總結是一種方法,一種策略,通過定期總結我們的學習和工作經驗,可以更好地提高個人能力和專業(yè)素質。面對困難和挫折,我們應該如何保持積極的心態(tài)和樂觀的態(tài)度?小編整理了一些優(yōu)秀的總結范文,希望對大家寫總結時能有所啟發(fā)。
三角形的內角說課稿篇一
在整個教學設計上謝老師充分體現(xiàn)“以學生發(fā)展為本”教育理念,將教學思路擬定為“談話激趣設疑導入——猜想——驗證——鞏固內化——拓展延伸”,努力構建探索型的課堂教學模式。具體體現(xiàn)在以下幾點:
1、善用激趣設疑導入:教學的藝術不在于傳授知識,而在于喚醒、激發(fā)和鼓勵。剛開始上課,謝老師用選王大會設懸念,三種類型的角在激烈的爭執(zhí),到的誰的內角和大呢?這樣,在很短的時間內最大限度的激發(fā)學生探究數(shù)學的愿望和興趣,而且也很自然地揭示了課題。
2、巧用猜想:學生有了探索的愿望和興趣,可是不能沒有目標的去探索,那樣只會事倍功半,甚至沒有結果,這時謝老師就提到到底三角形的內角和是不是180度呢,我們總不能口說無憑吧?使后邊的探索和驗證活動有了明確的目標。
3、善用驗證:學生形成統(tǒng)一的猜想{即三角形的內角和等于180度}后,謝老師就把課堂大量的時間和空間留給學生,讓他們開展有針對性的數(shù)學探究活動,在活動中,把放和引有機的結合,鼓勵學生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓每個學生自主參與驗證活動,而且使學生在經歷觀察、操作、分析、推理和想象活動過程中解決問題,發(fā)展空間觀念和論證推理能力。具體過程為:量一量——拼一拼——看一看。
4、善于引導鞏固內化:俗話說的好:“熟能生巧”。數(shù)學離不開練習,要掌握知識,形成技能技巧,一定要通過練習。養(yǎng)成良好的思維品質也要通過一定的思考練習,課程標準提倡練習的有效性。對此,謝老師非常注意將數(shù)學的思考融入不同層次的練習之中,很好的發(fā)揮練習的作用,如第一關牛刀小試:給出一個三角形的兩個角度,學生求第三個角,從中培養(yǎng)學生應用意識和解決問題的能力;第三關過關斬將:讓學生判斷有兩個小三角形拼成的三角形的內角和的度數(shù),使學生在圖形變化的過程中掌握知識,培養(yǎng)思維的靈活性,從中發(fā)展學生的空間觀念和空間想象能力。這些練習設計目的明確,針對性強,使學生不但鞏固了知識,更重要的是數(shù)學思維得到不斷的發(fā)展。
5、有一定的拓展創(chuàng)新:數(shù)學具有嚴密的邏輯性和抽象性。而學生學習內容的呈現(xiàn)是從簡單到復雜,思維方式是從具體到抽象的一個循序漸進的過程,前面學習的知識往往是后面進一步學習的基礎。要培養(yǎng)學生思維的靈活性,可以先讓學生學會對知識的遷移。本課最后,謝老師設計了這樣一道題目:學了三角形的內角和后,你知道四邊形的內角和是多少度嗎?這道題通過對本節(jié)課所學知識的遷移就可以完成,既能對學生進行思維訓練,又能培養(yǎng)學生應用知識的能力,更能培養(yǎng)學生的創(chuàng)新意識和創(chuàng)新精神。
總之,本節(jié)課教學活動中謝老師充分體現(xiàn)以下特點:以學生發(fā)展為本,以學生為主體,思維為主線的思想;充分關注學生的自主探究與合作交流;練習體現(xiàn)了層次性,知識技能得于落實和發(fā)展。是一節(jié)非常成功的課。
三角形的內角說課稿篇二
課程標準這樣描述:通過觀察、操作了解三角形內角和是180。
分析教材內容,在上學期的學習中學生已經掌握了角的分類及度量的知識。在本課之前,學生又研究了三角形的特性、三邊間的關系及三角形的分類等知識。積累了一些有關三角形的知識和經驗,形成了一定的空間觀念,可以在比較抽象的水平上進一步認識三角形,探索新知。教材中安排了學生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發(fā)現(xiàn)三角形的內角和是180°,學好它有助于學生理解三角形的三個內角之間的關系,也是進一步學習其他圖形內角和的基礎,同時為初中進一步論證做好準備。
課前我對學情進行了分析:
1、學生在學習本課前已經掌握了銳角、直角、鈍角、平角和周角的度數(shù),認識了三角形的基本特征及其分類,由于學生的數(shù)學知識、能力和思考問題的角度有一定的差異,因此比較容易出現(xiàn)解決問題策略的多樣化。
2、已經有不少學生知道了三角形內角和是180度的結論,但是很可能都知其然不知其所以然。
通過對課程標準的認識,以及內容分析和學情分析,我制定了這樣的學習目標:
1、通過量、拼、折、剪等方法探索和發(fā)現(xiàn)三角形的內角和等于180°并會應用這一規(guī)律解決實際的問題。
2、通過研究直角三角形進而研究銳角三角形、鈍角三角形,初步認識、理解由特殊到一般的邏輯思辨方法。
針對這一目標的完成,我設計了一下評價方式:
1、交流式評價:通過師生、生生對話交流,在交流中對學生進行評價。
2、表現(xiàn)性評價:通過小組討論表現(xiàn)、學生回答問題情況,適當對學生進行點撥。
1、通過3個練習題(1、做一做。2、說一說3、拼一拼、想一想)
檢測學習目標1的掌握情況。
教具準備:課件、3個直角三角形,2個銳角三角形、2個鈍角三角形、一張表格
學具準備:三角板、量角器.
這節(jié)課的教學我通過一下四個環(huán)節(jié)完成。
1、觀察猜測,引入新知;
2、動手操作,探索新知;
3、鞏固新知,拓展應用;
4、總結評價、延伸知識。
第一環(huán)節(jié),觀察猜測,引入新知。
由圖形引入,讓學生指出銳角三角形,直角三角形,鈍角三角形的三個內角,發(fā)現(xiàn)在這些三角形中最大的內角是鈍角。問:想看鈍角三角形72變嗎?我們一起來看一看。課件演示:
(1)鈍角變小,另外兩個角怎樣變?
(2)鈍角變大,另外兩個角怎樣變?
(3)鈍角變大、變大、變大再變大,還能再大嗎?發(fā)現(xiàn)再大就成平角了。平角多少度?這時把三角形三個內角的加起來,和可能多少呢?猜測:180度。
第二環(huán)節(jié),動手操作,探索新知。
1、直角三角形的內角和。
(一)直角三角形內角和
先讓學生觀察一副三角板的內角和,發(fā)現(xiàn)都是180度,和猜測是一樣的,是不是所有的直角三角形內角和都是180度呢?課件出示一些直角三角形,讓學生用手中的工具驗證你的猜測。
四人小組合作,拿出學具袋里三個紅色的直角三角形和表格,用不同的方法驗證猜測。學生可以“量一量”,也可以“剪一剪”,還可以“折一折”。匯報時要讓學生說一說方法,同時在課件上展示。
這個環(huán)節(jié)引導學生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內角和是180度,體驗解決問題策略的多樣化。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結論的統(tǒng)一,從而使學生明白獲得探究問題的方法比獲得結論更為重要。
(二)、銳角三角形、鈍角三角形的內角和
課件出示將銳角三角形、鈍角三角形,問:你能利用我們剛才學到的知識來研究它們的內角和嗎?動手試一試,可以同桌討論。(學生操作,匯報,課件演示)讓學生模仿老師操作說理。由此得到了銳角三角形和鈍角三角形的內角和也是180度。我們就可以說所有三角形的內角和都是180度。這是三角形的一個特性。
這樣引導學生通過直角三角形的內角和是180度來推導出銳角和鈍角三角形的內角和是180度,使學生初步掌握由特殊到一般的邏輯思辨方法。
第三環(huán)節(jié)、鞏固新知,拓展應用
用三角形的這一特性來解決一些問題
1、基本練習
通過做一做和說一說這兩個練習來強化學生認知。
2、拓展練習
拼一拼、想一想
(1)兩個三角形拼成大三角形,說出大三角形的內角和
(2)一個三角形去掉一部分
引導學生發(fā)現(xiàn),無論三角形的形狀或大小如何改變,內角和都是180度,看來三角形的內角和度數(shù)和他的大小形狀都無關。
(3)再把這個三角形剪去一部分剪成一個四邊形,它的內角和是多少度?
(4)如果變成五邊形,你還能求出他的度數(shù)嗎?
充分利用多媒體資源幫助學生理解、消化、新的知識,能夠靈活的運用三角形的內角和等于180度。在此基礎上滲透數(shù)學的“轉化”思想和“分割”思想提高學生靈活運用和推理等各方面的能力。
第四環(huán)節(jié)、總結評價、延伸知識
通過這個環(huán)節(jié)讓學生談一談自己的收獲或感受,對本節(jié)課的知識進行拓展升華。
三角形的內角和
猜測(180度)
驗證:測量、撕拼、折疊結論
三角形的內角和是180度
我的板書簡明扼要,體現(xiàn)了本節(jié)課的重點,而且是對本節(jié)課學習方法的一個回顧。
三角形的內角說課稿篇三
“三角形的內角和”是人教版小學四年級下冊第五單元第四節(jié)的內容?!叭切蔚膬冉呛汀笔侨切蔚囊粋€重要性質,是“空間與圖形”領域的重要內容之一,學好它有助于學生理解三角形內角之間的關系,也是進一步學習幾何的基礎。經過第一學段以及本單元的學習,學生已經具備一定的關于三角形的認識的直接經驗,已具備了一些相應的三角形知識和技能,這為感受、理解、抽象“三角形的內角和”的概念,打下了堅實的基礎。
在教學中李老師充分體現(xiàn)了新課程標準的基本理念:讓學生“人人學有價值的數(shù)學”。從學生已有的經驗出發(fā),讓學生親身經歷將實際問題抽象成數(shù)學模型并進行解釋與應用的過程。善于激發(fā)學生的學習積極性,向學生提供充分從事數(shù)學活動的機會,讓他們積極主動地探索,解決數(shù)學問題,發(fā)現(xiàn)數(shù)學規(guī)律,獲得數(shù)學經驗;李老師善于做好學生學習的組織者、引導者和合作者,在全面參與和了解學生的學習過程中起著對學生進行積極的評價,關注他們的學習方法、學習水平和情感態(tài)度,促使學生向著預定的目標發(fā)展的作用”。
三角形的內角說課稿篇四
大家好!
