教案需要根據(jù)不同的教學(xué)內(nèi)容和目標(biāo)進(jìn)行靈活調(diào)整和修改。編寫教案前,教師需要對(duì)教材進(jìn)行仔細(xì)閱讀和理解,確保教學(xué)目標(biāo)的明確。教案是教師備課的重要內(nèi)容,如果你正在編寫教案,可以參考以下小編為大家收集的教案范文。
解一元一次方程的教案人教版篇一
去括號(hào),移項(xiàng),合并同類項(xiàng),系數(shù)化為1。
4、鞏固練習(xí)。
(1)解方程(2)當(dāng)y為何值時(shí),2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)。
(鞏固練習(xí),抽兩個(gè)同學(xué)上黑板去完成,其余的同學(xué)在演草紙上完成,待同學(xué)們完成后給予點(diǎn)評(píng)。)。
5、小結(jié):和同學(xué)們一起回顧我們這節(jié)課學(xué)習(xí)了什么?
解一元一次方程的教案人教版篇二
2.在對(duì)實(shí)際問題情景的分析過程中感受方程模型的意義。
二、自主學(xué)習(xí)。
1、請(qǐng)同學(xué)們閱讀p79至p80第4段,然后用算術(shù)方法解此問題,列算式為___________;然后用設(shè)未知數(shù)列方程的數(shù)學(xué)思想來解決此問題,設(shè)王家莊到翠湖的路程為千米,可列方程為:
像上面含有未知數(shù)的等式,叫__________(讀三遍)。
2、自學(xué)p80例1至p81歸納部分,根據(jù)下列問題,設(shè)未知數(shù)并列出方程.
(1)用一根長(zhǎng)20cm的鐵絲圍成一個(gè)正方形,正方形的邊長(zhǎng)是多少?
分析:設(shè)正方形的邊長(zhǎng)為(cm),那么周長(zhǎng)為__________(cm),列方程:__________.
(2)某校女生占全體學(xué)生數(shù)的61℅,比男生多61個(gè),這個(gè)學(xué)校有學(xué)生多少個(gè)?
(3)一臺(tái)計(jì)算機(jī)已使用1200小時(shí),預(yù)計(jì)每月再使用123小時(shí),經(jīng)過多少月這臺(tái)計(jì)算機(jī)的使用時(shí)間達(dá)到規(guī)定的檢修時(shí)間2612小時(shí)?(自主分析并列出方程)。
像上面(1)、(2)、(3)所列的方程,只含有一個(gè)__________數(shù),并且未知數(shù)的次數(shù)都是__________,這樣的方程叫做__________元__________次方程(讀三遍)。
注意:“一元”是指一個(gè)未知數(shù);“一次”是指未知數(shù)的指數(shù)是一次(理解)。
上面的分析過程歸納如下:
(1)分析實(shí)際問題中的__________關(guān)系,利用__________關(guān)系列出方程(一元一次方程),是用數(shù)學(xué)解決實(shí)際問題的一種方法。
(2)列方程經(jīng)歷的幾個(gè)步驟。
a、設(shè)__________數(shù);b、找出題中的__________關(guān)系;c、列出含有未知數(shù)的等式——()。
3、閱讀p81,理解列方程是解決實(shí)際問題的一種重要方法,利用方程可以求出未知數(shù)。
當(dāng)=6時(shí),4值是24。這時(shí),方程4=24等號(hào)左右兩邊相等,所以=6,叫做方程4=24的解;同樣,當(dāng)x=10時(shí),2x+3=23,這時(shí)方程2x+3=23等號(hào)兩邊_______相等,所以,x=10叫做方程2x+3=23的_______;像這樣,解方程就是求出使方程中等號(hào)左右兩邊_______的未知數(shù)的值,這個(gè)值就是方程的_______(讀三遍)。
思考:x=4與x=3中,哪一個(gè)是方程7x+1=15的解?答:_______。
解一元一次方程的教案人教版篇三
能力目標(biāo):
1、培養(yǎng)學(xué)生準(zhǔn)確運(yùn)算的能力;
2、培養(yǎng)學(xué)生觀察、分析和概括的能力;
3、通過解方程的教學(xué),了解化歸的數(shù)學(xué)思想.
德育目標(biāo):
1、滲透由特殊到一般的辯證唯物主義思想;
2、通過對(duì)方程的解進(jìn)行檢驗(yàn)的習(xí)慣的培養(yǎng),培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、細(xì)致的學(xué)習(xí)習(xí)慣和責(zé)任感;
3、在學(xué)習(xí)和探索知識(shí)中提高學(xué)生的學(xué)習(xí)能力、合作精神及勇于探索的精神;
2、最簡(jiǎn)方程的解法;
正確地解最簡(jiǎn)方程。
引導(dǎo)發(fā)現(xiàn)法。
1.什么叫等式?等式具有哪些性質(zhì)?
2.什么叫方程?方程的解?解方程?
(1)只含有一個(gè)未知數(shù);
(2)未知數(shù)的次數(shù)都是一次。
想一想:
(2)怎樣求最簡(jiǎn)方程(其中是未知數(shù))的解?
1、通過練習(xí),請(qǐng)你總結(jié)一下,解方程(是未知數(shù))把系數(shù)化為1時(shí),怎樣運(yùn)用等式的性質(zhì)2,使計(jì)算比較簡(jiǎn)單。
2、檢測(cè):
3、課堂小結(jié):
2、最簡(jiǎn)方程(其中是未知數(shù));
3、解最簡(jiǎn)方程的主要思路和解題的關(guān)鍵步驟及依據(jù)。
解一元一次方程的教案人教版篇四
一、教學(xué)目標(biāo)。
知識(shí)與技能。
1、會(huì)根據(jù)實(shí)際問題中的數(shù)量關(guān)系列方程解決問題。
過程與方法。
培養(yǎng)學(xué)生的數(shù)學(xué)建模能力,以及分析問題解、決問題的能力。
情感態(tài)度與價(jià)值觀。
1、通過問題的`解決,培養(yǎng)學(xué)生解決問題的能力。
2、通過開放性問題的設(shè)計(jì),培養(yǎng)學(xué)生的創(chuàng)新能力和挑戰(zhàn)自我的意識(shí),增強(qiáng)學(xué)生的學(xué)習(xí)興趣。
二、重點(diǎn)難點(diǎn)。
重點(diǎn)。
根據(jù)題意,分析各類問題中的等量關(guān)系,熟練的列方程解應(yīng)用題。
難點(diǎn)弄清題意,用列方程解決實(shí)際問題。
三、學(xué)情分析。
學(xué)生在上一節(jié)課已經(jīng)學(xué)習(xí)了一元一次方程的解法,對(duì)于學(xué)生來說解方程已不是問題了,本節(jié)課是以上一節(jié)課為基礎(chǔ),用方程來解決實(shí)際問題,只要學(xué)生讀懂題意,建立數(shù)學(xué)模型,用一元一次方程會(huì)解決就行了。
四、教學(xué)過程設(shè)計(jì)。
教學(xué)。
環(huán)節(jié)問題設(shè)計(jì)師生活動(dòng)備注情境創(chuàng)設(shè)。
討論交流:按怎樣的解題步驟解方程才最簡(jiǎn)便?由此你能得到怎樣的啟發(fā)。
創(chuàng)設(shè)問題情境,引起學(xué)生學(xué)習(xí)的興趣。
學(xué)生動(dòng)手解方程。
自主探究。
問題一:
一項(xiàng)工作甲獨(dú)做5天完成,乙獨(dú)做10天完成,那么甲每天的工作效率是,乙每天的工作效率是,兩人合作3天完成的工作量是,此時(shí)剩余的工作量是。
問題二:
問題三:
整理一批圖書,由一個(gè)人做要40小時(shí)完成.現(xiàn)在計(jì)劃由一部分人先做4小時(shí),再增加兩人和他們一起做8小時(shí),完成這項(xiàng)工作.假設(shè)這些人的工作效率相同。
解一元一次方程的教案人教版篇五
2.掌握等式的性質(zhì),理解掌握移項(xiàng)法則。
3.會(huì)用等式的性質(zhì)解一元一次昂成(數(shù)字系數(shù)),掌握解一元一次方程的基本方法。
5.初步學(xué)會(huì)用方程的思想思考問題和解決問題的一些基本方法,學(xué)會(huì)用數(shù)學(xué)的方法觀察、分析、歸納和總結(jié)現(xiàn)實(shí)情境中的.實(shí)際問題。
難點(diǎn)重點(diǎn):
解方程、用方程解決實(shí)際問題。
難點(diǎn):用方程解決實(shí)際問題。
教學(xué)流程。
二、典例回顧。
(1).x=5(2).x2+3x=2(3).2x+3y=5。
判斷下列x值是否為方程3x-5=6x+4的解.
