初中一元二次方程教案(優(yōu)質(zhì)18篇)

格式:DOC 上傳日期:2023-11-21 09:09:03
初中一元二次方程教案(優(yōu)質(zhì)18篇)
時間:2023-11-21 09:09:03     小編:雅蕊

一份優(yōu)秀的教案可以為教師的教學生涯增添光彩。教案中的評價手段應與教學目標相匹配,能夠全面客觀地評價學生的學習情況。最后,祝愿每個教師編寫出更加出色的教案,為學生的學習提供更好的支持和引導。

初中一元二次方程教案篇一

一、出示學習目標:

2.通過自學探究掌握裁邊分割問題。

二、自學指導:(閱讀課本p47頁,思考下列問題)。

1.閱讀探究3并進行填空;

2.完成p48的思考并掌握裁邊分割問題的特點;

設上、下邊襯的寬均為9xcm,左、右邊襯的寬均為7xcm,則:

由中下層學生口答書中填空,老師再給予補充。

思考:如果換一種設法,是否可以更簡單?

設正中央的長方形長為9acm,寬為7acm,依題意得。

9a·7a=(可讓上層學生在自學時,先上來板演)。

效果檢測時,由同座的同學給予點評與糾正。

9.如圖,要設計一幅寬20m,長30m的圖案,兩橫兩豎寬度之比為3∶2,若使彩條面積是圖案面積的四分之一,應怎樣設計彩條的寬帶?(討論用多種方法列方程比較)。

注意點:要善于利用圖形的平移把問題簡單化!

三、當堂訓練:

(只要求設元、列方程)。

初中一元二次方程教案篇二

教材分析:1.本節(jié)以生活中的實際問題為背景,引出一元二次方程的概念,讓學生掌握一元二次方程的特點,歸納出一元二次方程的一般形式,給出一元二次方程的根的概念,并指出一元二次方程的根不唯一。本節(jié)內(nèi)容是在前面所學方程、一元一次方程、整式、方程的解的基礎上進行學習,也是后面學習二次函數(shù)的一個基礎。

2.這些概念是全章后繼內(nèi)容的基礎。

3.讓學生體會數(shù)學來源于生活,又服務于生活的基本思想。

學情分析:1.授課班級學生基礎較差,學生成績參差不齊,差生較多。教學中應給予充分思考的時間,注意講練結(jié)合,以學生為本,體現(xiàn)生本課堂的理念。

2.該班級學生在平時訓練中已經(jīng)形成了良好的合作精神和合作氣氛,可以充分發(fā)揮合作的優(yōu)勢,從而充分調(diào)動學生主動性和積極性,使課堂氣氛活躍,讓學生在愉快的環(huán)境中學習。

3.作為該班的班主任,同時又擔任該班的數(shù)學教學,對學生學習情況有比較深入地了解,在解決具體問題的時候可以兼顧不同能力的學生,充分調(diào)動學生的積極性,在練習題的設計上要針對學生的差異采取分層設計的方法,著重加強對學生的雙基訓練。

教學目標:

一知識與技能:。

1.理解一元二次方程的概念,能判斷一個方程是一元二次方程。

2.掌握一元二次方程的一般形式,正確認識二次項系數(shù)、一次項系數(shù)及常數(shù)項.

二過程與方法:

1.引導學生分析實際問題中的數(shù)量關系,組織學生討論,讓學生類比、抽象出一元二次方程的概念。

2.培養(yǎng)獨立思考,合作交流學,分析問題,解決問題的能力。

三情感態(tài)度與價值觀:

1.培養(yǎng)學生主動探究知識、自主學習和合作交流的意識.

2.激發(fā)學生學數(shù)學的興趣,體會學數(shù)學的快樂,培養(yǎng)用數(shù)學的意識.

3.讓學生體會數(shù)學來源于生活,又服務于生活的基本思想,從而意識到數(shù)學在生活中的作用。

教學重點:一元二次方程的概念及一般形式,利用概念解決實際問題。

教學難點:1.由實際問題向數(shù)學問題的轉(zhuǎn)化過程.

2.正確識別一般式中的“項”及“系數(shù)”.

3.一元二次方程的特點,如何判斷一個方程是一元二次方程。

教學過程:

一、創(chuàng)設情境,引入新課。

1.問題1:廣安區(qū)為增加農(nóng)民收入,需要調(diào)整農(nóng)作物種植結(jié)構(gòu),計劃無公害蔬菜的產(chǎn)量比翻一番,要實現(xiàn)這一目標,和20無公害蔬菜產(chǎn)量的年平均增長率是多少?(通過放幻燈片引入)。

(1)用代數(shù)式表示20的產(chǎn)量;。

(2)年蔬菜的產(chǎn)量比年增加了2x,對嗎?為什么?你能用代數(shù)式表示出來嗎?