今天我說課的題目是《三角形的內角》,我將從如下方面作出說明。
(一)教學內容的地位
本節(jié)課是在研究了三角形的有關概念和學生在對 “三角形的內角和等于1800 ”有感性認識的基礎上,對該定理進行推理論證。它是進一步研究三角形及其它圖形的重要基礎,更是研究 多邊形問題轉化的關鍵點;此外,在它的證明中第一次引入了輔助線,而輔助線又是解決幾何問題的一種重要工具,因此本節(jié)是本章的一個重點。
(二)教學重點、難點:
三角形內角和等于180度,是三角形的一條重要性質,有著廣泛的應用。雖然學生在小學已經知道這一結論,但沒有從理論的角度進行推理論證,因此三角形內角和等于180度的證明及應用是本節(jié)課的重點。
另外,由于學生還沒有正 式學習幾何證明,而三角形內角和等于180度的證明難度又較大,因此證明三角形內角和等于180度也是本節(jié)課的難點。
突破難點的關鍵:讓學生通過動手實踐獲得感性認識,將實物圖形抽象轉化為幾何圖形得出所需輔助線。
基于以上分析和數(shù)學課程標準的要求,我制定了本節(jié)課的教學目標,下面我從以下三個方面進行說明。
(一)知識與技能目標:
會用平行線的性質與平角的定義證明三角形的內角和等于1800,能用三角形內角和等于180度進行角度計算和簡單推理,并初步學會利用輔助線解決問題,體會轉化思想在解決問題中的應用。
(二)過程與方法目標:
經歷拼圖試驗、合作交流、推理論證的過程,體現(xiàn)在“做中學”,發(fā)展學生的合 情推理能力和邏輯思維能力。
(三)情感、態(tài)度價值觀目標:
通過操作、交流、探究、表述、推理等活動培養(yǎng)學生的合作精神,體會數(shù)學知識內在的聯(lián)系與嚴謹性,鼓勵學生大膽質疑,敢于提出不同見解,培養(yǎng)學生良好的學習習慣。
七年級學生的特點是模仿力強,喜歡動手,思維活躍,但思維往往依賴于直觀具體的形象,而學生在小學已通過量、拼、折等實驗的方法得出了三角形內角和等于180度這一結論,只是沒有從理論的角度去研究它,學生現(xiàn)在已具備了簡單說理的能力,同時已學習了平行線的性質和判定及平角的定義,這就為學生自主探究,動手實驗,討論交流、嘗試證明做好了準備。
根據(jù)新課程標準的要求,學習活動應體現(xiàn)學生身心發(fā)展特點,應有利于引導學生主動探索和發(fā)現(xiàn),因此,我采用了動手操作— 觀察實驗—猜想論證的探究式教學方法,整個探究學習的過程充滿了師生之間,生生之間的交流和互動,體 現(xiàn)了教師是教學活動的組織者、引導者、合作 者,學生才是學習的主體。并教給學生通過動手實驗、觀察思考、抽象概括從而獲得知識的學習方法,培養(yǎng)他們利用舊知識獲取新知識的能力。
我結合七年級學生的年齡特點,采用了“1.情景激趣 引出課題”的環(huán)節(jié)引入課題,這樣可以激發(fā)學生學習興趣和求知欲,為探索新知識創(chuàng)造一個最佳的心理和認知環(huán)境。讓學生說明三角形內角和是180度,是本節(jié)課的重點、難點,為此我設計了“2.自主探索 動手實驗 ”“3.討論交流 嘗試證明”以下兩個環(huán)節(jié)。 定理的掌握必須要有訓練作為依托,因此我設計了“4.應用新知 鞏固提高。為了培養(yǎng)學生學習數(shù)學的興趣,在競爭中體驗成功的快樂。我設計了“5. ‘漁技’大比拼”這4道習題既含蓋了方程的思想又包括了整體的思想,還讓學生提前感受到了反證法的方法,有利于學生掌握重要的數(shù)學思想方法。回顧使人記憶深刻,反思促人進步。在“6.暢談體會 課外延伸 ”這一環(huán)節(jié)我選擇從三個方面,讓學生進行 回顧反思和作業(yè)補充。我認為學生要從一堂課中得到收獲不僅僅是知識上的,更重要的是讓他們通過這種方式,獲取比知 識本身更重要的東西,那就是數(shù)學方法,數(shù)學能力以及對數(shù)學的積極情感。
本節(jié)課的設計從學生已有的知識經驗出發(fā),遵循學生的認知規(guī)律,將實物拼圖與說理論證有機結合,在動手操作,合情推理的基礎上進行嚴密的推理論證,使學生對知識的認識從感性逐步上升到理性。以問題為載體,在探究解決問題策略的過程中學會知識、感悟方法、訓練思維、發(fā)展能力,練習的設計起點低、范圍廣、有梯度,以滿足不同程度學生的需要。樹立大數(shù)學觀 ,把課堂探究 活動延伸到課外,在課與課之間,新舊知識之間,數(shù)學與生活之間搭建橋梁,為學生長遠的發(fā)展奠基。
本節(jié)課的教學在一種輕松愉快的氛圍中完成,大部分學生能參與活動中,突出了重點 ,突破了難點。完成了教學任務。取得了較好的教學效果。練習除注重基礎外 并進行了延伸。拓寬了學生思維的空間。美中不足的是,還有少部分學習基礎較差的學生可能沒有在參與活動中去思考,收獲不大。
新課程的教學評價對老師和學生都提出了新的要求 :因此整個教學過程中我對學生的如下方面作出了多元化的關注:1、關注學生探索結論、分析思路和方法的過程。2、關注學生說理的能力和水平。3、關注學生參與教學活動的程度。以期待人人都能學有 所得,不同的學生在課堂上得到不同的發(fā)展。
以上是我對這節(jié)課的初淺認識,希望得能到各位專家、各位老師的指導,謝謝大家!
三角形的內角說課稿篇五
一、構建新的課堂教學模式。
傳統(tǒng)的教學往往只重視對結論的記憶和模仿,而這節(jié)課老師把學生的學習定位在自主建構知識的.基礎上,建立了“猜想——驗證——歸納——運用”的教學模式。
二、培養(yǎng)學生勇于猜想,大膽創(chuàng)新的精神。
教學中趙老師遵循的基本教學原則是激勵學生展開積極的思維活動.先創(chuàng)設猜角的游戲情景,讓學生對三角形的三個角的度數(shù)關系產生好奇,引發(fā)學生的探究欲望.
三、為學生提供了大量數(shù)學活動的機會,讓學生真正成為學習的主人。
“給學生一些權利,讓他們自己選擇;讓他們自己去鍛煉;給學生一些問題,讓他們自己去探索;給學生一片空間,讓學生自己飛翔.”這正是課堂教學改革中學生的主體性的表現(xiàn)。所以在這節(jié)課中趙老師樹立了數(shù)學教學為學生服務,創(chuàng)設有助于學生自主學習,合作交流的機會,通過想辦法求三角形的內角和這一核心問題,引發(fā)學生去思考,去探究.這樣學生的潛能的以激活,思維展開了想象,能力得以發(fā)展.
四、給學生一個開放探究的學習空間.
培養(yǎng)學生的問題意識是數(shù)學課堂教學的核心問題,所以課堂上學生的學習過程就是解決問題的過程,當一個問題解決完后又引發(fā)出新的問題,使學生體會到成功的喜悅,使數(shù)學課堂充滿挑戰(zhàn).所以課堂上老師沒有因學生發(fā)現(xiàn)三角形內角和是180度而罷休,然后用一個大的三角形剪成兩個小的,用兩個小的拼成大的內角和延伸,使學生悟出規(guī)律,這樣學生帶著問題在課后向更高的學習目標繼續(xù)探索,一追求更大的成功。
一堂好課不應是自始至終的高潮和精彩,也不必是高科技現(xiàn)代教育技術的集中展示。一堂好課不是看它的熱鬧程度,而在于學生從中得到了什么,它留給人們的應是思考、啟示和回味。
三角形的內角說課稿篇六
在整個教學設計上謝老師充分體現(xiàn)“以學生發(fā)展為本”教育理念,將教學思路擬定為“談話激趣設疑導入——猜想——驗證{自主探究}——鞏固內化——拓展延伸”,努力構建探索型的課堂教學模式。具體體現(xiàn)在以下幾點:
1、善用激趣設疑導入:教學的藝術不在于傳授知識,而在于喚醒、激發(fā)和鼓勵。剛開始上課,謝老師用選王大會設懸念,三種類型的角在激烈的爭執(zhí),到的誰的內角和大呢?這樣,在很短的時間內最大限度的激發(fā)學生探究數(shù)學的愿望和興趣,而且也很自然地揭示了課題。
2、巧用猜想:學生有了探索的愿望和興趣,可是不能沒有目標的去探索,那樣只會事倍功半,甚至沒有結果,這時謝老師就提到到底三角形的內角和是不是180度呢,我們總不能口說無憑吧?使后邊的探索和驗證活動有了明確的目標。
3、善用驗證{自主探索}:學生形成統(tǒng)一的猜想{即三角形的內角和等于180度}后,謝老師就把課堂大量的時間和空間留給學生,讓他們開展有針對性的數(shù)學探究活動{即驗證三角形的內角和是否是180度?},在活動中,把放和引有機的結合,鼓勵學生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓每個學生自主參與驗證活動,而且使學生在經歷觀察、操作、分析、推理和想象活動過程中解決問題,發(fā)展空間觀念和論證推理能力。具體過程為:量一量——拼一拼——看一看。
4、善于引導鞏固內化:俗話說的好:“熟能生巧”。數(shù)學離不開練習,要掌握知識,形成技能技巧,一定要通過練習。養(yǎng)成良好的思維品質也要通過一定的思考練習,課程標準提倡練習的有效性。對此,謝老師非常注意將數(shù)學的思考融入不同層次的練習之中,很好的發(fā)揮練習的作用,如第一關牛刀小試:給出一個三角形的兩個角度,學生求第三個角,從中培養(yǎng)學生應用意識和解決問題的能力;第三關過關斬將:讓學生判斷有兩個小三角形拼成的三角形的內角和的度數(shù),使學生在圖形變化的過程中掌握知識,培養(yǎng)思維的靈活性,從中發(fā)展學生的空間觀念和空間想象能力。這些練習設計目的明確,針對性強,使學生不但鞏固了知識,更重要的是數(shù)學思維得到不斷的發(fā)展。
5、有一定的拓展創(chuàng)新:數(shù)學具有嚴密的邏輯性和抽象性。而學生學習內容的呈現(xiàn)是從簡單到復雜,思維方式是從具體到抽象的一個循序漸進的過程,前面學習的知識往往是后面進一步學習的基礎。要培養(yǎng)學生思維的靈活性,可以先讓學生學會對知識的遷移。本課最后,謝老師設計了這樣一道題目:學了三角形的內角和后,你知道四邊形的內角和是多少度嗎?這道題通過對本節(jié)課所學知識的遷移就可以完成,既能對學生進行思維訓練,又能培養(yǎng)學生應用知識的能力,更能培養(yǎng)學生的創(chuàng)新意識和創(chuàng)新精神。
總之,本節(jié)課教學活動中謝老師充分體現(xiàn)以下特點:以學生發(fā)展為本,以學生為主體,思維為主線的思想;充分關注學生的自主探究與合作交流;練習體現(xiàn)了層次性,知識技能得于落實和發(fā)展。是一節(jié)非常成功的課。
三角形的內角說課稿篇七
課程標準這樣描述:通過觀察、操作了解三角形內角和是180。
分析教材內容,在上學期的學習中學生已經掌握了角的`分類及度量的知識。在本課之前,學生又研究了三角形的特性、三邊間的關系及三角形的分類等知識。積累了一些有關三角形的知識和經驗,形成了一定的空間觀念,可以在比較抽象的水平上進一步認識三角形,探索新知。教材中安排了學生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發(fā)現(xiàn)三角形的內角和是180°,學好它有助于學生理解三角形的三個內角之間的關系,也是進一步學習其他圖形內角和的基礎,同時為初中進一步論證做好準備。
課前我對學情進行了分析:
1、學生在學習本課前已經掌握了銳角、直角、鈍角、平角和周角的度數(shù),認識了三角形的基本特征及其分類,由于學生的數(shù)學知識、能力和思考問題的角度有一定的差異,因此比較容易出現(xiàn)解決問題策略的多樣化。
2、已經有不少學生知道了三角形內角和是180度的結論,但是很可能都知其然不知其所以然。
通過對課程標準的認識,以及內容分析和學情分析,我制定了這樣的學習目標:
1、通過量、拼、折、剪等方法探索和發(fā)現(xiàn)三角形的內角和等于180°并會應用這一規(guī)律解決實際的問題。
2、通過研究直角三角形進而研究銳角三角形、鈍角三角形,初步認識、理解由特殊到一般的邏輯思辨方法。
針對這一目標的完成,我設計了一下評價方式:
1、交流式評價:通過師生、生生對話交流,在交流中對學生進行評價。
2、表現(xiàn)性評價:通過小組討論表現(xiàn)、學生回答問題情況,適當對學生進行點撥。
1、通過3個練習題(1、做一做。2、說一說.3、拼一拼、想一想。)。
檢測學習目標1的掌握情況。
2、通過小組、同桌合作、匯報,教師引導學生理解本節(jié)課所蘊含的學習方法,檢測學習目標2的掌握情況。
教具準備:課件、3個直角三角形,2個銳角三角形、2個鈍角三角形、一張表格。
學具準備:三角板、量角器。
這節(jié)課的教學我通過一下四個環(huán)節(jié)完成。
1、觀察猜測,引入新知;
2、動手操作,探索新知;
3、鞏固新知,拓展應用;
4、總結評價、延伸知識。
第一環(huán)節(jié),觀察猜測,引入新知。
由圖形引入,讓學生指出銳角三角形,直角三角形,鈍角三角形的三個內角,發(fā)現(xiàn)在這些三角形中最大的內角是鈍角。問:想看鈍角三角形72變嗎?我們一起來看一看。課件演示:
(1)鈍角變小,另外兩個角怎樣變?
(2)鈍角變大,另外兩個角怎樣變?