(1).x=3(2)x=3。
4.解決問題的基本步驟。
解:設(shè)先安排x人工作4小時(shí)。根據(jù)兩段工作量之和應(yīng)是總工作量,由此,列方程:
去分母,得4x+8(x+2)=40。
去括號(hào),得4x+8x+16=40。
移項(xiàng)及合并,得12x=24。
系數(shù)化為1,得x=2。
答:應(yīng)先安排2名工人工作4小時(shí).
注意:工作量=人均效率人數(shù)時(shí)間。
本題的關(guān)鍵是要人均效率與人數(shù)和時(shí)間之間的數(shù)量關(guān)系.
三、基礎(chǔ)訓(xùn)練:課本第113頁(yè)第1.2.3題.
四、綜合訓(xùn)練:課本113頁(yè)至114頁(yè)4.5.6.7.8。
五、達(dá)標(biāo)訓(xùn)練:3.7。
五、課堂小結(jié):收獲了哪些?還有哪些需要再學(xué)習(xí)?
解一元一次方程的教案人教版篇六
一、教材分析。
地位:本節(jié)位于青島版七年級(jí)上冊(cè)第八章第4節(jié)第三課時(shí),在研究了解簡(jiǎn)單的一元一次方程的基礎(chǔ)上進(jìn)行的,其后是第5節(jié)一元一次方程的應(yīng)用。
作用:是一元一次方程解應(yīng)用題的基礎(chǔ),也是解其他方程的基礎(chǔ)。
2、教學(xué)目標(biāo)。
(1)知識(shí)與技能:讓學(xué)生掌握解一元一次方程的基本步驟,會(huì)解一元一次方程。
(2)過程與方法:讓學(xué)生經(jīng)歷解一元一次方程的探索過程,總結(jié)出解一元一次方程的一般步驟。
(3)情感、態(tài)度與價(jià)值觀:通過自主學(xué)習(xí)、合作交流,培養(yǎng)學(xué)生的自信心與團(tuán)結(jié)互助精神,讓學(xué)生體會(huì)到解方程中分析與轉(zhuǎn)化的思想方法。
3、重難點(diǎn)與關(guān)鍵。
關(guān)鍵:每一步的`依據(jù)及應(yīng)注意的問題。
二、學(xué)情分析。
學(xué)生已經(jīng)歷了兩節(jié)簡(jiǎn)單的解一元一次方程,大部分學(xué)生應(yīng)已經(jīng)初步了解了去括號(hào)、移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1等方法,對(duì)本節(jié)學(xué)習(xí)大有幫助,但在去分母及其余各步驟中都有易錯(cuò)點(diǎn),是學(xué)生難以全面掌握的。
三、教學(xué)思想。
新課改理念強(qiáng)調(diào)學(xué)生的主體地位,把課堂還給學(xué)生,學(xué)生是每一環(huán)節(jié)的主體。數(shù)學(xué)是思維的體操。這節(jié)課的目的是讓學(xué)生真正思考,將知識(shí)與技能內(nèi)化成自己的東西,同時(shí)養(yǎng)成良好的行為、學(xué)習(xí)習(xí)慣。
四、教學(xué)過程教學(xué)環(huán)節(jié)教師活動(dòng)學(xué)生活動(dòng)設(shè)計(jì)目的一、師生定向。
了解學(xué)情出示上節(jié)。
習(xí)題練習(xí)了解具體學(xué)情確定新舊知識(shí)的銜接點(diǎn)三、自主預(yù)習(xí)。
預(yù)習(xí)檢測(cè)布置任務(wù)。
巡視督導(dǎo)。
板書例題。
預(yù)習(xí)檢測(cè)。
抽查學(xué)生。
指導(dǎo)學(xué)生自改自評(píng)。
自學(xué)課本內(nèi)容,思考解方程的每一步變化的名稱及具體做法,思考易錯(cuò)點(diǎn)。
閉卷答題。
自改、自評(píng)預(yù)習(xí)效果。
教師指明做法,幫學(xué)生走進(jìn)教材,理解文本,把握重點(diǎn)。
通過學(xué)生閱讀思考讓學(xué)生將部分知識(shí)內(nèi)化。
檢查預(yù)習(xí)情況,暴曬問題。
讓學(xué)生將技能內(nèi)化,培養(yǎng)學(xué)生獨(dú)立學(xué)習(xí)能力。
四、合作探究。
展示交流指導(dǎo)學(xué)生互評(píng)。
引導(dǎo)學(xué)生討論總結(jié)步驟及具體做法,易錯(cuò)點(diǎn)小組合作解決自學(xué)未能解決的問題。
由會(huì)的同學(xué)展示。
小組討論總結(jié)每一步的易錯(cuò)點(diǎn)兵教兵。
在互動(dòng)中提高學(xué)生的分析能力、判斷能力,培養(yǎng)團(tuán)結(jié)互助精神五、達(dá)標(biāo)自測(cè)。
拓展應(yīng)用引導(dǎo)學(xué)生完成相應(yīng)學(xué)案上的問題。
獨(dú)立完成。
自評(píng)互評(píng)。
小組交流后當(dāng)堂完成檢驗(yàn)學(xué)生學(xué)習(xí)成果用以確定課后作業(yè)六簡(jiǎn)談收獲。
布置作業(yè)引導(dǎo)學(xué)生談?wù)勥@節(jié)課的收獲。
布置作業(yè)。
從知識(shí)、方法、情感等方面談?wù)n堂收獲了解學(xué)生收獲情況。
布置課下任務(wù),讓學(xué)生繼續(xù)牢固學(xué)習(xí)成果。
解一元一次方程的教案人教版篇七
3、培養(yǎng)學(xué)生根據(jù)問題尋找等量關(guān)系、根據(jù)等量關(guān)系列出方程的能力。
2、能驗(yàn)證一個(gè)數(shù)是否是一個(gè)方程的解。
尋找問題中的等量關(guān)系,列出方程。
如果設(shè)大象的體重為xt,藍(lán)鯨的體重應(yīng)如何表示呢?怎樣解決這個(gè)問題呢?(學(xué)生思考并回答:25x-1=124,)我們把這個(gè)式子給它起個(gè)名字,叫一元一次方程,這就是我們今天要學(xué)習(xí)的一元一次方程(板書課題),那——什么叫做一元一次方程——呢?,請(qǐng)同學(xué)們帶著這些問題,閱讀課本114頁(yè)-115頁(yè)練習(xí)前的內(nèi)容,對(duì)照課本找出自學(xué)提綱里問題的答案。
要求:先完成得請(qǐng)你幫幫沒有完成的同學(xué),不會(huì)做的同學(xué)請(qǐng)教會(huì)做的同學(xué)。
學(xué)生自學(xué)課本,并完成自學(xué)提綱。老師可以先進(jìn)行板書準(zhǔn)備,再到學(xué)生中進(jìn)行巡視指導(dǎo),掌握學(xué)生的學(xué)習(xí)狀況,為展示歸納做準(zhǔn)備。
附:自學(xué)提綱:
1、什么是方程?請(qǐng)舉出1—2個(gè)例子。未知數(shù)通常用什么表示?
