖。
小結(jié):指數(shù)函數(shù)的平移規(guī)律:y=f(x)左右平移,y=f(x+k)(當k0時,向左平移,反之向右平移),上下平移y=f(x)+h(當h0時,向上平移,反之向下平移)。
練習:
(1)將函數(shù)f(x)=3x的圖象向右平移3個單位,再向下平移2個單位,可以得到函數(shù)x的圖象。
(2)將函數(shù)f(x)=3x的圖象向右平移2個單位,再向上平移3個單位,可以得到函數(shù)y的圖象。
(3)將函數(shù)圖象先向左平移2個單位,再向下平移1個單位所得函數(shù)的解析式是。
(4)對任意的a0且a1,函數(shù)y=a2x1的圖象恒過的定點的坐標是(),函數(shù)y=a2x—1的圖象恒過的定點的坐標是()。
小結(jié):指數(shù)函數(shù)的定點往往是解決問題的突破口!定點與單調(diào)性相結(jié)合,就可以構(gòu)造出函數(shù)的簡圖,從而許多問題就可以找到解決的突破口。
(5)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=2x和y=2|x2|的圖象?
(6)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=|2x—1|的圖象?
小結(jié):函數(shù)圖象的對稱變換規(guī)律。
例3、已知函數(shù)y=f(x)是定義在r上的奇函數(shù),且x0時,f(x)=1—2x,試畫出此函數(shù)的圖象。
例4、求函數(shù)的最小值以及取得最小值時的x值。
小結(jié):復合函數(shù)常常需要換元來求解其最值。
練習:
(1)函數(shù)y=ax在[0,1]上的最大值與最小值的和為3,則a等于();。
(2)函數(shù)y=2x的值域為();。
(4)當x0時,函數(shù)f(x)=(a2—1)x的值總大于1,求實數(shù)a的取值范圍。
三、小結(jié)。
四、作業(yè):
課本p55—6、7。
五、課后探究。
(1)函數(shù)f(x)的定義域為(0,1),則函數(shù)f(x)的定義域為?
(2)對于任意的x1,x2r,若函數(shù)f(x)=2x,試比較函數(shù)的大小。
一次函數(shù)教學設計篇十四
“指數(shù)函數(shù)及性質(zhì)”的教學共分兩個課時完成,這是第一課時。本節(jié)課主要學習了指數(shù)函數(shù)的定義,研究了指數(shù)函數(shù)的圖像及相關的性質(zhì)?;仡欉@節(jié)課,心中有很多感想,也有下面一些思考:
1.這節(jié)課是在學生系統(tǒng)的學習了指數(shù)概念、函數(shù)概念,基本掌握了函數(shù)性質(zhì)的基礎上進行學習的,具有初步的函數(shù)知識,但是對于研究具體的初等函數(shù)的性質(zhì)的基本方法和步驟還比較陌生,對于指數(shù)函數(shù)要怎么樣進行較為系統(tǒng)的研究對學生來說是有困難的,因此這節(jié)課的每一個環(huán)節(jié)以我引導,以學生的自主探究為主來完成是符合學情的。
2.設計“指數(shù)函數(shù)的圖象及性質(zhì)”,“y=ax的圖象和y=(1/a)x的圖象間的關系”.“a的大小對函數(shù)圖象的影響”三個問題,讓學生通過幾何畫板軟件動手畫圖操作、自主探究、主動思考來達到對知識的發(fā)現(xiàn)和接受,改變過去機械接受和死記結(jié)論的狀況,符合新課改的理念,同時也完成了這節(jié)課的主要教學任務。
3.在對底數(shù)a的范圍的思考及三個探究性問題后都設置了練習,能及時反饋學生對所探求到的知識的掌握程度,便于及時調(diào)整課堂教學行為。從課后看學生對這些知識的掌握應該是比較好的。
4.這節(jié)課的學習及對函數(shù)研究方法和步驟的總結(jié)對后續(xù)學習新的函數(shù)起到了重要的示范作用。
在整個的教學過程中,始終體現(xiàn)以學生為本的教育理念。在學生已有的認知基礎上進行設問和引導,關注學生的認知過程,強調(diào)學生的品德、思維和心理等方面的發(fā)展。重視討論、交流和合作,重視探究問題的習慣的培養(yǎng)和養(yǎng)成。同時,考慮不同學生的個性差異和發(fā)展層次,使不同的學生都有發(fā)展,體現(xiàn)因材施教的原則。
在教學的過程中,考慮到學生的實際,有意地設計了一些鋪墊和引導,既鞏固舊有知識,又為新知識提供了附著點,充分體現(xiàn)學生的主體地位。
三.存在的問題。
1.沒有充分調(diào)動學生的積極性,課堂氣氛顯得沉悶。
2.盡量放手讓學生自己去解決問題,教師自己講得偏多,學生的主體作用體現(xiàn)得不夠。
3.指數(shù)函數(shù)概念部分的教學時間稍多,后面教學過程稍顯倉促,學生自主探究的時間不夠,因此違背了教學設計的初衷。當然我會通過對學生作業(yè)的批改獲得更全面的對學生知識掌握的評價和課堂效果的反思,并在后續(xù)的時間里修訂課堂設計方案,達到預期的教學效果,實現(xiàn)學生的目標掌握和能力發(fā)展。
【本文地址:http://www.mlvmservice.com/zuowen/14084122.html】