(3)鈍角變大、變大、變大再變大,還能再大嗎?發(fā)現(xiàn)再大就成平角了。平角多少度?這時把三角形三個內角的加起來,和可能多少呢?猜測:180度。
第二環(huán)節(jié),動手操作,探索新知。
先讓學生觀察一副三角板的內角和,發(fā)現(xiàn)都是180度,和猜測是一樣的,是不是所有的直角三角形內角和都是180度呢?課件出示一些直角三角形,讓學生用手中的工具驗證你的猜測。
四人小組合作,拿出學具袋里三個紅色的直角三角形和表格,用不同的方法驗證猜測。學生可以“量一量”,也可以“剪一剪”,還可以“折一折”。匯報時要讓學生說一說方法,同時在課件上展示。
這個環(huán)節(jié)引導學生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內角和是180度,體驗解決問題策略的多樣化。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結論的統(tǒng)一,從而使學生明白獲得探究問題的方法比獲得結論更為重要。
課件出示將銳角三角形、鈍角三角形,問:你能利用我們剛才學到的知識來研究它們的內角和嗎?動手試一試,可以同桌討論。(學生操作,匯報,課件演示)讓學生模仿老師操作說理。由此得到了銳角三角形和鈍角三角形的內角和也是180度。我們就可以說所有三角形的內角和都是180度。這是三角形的一個特性。
這樣引導學生通過直角三角形的內角和是180度來推導出銳角和鈍角三角形的內角和是180度,使學生初步掌握由特殊到一般的邏輯思辨方法。
第三環(huán)節(jié)、鞏固新知,拓展應用。
用三角形的這一特性來解決一些問題。
1、基本練習。
通過做一做和說一說這兩個練習來強化學生認知。
2、拓展練習。
拼一拼、想一想。
(1)兩個三角形拼成大三角形,說出大三角形的內角和。
(2)一個三角形去掉一部分。
引導學生發(fā)現(xiàn),無論三角形的形狀或大小如何改變,內角和都是180度,看來三角形的內角和度數(shù)和他的大小形狀都無關。
(3)再把這個三角形剪去一部分剪成一個四邊形,它的內角和是多少度?
(4)如果變成五邊形,你還能求出他的度數(shù)嗎?
充分利用多媒體資源幫助學生理解、消化、新的知識,能夠靈活的運用三角形的內角和等于180度。在此基礎上滲透數(shù)學的“轉化”思想和“分割”思想提高學生靈活運用和推理等各方面的能力。
第四環(huán)節(jié)、總結評價、延伸知識。
通過這個環(huán)節(jié)讓學生談一談自己的收獲或感受,對本節(jié)課的知識進行拓展升華。
猜測(180度)。
驗證:測量、撕拼、折疊結論。
我的板書簡明扼要,體現(xiàn)了本節(jié)課的重點,而且是對本節(jié)課學習方法的一個回顧。
三角形的內角說課稿篇八
各位評委、老師:
我說課的題目是《三角形內角和》,內容選自人教版九年義務教育七年級下冊第七章第二節(jié)第一課時。
數(shù)學是人與人之間精神層面上進行的交往。課堂教學中的交往主要是教師與學生、學生與學生之間的交往。它需要運用“對話式”的學習方式,采取多種教學策略,使學生在合作、探索、交流中發(fā)展能力。新課程中對學生的情感、體驗、價值觀,以及獲取知識的渠道都有悖于傳統(tǒng)的教學模式,這正是教師在新課程中尋找新的教學方式的著眼點。應該說,新的教學方式將伴隨著教師對新課程的逐漸透視而形成新的路徑。要破除原有教學活動的框架,建立適應師生相互交流的教學活動體系;滿足學生的心理需求,實現(xiàn)教者與學者感情上的融洽和情感上的共鳴;給學生體驗成功的機會,把“要我學”變成“我要學”。我認為教師角色的轉變一定會促進學生的發(fā)展、促進教育的長足發(fā)展,在未來的教學過程里,教師要做的是:幫助學生決定適當?shù)膶W習目標,并確認和協(xié)調達到目標的最佳途徑;指導學生形成良好的學習習慣,掌握學習策略;創(chuàng)造豐富的教學情境,培養(yǎng)學生的學習興趣,充分調動學生的學習積極性;為學生提供各種便利,為學生的學習服務;建立一個接納的、支持性的'、寬容的課堂氣氛;作為學習的參與者,與學生分享自己的感情和想法;和學生一道尋找真理,能夠承認自己的過失和錯誤。教學情境的營造是教師走進新課程中所面臨的挑戰(zhàn),適應新一輪基礎教育課程改革的教學情境不是文本中的約定,也不是現(xiàn)成的拿來就能用的,需要我們在教學活動的全過程中去探索、研究、發(fā)現(xiàn)、形成。
三角形的內角和定理揭示了組成三角形的三個角的數(shù)量關系,此外,它的證明中引入了輔助線,這些都為后繼學習奠定了基礎,三角形的內角和定理也是幾何問題代數(shù)化的體現(xiàn)。
處于這個年齡階段的學生有能力自己動手,在自己的視野范圍內因地制宜地收集、編制、改造適合自身使用,貼近生活實際的數(shù)學建模問題,他們樂于嘗試、探索、思考、交流與合作,具有分析、歸納、總結的能力,他們渴望體驗成功感和自豪感。因而老師有必要給學生充分的自由和空間,同時注意問題的開放性與可擴展性。
1.知識目標:在情境教學中,通過探索與交流,逐步發(fā)現(xiàn)“三角形內角和定理”,使學生親身經歷知識的發(fā)生過程,并能進行簡單應用。能夠探索具體問題中的數(shù)量關系和變化規(guī)律,體會方程的思想。通過開放式命題,嘗試從不同角度尋求解決問題的方法。教學中,通過有效措施讓學生在對解決問題過程的反思中,獲得解決問題的經驗,進行富有個性的學習。
2.能力目標:通過拼圖實踐、問題思考、合作探索、組內及組間交流,培養(yǎng)學生的的邏輯推理、大膽猜想、動手實踐等能力。
3.德育目標:通過添置輔助線教學,滲透美的思想和方法教育。
4.情感、態(tài)度、價值觀:在良好的師生關系下,建立輕松的學習氛圍,使學生樂于學數(shù)學,遇到困難不避讓,在數(shù)學活動中獲得成功的體驗,增強自信心,在合作學習中增強集體責任感。
采用“問題情境——建立模型——解釋、應用與拓展”的模式展開教學。
采用對話式、嘗試教學、問題教學、分層教學等多種教學方法,以達到教學目的。
三角形的內角說課稿篇九
一堂好課不應是自始至終的高潮和精彩,也不必是高科技現(xiàn)代教育技術的集中展示。一堂好課不是看它的熱鬧程度,而在于學生從中得到了什么,它留給人們的應是思考、啟示和回味。2月19日上午,在沈家門第一小學,我有幸聆聽了趙斌娜老師執(zhí)教的《三角形的內角和》一課,這就是一堂好課。
趙老師營造了寬松和諧的課堂氣氛,讓學生能主動參與學習活動,既關注了學生的個人差異和不同的學習需求,又注重了學生的個體感悟,強調情感體驗的過程。確立了學生在課堂教學中的主體地位,使學生在學習過程中既調動了積極性,又激發(fā)了學生的主體意識和進取精神。學生在自主、合作、探究的學習方式中互相激勵,取長補短,能團結協(xié)作,最終形成了相應能力;同時培養(yǎng)了學生刻苦鉆研,事實求是的態(tài)度。
教學過程是一堂課關鍵中的關鍵,新課標提出數(shù)學教學是數(shù)學活動的教學,而數(shù)學活動應是學生自己建構知識的活動。教師讓學生“在參與中體驗,在活動中發(fā)展”。本節(jié)課有操作活動、自主探索與合作交流、應用活動三個方面,下面我重點談談操作活動。
1、在實踐材料上下了工夫。
操作實踐的材料是精心選擇的,老師為學生準備了用卡紙制作的形狀、大小、顏色不同的三角形各幾個,這樣學生在操作時候,便于選擇、測量、拼擺、觀察、思考問題,而且這些三角形顏色醒目、比較大,學生應用起來很得手,操作的材料和學生的動手實踐配合恰當。
2、找準時機讓學生進行實踐操作。
本節(jié)課安排了兩次操作活動:一是在得出三角形內角和規(guī)律前進行實踐操作,促使學生在實踐操作中探究新知識;二是在初步得出規(guī)律之后,讓學生通過實踐操作來驗證新知識。幫助學生清楚地認識到第一次出現(xiàn)內角和偏差的原因是測量誤差造成的。給學生提供的這兩次動手實踐的機會,不僅提高了操作的效果,更重要的使“聽數(shù)學”變?yōu)椤白鰯?shù)學”。促使學生在“做數(shù)學”的過程中對所學知識產生了深刻的體驗,從中感悟和理解到新知識的形成和發(fā)展,體會了數(shù)學學習的過程與方法,獲得數(shù)學活動的經驗。
3、把實踐操作和數(shù)學思維結合起來。
學生通過實踐操作獲得的認識是一種感性的認識,是外在的直觀的印象。在本節(jié)課中趙老師在學生實踐操作的基礎上引導學生把動手實踐和數(shù)學思維結合起來,先讓學生思考出可以用量、撕和拼的方法來推導三角形內角和的度數(shù),接著引導學生說出量的方法,最后讓學生實際測量。采取邊說邊操作,邊討論邊操作的方式,讓手、腦、口并用,在操作和直觀教學的基礎上及時對三角形內角和規(guī)律進行抽象概括。做到邊動手,邊思考。同時學生獲得了一種數(shù)學思想和方法,學會了解決一些類似的一系列的問題,提高了實踐動手的有效性。
三角形的內角說課稿篇十
一、說課內容:北師大版義務教育課程標準實驗教材小學數(shù)學四年級下冊第二單元第三節(jié)----《三角形的內角和》一課。
二、教材分析:
在這一環(huán)節(jié)我要闡述四方面的內容:
1、三角形的內角和”是三角形的一個重要性質,是“空間與圖形”領域的重要內容之一,學好它有助于學生理解三角形內角之間的關系,教材呈現(xiàn)教學內容時,安排了一系列的實驗操作活動。讓學生通過探索,發(fā)現(xiàn)三角形的內角和是180度。
2、學情分析:
學生已經知道了三角形的概念、分類,熟悉了各角的特點,掌握了量角的方法。也可能有部分學生知道了三角形內角和是180°的結論。
3、教學目標:
a、讓學生親自動手,發(fā)現(xiàn),證實三角形的內角和等于180度。并能初步運用這一性質解決有一些實際問題。
b、在經歷“觀察、測量、撕拼、折疊”的驗證的過程中培養(yǎng)學生觀察能力,歸納能力、合作能力和創(chuàng)造能力。
4、教學重難點:
經歷三角形的內角和是180度這一知識的形成,發(fā)展和應用的全過程。
5、教學難點:
讓學生用不同方法驗證三角形的內角和是180度。
三、教學準備:
在備課過程中,我閱讀了農遠光盤中多位名師的教學案例來完善自己的教學設計,并收集了農遠光盤中的多媒體課件,用課件適時播放。
四、教法分析
為了使教學目標得以落實,談談本課的教法和學法。新課程標準強調“教學要從學生已有的經驗出發(fā),讓學生親身經歷將實際問題抽象成數(shù)學模型并進行解釋與應用的過程。要激發(fā)學生的學習積極性,向學生提供充分從事數(shù)學活動的機會,讓他們積極主動地探索,解決數(shù)學問題,發(fā)現(xiàn)數(shù)學規(guī)律,獲得數(shù)學經驗;而教師只是學生學習的組織者、引導者和合作者。我采用了趣味教學法、情境教學法、引導發(fā)現(xiàn)法、合作探究法和直觀演示法。
五、學法分析
在學法指導上,我把學習的主動權交給學生,引導學生通過動手、動腦、動口,積極參與知識形成的全過程。體現(xiàn)了學生動手實踐、合作交流,自主探索的學習方式。
六:教學流程:
(一)猜迷激趣,復習舊知。,
興趣是最好的老師,開課我出示了一則謎語。調動學生學習的積極性。
形狀是似座山,穩(wěn)定性能堅。三竿首尾連,學問不簡單。(打一平面圖形)
由謎底又得出了一個對三角形你們有哪些了解的問題,喚醒學生頭腦中有關三角形的知識,同時很自然引出對“三角形內角和”一詞的講解,為后面的探索奠定基礎。
(二)創(chuàng)設情境,巧引新知(課件出示)
(三)驗證猜想,主動探究。
本環(huán)節(jié)是學生獲取知識、提高能力的一個重要過程。我有目的、有意識的引導學生主動參與實踐活動、經歷知識的形成過程。
“你能運用已有的知識和身邊的學具想辦法驗證你的猜想嗎?”學生思考片刻后,我出示學習提綱:
a、先獨立思考,你想怎樣驗證?