3、在課本“例1”中,你知道這些方程中等號(hào)兩邊各表示什么意思嗎?
4、什么是方程的解?x=1和x=-1中哪一個(gè)是方程x+3=2的解?為什么?
5、什么是解方程?
1、請(qǐng)有問題的同學(xué)逐個(gè)回答自學(xué)提綱中的問題,生說師寫;
2、發(fā)動(dòng)學(xué)生進(jìn)行評(píng)價(jià)、補(bǔ)充、完善;
3、教師根據(jù)展示情況進(jìn)行必要的講解和強(qiáng)調(diào)。
1、2題口答,要求說理由;其它各題,先讓學(xué)生獨(dú)立完成,教師做必要的板書準(zhǔn)備后,巡回指導(dǎo),了解情況,再讓學(xué)生匯報(bào)結(jié)果,并請(qǐng)同學(xué)評(píng)價(jià)、完善,然后教師根據(jù)需要進(jìn)行重點(diǎn)強(qiáng)調(diào)。
附:變式練習(xí)。
(1)5x=0;。
(2)1+3x;。
(3)x2=4+x;。
(4)x+y=5;。
(5)3m+2=1-m;。
(6)x+2>1。
2、請(qǐng)你說出一元一次方程2x=4的解是。.。.。.。.。解是x=-2的一元一次方程:
3、練習(xí)本每本0.8元,小明拿了10元錢買了y本,找回4.4元,列方程是。
4、設(shè)某數(shù)為x,根據(jù)題意列出方程,不必求解:
(1)某數(shù)比它的2倍小3;
(2)某數(shù)與5的差比它的2倍少11;
(3)把某數(shù)增加它的10%后恰為80.
5、若x=1是方程kx-1=0的解,則k=。
通過本節(jié)課的學(xué)習(xí)你學(xué)到了什么?還有沒有要提醒同學(xué)們注意的。?
課本83頁(yè)習(xí)題3.1第1題。
解一元一次方程的教案人教版篇八
1、能根據(jù)題意用字母表示未知數(shù),然后分析出等量關(guān)系,再根據(jù)等量關(guān)系列出方程。
2、理解什么是一元一次方程。
3、理解什么是方程的解及解方程,學(xué)會(huì)檢驗(yàn)一個(gè)數(shù)值是不是方程的解的方法。
【重點(diǎn)難點(diǎn)】體會(huì)找等量關(guān)系,會(huì)用方程表示簡(jiǎn)單實(shí)際問題,能驗(yàn)證一個(gè)數(shù)是否是一個(gè)方程的解。
【導(dǎo)學(xué)指導(dǎo)】。
一、溫故知新。
1:前面學(xué)過有關(guān)方程的一些知識(shí),同學(xué)們能說出什么是方程嗎?
答:叫做方程。
解一元一次方程的教案人教版篇九
教學(xué)目標(biāo):
1.知識(shí)目標(biāo)。
(1)通過運(yùn)用算術(shù)和列方程兩種方法解決實(shí)際問題的過程,使學(xué)生體會(huì)到列方程解應(yīng)用題更簡(jiǎn)潔明了,省時(shí)省力。
(2)掌握去括號(hào)解一元一次方程的方法,能熟練求解一元一次方程(數(shù)字系數(shù)),并判別解的合理性。
2.能力目標(biāo)。
(1)通過學(xué)生觀察、獨(dú)立思考等過程,培養(yǎng)學(xué)生歸納、概括的能力;。
(2)進(jìn)一步讓學(xué)生感受到并嘗試尋找不同的解決問題的方法。
3.情感目標(biāo):
(2)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S品質(zhì);。
(3)通過學(xué)生間的互相交流、溝通,培養(yǎng)他們的協(xié)作意識(shí)。
教學(xué)重點(diǎn):1.弄清列方程解應(yīng)用題的思想方法;。
教學(xué)難點(diǎn):1.括號(hào)前面是“-”號(hào),去括號(hào)時(shí),應(yīng)如何處理,括號(hào)前面是“-”號(hào)的,去括號(hào)時(shí),括號(hào)內(nèi)的各項(xiàng)要改變符號(hào)。
2.在小學(xué)根深蒂固用算術(shù)方法解應(yīng)用題的基礎(chǔ)上,讓學(xué)生逐步樹立列方程解應(yīng)用題的思想。
教學(xué)過程:
一、創(chuàng)設(shè)情境,提出問題。
問題1:我手中有6、x、30三張卡片,請(qǐng)同學(xué)們用他們編個(gè)一元一次方程,比一比看誰(shuí)編的又快又對(duì)。
學(xué)生思考,根據(jù)自己對(duì)一元一次方程的理解程度自由編題。
問題2:解方程5(x-2)=8。
解:5x=8+2,x=2,看一下這位同學(xué)的解法對(duì)嗎?相信學(xué)完本節(jié)內(nèi)容后,就知道其中的奧秘。
(教學(xué)說明:給學(xué)生充分的交流空間,在學(xué)習(xí)過程中體會(huì)“取長(zhǎng)補(bǔ)短”的涵義,以求在共同學(xué)習(xí)中得到進(jìn)步,同時(shí)提高語(yǔ)言組織能力及邏輯推理能力)。
二、探索新知。
1.情境解決。
問題1:設(shè)上半年每月平均用電x度,則下半年每月平均用電________度;上半年共用電__________度,下半年共用電_________度。
問題2:教師引導(dǎo)學(xué)生尋找相等關(guān)系,列出方程。
根據(jù)全年用電15萬度,列方程,得6x+6(x-2000)=150000.
問題3:怎樣使這個(gè)方程向x=a的形式轉(zhuǎn)化呢?
6x+6(x-2000)=150000。
去括號(hào)。
6x+6x-12000=150000。
移項(xiàng)。
6x+6x=150000+12000。
合并同類項(xiàng)。
12x=162000。
系數(shù)化為1。
x=13500。
問題4:本題還有其他列方程的方法嗎?
用其他方法列出的方程應(yīng)怎樣解?