學生思考交流得出方程a(1+x)2=2a。

整理得,x2+2x-1=0…………①。

2.通過幻燈片引入情境,提出問題:

這個問題的相等關系是什么?

320×200-(320x+2×200x-2x2)=57000。

整理得x2-36x+35=0。

誰還能換一種思路考慮這個問題?

把6個小花壇拼起來是一個多長多寬的矩形,由此你會得出什么樣的方程?

(320-2x)(200-x)=57000。

整理得x2-36x+35=0…………②。

比較一下,哪種方法更巧妙?

初中一元二次方程教案篇三

了解一元二次方程的概念;一般式ax2+bx+c=0(a0)及其派生的概念;應用一元二次方程概念解決一些簡單題目.

1.通過設置問題,建立數(shù)學模型,模仿一元一次方程概念給一元二次方程下定義.

2.一元二次方程的一般形式及其有關概念.

3.解決一些概念性的題目.

4.通過生活學習數(shù)學,并用數(shù)學解決生活中的問題來激發(fā)學生的學習熱情.

重難點關鍵。

1.重點:一元二次方程的概念及其一般形式和一元二次方程的有關概念并用這些概念解決問題.

2.難點關鍵:通過提出問題,建立一元二次方程的數(shù)學模型,再由一元一次方程的概念遷移到一元二次方程的概念.

教學過程。

一、復習引入。

學生活動:列方程.

如果假設門的高為x尺,那么,這個門的寬為_______尺,根據(jù)題意,得________.

整理、化簡,得:__________.

問題(2)如圖,如果,那么點c叫做線段ab的黃金分割點.

如果假設ab=1,ac=x,那么bc=________,根據(jù)題意,得:________.

整理得:_________.

如果假設剪后的正方形邊長為x,那么原來長方形長是________,寬是_____,根據(jù)題意,得:_______.

整理,得:________.

老師點評并分析如何建立一元二次方程的數(shù)學模型,并整理.

二、探索新知。

學生活動:請口答下面問題.

(1)上面三個方程整理后含有幾個未知數(shù)?

(2)按照整式中的多項式的規(guī)定,它們最高次數(shù)是幾次?

(3)有等號嗎?或與以前多項式一樣只有式子?

老師點評:(1)都只含一個未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號,是方程.

因此,像這樣的方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的.最高次數(shù)是2(二次)的方程,叫做一元二次方程.

一般地,任何一個關于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a0).這種形式叫做一元二次方程的一般形式.

一個一元二次方程經(jīng)過整理化成ax2+bx+c=0(a0)后,其中ax2是二次項,a是二次項系數(shù);bx是一次項,b是一次項系數(shù);c是常數(shù)項.

例1.將方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并寫出其中的二次項系數(shù)、一次項系數(shù)及常數(shù)項.

分析:一元二次方程的一般形式是ax2+bx+c=0(a0).因此,方程(8-2x)(5-2x)=18必須運用整式運算進行整理,包括去括號、移項等.

解:去括號,得:

移項,得:4x2-26x+22=0。

其中二次項系數(shù)為4,一次項系數(shù)為-26,常數(shù)項為22.

例2.(學生活動:請二至三位同學上臺演練)將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項、二次項系數(shù);一次項、一次項系數(shù);常數(shù)項.

分析:通過完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a0)的形式.

解:去括號,得:

x2+2x+1+x2-4=1。

移項,合并得:2x2+2x-4=0。

其中:二次項2x2,二次項系數(shù)2;一次項2x,一次項系數(shù)2;常數(shù)項-4.

三、鞏固練習。

教材p32練習1、2。

四、應用拓展。

例3.求證:關于x的方程(m2-8m+17)x2+2mx+1=0,不論m取何值,該方程都是一元二次方程.

分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m2-8m+170即可.

證明:m2-8m+17=(m-4)2+1。

∵(m-4)20。

(m-4)2+10,即(m-4)2+10。

不論m取何值,該方程都是一元二次方程.

五、歸納小結(jié)(學生總結(jié),老師點評)。

本節(jié)課要掌握:

(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a0)和二次項、二次項系數(shù),一次項、一次項系數(shù),常數(shù)項的概念及其它們的運用.