b、再小組合作探究,運用多種方法驗證。
c、最后匯報,展示你的驗證方法。
1.量角求和
這個驗證方法應是全班同學都能想到的,因此,在這一環(huán)節(jié)我設計了小組活動的形式。讓小組成員在練習本上任意地畫幾個三角形進行測量并記錄。學生通過畫、量、算,最后發(fā)現(xiàn)三角形的三個內角和都是180度。
2.拼角求和
通過討論,有的小組可能會想到把三個角撕開,再拼在一起,剛好拼成了一個平角,由于學生在以前學過平角是180度,很快就發(fā)現(xiàn)這三個三角形的內角和都是180度。為了讓全班學生能夠真切,清晰地看到撕拼的過程,我利用了多媒體課件進行了演示。(課件出示)課件播放后學生一目了然,攻克了本課的一個教學重點。
3.折角求和
有的小組還可能想到把三個角折在一起,也剛好形成一個平角。但如何折才能夠使三個內角剛好組成平角呢?這一驗證方法是本課教學的一個難點。
在學生展示完驗證方法后,我又讓每位學生選擇自己喜歡的方法,再去驗證剛才的發(fā)現(xiàn)。最后歸納出結論:所有三角形的內角和都是180度。
(四)應用新知,解決問題。
數(shù)學離不開練習。本節(jié)課我把圖像、動畫等引入課件,使練習的內容具有簡單的背景與情節(jié),使學生對解題產生了濃厚的興趣。
我設計了四個層次的練習:有序而多樣。
1)基本練習:讓學生通過這一習題,掌握求未知角的一般方法。
2)實踐運用:這一習題的設計是為了讓學生知道生活中到處都有數(shù)學,數(shù)學能解決生活實際問題,真切體驗到學的是有價值的數(shù)學。
3)鞏固提高:使學生了解在間接條件下求未知角的方法。
4)拓展延伸。讓學生體會到數(shù)學中輔助線的橋梁作用,在潛移默化中滲透一個重要數(shù)學思想―――轉化,為以后學習數(shù)學打下堅實的基礎。
(五)全課小結完善新知
1、這節(jié)課我們學到了什么知識?2、你有什么收獲?
通過學生談這節(jié)課的收獲,對所學知識和學習方法進行系統(tǒng)的整理歸納。
(六)板書設計
三角形的內角和
量角撕拼折角拼圖
三角形的內角和是180度。
六、說效果預測:
本課中,學生通過動手操作,測量、撕拼、折疊等實驗活動,得到的不僅是三角形內角和的知識,也使學生學到了怎么由已知探究未知的思維方式與方法,培養(yǎng)了他們主動探索的精神。促進學生良好思維品質的形成,達到預想的教學目的。使學生在探索中學習,在探索中發(fā)現(xiàn),在探索中成長!
三角形的內角說課稿篇十一
各位老師:
你們好,我是來應聘xx數(shù)學老師的x號考生,我今天抽到的試講題目是《三角形的內角和》,下面開始我的試講。
大家拿出事先準備好的三角板和量角器吧,同學們,你們現(xiàn)在用量角器來測量一下每一個三角形的角的度數(shù),待會老師會進行統(tǒng)計。(轉身畫兩個三角板模型),測好了吧,下面請靠窗的同學告訴老師你的測量答案。30度60度90度,非常好,那另一個呢?45度45度和90度,非常精確,請坐,相信咱們其他同學也一定能夠測量出來。那么大家仔細觀察一下,這兩組數(shù)據(jù)有沒有什么相似點。有的同學說都有個九十度,很好,還有呢,很好!有的同學發(fā)現(xiàn)了,說這三個角加起來是180度,非常棒。也就是這兩個三角形內角和是180度。
可是是不是所有內角和都是180度啊,同學們,你們自己分別畫一個不同的銳角、鈍角、直角三角形,并且測量每個內角度數(shù),并報給老師內角和。好,請第一排的女生起來回答,你的三個內角和是多少?179,180,180很好,大家知道為什么第一個不是嗎?對,是因為畢竟有誤差的存在,很棒。
下面大家按以前的安排分成六個組,交給你們一個任務,你們討論一下,怎么來驗證我們剛剛得出的這個結論呢?給大家十分鐘時間來討論。
老師看到很多同學都皺起了眉頭,那老師來給大家一點小提示, 我們試著把三角形的三個角剪下來拼拼看。啊,很棒我看到前排的同學把三個角拼成了一個平角,大家知道平角多少度?180。那下面,大家可以動動手,任意再畫幾個三角形,用剛剛的方法看看能不能拼成一個平角?好,大家都非常積極,通過剛剛的驗證,我們可以肯定:三角形的內角和是180度。
那接下來我們回到咱們剛開始上課的問題:為什么不能畫一個有兩個直角的三角形?誰愿意給大家說說?好,你舉手最快,請你來說說。嗯,很好,因為有兩個九十度的角加起來就是180度了, 不可能畫出一個三角形,太棒了。請坐。
大家看大屏幕,這里有兩個三角形,老師給分別給大家標出了其中兩個角的度數(shù),有沒有同學告訴我剩下的度數(shù)?。口s緊開動腦筋算算看。好,算好的同學大聲告訴老師,第一個是30度,很棒。第二個50度,很棒,算的非常準確,看來大家上課都非常認真。
這堂課我們就上到這里,請大家回去完成課后習題1到3。好,下課!
三角形的內角說課稿篇十二
“三角形的內角和”是人教版小學數(shù)學四年級下冊第五單元第四節(jié)的內容,“三角形的內角和”是三角形的一個重要性質。本課教學內容不算多,學生只需要翻看課本就會知道三角形的內角和是180°,但是陳麗老師并沒有讓學生這樣做?!皵?shù)學學習的過程實際上是數(shù)學活動的過程”。課程標準要求我們“將課堂還給學生,讓課堂煥發(fā)生命的活力”,要求我們“努力營造學生在教學活動中獨立自主學習的時間和空間,使他們成為課堂教學中重要的參與者與創(chuàng)造者,落實學生的主體地位,促進學生的自主學習和探究?!痹诮虒W中,陳老師力求探究,將教學思路擬定為“創(chuàng)設情境,激趣引題——自主合作,探究新知——交流釋疑,歸納總結——拓展應用,反思升華”四個環(huán)節(jié),努力構建探究型的課堂教學模式。具體體現(xiàn)在以下幾個方面:
課一開始,陳老師創(chuàng)設了一個實踐操作的活動情境:讓學生畫一個含有兩個直角的三角形。很顯然三角形是畫不出來的,學生同樣也不知道畫不出來。簡單的活動激活了學生的思維,讓他們產生了問題:是不是三角形的角有些什么秘密呢?這樣,在很短的時間內最大限度的激發(fā)學生探究數(shù)學的愿望和興趣,而且也很自然地揭示了課題。
在教學中,陳老師巧妙運用“猜想、驗證”的方式引導學生進行自主學習和探究活動。學生大膽猜想三角形的內角和是180°,讓學生對問題形成了統(tǒng)一的認識,使后邊的探索和驗證活動有了明確的目標。這個時候,陳老師就把課堂大量的時間和空間留給學生,在學生交流探究設想和打算采用的方法后,放手讓每個同學自主參與驗證活動,在經歷觀察、操作、分析、推理和想象活動過程中解決問題,同時發(fā)展空間觀念和論證推理能力。驗證的具體過程為:量角求和——撕角拼一拼——折角拼一拼。拼角的方法具有一般性,結論的形成不缺乏科學性。這個環(huán)節(jié)的設計更重要的是變“聽數(shù)學”為“做數(shù)學”,讓學生在“做中學”。
學生在活動中體驗,在交流中消除疑惑,獲得新知。這節(jié)課生與生、生與師的交流不僅僅停留在知識的層面上,陳老師還引導學生對獲得知識所用的方法進行了總結,加強了學法指導。
課程標準提倡練習的.有效性。本節(jié)課的練習設計陳老師非常注意將數(shù)學的思考融入不同層次的練習之中,很好的發(fā)揮練習的作用。兩個小三角形拼成一個較大的三角形互動練習讓學生進一步理解任意三角形的內角和都是180°;后面的練習設計從圖形到文字,由一般到特殊;“開心一刻”更是把學生帶到無窮的學習樂趣之中。這些練習設計目的明確,針對性強,使學生不但鞏固了知識,更重要的是數(shù)學思維得到不斷的發(fā)展。
兩點建議:
2、學生的猜想結果都是180°,這時老師是否可以反問:你們是怎樣知道的?便于學生的學習活動更流暢的進入下一個環(huán)節(jié)。
總之,我個人認為陳老師對“四步教學法”模式的把握是成功的,學生在這種課堂教學模式下的學習是自主的,是活動的,也是快樂的。
三角形的內角說課稿篇十三
《三角形內角和》一課是人教版義務教育課程標準實驗教材四年級下冊第五單元的內容,是在學生學習了《三角形的特性》以及《三角形三邊關系》、《三角形的分類》之后進行的,在此之后則是《圖形的拼組》,它是三角形的一個重要特征,也是掌握多邊形內角和及解決其他實際問題的基礎,因此,學習、掌握三角形的內角和是180°這一規(guī)律具有重要意義。
(二)教學目標。
基于以上對教材的分析以及對教學現(xiàn)狀的思考,我從知識與技能、教學過程與方法、情感態(tài)度價值觀三方面擬定了本節(jié)課的教學目標:
1.通過“量一量”、“算一算”、“拼一拼”、“折一折”的小組活動的方法,探索發(fā)現(xiàn)驗證三角形內角和等于180°,并能應用這一知識解決一些簡單問題。
2.通過把三角形的內角和轉化為平角進行探究實驗,滲透“轉化”的數(shù)學思想。
3.通過數(shù)學活動使學生獲得成功的體驗,增強自信心。培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。
(三)教學重、難點。
因為學生已經掌握了三角形的概念、分類,熟悉了鈍角、銳角、平角這些角的知識。對于三角形的內角和是多少度,學生并不陌生,也有提前預習的習慣,學生幾乎都能回答出三角形的內角和是180°。在整個過程中學生要了解的是“內角”的概念,如何驗證得出三角形的內角和是180°。因此本節(jié)課我提出的教學的重點是:驗證三角形的內角和是180°。
二、說教法、學法。
本節(jié)課主要是通過教師的精心引導和點撥,學生在小組中合作探索,通過量一量、折一折、撕一撕、畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內角和是180°。
因為《課程標準》明確指出:“要結合有關內容的教學,引導學生進行觀察、操作、猜想,培養(yǎng)學生初步的思維能力”。四年級學生經過第一學段以及本單元的學習,已經掌握了三角形的分類,比較熟悉平角等有關知識;具備了初步的動手操作、主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點引導學生從“猜測――驗證”展開學習活動,讓學生感受這種重要的數(shù)學思維方式。
我以引入、猜測、證實、深化和應用五個活動環(huán)節(jié)為主線,讓學生通過自主探究學習進行數(shù)學的思考過程,積累數(shù)學活動經驗。
(一)引入。
呈現(xiàn)情境:出示多個已學的平面圖形,讓學生認識什么是“內角”。(把圖形中相鄰兩邊的夾角稱為內角)長方形有幾個內角?(四個)它的內角有什么特點?(都是直角)這四個內角的和是多少?(360°)三角形有幾個內角呢?從而引入課題。
【設計意圖】讓學生整體感知三角形內角和的知識,這樣的教學,將三角形內角和置于平面圖形內角和的大背景中,拓展了三角形內角和的數(shù)學知識背景,滲透數(shù)學知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。
(二)猜測。
提出問題:長方形內角和是360°,那么三角形內角和是多少呢?
【設計意圖】引導學生提出合理猜測:三角形的內角和是180°。
三)驗證。
(2)撕―拼:利用平角是180°這一特點,啟發(fā)學生能否也把三角形的三個內角撕下來拼在一起,成為一個平角?請學生同桌合作,從學具中選出一個三角形,撕下來拼一拼。
(3)折-拼:把三角形的三個內角都向內折,把這三個內角拼組成一個平角,一個平角是180°,所以得出三角形的內角和是180°。
(4)畫:根據(jù)長方形的內角和來驗證三角形內角和是180°。
一個長方形有4個直角,每個直角90°,那么長方形的內角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內角和就是180°。從長方形的內角和聯(lián)想到直角三角形的內角和是180°。
【設計意圖】利用已經學過的知識構建新的數(shù)學知識,這不僅有助于學生理解新的知識,而且是一種非常重要的學習方法。在探索三角形內角和規(guī)律的教學中,注意引導學生將三角形內角和與平角、長方形四個內角的和等知識聯(lián)系起來,并使學生在新舊知識的連接點和新知識的生長點上把握好他們之間的內在聯(lián)系。在整個探索過程中,學生積極思考并大膽發(fā)言,他們的創(chuàng)造性思維得到了充分發(fā)揮。
(四)深化。
質疑:大小不同的三角形,它們的內角和會是一樣嗎?