設(shè)下半年每月平均用電x度,則6x+6(x+2000)=150000.(學(xué)生自己進(jìn)行解題)。
歸納結(jié)論:方程中有帶括號(hào)的式子時(shí),根據(jù)乘法分配律和去括號(hào)法則化簡(jiǎn)。(括號(hào)前面是“+”號(hào),把“+”號(hào)和括號(hào)去掉,括號(hào)內(nèi)各項(xiàng)都不改變符號(hào);括號(hào)前面是“-”號(hào),把“-”號(hào)和括號(hào)去掉,括號(hào)內(nèi)各項(xiàng)都改變符號(hào)。)。
去括號(hào)時(shí)要注意:(1)不要漏乘括號(hào)內(nèi)的任何一項(xiàng);(2)若括號(hào)前面是“-”號(hào),記住去括號(hào)后括號(hào)內(nèi)各項(xiàng)都變號(hào)。
例題:解方程3x-7(x-1)=3-2(x+3)。
解:去括號(hào),得3x-7x+7=3-2x-6。
移項(xiàng),得3x-7x+2x=3-6-7。
合并同類項(xiàng),得-2x=-10。
系數(shù)化為1,得x=5。
三、課堂練習(xí)。
1.課本97頁(yè)練習(xí)。
四、總結(jié)反思。
1.本節(jié)課你學(xué)習(xí)了什么?
2.通過今天的學(xué)習(xí),你想進(jìn)一步探究的問題是什么?
(由學(xué)生自主歸納,最后老師總結(jié))。
四、作業(yè)布置。
1.課本102頁(yè)習(xí)題3.3第1、4題。
2.配套資料相關(guān)練習(xí)。
解一元一次方程的教案人教版篇十
教學(xué)設(shè)計(jì)思想:
本節(jié)知識(shí)是探究如何用一元一次方程解決實(shí)際問題。在前面我們結(jié)合實(shí)際問題,討論了如何分析數(shù)量關(guān)系、利用相等關(guān)系列方程以及如何解方程,在此基礎(chǔ)上我們才可以進(jìn)一步探究用一元一次方程解決實(shí)際問題。在課堂中教師出示例題,啟發(fā)學(xué)生思考,師生共同探討,學(xué)生找等量關(guān)系,列出方程,教師出示鞏固性練習(xí),學(xué)生解答,達(dá)到鞏固所學(xué)知識(shí)的目的。
教學(xué)目標(biāo):
1.知識(shí)與技能。
利用相等關(guān)系建立數(shù)學(xué)模型列方程;。
2.過程與方法。
會(huì)用方程解決簡(jiǎn)單的實(shí)際問題,認(rèn)識(shí)到建立方程模型的重要性;。
在建立方程解決實(shí)際問題時(shí),我們體會(huì)到設(shè)未知數(shù)的意義。
3.情感、態(tài)度與價(jià)值觀。
體會(huì)數(shù)學(xué)建模與實(shí)際的相互密切聯(lián)系,加強(qiáng)數(shù)學(xué)建模思想。
教學(xué)重點(diǎn):解決相關(guān)問題時(shí),利用相等關(guān)系列方程。
教學(xué)難點(diǎn):解決相關(guān)問題時(shí),利用相等關(guān)系列方程。
重難點(diǎn)突破:關(guān)鍵是弄清問題背景,分析清楚有關(guān)數(shù)量關(guān)系,特別是找出可以作為列方程依據(jù)的主要相等關(guān)系。
教學(xué)方法:采用直觀分析法、引導(dǎo)發(fā)現(xiàn)法及嘗試指導(dǎo)法充分發(fā)揮學(xué)生的主體作用,使學(xué)生在輕松愉快的氣氛中掌握知識(shí)。
課時(shí)安排:1課時(shí)。
教具準(zhǔn)備:投影儀。
教學(xué)過程:
一、創(chuàng)設(shè)情境。
師:通過前幾節(jié)課的學(xué)習(xí),同學(xué)們回憶一下,列方程解應(yīng)用題的第一步是什么?
生:分析題意,設(shè)未知數(shù)。
師:很好。我們以前學(xué)的應(yīng)用題大多是求一個(gè)未知量,因而設(shè)一個(gè)未知數(shù)我們今天要學(xué)的內(nèi)容需要求兩個(gè)未知量,這又如何解決呢?通過今天的學(xué)習(xí),這些問題將得到很好的答案。
[教法說法]:此節(jié)內(nèi)容與前邊內(nèi)容聯(lián)系不大,所以開門見山直接提出問題,同時(shí)也引起學(xué)生的注意和好奇,使學(xué)生帶著問題進(jìn)入今天的學(xué)習(xí),激發(fā)了學(xué)生的求知欲。
解一元一次方程的教案人教版篇十一
(一)教材的地位和作用。
(二)教材的重難點(diǎn)。
二、教學(xué)目標(biāo)分析。
(一)知識(shí)技能目標(biāo)。
1.目標(biāo)內(nèi)容。
(2)培養(yǎng)學(xué)生建立方程模型來分析、解決實(shí)際問題的能力以及探索精神、合作意識(shí).。
2.目標(biāo)分析。
(二)過程目標(biāo)。
1.目標(biāo)內(nèi)容。
在活動(dòng)中感受方程思想在數(shù)學(xué)中的作用,進(jìn)一步增強(qiáng)應(yīng)用意識(shí).。
2.目標(biāo)分析。
(三)情感目標(biāo)。
1.目標(biāo)內(nèi)容。
2.目標(biāo)分析。
三、教材處理與教法分析。
解一元一次方程的教案人教版篇十二
4.理解解方程的目標(biāo),體會(huì)解法中蘊(yùn)涵的化歸思想。
探索1。
等式一邊的項(xiàng)可以移到等式的另一邊嗎?
如果把"3"變號(hào)后移到的另一邊呢?
換一個(gè)等式-6-7=-13試一試。
任寫一個(gè)等式再試一試。
探索2。
(1)方程x+3=-1的解是多少?
探索3。
怎樣求方程x-7=5的解?
有的學(xué)生可能還是樂意用算術(shù)解法,教師要有足夠的耐心。
甲的解法是:這是一個(gè)表示減法運(yùn)算的式子,x是被減數(shù),7是減數(shù),5是差。所以有x=5+7(理由是_______________________),于是x=12.
乙的解法是:這是一個(gè)等式,根據(jù)等式的性質(zhì)1,等式兩邊________,結(jié)果仍相等,把方程的兩邊都加7,得x-7+7=5+7,于是x=12.
丙的解法是:把方程左邊的項(xiàng)-7,變號(hào)(即變成+7)后移到方程的右邊,得x=5+7,于是x=12.
議一議,三種解法,你樂意用哪一種?
歸納。
解方程時(shí),把方程一邊的某項(xiàng)變號(hào)后移到另一邊,這種變形叫移項(xiàng)。
注意:移項(xiàng)的要點(diǎn)不在移動(dòng),而在于變號(hào)。
想一想:移項(xiàng)為什么要變號(hào)?移項(xiàng)的根據(jù)是什么?
探索4。
以下各方程的“移項(xiàng)”對(duì)不對(duì)?為什么?
(1)x+5=7,移項(xiàng)得x=7+5;。
(2)3-x=7,移項(xiàng)得-x=7-3;。
(3)2x=7x,移項(xiàng)得2x+7x=0;。
(4)2x=7x-6,移項(xiàng)得2x-7x=-6.
探索5。
(1)3x+6=0,移項(xiàng)得0=-3x-6;。
(2)3x=5x-7,移項(xiàng)得3x+7=5x;。
(3)3-x=5x,移項(xiàng)得3-x-5x=0;。
(4)3x+20=7x-18,移項(xiàng)得-7x+18=-3x-20.