六、布置作業(yè)。

初中一元二次方程教案篇四

課標要求熟練掌握用配方法解一元二次方程。配方法和公式法是解一元二次方程的通用方法,它的推導是建立在直接開平方法的基礎上,又是推導求根公式和一元二次方程根與系數(shù)的關系的基礎,更是為今后學生能學好二次函數(shù)打基礎,二次函數(shù)的頂點坐標的確定和二次函數(shù)與一元二次方程的關系息息相關。再者列一元二次方程解應用題和壓軸題----二次函數(shù)的綜合題是中考試題中常見的題型。一元二次方程是中學數(shù)學的主要內(nèi)容之一,在初中數(shù)學占有重要的地位。

2、過程與方法。

(1)理解并掌握配方法。

(2)通過探索配方法的過程,體會轉(zhuǎn)化,降次的數(shù)學思想方法,培養(yǎng)觀察、比較、分析、概括、歸納的能力。

3、情感態(tài)度與價值觀。

通過分析實際問題中的數(shù)量關系,建立一元二次方程模型解決問題,進一步認識方程模型的重要性,增強學生的數(shù)學應用意識與能力。

難點:配方的過程。

初中一元二次方程教案篇五

1、知識與能力目標:要求學生會根據(jù)實際問題列出一元二次方程,體會方程的模型思想,培養(yǎng)學生歸納、分析的能力。

2、過程與方法目標:引導學生分析實際問題中的數(shù)量關系,回顧一元一次方程的概念,組織學生討論,讓學生自己抽象出一元二次方程的概念。

3.、情感、態(tài)度與價值觀:通過數(shù)學建模的分析、思考過程,激發(fā)學生學數(shù)學的興趣,體會做數(shù)學的快樂,培養(yǎng)用數(shù)學的意識并與校園綠化相結(jié)合。

教學重點、難點。

教學重點:通過實際問題模型建立一元二次方程的概念,認識一元二次方程一般形式.

2。難點:通過實際問題,建立一元二次方程的數(shù)學模型,再由一元一次方程的概念遷移到一元二次方程的概念。

教學過程:

(一)創(chuàng)設情景,導入新課。

分析:設長方形綠地的寬為x米,則列方程,

整理可得。

分析:設長方形綠地的寬為x米,則列方程,

整理可得。

【設計意圖】因為數(shù)學來源與生活,所以以學生的實際生活背景為素材創(chuàng)設情景,易于被學生接受、感知。同時幫助學生從實際問題中提煉出數(shù)學問題,初步培養(yǎng)學生的空間概念和抽象能力。情景分析中學生自然會想到用方程來解決問題,但所列的方程不是以前學過的,從而激發(fā)學生的求知欲望,順利地進入新課,并激發(fā)學生環(huán)保意識。

初中一元二次方程教案篇六

第二步:將左端的二次三項式分解為兩個一次因式的積;。

第三步:方程左邊兩個因式分別為0,得到兩個一次方程,它們的解就是原方程的解.

解法二:配方法。

x^2-4x+3=x^2-4x+4-1=(x-2)^2-1=0。

即(x-2)^2=1。

于是x=3或x=1。

一般來說,一元二次方程往往可以用這樣2種方法解答,特別是對配方來說,它可能更實用,普遍。

比如x^2+x-1=0。

我們可能分解不出它的因式來,不過我們可以采用配方法。

x^2+x-1=(x+1/2)^2-5/4=0。

于是得到x=(根號5-1)/2或x=(-根號5-1)/2。

小練習。

1.分解因式:

(4)(x+1)2-16=________。

2.方程(2x+1)(x-5)=0的解是_________。

3.方程2x(x-2)=3(x-2)的解是___________。

5.已知y=x2+x-6,當x=________時,y的值為0;當x=________時,y的值等于24.6.方程x2+2ax-b2+a2=0的解為__________.