觀察:(指著黑板上兩個大小不同但三個角對應相等的三角形并說明原因,三角形變大了,但角的大小沒有變。)。
結論:角的兩條邊長了,但角的大小不變。因為角的大小與邊的長短無關。
結論:活動角就是一個平角180°,另外兩個角都是0°。
【設計意圖】小學生由于年齡小,容易受圖形或物體的外在形式的影響。教師主要是引導學生與角的有關知識聯(lián)系起來,通過讓學生觀察利用“角的大小與邊的長短無關”的舊知識來理解說明。
對于利用精巧的小教具的演示,讓學生通過觀察、交流、想象,充分感受三角形三個角之間的聯(lián)系和變化,感悟三角形內角和不變的原因。
(五)應用。
1.基礎練習:書本練習十四的習題9,求出三角形各個角的度數(shù)。
(2)將一個大三角形分成兩個小三角形,這兩個小三角形的內角和分別是多少?
4.智力大挑戰(zhàn):你能求出下面圖形的內角和嗎?書本練習十四的習題。
【設計意圖】習題是溝通知識聯(lián)系的有效手段。在本節(jié)課的四個層次的練習中,能充分注意溝通知識之間的內在聯(lián)系,使學生從整體上把握知識的來龍去脈和縱橫聯(lián)系,逐步形成對知識的整體認知,構建自己的認知結構,從而發(fā)展思維,提高綜合運用知識解決問題的能力。
第一題將三角形內角和知識與三角形特征結合起來,引導學生綜合運用內角和知識和直角三角形、等邊三角形等圖形特征求三角形內角的度數(shù)。
第二題將三角形內角和知識與三角形的分類知識結合起來,引導學生運用三角形內角和的知識去解釋直角三角形、鈍角三角形中角的特征,較好地溝通了知識之間的聯(lián)系。
第三題通過兩個三角形的分與合的過程,使學生感受此過程中三角內角的變化情況,進一步理解三角形內角和的知識。
第四題是對三角形內角和知識的進一步拓展,引導學生進一步研究多邊形的內角和。教學中,學生能把這些多邊形分成幾個三角形,將多邊形內角和與三角形內角和聯(lián)系起來,并逐步發(fā)現(xiàn)多邊形內角和的規(guī)律,以此促進學生對多邊形內角和知識的整體構建。
四、說課板書設計:
引入:
猜測:
量——算。
撕——拼。
驗證折——拼。
畫
深化。
應用。
三角形的內角說課稿篇十四
《三角形內角和》一課是人教版義務教育課程標準實驗教材四年級下冊第五單元的內容,是在學生學習了《三角形的特性》以及《三角形三邊關系》,《三角形的分類》之后進行的,在此之后則是《圖形的拼組》,它是三角形的一個重要特征,也是掌握多邊形內角和及解決其他實際問題的基礎,因此,學習,掌握三角形的內角和是180°這一規(guī)律具有重要意義。
(二)教學目標
基于以上對教材的分析以及對教學現(xiàn)狀的思考,我從知識與技能,教學過程與方法,情感態(tài)度價值觀三方面擬定了本節(jié)課的教學目標:
1、通過量一量、算一算、拼一拼、折一折的小組活動的方法,探索發(fā)現(xiàn)驗證三角形內角和等于180°,并能應用這一知識解決一些簡單問題。
2、通過把三角形的內角和轉化為平角進行探究實驗,滲透轉化;的數(shù)學思想。
3、通過數(shù)學活動使學生獲得成功的體驗,增強自信心。培養(yǎng)學生的創(chuàng)新意識,探索精神和實踐能力。
(三)教學重,難點
因為學生已經掌握了三角形的概念,分類,熟悉了鈍角,銳角,平角這些角的知識。對于三角形的內角和是多少度,學生并不陌生,也有提前預習的習慣,學生幾乎都能回答出三角形的內角和是180°。在整個過程中學生要了解的是內角的概念,如何驗證得出三角形的內角和是180°。因此本節(jié)課我提出的教學的重點是:驗證三角形的內角和是180°。
本節(jié)課主要是通過教師的精心引導和點撥,學生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內角和是180°。
因為《課程標準》明確指出要結合有關內容的教學,引導學生進行觀察,操作,猜想,培養(yǎng)學生初步的思維能力。四年級學生經過第一學段以及本單元的學習,已經掌握了三角形的分類,比較熟悉平角等有關知識;具備了初步的動手操作,主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點引導學生從猜測――驗證展開學習活動,讓學生感受這種重要的數(shù)學思維方式。
我以引入,猜測,證實,深化和應用五個活動環(huán)節(jié)為主線,讓學生通過自主探究學習進行數(shù)學的思考過程,積累數(shù)學活動經驗。
(一)引入
呈現(xiàn)情境:出示多個已學的平面圖形,讓學生認識什么是內角;。(把圖形中相鄰兩邊的夾角稱為內角)長方形有幾個內角(四個)它的內角有什么特點(都是直角)這四個內角的和是多少(360°)三角形有幾個內角呢從而引入課題。
(二)猜測
提出問題:長方形內角和是360°,那么三角形內角和是多少呢
【設計意圖】引導學生提出合理猜測:三角形的內角和是180°。
(三)驗證
(2)撕―拼:利用平角是180°這一特點,啟發(fā)學生能否也把三角形的三個內角撕下來拼在一起,成為一個平角請學生同桌合作,從學具中選出一個三角形,撕下來拼一拼。
(3)折—拼:把三角形的三個內角都向內折,把這三個內角拼組成一個平角,一個平角是180°,所以得出三角形的內角和是180°。
(4)畫:根據(jù)長方形的內角和來驗證三角形內角和是180°。
一個長方形有4個直角,每個直角90°,那么長方形的內角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內角和就是180°。從長方形的內角和聯(lián)想到直角三角形的內角和是180°。
【設計意圖】利用已經學過的知識構建新的數(shù)學知識,這不僅有助于學生理解新的知識,而且是一種非常重要的學習方法。在探索三角形內角和規(guī)律的教學中,注意引導學生將三角形內角和與平角,長方形四個內角的和等知識聯(lián)系起來,并使學生在新舊知識的連接點和新知識的生長點上把握好他們之間的內在聯(lián)系。在整個探索過程中學生積極思考并大膽發(fā)言,他們的創(chuàng)造性思維得到了充分發(fā)揮。
(四)深化
質疑:大小不同的三角形,它們的內角和會是一樣嗎?
觀察指著黑板上兩個大小不同但三個角對應相等的三角形并說明原因,三角形變大了,但角的大小沒有變。
結論:角的兩條邊長了,但角的大小不變。因為角的大小與邊的長短無關。
實驗:教師先在黑板上固定小棒,然后用活動角與小棒組成一個三角形,教師手拿活動角的頂點處,往下壓,形成一個新的三角形,活動角在變大,而另外兩個角在變小。這樣多次變化,活動角越來越大,而另外兩個角越來越小。最后,當活動角的兩條邊與小棒重合時。
結論:活動角就是一個平角180°,另外兩個角都是0°。
【設計意圖】小學生由于年齡小,容易受圖形或物體的外在形式的影響。教師主要是引導學生與角的有關知識聯(lián)系起來,通過讓學生觀察利用角的大小與邊的長短無關的舊知識來理解說明。
對于利用精巧的小教具的演示,讓學生通過觀察,交流,想象,充分感受三角形三個角之間的聯(lián)系和變化,感悟三角形內角和不變的原因。
(五)應用
1、基礎練習:書本練習十四的習題9,求出三角形各個角的度數(shù)。
(2)將一個大三角形分成兩個小三角形,這兩個小三角形的內角和分別是多少?
4、智力大挑戰(zhàn):你能求出下面圖形的內角和嗎書本練習十四的習題
【設計意圖】習題是溝通知識聯(lián)系的有效手段。在本節(jié)課的四個層次的練習中,能充分注意溝通知識之間的內在聯(lián)系,使學生從整體上把握知識的來龍去脈和縱橫聯(lián)系,逐步形成對知識的整體認知,構建自己的認知結構,從而發(fā)展思維,提高綜合運用知識解決問題的能力。
第一題將三角形內角和知識與三角形特征結合起來,引導學生綜合運用內角和知識和直角三角形,等邊三角形等圖形特征求三角形內角的度數(shù)。
第二題將三角形內角和知識與三角形的分類知識結合起來,引導學生運用三角形內角和的知識去解釋直角三角形,鈍角三角形中角的特征,較好地溝通了知識之間的聯(lián)系。
第三題通過兩個三角形的分與合的過程,使學生感受此過程中三角內角的變化情況,進一步理解三角形內角和的知識。
第四題是對三角形內角和知識的進一步拓展,引導學生進一步研究多邊形的內角和。教學中,學生能把這些多邊形分成幾個三角形,將多邊形內角和與三角形內角和聯(lián)系起來,并逐步發(fā)現(xiàn)多邊形內角和的規(guī)律,以此促進學生對多邊形內角和知識的整體構建。能充分注意溝通知識之間的內在聯(lián)系,使學生從整體上把握知識的來龍去脈和縱橫聯(lián)系,逐步形成對知識的整體認知,構建自己的認知結構,從而發(fā)展思維,提高綜合運用知識解決問題的能力。
三角形的內角說課稿篇十五
《三角形的內角和》是人教版小學數(shù)學四年級下冊第五單元的內容。“三角形的內角和”是三角形的一個重要性質,學好它有助于學生理解三角形內角之間的關系,也是進一步學習幾何的基礎。本節(jié)課是在學生學過角的度量、三角形的特征和分類等知識的基礎上進行教學的,學生已經具備一定的關于三角形的認識的直接經驗,也已具備了一些相應的三角形知識和技能,這為感受、理解、抽象“三角形的內角和”的規(guī)律,打下了堅實的基礎。
一節(jié)成功的課,不僅在于對教材的把握,還有對學生的研究。四年級的學生正處于具體形象思維為主導的階段,他們解決問題的能力很強,但自控力稍差。因此本節(jié)課將注重引導學生動腦思考,動手實踐,打破以知識傳授為主的傳統(tǒng)數(shù)學課堂模式,采用靈活多樣的教學方法,牢牢將學生的注意力集中在課堂中。
根據(jù)新課程的要求及教材的編寫特點,充分考慮到四年級學生的思維水平,我確立如下三維教學目標:。
知識與技能目標:通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內角和是180°,并會應用這一知識解決生活中簡單的實際問題。
過程與方法目標:經歷觀察、猜想、驗證的過程,提升自身動手操作及推理、歸納總結的能力。
情感態(tài)度價值觀目標:在參與學習的過程中,感受數(shù)學的魅力,體驗成功的喜悅,激發(fā)學習數(shù)學的興趣。
根據(jù)教學目標,我確定了本節(jié)課的重點和難點。重點為三角形內角和定理,而三角形內角和定理推理的過程為本節(jié)課的難點。
為了更好地突出重點,突破難點,堅持“以學生為主體,以教師為主導”的原則,根據(jù)學生的心理發(fā)展規(guī)律,我將采用啟發(fā)式教學法,引導學生利用已有的知識經驗去探索新知,并在探索過程中掌握本節(jié)重難點,同時輔之以多媒體教學設備,直觀地呈現(xiàn)教學內容。
我將引導學生采用自主探究,合作交流的方式進行學習,通過動手動腦動口來掌握本節(jié)課的教學重難點。
為了更好地完成本節(jié)課的教學內容,突出重點突破難點,我設計了以下幾個教學環(huán)節(jié):
(一)創(chuàng)設情境,導入新課。
為了引入新課,調動學生的學習興趣,一開始上課我便用多媒體播放有關三角形內角和情境視頻:在圖形的王國中,有一天,三角形家族里為“三角形內角和的大小”爆發(fā)了一場激烈的爭吵。鈍角三角形說“我的鈍角大,我的內角和一定比你們的內角和大”。銳角三角形也不示弱“你雖然有一個鈍角,可是其它兩個角都很小,而我的三個角都不是很小,所以我的內角和比你大”。直角三角形說“別爭了,我們的內角和是一樣大的,因為三角形的內角和是180°”。根據(jù)視頻中三角形的對話,順勢引出題目——三角形的內角和。
多媒體課件展示有關三角形內角和的內容,激發(fā)學生深厚的學習興趣和求知欲望,快速的進入學習高潮。
(二)自主探究,感受新知。
首先讓學生畫幾個不同類型的三角形。然后同桌互相量一量,算一算,三角形3個內角的和各是多少度?通過測量,學生可以發(fā)現(xiàn)三角形的內角和是180°。
接著我會提出一個問題是不是所有的三角形的內角和都是180°,如何進行驗證你的結論呢?接下來我會讓學生分小組討論,針對學生出現(xiàn)的問題,我給予指導,討論過后,請同學匯報,鼓勵學生用自己的語言表達,無論學生回答的全面與否,都給予積極的評價,其他同學認真傾聽后做出判斷,進行補充,提高學生的注意力。