例題學(xué)習(xí)。
p81.例1。
練習(xí)。
p81.練習(xí)。
作業(yè)。
p84.習(xí)題2,3,9。
補(bǔ)充作業(yè)。
1.一個(gè)兩位數(shù),個(gè)位上的數(shù)是十位上的數(shù)的2倍,如果把十位上的數(shù)與個(gè)位上的數(shù)對(duì)調(diào),那么所得到的`兩位數(shù)比原兩位數(shù)大36.求原兩位數(shù)。
解:設(shè)原兩位數(shù)十位上的數(shù)為x,。
那么,根據(jù)個(gè)位上的數(shù)是十位上的數(shù)的2倍,得個(gè)位上的數(shù)是________,。
則原兩位數(shù)記為___________.
因?yàn)閷?duì)調(diào)后所得到的新兩位數(shù)的十位上的數(shù)為______,個(gè)位上的數(shù)為______,新兩位數(shù)應(yīng)記為___________________.
根據(jù)新兩位數(shù)比原兩位數(shù)大36,列方程:_____________________.
解這個(gè)方程得__________.答:______________________________.
解一元一次方程的教案人教版篇十三
1、經(jīng)歷由實(shí)際問題抽象為方程模型的過程,進(jìn)一步體會(huì)模型化的思想。
2、通過探究實(shí)際問題與一元一次方程的關(guān)系,感受數(shù)學(xué)的應(yīng)用價(jià)值,提高分析問題,解決問題的能力。
(師生活動(dòng))設(shè)計(jì)理念。
創(chuàng)設(shè)情境提出問題。
信息社會(huì),人們溝通交流方式多樣化,移動(dòng)電話已很普及,選擇經(jīng)濟(jì)實(shí)惠的收費(fèi)方式很有理實(shí)意義。
出示教科書80頁(yè)的例2;觀察下列兩種移動(dòng)電話計(jì)費(fèi)方式表:
全球通神州行。
月租費(fèi)50元/月0。
本地通話費(fèi)0.40元/分0.60元/分。
1、你能從中表中獲得哪些信息,試用自己的話說說。
2、猜一猜,使用哪一種計(jì)費(fèi)方式合算?
3、一個(gè)月內(nèi)在本地通話200分和300分,按兩種計(jì)費(fèi)方式各需交費(fèi)多少元?
4、對(duì)于某個(gè)本地通通話時(shí)間,會(huì)出現(xiàn)兩種計(jì)費(fèi)方式的收費(fèi)一樣的情況嗎?本例是一道與生活相關(guān)的移動(dòng)電話收費(fèi)的問題,讓學(xué)生討論選擇經(jīng)濟(jì)實(shí)惠的收費(fèi)方式很有現(xiàn)實(shí)意義。
理解問題是本身是列方程的基礎(chǔ),本例是通過表格形式給出已知數(shù)據(jù)的,通過設(shè)計(jì)問題1、2、3讓學(xué)生展開討論,幫助理解,培養(yǎng)學(xué)生的讀題能力和收集信息的能力。
解決問題學(xué)生充分交流討論、整理歸納。
解:1、用全球通每月收月租費(fèi)50元,此外根據(jù)累計(jì)通話時(shí)間按0.40元/分加收通話費(fèi);用神州行不收月租費(fèi),根據(jù)累計(jì)通話時(shí)間按0.60元/分收通話費(fèi)。
2、不一定,具體由當(dāng)月累計(jì)通話時(shí)間決定。
3、全球通神州行。
200分130元120元。
300分170元180元。
0.6t=50+0.4t。
移項(xiàng)得0.6t-0.4t=50。
合并,得0.2t=50。
系數(shù)化為1,得t=250。
以表格的形式呈現(xiàn)數(shù)據(jù),簡(jiǎn)單明了,易于比較。
通過探究實(shí)際問題與一元一次方程的關(guān)系,提高分析問題,解決問題的能力。
學(xué)生練習(xí),教師巡視,指導(dǎo),討論解是否合理。
知識(shí)梳理小組討論,試用框圖概括用一元一次方程分析和解決實(shí)際問題的基本過程。
學(xué)生思考、討論、整理。
實(shí)際問題題。
列方程。
實(shí)際問題的答案。
數(shù)學(xué)問題的解。
這是第一次比較完整地用框圖反映實(shí)際問題與一元一次方程的關(guān)系。
讓學(xué)生結(jié)合自己的解題過程概括整理,幫助理解,培養(yǎng)模型化的思想和應(yīng)用數(shù)學(xué)于現(xiàn)實(shí)生活的意識(shí)。
小結(jié)與作業(yè)。
布置作業(yè)。
1、必做題:教科書82頁(yè)習(xí)題2.2第2題。
2、一個(gè)兩位數(shù),個(gè)位數(shù)字是十位數(shù)字的3倍,如果把個(gè)位數(shù)字與十位數(shù)字對(duì)調(diào),那么得到的新數(shù)比原數(shù)大54,求原來的兩位數(shù)。
本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)。
課程改革的目的之一是促進(jìn)學(xué)習(xí)方式的轉(zhuǎn)變,加強(qiáng)學(xué)習(xí)的主動(dòng)性和探究性,本章內(nèi)容涉及大量的實(shí)際問題,豐富多彩的問題情境和解決實(shí)際問題的快樂更容易激起學(xué)生對(duì)數(shù)學(xué)的興趣,在本節(jié)中,引導(dǎo)學(xué)生從身邊的移動(dòng)電話收費(fèi),旅游費(fèi)用等問題展開探究,使學(xué)生在現(xiàn)實(shí)、富有挑戰(zhàn)性的問題情境中經(jīng)歷多角度認(rèn)識(shí)問題,多種策略思考問題,嘗試解釋答案的合性的活動(dòng),培養(yǎng)探索精神和創(chuàng)新意識(shí)。
在前面幾節(jié)學(xué)習(xí)中,已經(jīng)對(duì)利用一元一次方程解決問題的基本過程進(jìn)行多次滲透,逐步細(xì)化,本節(jié)要求學(xué)生用框圖概括,使學(xué)生對(duì)應(yīng)用一元一次方程解決實(shí)際問題有較理性的認(rèn)識(shí),進(jìn)一步體會(huì)模型化的思想。
解一元一次方程的教案人教版篇十四
3.使學(xué)生初步養(yǎng)成正確思考問題的良好習(xí)慣.。
教學(xué)重點(diǎn)和難點(diǎn)。
課堂教學(xué)過程設(shè)計(jì)。
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題。
為了回答上述這幾個(gè)問題,我們來看下面這個(gè)例題.。
例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù).。
(首先,用算術(shù)方法解,由學(xué)生回答,教師板書)。
解法1:(4+2)÷(3-1)=3.。
答:某數(shù)為3.。
(其次,用代數(shù)方法來解,教師引導(dǎo),學(xué)生口述完成)。
解法2:設(shè)某數(shù)為x,則有3x-2=x+4.。
解之,得x=3.。
答:某數(shù)為3.。
二、師生共同分析、研究一元一次方程解簡(jiǎn)單應(yīng)用題的方法和步驟。
師生共同分析:
1.本題中給出的已知量和未知量各是什么?