初中一元二次方程教案篇七

1、知識與技能目標:認識一元二次方程,并能分析簡單問題中的數(shù)量關系列出一元二次方程。

2、過程與方法:學生通過觀察與模仿,建立起對一元二次方程的感性認識,獲得對代數(shù)式的初步經(jīng)驗,鍛煉抽象思維能力。

3、情感態(tài)度與價值觀:學生在獨立思考的過程中,能將生活中的經(jīng)驗與所學的知識結(jié)合起來,形成實事求是的態(tài)度以及進行質(zhì)疑和獨立思考的習慣。

二、教學重難點。

重點:理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標準的一元二次方程。

三、教學過程。

(一)導入新課。

生:老師,這是雷鋒叔叔。

生:是的老師。

生:想。

師:同學們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學習一元二次方程。

(二)新課教學。

師:我們來看到這個題目,要設計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應設計為全高?同學們用ac來表示上部,bc來表示下部先簡單列一下這個比例關系,待會老師下去看看同學們的式子。

(下去巡視)。

(三)小結(jié)作業(yè)。

師:今天大家學習了一元二次方程,同學們回去還要加強鞏固,做練習題的1、2(2)題。

四、板書設計。

五、教學反思。

將本文的word文檔下載到電腦,方便收藏和打印。

初中一元二次方程教案篇八

3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。

教學重點和難點:

教學建議:

1.教材分析:

1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。

2)重點、難點分析。

是一元二次方程的重要組成部分。方程,只有當時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:

(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。

(2)條件是用“關于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。

(3)方程中含有字母系數(shù)的項,且出現(xiàn)“關于的方程”這樣的語句,就要對方程中的字母系數(shù)進行討論。如:“關于的方程”,這就有兩種可能,當時,它是一元一次方程;當時,它是一元二次方程,解題時就會有不同的結(jié)果。

將本文的word文檔下載到電腦,方便收藏和打印。

初中一元二次方程教案篇九

2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。

3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。

教學重點和難點:

難點:對一元二次方程的一般形式的正確理解及其各項系數(shù)的確定。

教學建議:

1.教材分析:

1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。

2)重點、難點分析。

是一元二次方程的重要組成部分。方程,只有當時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:

(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。

(2)條件是用“關于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。

(3)方程中含有字母系數(shù)的項,且出現(xiàn)“關于的方程”這樣的語句,就要對方程中的字母系數(shù)進行討論。如:“關于的方程”,這就有兩種可能,當時,它是一元一次方程;當時,它是一元二次方程,解題時就會有不同的結(jié)果。

初中一元二次方程教案篇十

一元二次方程是一種數(shù)學建模的方法,它有著廣泛的實際背景,可以作為許多實際問題的數(shù)學模型。它體現(xiàn)了數(shù)學的轉(zhuǎn)化思想,學好一元二次方程是學好二次函數(shù)不可或缺的,一元二次方程是高中數(shù)學的奠基工程。是本書的重點內(nèi)容,為后續(xù)學習打下良好的基礎。

學情分析。

1、經(jīng)過兩年的合作,我們班的學生已比較配合我上課,同時初三學生觀察、類比、概括、歸納能力也都比較強,不過對應用題的分析他們還是覺得很頭疼,在今后應用題的教學中需進一步加強。

2、一元二次方程是在學習《一元一次方程》、《二元一次方程》、分式方程等基礎之上學習的,一元二次方程是一次方程向二次方程的轉(zhuǎn)化,是低次方程轉(zhuǎn)向高次方程求解方法的階梯。一元二次方程又是二次函數(shù)的特例。

教學目標。

一、知識目標。

1、在分析、揭示實際問題的數(shù)量關系并把實際問題轉(zhuǎn)化為數(shù)學模型(一元二次方程)的過程中,使學生感受方程是刻畫現(xiàn)實世界數(shù)量關系的工具,,增加對一元二次方程的感性認識.

3、掌握一元二次方程的一般形式,正確認識二次項系數(shù)、一次項系數(shù)及常數(shù)項.

二、能力目標。

1、通過一元二次方程的引入,培養(yǎng)學生建模思想,歸納、分析問題及解決問題的能力.

2、由知識來源于實際,樹立轉(zhuǎn)化的思想,由設未知數(shù)、列方程向?qū)W生滲透方程的思想,進一步提高學生分析問題、解決問題的能力.

四、情感目標。

1、培養(yǎng)學生主動探究知識、自主學習和合作交流的意識.