通過小組之間的討論,引導學生采用剪拼的方法進行驗證,先把一個三角形的三個角剪下來,再拼一拼,拼成一個平角。
以上教學活動采用讓學生主動探索、小組合作交流的學習方式,使學生充分經歷數(shù)學學習的全過程,體現(xiàn)以生為本的教學理念。學生在全程參與中不僅掌握新知發(fā)展能力培養(yǎng)的推理能力,又鍛煉學生的語言表達能力和溝通能力,同時讓學生體驗數(shù)學與生活的緊密聯(lián)系。
(三)鞏固練習,強化知識。
我利用小學生好勝心強的特點,以闖關的形式將課本的習題展現(xiàn)在多媒體上來鞏固本節(jié)課所學的知識,這樣設計能增加數(shù)學的趣味性,激發(fā)學生的學習興趣,并查看他們知識的掌握情況。
(四)課堂小結。
我將此環(huán)節(jié)分為兩部分。第一部分是以學生為主體的知識性總結,讓學生暢談本節(jié)課的感受和收獲,及時了解學生的學習情況和情感體驗。第二部分是以教師為主體的情感性總結,我會對學生的表現(xiàn)予以表揚和激勵,激發(fā)學生的學習興趣,增強學習自信心。
(五)布置作業(yè)。
針對學生的年齡特點,我會讓學生在課下和家長交流今天的收獲和感受,從而讓家長了解學生在校的學習情況,并促進學生與家長的溝通。
說板書設計。
一個好的板書應該是簡潔明了整潔美觀,重難點突出,能夠對學生理解本節(jié)知識有一定的強化作用,因此我的板書是這樣設計的。
以上就是我的全部說課,感謝各位老師的聆聽!(鞠躬)。
三角形的內角說課稿篇十六
今天我說課的內容是人教版九年義務教育小學數(shù)學四年級下冊第五單元第85頁的《三角形的內角和》。
2、教材分析。
《三角形的內角和》是探索型的教材。是在學生學習了三角形、長方形等基本圖形,以及角的度量、三角形的特征、分類的基礎上進行教學的,學生對這一知識的理解和掌握又將為進一步學習幾何知識打下堅實的基礎。
仔細分析教材的知識結構,它是分成3個部分來呈現(xiàn)的。第一部分是讓學生通過量一量、算一算,初步感知三角形的內角和是180°;第二部分是通過拼角的實驗來探究并歸納三角形內角和的規(guī)律,第三部分是運用規(guī)律、解決問題。教材這樣編排由發(fā)現(xiàn)問題,到驗證問題,再到運用規(guī)律,充分體現(xiàn)了知識結構的有序性和強烈的數(shù)學建模思想,既符合四年級學生的認知規(guī)律,又突出了本課教學的重點。
3、教學目標。
根據(jù)小學數(shù)學教學大綱對四年級學生的具體要求,結合教材特點及學生年齡特征,將本節(jié)課的目標制定為以下幾點:
認知技能:學生動手操作,在猜想后通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)“三角形內角和等于180度”的規(guī)律。
數(shù)學思考:在操作實驗中,讓學生感受圖形的轉化過程及數(shù)學建模思想,初步培養(yǎng)學生的空間思維觀念。
解決問題:在運用知識解決問題的過程中,感受所學知識的重要性,初步培養(yǎng)學生的應用意識。
情感態(tài)度:通過各種實驗活動,激發(fā)學習興趣,體驗學習成功感,并在教學中,感受生活與數(shù)學的密切聯(lián)系。
4、教學重點難點。
根據(jù)本節(jié)課的教學目標及對編者意圖的理解。將運用各種實驗方法探究三角形內角和為180度的過程并掌握規(guī)律,運用規(guī)律解決實際問題確定為本節(jié)課的教學重點。而同時學生難以理解不易掌握的探究規(guī)律的全過程則是本節(jié)課的教學難點。
5、教學具準備。
學生每人準備量角器、小剪刀、白紙各一張。
二、說教法學法。
我要說的第二塊是教法學法。
新課程標準的基本理念就是要讓學生“人人學有價值的數(shù)學”。強調“教學要從學生已有的經驗出發(fā),讓學生親身經歷將實際問題抽象成數(shù)學模型并進行解釋與應用的過程”。
因此,我運用“猜一猜--量一量--拼-拼--折一折--看一看……”的教學法,讓學生大膽猜想,自主探索三角形的內角和是多少度?再通過測量、拼折、驗證等方式讓學生確定三角形內角的度數(shù)和。這樣,既培養(yǎng)了學生的觀察能力和歸納概括能力,又體現(xiàn)了學生動手實踐、合作交流,自主探索的學習方式。
在整個教學設計上力求充分體現(xiàn)“以學生發(fā)展為本”教育理念,將教學思路擬定為“談話激趣設疑導入--猜想--驗證{自主探究}--鞏固新知--全面提升”,努力構建探索型的課堂教學模式。
當然,一堂課的效果如何,還要看課堂結構是否合理。接下來,我就來說說我的教學程序設計。
三、說教學流程。
根據(jù)我對教材的把握和對學情的了解,設計了4個環(huán)節(jié)展開教學。
一、創(chuàng)設情境,發(fā)現(xiàn)問題。
小游戲:猜一猜藏在信封后面的是什么三角形。
三角形的這三個角究竟存在什么奧秘呢,我們一起來研究研究。
(創(chuàng)設的不是生活中的情境,而是數(shù)學化的情境。有的孩子認為一個三角形中可能會有兩個鈍角,還有的提出等邊三角形中可能會有直角,這兩個問題顯現(xiàn)出學生在認知上的矛盾,學生用已經學的三角形的特征只能解釋“不能是這樣”,而不能解釋“為什么不能是這樣”。這樣引入問題恰好可以利用學生的這種認知沖突,激發(fā)學生的學習興趣,讓學生在疑問與猜想中尋找驗證的方法。)。
教學進入第二環(huán)節(jié)--引導探究。
二、動手操作,探究規(guī)律。
1.介紹內角、內角和,并提出猜想。
師:我們現(xiàn)在研究三角形的三個角,都是它的內角。
師:今天我們就來一起探究《三角形的內角和》。猜一猜其它三角形的內角和是多少度呢?同桌互相說說自己的看法。
2.確定研究范圍。
師:研究三角形的內角和,是不是應該包括所有的三角形?只研究黑板上這一個行不行?那就隨便畫,挨個研究吧。(學生反對)。
請你想個辦法吧!
(通過引導學生分析,“研究哪幾類三角形,就能代表所有的三角形”這個問題,來滲透研究問題要全面,也就是完全歸納法的數(shù)學思想)。
3.建立模型,解決問題。
(一)測量法:
(1)學生自然想到要量出三角形每個角的度數(shù)就能夠求出三角形的內角和,從而證明三角形的內角和與三角形的大小和形狀沒有關系都接近180度。
(3)記錄小組測量結果及討論結果。
實驗材料尺子剪刀量角器銳角三角形紙片直角三角形紙片鈍角三角形紙片。
方法一三角形的形狀每個內角的度數(shù)三個內角的和。
三角形的內角說課稿篇十七
本節(jié)課在整個教學設計上臧老師充分體現(xiàn)“以學生發(fā)展為本”教育理念,她將教學思路擬定為“猜想——驗證{自主探究}——運用”,努力構建探索型的課堂教學模式,善于捕捉課堂中的動態(tài)資源。具體體現(xiàn)在以下幾點:
課一開始臧老師就讓學生猜謎語,一下子就把孩子們的注意力吸引了過來,緊接著又出現(xiàn)三類三角形對自己內角和度數(shù)大小的不同看法,由此出現(xiàn)疑問和矛盾,引起了學生探索的欲望,同時引出了課題。
臧老師先從學生已有的經驗出發(fā),指生說出三角板每個角的度數(shù),并求出它們的內角和是180°。接著讓學生猜想是不是所有三角形內角和都是180度,這樣最大限度的激發(fā)學生探究的愿望和興趣,也為后邊的探索和驗證活動有了明確的目標。
課堂中老師把大量的時間和空間留給學生,讓他們開展有針對性的數(shù)學探究活動,即:量一量、拼一拼。在活動中,鼓勵學生積極并開動腦筋,從不同的途徑探索解決問題的方法。
首先讓學生動手測量三角形內角和,幫助學生清楚地認識到測量會產生誤差造成結果不統(tǒng)一?!皼]有得到統(tǒng)一的結果,這個辦法不能使人信服怎么辦?還有沒有其它的辦法呢”這兩個恰到好的問題一下激活了學生的探究欲望,使第二次活動顯得自然,有一種水到渠成的效果。
接下來學生通過撕一撕、拼一拼再次來驗證新知識。這樣不僅提高了操作效果,更重要的是在操作過程中學生對所學知識產生了深刻的體驗。
課程標準提倡練習的有效性,為此,臧老師非常注意將數(shù)學思考融入不同層次的練習中,很好的發(fā)揮練習的作用。如:求三角形第三個角的度數(shù),其中有一道90°、40°,學生按常規(guī)解決后,臧老師緊接著問“還有沒有最快的方法?”有效培養(yǎng)了學生的應用意識和解決問題的能力,也培養(yǎng)了學生的發(fā)生思維。
總之,這堂課臧老師有效注重彰顯解決問題的策略,挖掘在解決問題過程中所體現(xiàn)的數(shù)學思想。這堂課臧老師不僅把知識傳授給了學生,更重要的是讓學生真正意義上從“學會知識”轉變?yōu)椤皶W知識”。
三角形的內角說課稿篇十八
本課堂的教學中,老師充分體現(xiàn)“以學生發(fā)展為本”教育理念,將教學思路擬定為“談話激趣設疑導入——猜想——驗證{自主探究}——鞏固內化——拓展延伸”,努力構建探索型的課堂教學模式。具體體現(xiàn)在以下幾點:
1、善用激趣設疑導入:教學的藝術不在于傳授知識,而在于喚醒、激發(fā)和鼓勵。剛開始上課,謝老師用選王大會設懸念,三種類型的角在激烈的爭執(zhí),到的誰的內角和大呢?這樣,在很短的時間內最大限度的激發(fā)學生探究數(shù)學的愿望和興趣,而且也很自然地揭示了課題。
2、巧用猜想:學生有了探索的愿望和興趣,可是不能沒有目標的去探索,那樣只會事倍功半,甚至沒有結果,這時謝老師就提到到底三角形的內角和是不是180度呢,我們總不能口說無憑吧?使后邊的探索和驗證活動有了明確的目標。
3、善用驗證{自主探索}:學生形成統(tǒng)一的猜想{即三角形的內角和等于180度}后,謝老師就把課堂大量的時間和空間留給學生,讓他們開展有針對性的數(shù)學探究活動{即驗證三角形的內角和是否是180度?},在活動中,把放和引有機的結合,鼓勵學生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓每個學生自主參與驗證活動,而且使學生在經歷觀察、操作、分析、推理和想象活動過程中解決問題,發(fā)展空間觀念和論證推理能力。具體過程為:量一量——拼一拼——看一看。
4、善于引導鞏固內化:俗話說的好:“熟能生巧”。數(shù)學離不開練習,要掌握知識,形成技能技巧,一定要通過練習。養(yǎng)成良好的思維品質也要通過一定的思考練習,課程標準提倡練習的有效性。對此,謝老師非常注意將數(shù)學的思考融入不同層次的練習之中,很好的發(fā)揮練習的作用,如第一關牛刀小試:給出一個三角形的兩個角度,學生求第三個角,從中培養(yǎng)學生應用意識和解決問題的能力;第三關過關斬將:讓學生判斷有兩個小三角形拼成的三角形的內角和的度數(shù),使學生在圖形變化的過程中掌握知識,培養(yǎng)思維的靈活性,從中發(fā)展學生的空間觀念和空間想象能力。這些練習設計目的明確,針對性強,使學生不但鞏固了知識,更重要的是數(shù)學思維得到不斷的發(fā)展。
5、有一定的拓展創(chuàng)新:數(shù)學具有嚴密的邏輯性和抽象性。而學生學習內容的呈現(xiàn)是從簡單到復雜,思維方式是從具體到抽象的一個循序漸進的過程,前面學習的知識往往是后面進一步學習的基礎。要培養(yǎng)學生思維的靈活性,可以先讓學生學會對知識的遷移。本課最后,謝老師設計了這樣一道題目:學了三角形的內角和后,你知道四邊形的內角和是多少度嗎?這道題通過對本節(jié)課所學知識的遷移就可以完成,既能對學生進行思維訓練,又能培養(yǎng)學生應用知識的能力,更能培養(yǎng)學生的創(chuàng)新意識和創(chuàng)新精神。
總之,本節(jié)課教學活動中謝老師充分體現(xiàn)以下特點:以學生發(fā)展為本,以學生為主體,思維為主線的思想;充分關注學生的自主探究與合作交流;練習體現(xiàn)了層次性,知識技能得于落實和發(fā)展。是一節(jié)非常成功的課。
三角形的內角說課稿篇十九
《三角形內角和》一課是人教版義務教育課程標準實驗教材四年級下冊第五單元的內容,是在學生學習了《三角形的特性》以及《三角形三邊關系》、《三角形的分類》之后進行的,在此之后則是《圖形的拼組》,它是三角形的一個重要特征,也是掌握多邊形內角和及解決其他實際問題的基礎,因此,學習、掌握三角形的內角和是180°這一規(guī)律具有重要意義。
(二)教學目標