2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原先重量-運(yùn)出重量=剩余重量)。
上述分析過程可列表如下:
解:設(shè)原先有x千克面粉,那么運(yùn)出了15%x千克,由題意,得。
x-15%x=42500,
所以x=50000.。
答:原先有50000千克面粉.。
(還有,原先重量=運(yùn)出重量+剩余重量;原先重量-剩余重量=運(yùn)出重量)。
(2)例2的解方程過程較為簡(jiǎn)捷,同學(xué)應(yīng)注意模仿.。
依據(jù)例2的分析與解答過程,首先請(qǐng)同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進(jìn)行反饋;最后,根據(jù)學(xué)生總結(jié)的狀況,教師總結(jié)如下:
(2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個(gè)相等關(guān)系.(這是關(guān)鍵一步);
(4)求出所列方程的解;
(仿照例2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點(diǎn)撥.解答過程請(qǐng)一名學(xué)生板演,教師巡視,及時(shí)糾正學(xué)生在書寫本題時(shí)可能出現(xiàn)的各種錯(cuò)誤.并嚴(yán)格規(guī)范書寫格式)。
解:設(shè)第一小組有x個(gè)學(xué)生,依題意,得。
3x+9=5x-(5-4),
解這個(gè)方程:2x=10,
所以x=5.。
其蘋果數(shù)為3×5+9=24.。
答:第一小組有5名同學(xué),共摘蘋果24個(gè).。
學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程.。
(設(shè)第一小組共摘了x個(gè)蘋果,則依題意,得)。
三、課堂練習(xí)。
3.某工廠女工人占全廠總?cè)藬?shù)的35%,男工比女工多252人,求全廠總?cè)藬?shù).。
四、師生共同小結(jié)。
首先,讓學(xué)生回答如下問題:
1.本節(jié)課學(xué)習(xí)了哪些資料?
3.在運(yùn)用上述方法和步驟時(shí)應(yīng)注意什么?
依據(jù)學(xué)生的回答狀況,教師總結(jié)如下:
(2)以上步驟同學(xué)應(yīng)在理解的基礎(chǔ)上記憶.。
五、作業(yè)。
1.買3千克蘋果,付出10元,找回3角4分.問每千克蘋果多少錢?
2.用76厘米長(zhǎng)的鐵絲做一個(gè)長(zhǎng)方形的教具,要使寬是16厘米,那么長(zhǎng)是多少厘米?
解一元一次方程的教案人教版篇十五
1、知識(shí)與技能:
運(yùn)用一元一次方程解決現(xiàn)實(shí)生活中的問題,進(jìn)一步體會(huì)建模思想方法。
2、過程與方法:
(1)通過數(shù)學(xué)活動(dòng)使學(xué)生進(jìn)一步體會(huì)一元一次方程和實(shí)際問題中的關(guān)系,通過分析問題中的數(shù)量關(guān)系,進(jìn)行預(yù)測(cè)、判斷。
(2)運(yùn)用所學(xué)過的數(shù)學(xué)知識(shí)進(jìn)行分析,演練、合作探究,體會(huì)數(shù)學(xué)知識(shí)在社會(huì)活動(dòng)中的運(yùn)用,提高應(yīng)用知識(shí)的能力和社會(huì)實(shí)踐能力。
3、情感態(tài)度與價(jià)值觀:
通過數(shù)學(xué)活動(dòng),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,增強(qiáng)自信心,進(jìn)一步發(fā)展學(xué)生合作交流的意識(shí)和能力,體會(huì)數(shù)學(xué)與現(xiàn)實(shí)的聯(lián)系,培養(yǎng)學(xué)生求真的科學(xué)態(tài)度。
1、重點(diǎn):經(jīng)歷探索具體情境的數(shù)量關(guān)系,體會(huì)一元一次方程與實(shí)際問題之間的數(shù)量關(guān)系會(huì)用方程解決實(shí)際問題。
2、難點(diǎn):以上重點(diǎn)也是難點(diǎn)。
3、關(guān)鍵:明確問題中的已知量與未知量間的關(guān)系,尋找等量關(guān)系。
投影儀,每人一根質(zhì)地均勻的直尺,一些相同的棋了和一個(gè)支架。
一種商品售價(jià)為2.2元件,如果買100件以上超過100件部分的售價(jià)為2元/件,某人買這種商品n件,討論下面問題:
這個(gè)人買了n件商品需要多少元?
教師活動(dòng):
(1)把學(xué)生每四人分成一組,進(jìn)行合作學(xué)習(xí),并參入學(xué)生中一起探究。
(2)教師對(duì)學(xué)生在發(fā)表解法時(shí)存在的問題加以指正。
學(xué)生活動(dòng):
(1)分組后對(duì)活動(dòng)一的問題展開討論,探究解決問題的方法。
(2)學(xué)生派代表上黑板板演,并發(fā)表解法。
解:2.2nn100。
2.2100+2(n-100)n100。
問題轉(zhuǎn)換:
一種商品售價(jià)為2.2元/件,如果買100件以上超過100件部分的售價(jià)為2元/件,某人買這種商品共花了n元,討論下面的問題:
(1)這個(gè)人買這種商品多少件?
(2)如果這個(gè)人買這種商品的件數(shù)恰是0.48n,那么n的值是多少?
教師活動(dòng):同上學(xué)生活動(dòng):同上。
解:(1)n220。
100+n220。
(2)=0.48nn=0。
100+=0.48nn=500。
本活動(dòng)課前布置學(xué)生做好活動(dòng)前的準(zhǔn)備工作:
1、準(zhǔn)備一根質(zhì)地均勻的直尺,一些相同的棋子和一個(gè)支架。
2、分組:(4人一組)。
開始做下面的實(shí)驗(yàn):
(1)把直尺的中點(diǎn)放在支點(diǎn)上,使直尺左右平衡。
(2)在直尺兩端各放一枚棋子,這時(shí)直尺還是保持平衡嗎?
(3)在直尺的一端再加一枚棋子,移動(dòng)支點(diǎn)的位置,使兩邊平衡,然后記下支點(diǎn)到兩端距離a和b,(不妨設(shè)較長(zhǎng)的一邊為a)。
(4)在有兩枚棋子的一端面加一枚棋子移動(dòng)支點(diǎn)的位置,使兩邊平衡,再記下支點(diǎn)到兩端的距離a和b。
(5)在棋子多的一端繼續(xù)加棋子,并重復(fù)以上操作。根據(jù)統(tǒng)計(jì)記錄你能發(fā)現(xiàn)什么規(guī)律?
以上實(shí)驗(yàn)過程可以由學(xué)生填寫在預(yù)先設(shè)計(jì)的記錄表上。
實(shí)驗(yàn)次數(shù)棋子數(shù)ab值a與b的關(guān)系。
右左ab。
第1次11。
第2次12。
第3次13。
第4次14。
第n次1n。
根據(jù)記錄下的a、b值,探索a與b的關(guān)系,由于目測(cè)可能有點(diǎn)誤差。
根據(jù)實(shí)驗(yàn)得出a、b之間關(guān)系,猜想當(dāng)?shù)趎次實(shí)驗(yàn)的a和b的關(guān)系如何?a=nb(學(xué)生實(shí)驗(yàn)得出學(xué)生代表發(fā)言)。
如果直尺一端放一枚棋子,另一端放n枚棋子,直尺的長(zhǎng)為l,支點(diǎn)應(yīng)在直尺的哪個(gè)位置?(提示:用一元一次方程解)。
此問題由學(xué)生合作解決并派代表板演并講解,教師加以指正。
解:設(shè)支點(diǎn)離n枚棋子的距離為x得:
x+nx=lx=答:略。
1、課后了解實(shí)際生活中的類似活動(dòng)問題,并舉出幾個(gè)例子。
2、課本,第110頁(yè)活動(dòng)2。
解一元一次方程的教案人教版篇十六
3.使學(xué)生初步養(yǎng)成正確思考問題的良好習(xí)慣.。
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題。
為了回答上述這幾個(gè)問題,我們來看下面這個(gè)例題.。
例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù).。
(首先,用算術(shù)方法解,由學(xué)生回答,教師板書)。
解法1:(4+2)÷(3-1)=3.。
答:某數(shù)為3.。
(其次,用代數(shù)方法來解,教師引導(dǎo),學(xué)生口述完成)。
解法2:設(shè)某數(shù)為x,則有3x-2=x+4.。
解之,得x=3.。
答:某數(shù)為3.。
二、師生共同分析、研究一元一次方程解簡(jiǎn)單應(yīng)用題的方法和步驟。
師生共同分析:
1.本題中給出的已知量和未知量各是什么?