2、激發(fā)學生學數(shù)學的興趣,體會學數(shù)學的快樂,培養(yǎng)用數(shù)學的意識。

教學重點和難點。

難點:1、從實際問題中抽象出一元二次方程。2、正確識別一般式中的“項”及“系數(shù)”

初中一元二次方程教案篇十一

(2)掌握一元二次方程的.一般形式,會判斷一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項。

(一)創(chuàng)設情景,引入新課。

由學生說出這幾個方程的共同特征,從而引出一元二次方程的概念。

(二)新授。

1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)。

任一個一元二次方程都可以轉(zhuǎn)化成一般形式,注意二次項系數(shù)不為零。

3:講解例子。

5:講解例子。

6:一般步驟。

(三)小結(jié)。

(四)布置作業(yè)。

初中一元二次方程教案篇十二

解一元二次方程有四種方法,直接開平方法、配方法、公式法、因式分解法,這四種方法各有千秋。直接開平方法很簡單,在這里不做過多的介紹。為保證學生掌握基本的運算技能,教學中進行了一定量的訓練,但要避免學生簡單的模仿。我們在探究一元二次方程解法的過程中,要加強思想方法的滲透,發(fā)展學生的思維能力。在解一元二次方程的幾種方法中,均需要用到轉(zhuǎn)化的思想方法。如配方法需要將方程轉(zhuǎn)化為能直接開平方的形式,公式法能根據(jù)一元二次方程轉(zhuǎn)化為兩個一元一次方程,所有這些均體現(xiàn)了轉(zhuǎn)化的思想。在教學時老師引導學生在主動進行觀察、思考核探究的基礎上,體會數(shù)學思想方法在其中的作用,充分發(fā)展學生的思維能力。

1.會用配方法、公式法、因式分解法解簡單數(shù)字系數(shù)的一元二次方程。

2.能夠根據(jù)一元二次方程的特點,靈活選用解方程的方法,體會解決問題策略的多樣性。

1.參與對一元二次方程解法的探索,體驗數(shù)學發(fā)現(xiàn)的過程,對結(jié)果比較、驗證、歸納、理清幾種解法之間的關系,并能根據(jù)方程的特點靈活選擇適當?shù)姆椒ń庖辉畏匠獭?/p>

在解一元二次方程的實踐中,交流、總結(jié)經(jīng)驗和規(guī)律,體驗數(shù)學活動樂趣。

重點:掌握配方法、公式法、因式分解法解一元二次方程的步驟,并熟練運用上述方法解題。

難點:根據(jù)方程的特點靈活選擇適當?shù)姆椒ń庖辉畏匠獭?/p>

探索發(fā)現(xiàn),講練結(jié)合。

初中一元二次方程教案篇十三

1、構(gòu)建本章的部分知識框圖。

2、復習一元二次方程的概念、解法。

1、通過對本章方程解法的復習,進一步提高學生的運算能力。

2、在解一元二次方程的過程中體會轉(zhuǎn)化等數(shù)學思想。

1、一元二次方程的概念

2、一元二次方程的四種解法:直接開平方法、配方法、公式法、因式分解法;

解法的靈活選擇;例4和例5的解法。

導入新課

問題:本章中,我們有哪些收獲?(教師點撥引導學生構(gòu)建本章部分知識框圖)

共同探究

例1

例2

(1)

解法及其關系

(2)

根的形式

x1=3

x2=4

(3)熟悉解法

例3用四種解法分別解此方程

(4)方法優(yōu)選

例4

例5

解關于x的方程

錯誤解法

正確解法

提煉思想

我們有哪些收獲?解方程的思想方法是什么?

鞏固提高

初中一元二次方程教案篇十四

3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

教學重點:

1.體會方程與函數(shù)之間的聯(lián)系。

2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

教學難點:

1.探索方程與函數(shù)之間關系的過程。

2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關系。

啟發(fā)引導合作交流。

課件。

計算機、實物投影。

檢查預習引出課題。

1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.

2.回顧一次函數(shù)與一元一次方程的關系,利用函數(shù)的圖象求方程3x-4=0的解。

教師展示預習作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當總結(jié)和評價。

學生回答問題結(jié)論準確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。

這兩道預習題目是對舊知識的回顧,為本課的教學起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學生回顧二次方程的相關知識;2題是一次函數(shù)與一元一次方程的關系的問題,這題的設計是讓學生用學過的熟悉的知識類比探究本課新知識。

初中一元二次方程教案篇十五

(2)掌握一元二次方程的一般形式,會判斷一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項。

【教學過程】。

(一)創(chuàng)設情景,引入新課。

由學生說出這幾個方程的共同特征,從而引出一元二次方程的概念。

(二)新授。

1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)。

任一個一元二次方程都可以轉(zhuǎn)化成一般形式,注意二次項系數(shù)不為零。

3:講解例子。

5:講解例子。

6:一般步驟。

(三)小結(jié)。

(四)布置作業(yè)。

初中一元二次方程教案篇十六

3、解決一些概念性的題目、

4、態(tài)度、情感、價值觀。

4、通過生活學習數(shù)學,并用數(shù)學解決生活中的問題來激發(fā)學生的學習熱情、

一、復習引入。

學生活動:列方程、

問題(1)《九章算術》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”

整理、化簡,得:__________、

問題(2)如圖,如果,那么點c叫做線段ab的黃金分割點、

整理,得:________、

二、探索新知。

學生活動:請口答下面問題、

(1)上面三個方程整理后含有幾個未知數(shù)?