基于以上對教材的分析以及對教學現(xiàn)狀的思考,我從知識與技能、教學過程與方法、情感態(tài)度價值觀三方面擬定了本節(jié)課的教學目標:
1.通過“量一量”、“算一算”、“拼一拼”、“折一折”的小組活動的方法,探索發(fā)現(xiàn)驗證三角形內角和等于180°,并能應用這一知識解決一些簡單問題。
2.通過把三角形的內角和轉化為平角進行探究實驗,滲透“轉化”的數(shù)學思想。
3.通過數(shù)學活動使學生獲得成功的體驗,增強自信心。培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。
(三)教學重、難點
因為學生已經掌握了三角形的概念、分類,熟悉了鈍角、銳角、平角這些角的知識。對于三角形的內角和是多少度,學生并不陌生,也有提前預習的習慣,學生幾乎都能回答出三角形的內角和是180°。在整個過程中學生要了解的是“內角”的概念,如何驗證得出三角形的內角和是180°。因此本節(jié)課我提出的教學的重點是:驗證三角形的內角和是180°。
本節(jié)課主要是通過教師的精心引導和點撥,學生在小組中合作探索,通過量一量、折一折、撕一撕、畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內角和是180°。
因為《課程標準》明確指出:“要結合有關內容的教學,引導學生進行觀察、操作、猜想,培養(yǎng)學生初步的思維能力”。四年級學生經過第一學段以及本單元的學習,已經掌握了三角形的分類,比較熟悉平角等有關知識;具備了初步的動手操作、主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點引導學生從“猜測――驗證”展開學習活動,讓學生感受這種重要的數(shù)學思維方式。
我以引入、猜測、證實、深化和應用五個活動環(huán)節(jié)為主線,讓學生通過自主探究學習進行數(shù)學的思考過程,積累數(shù)學活動經驗。
(一)引入
呈現(xiàn)情境:出示多個已學的平面圖形,讓學生認識什么是“內角”。(把圖形中相鄰兩邊的夾角稱為內角)長方形有幾個內角?(四個)它的內角有什么特點?(都是直角)這四個內角的和是多少?(360°)三角形有幾個內角呢?從而引入課題。
【設計意圖】讓學生整體感知三角形內角和的知識,這樣的教學,將三角形內角和置于平面圖形內角和的大背景中,拓展了三角形內角和的數(shù)學知識背景,滲透數(shù)學知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。
(二)猜測
提出問題:長方形內角和是360°,那么三角形內角和是多少呢?
【設計意圖】引導學生提出合理猜測:三角形的內角和是180°。
三)驗證
(2)撕―拼:利用平角是180°這一特點,啟發(fā)學生能否也把三角形的三個內角撕下來拼在一起,成為一個平角?請學生同桌合作,從學具中選出一個三角形,撕下來拼一拼。
(3)折-拼:把三角形的三個內角都向內折,把這三個內角拼組成一個平角,一個平角是180°,所以得出三角形的內角和是180°。
(4)畫:根據(jù)長方形的內角和來驗證三角形內角和是180°。
一個長方形有4個直角,每個直角90°,那么長方形的內角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內角和就是180°。從長方形的內角和聯(lián)想到直角三角形的內角和是180°。
【設計意圖】利用已經學過的知識構建新的數(shù)學知識,這不僅有助于學生理解新的知識,而且是一種非常重要的學習方法。在探索三角形內角和規(guī)律的教學中,注意引導學生將三角形內角和與平角、長方形四個內角的和等知識聯(lián)系起來,并使學生在新舊知識的連接點和新知識的生長點上把握好他們之間的內在聯(lián)系。在整個探索過程中,學生積極思考并大膽發(fā)言,他們的創(chuàng)造性思維得到了充分發(fā)揮。
(四)深化
質疑:大小不同的三角形,它們的內角和會是一樣嗎?
觀察:(指著黑板上兩個大小不同但三個角對應相等的三角形并說明原因,三角形變大了,但角的大小沒有變。)
結論:角的兩條邊長了,但角的大小不變。因為角的大小與邊的長短無關。
結論:活動角就是一個平角180°,另外兩個角都是0°。
【設計意圖】小學生由于年齡小,容易受圖形或物體的外在形式的影響。教師主要是引導學生與角的有關知識聯(lián)系起來,通過讓學生觀察利用“角的大小與邊的長短無關”的舊知識來理解說明。
對于利用精巧的小教具的演示,讓學生通過觀察、交流、想象,充分感受三角形三個角之間的聯(lián)系和變化,感悟三角形內角和不變的原因。
(五)應用
1.基礎練習:書本練習十四的習題9,求出三角形各個角的度數(shù)。
(2)將一個大三角形分成兩個小三角形,這兩個小三角形的內角和分別是多少?
4.智力大挑戰(zhàn):你能求出下面圖形的內角和嗎?書本練習十四的習題
【設計意圖】習題是溝通知識聯(lián)系的有效手段。在本節(jié)課的四個層次的練習中,能充分注意溝通知識之間的內在聯(lián)系,使學生從整體上把握知識的來龍去脈和縱橫聯(lián)系,逐步形成對知識的整體認知,構建自己的認知結構,從而發(fā)展思維,提高綜合運用知識解決問題的能力。
第一題將三角形內角和知識與三角形特征結合起來,引導學生綜合運用內角和知識和直角三角形、等邊三角形等圖形特征求三角形內角的度數(shù)。
第二題將三角形內角和知識與三角形的分類知識結合起來,引導學生運用三角形內角和的知識去解釋直角三角形、鈍角三角形中角的特征,較好地溝通了知識之間的聯(lián)系。
第三題通過兩個三角形的分與合的過程,使學生感受此過程中三角內角的變化情況,進一步理解三角形內角和的知識。
第四題是對三角形內角和知識的進一步拓展,引導學生進一步研究多邊形的內角和。教學中,學生能把這些多邊形分成幾個三角形,將多邊形內角和與三角形內角和聯(lián)系起來,并逐步發(fā)現(xiàn)多邊形內角和的規(guī)律,以此促進學生對多邊形內角和知識的整體構建。
三角形內角和
引入:
猜測:
量——算
撕——拼
驗證折——拼
畫
深化
應用
三角形的內角說課稿篇二十
《三角形的內角和》是人教版小學四年級下冊的內容,“三角形的內角和”是三角形的一個重要性質,是“空間與圖形”領域的重要內容之一,學好它有助于學生理解三角形內角之間的關系,也是進一步學習幾何的基礎。
本節(jié)課的教學是在學生已經認識了三角形、平角,學會測量角的度數(shù)及三角形的分類、已具備一定的探究經驗和技能的基礎上探索和發(fā)現(xiàn)三角形內角和等于180度,為理解三角形三個內角的關系以及在今后學習多邊形內角和打下基礎。
根據(jù)教材的特點,我制定出本節(jié)課的三維目標分別是:
1、通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形內角和是180°。能運用新知識解決問題。
2、在操作活動中,培養(yǎng)學生的合作意識、動手實踐能力,發(fā)展學生的空間觀念,培養(yǎng)學生自主探究能力。
3、激發(fā)學生主動學習數(shù)學的興趣,體驗知識的形成過程,實現(xiàn)自主發(fā)展。
課件、學生準備不同類型的三角形各一個,長方形或正方形、剪刀、量角器。
這節(jié)課如果作為一般的講授課教學,其實說來很容易,只需要告訴學生三角形的內角和是180度,學生記住這個結論就可以直接進行練習了。顯然這種教學設計不符合新的教學理念,《新課程改革》指出:教師要從知識的傳授者向學生學習活動的組織者引導者合作者轉變,為了將這節(jié)課的目標真正的落到實處,我把這節(jié)課定性為“開放型探究課”,開展了一系列的數(shù)學探究活動,讓學生在探究活動中親身去體驗知識的形成過程,從而實現(xiàn)自主發(fā)展。所以本節(jié)課我主要采用了以下幾種教學方法:
(1)、引導學生在合作中學習數(shù)學。例如:分小組測量三角形每個內角的度數(shù)并算出它們的總和。
自己想辦法進一步探究.
(3)、引導學生在探究中完成歸納推理過程。例如:通過拼一拼、折一折、分一分等方法層層推進,這樣由普通到特殊再到一般的推理過程.
(4)、引導學生在歸納推理的基礎上實現(xiàn)知識遷移。例如:當學生探究三角形的內角和之后,引導學生利用本節(jié)課所學知識進一步探究多邊形的內角和。
八、說教學流程。
學生的學習過程是在其原有認知基礎上的主動建構,因此我依據(jù)學生的認知規(guī)律將教學過程分為以下4個環(huán)節(jié):
1、創(chuàng)設情景,以情激趣。
首先上課一開始,我利用多媒體出示大小兩個三角形為比誰的內角和大而爭吵,讓正方形來判斷誰大誰小的教學情景,富有挑戰(zhàn)性,充滿了濃濃的吸引力,學生的好奇心好勝心讓他們產生一種想立即判斷出誰大誰小的強烈愿望,激發(fā)了學生的求知欲。為了加深對內角和意義認識和理解我把正方形巧妙的融入了情景中,為后來探究三角形的內角和度數(shù)做了鋪墊。
2、合作交流。
探究新知。
這一環(huán)節(jié)的設計我是分4部分完成的:
(1).量一量。
我緊緊抓住小學生強烈的好奇心,先引導他們用量角器量一量的方法去探究比較大小三角形的內角和,可能會出現(xiàn)大于180度、180度或小于180度不同的結果。在交流匯報的結果時會發(fā)現(xiàn)答案不統(tǒng)一,無法判斷大小三角形內角和誰大誰小的問題。此時學生心中產生了更大的疑惑,“三角形的內角和到底是多少度?誰的答案正確呢?”這一思維的碰撞,再次激起學生的學習探究熱情,自主產生探究欲望,強烈的求知欲和好勝心讓學生躍躍欲試,此時我順水推舟,引導他們用拼一拼、折一折等不同的方法探究不同的三角形的內角和是多少度。
(2)、拼一拼、折一折。
度時,我充分調動學生學習的積極性,挖掘他們的學習潛力,給他們提供充分自主探究和交流的時間和空間。引導他們利用手中的學具自己去研究,不做任何拼折方法的提示,不局限學生的思維方式,完全放手,選擇自己喜歡的方法探究,同學們可能會用不同的方法進行剪拼、折拼,對他們的探究精神我都予以表揚和肯定。
(3).得出結論、加深內化。
學生親身經歷探索、實驗、發(fā)現(xiàn)、討論、交流、驗證等一系列的數(shù)學活動后,體會到:這些三角形的內角和是相等的。都是180度,并自主得出結論:三角形的內角和是180度。然后引導他們:用科學、簡練的數(shù)學語言表述探究方法學生匯報并演示三角形內角和180度探究過程。并借助多媒體在大屏幕上演示其中幾種基本的剪拼、折拼方法。學生通過動口表述,動手演示,觀看驗證、加深了他們對三角形內角和是180度的直觀理解,更加深了對知識的內化。
(4).揭示課題、解決問題。
180度。在這個環(huán)節(jié)中,我自始至終充當教學研究的組織者,引導者,參與者。前后組織了幾次自主探究活動,讓學生在保持高度學習熱情與欲望的探究過程中,始終以愉悅的心情親身經歷和體驗知識的形成過程。培養(yǎng)了學生的探究能力、分析思維能力,激發(fā)了他們的創(chuàng)新意識、參與意識,體驗成功的同時掌握和體會數(shù)學的學習方法,初步感知數(shù)學知識的科學性和嚴密性。在學生在探究中,實現(xiàn)自主體驗,獲得自主發(fā)展。
3、運用新知、解決問題。
本環(huán)節(jié)我設計了以下幾種題型:1、推算題,2、辨析,3、思考題,4、拓展題,這幾種題型由簡單到復雜,鞏固了這節(jié)課學到的知識,也解決了一些實際的問題,最后一道實踐活動讓學生根據(jù)三角形的內角和探索經驗去探索多邊形的內角和,對知識進行了遷移,加深了知識的內化,更是學生通過自主體驗獲得知識自我建構的升華。
4、了解歷史、全課小結。
這一環(huán)節(jié)我利用數(shù)學文化給學生介紹三角形的內角和180度的歷史,旨在使學生了解數(shù)學知識的博大精深,領悟數(shù)學的學習方法,同時也是對本節(jié)課三角形的內角和是180度這一知識點作出小結。通過談感想,增強學生學習數(shù)學知識的信心,也是對學生學習所提出的希望:對待學習要有不斷探索和創(chuàng)新的精神,只有親身經歷了知識的形成過程,學習效率才會更高!