2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原先重量-運(yùn)出重量=剩余重量)。
上述分析過程可列表如下:
解:設(shè)原先有x千克面粉,那么運(yùn)出了15%x千克,由題意,得。
x-15%x=42500,
所以x=50000.。
答:原先有50000千克面粉.。
(還有,原先重量=運(yùn)出重量+剩余重量;原先重量-剩余重量=運(yùn)出重量)。
(2)例2的解方程過程較為簡(jiǎn)捷,同學(xué)應(yīng)注意模仿.。
依據(jù)例2的分析與解答過程,首先請(qǐng)同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進(jìn)行反饋;最后,根據(jù)學(xué)生總結(jié)的狀況,教師總結(jié)如下:
(2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個(gè)相等關(guān)系.(這是關(guān)鍵一步);
(4)求出所列方程的解;
(仿照例2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點(diǎn)撥.解答過程請(qǐng)一名學(xué)生板演,教師巡視,及時(shí)糾正學(xué)生在書寫本題時(shí)可能出現(xiàn)的各種錯(cuò)誤.并嚴(yán)格規(guī)范書寫格式)。
解:設(shè)第一小組有x個(gè)學(xué)生,依題意,得。
3x+9=5x-(5-4),
解這個(gè)方程:2x=10,
所以x=5.。
其蘋果數(shù)為3×5+9=24.。
答:第一小組有5名同學(xué),共摘蘋果24個(gè).。
學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程.。
(設(shè)第一小組共摘了x個(gè)蘋果,則依題意,得)。
三、課堂練習(xí)。
2.我國(guó)城鄉(xiāng)居民1988年末的儲(chǔ)蓄存款到達(dá)3802億元,比1978年末的儲(chǔ)蓄存款的18倍還多4億元.求1978年末的儲(chǔ)蓄存款。
3.某工廠女工人占全廠總?cè)藬?shù)的35%,男工比女工多252人,求全廠總?cè)藬?shù).。
四、師生共同小結(jié)。
首先,讓學(xué)生回答如下問題:
1.本節(jié)課學(xué)習(xí)了哪些資料?
3.在運(yùn)用上述方法和步驟時(shí)應(yīng)注意什么?
依據(jù)學(xué)生的回答狀況,教師總結(jié)如下:
(2)以上步驟同學(xué)應(yīng)在理解的基礎(chǔ)上記憶.。
五、作業(yè)。
1.買3千克蘋果,付出10元,找回3角4分.問每千克蘋果多少錢?
2.用76厘米長(zhǎng)的鐵絲做一個(gè)長(zhǎng)方形的教具,要使寬是16厘米,那么長(zhǎng)是多少厘米?
5.把1400獎(jiǎng)金分給22名得獎(jiǎng)?wù)?,一等?jiǎng)每人200元,二等獎(jiǎng)每人50元.求得到一等獎(jiǎng)與二等獎(jiǎng)的人數(shù)。
解一元一次方程的教案人教版篇十七
2.掌握等式的性質(zhì),理解掌握移項(xiàng)法則。
3.會(huì)用等式的性質(zhì)解一元一次昂成(數(shù)字系數(shù)),掌握解一元一次方程的基本方法。
5.初步學(xué)會(huì)用方程的思想思考問題和解決問題的一些基本方法,學(xué)會(huì)用數(shù)學(xué)的方法觀察、分析、歸納和總結(jié)現(xiàn)實(shí)情境中的實(shí)際問題。
難點(diǎn)重點(diǎn):
解方程、用方程解決實(shí)際問題。
難點(diǎn):用方程解決實(shí)際問題。
教學(xué)流程。
二、典例回顧。
(1).x=5(2).x2+3x=2(3).2x+3y=5。
判斷下列x值是否為方程3x-5=6x+4的解.
(1).x=3(2)x=3。
4.解決問題的基本步驟。
解:設(shè)先安排x人工作4小時(shí)。根據(jù)兩段工作量之和應(yīng)是總工作量,由此,列方程:
去分母,得4x+8(x+2)=40。
去括號(hào),得4x+8x+16=40。
移項(xiàng)及合并,得12x=24。
系數(shù)化為1,得x=2。
答:應(yīng)先安排2名工人工作4小時(shí).
注意:工作量=人均效率人數(shù)時(shí)間。
本題的關(guān)鍵是要人均效率與人數(shù)和時(shí)間之間的數(shù)量關(guān)系.
三、基礎(chǔ)訓(xùn)練:課本第113頁(yè)第1.2.3題.
四、綜合訓(xùn)練:課本113頁(yè)至114頁(yè)4.5.6.7.8。
五、達(dá)標(biāo)訓(xùn)練:3.7。
六、課堂小結(jié):收獲了哪些?還有哪些需要再學(xué)習(xí)?
解一元一次方程的教案人教版篇十八
1、學(xué)生通過旅游、選燈、用電、水費(fèi)、用氣、電信等問題的方案設(shè)計(jì),弄清各類問題中的等量關(guān)系,掌握用方程來解決一些生活中的實(shí)際問題的技巧.
2、通過一個(gè)開放式的空間,放手讓學(xué)生去探索,去發(fā)現(xiàn),培養(yǎng)學(xué)生分析問題和用方程去解決實(shí)際問題的能力.
3、讓學(xué)生在生動(dòng)活潑的問題情境中感受數(shù)學(xué)的應(yīng)用價(jià)值,產(chǎn)生對(duì)數(shù)學(xué)的興趣,養(yǎng)成認(rèn)真傾聽他人發(fā)言的習(xí)慣,感受與同伴交流的樂趣。
把生活中的實(shí)際問題抽象出數(shù)學(xué)問題。
引導(dǎo)學(xué)生弄清題意,設(shè)計(jì)出各類問題的最佳方案。
(師生活動(dòng))設(shè)計(jì)理念。
提出問題問題:小江一家三口準(zhǔn)備國(guó)慶節(jié)外出旅游.現(xiàn)有兩家。
由學(xué)生完成選擇旅行社的方案。從學(xué)生比較感興趣的實(shí)際生活問題,引入新課,并由學(xué)生自己設(shè)計(jì)出選擇旅行社的方案,為新授哪種燈省錢埋下伏筆。
分析問題出示教科書94頁(yè)探究2:用哪種燈省錢?
師生共同探討完成下列問題:
1、上述問題中基本等量關(guān)系有哪些?
(費(fèi)用=燈的售價(jià)+電費(fèi),電費(fèi)=0.5×燈的功率(千。
瓦)×照明時(shí)間(時(shí))。
2、列式表示兩種燈的費(fèi)用各為多少?