(2)按照整式中的'多項式的規(guī)定,它們最高次數(shù)是幾次?

(3)有等號嗎?或與以前多項式一樣只有式子?

解:去括號,得:

移項,得:4x2-26x+22=0。

其中二次項系數(shù)為4,一次項系數(shù)為-26,常數(shù)項為22、

解:去括號,得:

x2+2x+1+x2-4=1。

移項,合并得:2x2+2x-4=0。

其中:二次項2x2,二次項系數(shù)2;一次項2x,一次項系數(shù)2;常數(shù)項-4、

三、鞏固練習。

教材p32練習1、2。

四、應用拓展。

分析:要證明不論取何值,該方程都是一元二次方程,只要證明2-8+17≠0即可、

證明:2-8+17=(-4)2+1。

∵(-4)2≥0。

∴(-4)2+10,即(-4)2+1≠0。

五、歸納小結(jié)(學生總結(jié),老師點評)。

本節(jié)課要掌握:

六、布置作業(yè)。

初中一元二次方程教案篇十七

1.通過設置問題,建立數(shù)學模型,模仿一元一次方程概念給一元二次方程下定義.。

3.解決一些概念性的題目.。

4.態(tài)度、情感、價值觀。

4.通過生活學習數(shù)學,并用數(shù)學解決生活中的問題來激發(fā)學生的學習熱情。

一元二次方程的概念及其一般形式和一元二次方程的有關概念并用這些概念解決問題.。

學生活動:列方程。

問題(1)《九章算術》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”

整理、化簡,得:__________。

問題(2)如圖,如果,那么點c叫做線段ab的黃金分割點。

整理,得:________。

學生活動:請口答下面問題。

(1)上面三個方程整理后含有幾個未知數(shù)?

(2)按照整式中的多項式的規(guī)定,它們最高次數(shù)是幾次?

(3)有等號嗎?或與以前多項式一樣只有式子?

老師點評:

(1)都只含一個未知數(shù)x;

(2)它們的最高次數(shù)都是2次的;

(3)都有等號,是方程.。

解:去括號,得:

移項,得:4x2-26x+22=0。

其中二次項系數(shù)為4,一次項系數(shù)為-26,常數(shù)項為22.。

解:去括號,得:

x2+2x+1+x2-4=1。

移項,合并得:2x2+2x-4=0。

其中:二次項2x2,二次項系數(shù)2;一次項2x,一次項系數(shù)2;常數(shù)項-4.。

教材p32練習1、2。

分析:要證明不論取何值,該方程都是一元二次方程,只要證明2-8+17≠0即可.。

證明:2-8+17=(-4)2+1。

∵(-4)2≥0。

∴(-4)2+10,即(-4)2+1≠0。

本節(jié)課要掌握:

初中一元二次方程教案篇十八

1、知識與技能目標:認識一元二次方程,并能分析簡單問題中的數(shù)量關系列出一元二次方程。

2、過程與方法:學生通過觀察與模仿,建立起對一元二次方程的感性認識,獲得對代數(shù)式的初步經(jīng)驗,鍛煉抽象思維能力。

3、情感態(tài)度與價值觀:學生在獨立思考的過程中,能將生活中的經(jīng)驗與所學的知識結(jié)合起來,形成實事求是的態(tài)度以及進行質(zhì)疑和獨立思考的習慣。

重點:理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標準的一元二次方程。

難點:找對題目中的數(shù)量關系從而列出一元二次方程。

(一)導入新課。

生:老師,這是雷鋒叔叔。

生:是的老師。

生:想。

師:同學們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學習一元二次方程。

(二)新課教學。

師:我們來看到這個題目,要設計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應設計為全高?同學們用ac來表示上部,bc來表示下部先簡單列一下這個比例關系,待會老師下去看看同學們的式子。

(下去巡視)。

(三)小結(jié)作業(yè)。

師:今天大家學習了一元二次方程,同學們回去還要加強鞏固,做練習題的1、2(2)題。

四、板書設計。

五、教學反思。

【本文地址:http://www.mlvmservice.com/zuowen/14022751.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