三角形的內角說課稿篇二十一
在整個教學設計上謝老師充分體現(xiàn)“以學生發(fā)展為本”教育理念,將教學思路擬定為“談話激趣設疑導入——猜想——驗證{自主探究}——鞏固內化——拓展延伸”,努力構建探索型的課堂教學模式。具體體現(xiàn)在以下幾點:
1、善用激趣設疑導入:教學的藝術不在于傳授知識,而在于喚醒、激發(fā)和鼓勵。剛開始上課,謝老師用選王大會設懸念,三種類型的角在激烈的爭執(zhí),到的誰的內角和大呢?這樣,在很短的時間內最大限度的激發(fā)學生探究數(shù)學的愿望和興趣,而且也很自然地揭示了課題。
2、巧用猜想:學生有了探索的愿望和興趣,可是不能沒有目標的去探索,那樣只會事倍功半,甚至沒有結果,這時謝老師就提到到底三角形的內角和是不是180度呢,我們總不能口說無憑吧?使后邊的探索和驗證活動有了明確的目標。
3、善用驗證{自主探索}:學生形成統(tǒng)一的猜想{即三角形的內角和等于180度}后,謝老師就把課堂大量的時間和空間留給學生,讓他們開展有針對性的數(shù)學探究活動{即驗證三角形的內角和是否是180度?},在活動中,把放和引有機的結合,鼓勵學生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓每個學生自主參與驗證活動,而且使學生在經歷觀察、操作、分析、推理和想象活動過程中解決問題,發(fā)展空間觀念和論證推理能力。具體過程為:量一量——拼一拼——看一看。
4、善于引導鞏固內化:俗話說的好:“熟能生巧”。數(shù)學離不開練習,要掌握知識,形成技能技巧,一定要通過練習。養(yǎng)成良好的思維品質也要通過一定的思考練習,課程標準提倡練習的有效性。對此,謝老師非常注意將數(shù)學的思考融入不同層次的練習之中,很好的發(fā)揮練習的作用,如第一關牛刀小試:給出一個三角形的兩個角度,學生求第三個角,從中培養(yǎng)學生應用意識和解決問題的能力;第三關過關斬將:讓學生判斷有兩個小三角形拼成的三角形的內角和的度數(shù),使學生在圖形變化的過程中掌握知識,培養(yǎng)思維的靈活性,從中發(fā)展學生的空間觀念和空間想象能力。這些練習設計目的明確,針對性強,使學生不但鞏固了知識,更重要的是數(shù)學思維得到不斷的發(fā)展。
5、有一定的拓展創(chuàng)新:數(shù)學具有嚴密的邏輯性和抽象性。而學生學習內容的呈現(xiàn)是從簡單到復雜,思維方式是從具體到抽象的一個循序漸進的過程,前面學習的知識往往是后面進一步學習的基礎。要培養(yǎng)學生思維的靈活性,可以先讓學生學會對知識的遷移。本課最后,謝老師設計了這樣一道題目:學了三角形的內角和后,你知道四邊形的內角和是多少度嗎?這道題通過對本節(jié)課所學知識的遷移就可以完成,既能對學生進行思維訓練,又能培養(yǎng)學生應用知識的能力,更能培養(yǎng)學生的創(chuàng)新意識和創(chuàng)新精神。
總之,本節(jié)課教學活動中謝老師充分體現(xiàn)以下特點:以學生發(fā)展為本,以學生為主體,思維為主線的思想;充分關注學生的自主探究與合作交流;練習體現(xiàn)了層次性,知識技能得于落實和發(fā)展。是一節(jié)非常成功的課。
三角形的內角說課稿篇二十二
尊敬的各位老師:
你們好!
今天我說課的內容是北師大版小學數(shù)學四年級下第二單元“認識圖形”中探索與發(fā)現(xiàn)部分的“三角形的內角和”這部分知識。本課指導學生通過直觀操作的方法,探索并發(fā)現(xiàn)三角形內角和等于180°。讓學生在實驗活動中,體驗探索的過程和方法。能使學生應用三角形內角和的性質解決一些簡單問題。在認真學習《數(shù)學課程標準》,深入鉆研教材,充分了解學生的基礎上,我準備從以下幾方面進行說課。
“認識圖形”是“空間與圖形”的重要內容之一。學生在此之前已經對三角形有了一定的認識。因為教材的小標題為“探索與發(fā)現(xiàn)”,所以我主要是通過讓學生在自主探索中學習本課內容。先讓學生明確“內角”的意義,然后引導學生探索三角形內角和等于多少。
結合學生已經有的知識經驗,對于本課我確立了以下幾個教學目標:
1、通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內角的度數(shù)和等于180度。已知三角形兩個角的度數(shù),會求第三個角的度數(shù)。
2、滲透猜想--驗證--結論--運用--引申的學習方法,培養(yǎng)學生動手操作和合作交流的能力,培養(yǎng)學生的探究意識。
3、培養(yǎng)學生自主學習、積極探索的好習慣,激發(fā)學生學習數(shù)學應用數(shù)學的興趣,體驗學習數(shù)學的快樂。
把教學重難點設定為驗證三角形的內角和是180°,并學會應用。
本堂課我采取了“開放型的探究式”教學模式,運用“猜一猜——量一量——拼—拼——折一折——看一看……”的教學法,使學生全面參與、全員參與、全程參與,真正確立其主體地位。讓學生知道身邊的數(shù)學問題隨處可見,能用自己所學的知識解決生活當中的事情,培養(yǎng)學生的發(fā)散思維,進一步激發(fā)學生學習數(shù)學的熱情。在在具體活動中,我讓學生大膽猜想,自主探索三角形的內角和是多少度?再通過測量、拼折、驗證等方式讓學生確定三角形內角的度數(shù)和。這樣,既培養(yǎng)了學生的觀察能力和歸納概括能力,又體現(xiàn)了學生動手實踐、合作交流,自主探索的學習方式,同時也培養(yǎng)了學生探索能力和創(chuàng)新精神。
本節(jié)課,我將重點引導學生從“猜測――驗證”展開學習活動,讓學生感受這種重要的數(shù)學思維方式。因此我依據(jù)學生的認知規(guī)律將教學過程分為以下幾個環(huán)節(jié):
(一)復習舊知
由于學生在此之前已經學過了一些關于三角形的一些知識,為了讓學生在學習上有一定的連貫性,我首先設計了一個問題“你對三角形有哪些了解?”,讓學生在復習當中加深對三角形的認識,自然引出“內角”一詞,為后面的探索奠定基礎。
(二)創(chuàng)設情境,激趣導入
教育家葉圣陶先生也曾經說過:“興趣是最好的老師?!币虼耍竟?jié)課一開始,我采用故事導入,用兩個大小不同的三角形,創(chuàng)設一個擬人化的對話情境,“大”對“小”說:“你看我個大所以我的內角和一定比你大?!薄靶 眴柕剑骸澳强刹灰欢?,我雖然個小可我的內角和不一定比你小??!”兩人爭論不休,請同學們幫忙解決問題,引入今天所要學習的內容。在這一環(huán)節(jié)中把問題隱藏在情景之中,將會引起學生迫不及待探索研究的興趣,引發(fā)學生的思考,要比較內角和的大小,就要知道各自的內角的度數(shù),從而引導學生開始對“三角形的內角和是多少”進行思索,引發(fā)學生探知欲望,也為下一步的教學架橋鋪路。
(三)動手操作,自主探究
由于學生對三角形的內角和已經產生了一定的求知欲,在此我首先設計了一個問題“什么是三角形的內角和?怎樣才能求出三角形的內角和?”從而引起學生的繼續(xù)思考。在此問題提出的基礎上,我又分別設計了兩個活動。
活動一:讓每組同學分別畫出大小,形狀不同的若干個三角形,并分別量出三個內角的度數(shù),并求出它們的和。填入記錄表中?;顒佣鹤寣W生分組匯報己的記錄表,闡述發(fā)現(xiàn)了什么。
由于本節(jié)課是一節(jié)發(fā)現(xiàn)探索的課程,所以我在此環(huán)節(jié)進行了這樣的設計。通過這樣的活動,引導學生從“實際操作”到“具體感知”,再從“具體感知”到“抽象概念”,讓學生初步理解三角形的內角和是180度。在量一量、算一算中產生猜想,在探索中發(fā)現(xiàn),在活動中思考,經歷三角形內角和的研究方法,體會活動結果,進一步激發(fā)學生的學習興趣,同時也培養(yǎng)了學生與他人合作交流的意識。
(四)驗證結論
學生完成探究活動之后,已經知道了三角形內角和。我做了這樣的提問“除了測量計算出三角形內角和,你還有什么方法可以驗證三角形內角和是180??”學生可以通過:量一量、拼一拼、折一折的方法,發(fā)現(xiàn)三角形的內角和是180度。體會驗證三角形內角和的數(shù)學思想方法,加深學生對這部分知識的記憶。
(五)鞏固練習
在鞏固練習中,我遵循由易到難的規(guī)律,設計了分層訓練。第一層:基本訓練,通過練習明確,會求簡單的三角形內角和。第二層:綜合訓練,通過學生觀察、分析,從紛繁復雜的條件中獲取有價值的信息解決問題。最后一道實踐活動讓學生根據(jù)三角形的內角和探索經驗去探索四邊形的內角和,對知識進行遷移,使學生得到了發(fā)展。
(六)總結評價
三角形的內角說課稿篇二十三
三角形的內角和是四年級下冊第五單元的內容,是在學生認識三角形的特征、分類的基礎上進行教學的,主要通過不同形式的動手操作驗證三角形的內角和的度數(shù)。
1.注重數(shù)學思想方法的滲透。在教學中,孔石蕾老師首先通過猜想,讓學。
生通過量一量銳角三角形、直角三角形和鈍角三角形每個角的度數(shù),有的學生得到三角形的內角和正好是180°,有的大于180°,而有的則小于180°,由此讓學生去想辦法去驗證三角形的內角和的度數(shù)。在驗證的過程中,學生采用了把三角形的三個角撕下來拼成直角的方法、把三角形的三個角折成平角的方法得出了三角形的內角和是180度,接著教師又通過動畫演示操作和幾何畫板的量角的優(yōu)勢,讓學生清晰地看出三角形內角和的度數(shù)是180度,最后又應用這一知識進行了綜合的練習。在整個教學過程中,教師采用了猜想、驗證、得出結論、應用的四個探究環(huán)節(jié),讓學生經歷了知識的發(fā)生、發(fā)展過程,提高了解決問題的能力。
2.精心準備,精彩呈現(xiàn)。在教學過程中,孔石蕾老師在課件的制作,幾何畫板的應用、知識材料的拓展、習題的選擇等方面進行了精心設計和準備,教學過程流暢、教學環(huán)節(jié)緊湊,教學語言清晰,有效地達成了教學目標,使學生在學習的過程中不僅掌握了知識,也掌握了學習數(shù)學的方法。
在教學過程中,可以適當?shù)倪M行知識的延伸拓展,如通過學習三角形的內角和對于后續(xù)的學習有什么影響,可以想到四邊形的內角和等等方面的內容。
【本文地址:http://www.mlvmservice.com/zuowen/13562732.html】