(節(jié)能燈用t小時(shí)的費(fèi)用(元)為:60+0.5×0-o.11t。
白熾燈用t小時(shí)的費(fèi)用(元)為:3十0.06×0.5t)。
3、當(dāng)照明時(shí)間t取何值時(shí),(1)白熾燈比節(jié)能燈省錢,
(2)節(jié)能燈比白熾燈省錢?(3)白熾燈與節(jié)能燈費(fèi)用一樣?(精確到1小時(shí))。
4、如果計(jì)劃照明3500小時(shí),則需要購(gòu)買兩個(gè)燈,試設(shè)計(jì)你認(rèn)為能省錢的選燈方案。
以課本例題中實(shí)際生活問題為素材,使學(xué)生感受數(shù)學(xué)來源于生活,激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,師生共同參與合作完成問題中的探討的幾個(gè)問題,體現(xiàn)了以學(xué)生為主體,教師作為問題解決的組織者,引導(dǎo)者,合作者的新課程教育理念。
探索創(chuàng)新下面問題是學(xué)生課前調(diào)查到的與人們生活密切相關(guān)的實(shí)際問題,每一大組完成一個(gè),分四個(gè)小組討論后設(shè)計(jì)出最佳方案。
10分鐘后,大組派代表交流發(fā)言.
1、電價(jià)問題。
據(jù)我們調(diào)查,我市居民生活用電價(jià)格為每天早晨7時(shí)到晚上23時(shí)每度0.47元,每天23時(shí)到第二天7時(shí)每度0.25元.請(qǐng)根據(jù)你家每月用電情況,設(shè)計(jì)出用電的最佳方案.
2、水費(fèi)問題。
我市為鼓勵(lì)節(jié)約用水,對(duì)自來水的收費(fèi)標(biāo)準(zhǔn)作如下規(guī)定:每月每戶用水不超過10噸部分按0.45元/噸收費(fèi),超過10噸而不超過20噸部分按0.8元/噸收費(fèi),超過20噸部分按0.50元/噸收費(fèi),某月甲戶比乙戶多交水費(fèi)3.75元,已知乙戶交水費(fèi)3.15元.
問:(1)甲、乙兩戶該月各用水多少噸?(自來水按整噸收費(fèi))。
(2)根據(jù)你家用水情況,設(shè)計(jì)出最佳用水方案.
3、用氣問題。
某市按下列規(guī)定收取每月的煤氣費(fèi):用煤氣如果不超過60立方米,按每立方米o(hù).8元收費(fèi);如果超過60立方米,超過部分按每立方米1.2元收費(fèi).怎樣用氣最節(jié)約?請(qǐng)?jiān)O(shè)計(jì)出方案來.
4、電信支費(fèi)。
隨著電信事業(yè)的發(fā)展,各式各樣的電信業(yè)務(wù)不斷推出,請(qǐng)你通過市場(chǎng)調(diào)查,為你家設(shè)計(jì)出一種通訊方案.
(1)兩地間打長(zhǎng)途電話所付電費(fèi)有如下規(guī)定:若通話在3分鐘以內(nèi)都付2.4元.超過3分鐘以后,每分鐘付1元.
根據(jù)上述資料,(1)你認(rèn)為一個(gè)月通話多少分鐘,兩種移動(dòng)通訊費(fèi)用相同?(2)某人估計(jì)一個(gè)月內(nèi)通話300分鐘,應(yīng)選擇哪種移動(dòng)通訊或用長(zhǎng)途電話合算些?提供給學(xué)生一個(gè)開放的空間,放手讓學(xué)生去探索、去發(fā)揮,通過學(xué)生合作交流來設(shè)計(jì)最佳方案,培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí)和創(chuàng)新意識(shí)。
課堂小結(jié)可用教師對(duì)各小組交流的方案進(jìn)行簡(jiǎn)單的評(píng)價(jià)作為小結(jié)。
布置作業(yè)1、必做題:課本第98頁(yè)習(xí)題2.4第5、7題。
2、選做題:
分層次布置作業(yè)。
本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)。
本課以生活中的實(shí)際問題引入,以學(xué)生為主體,師生共同合作參與完成例中設(shè)計(jì)的。
幾個(gè)問題,教師在學(xué)生接受新知識(shí)的過程中,起到了一個(gè)組織者、合作者、引導(dǎo)者的角色.學(xué)生的學(xué)習(xí)始終是主動(dòng)的.通過學(xué)生課前的社會(huì)調(diào)查,對(duì)生活中的一些方案以開放形式設(shè)計(jì)問題,學(xué)生通過小組合作交流,設(shè)計(jì)出不同的方案,讓學(xué)生在生動(dòng)活潑的交流情境中感受到數(shù)學(xué)的應(yīng)用價(jià)值,產(chǎn)生對(duì)數(shù)學(xué)的興趣.同時(shí)養(yǎng)成認(rèn)真傾聽他人發(fā)言的習(xí)慣,感受與同伴交流想法的樂趣.通過用電、用水最佳方案的設(shè)計(jì),培養(yǎng)學(xué)生節(jié)約用電、用水的意識(shí).
解一元一次方程的教案人教版篇十九
教學(xué)目標(biāo):
2、知道“元”和“次”的含義;
能力目標(biāo):
1、培養(yǎng)學(xué)生準(zhǔn)確運(yùn)算的能力;
2、培養(yǎng)學(xué)生觀察、分析和概括的能力;
3、通過解方程的教學(xué),了解化歸的數(shù)學(xué)思想.。
德育目標(biāo):
1、滲透由特殊到一般的辯證唯物主義思想;
2、通過對(duì)方程的解進(jìn)行檢驗(yàn)的習(xí)慣的培養(yǎng),培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、細(xì)致的學(xué)習(xí)習(xí)慣和責(zé)任感;
3、在學(xué)習(xí)和探索知識(shí)中提高學(xué)生的學(xué)習(xí)能力、合作精神及勇于探索的精神;
重點(diǎn):
2、最簡(jiǎn)方程的解法;
難點(diǎn):正確地解最簡(jiǎn)方程。
教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法。
教學(xué)過程。
一、舊知識(shí)的復(fù)習(xí):
1.什么叫等式?等式具有哪些性質(zhì)?
2.什么叫方程?方程的解?解方程?
二、新知識(shí)的教學(xué):
(1)只含有一個(gè)未知數(shù);
(2)未知數(shù)的次數(shù)都是一次。
想一想:
(2)怎樣求最簡(jiǎn)方程(其中是未知數(shù))的解?
三、鞏固練習(xí)。
1、通過練習(xí),請(qǐng)你總結(jié)一下,解方程(是未知數(shù))把系數(shù)化為1時(shí),怎樣運(yùn)用等式的性質(zhì)2,使計(jì)算比較簡(jiǎn)單。
2、檢測(cè):
3、課堂小結(jié):
四、本節(jié)學(xué)習(xí)的主要內(nèi)容。
2、最簡(jiǎn)方程(其中是未知數(shù));
3、解最簡(jiǎn)方程的主要思路和解題的關(guān)鍵步驟及依據(jù)。
五、課堂作業(yè)。
解一元一次方程的教案人教版篇二十
本節(jié)課的教學(xué)設(shè)計(jì)中堅(jiān)持以學(xué)生發(fā)展為本。通過豐富的情境,活躍的討論,將教材中提供的幾個(gè)與生活密切相關(guān)的實(shí)際問題,抽象出相等的數(shù)量關(guān)系,建立數(shù)學(xué)模型。啟發(fā)學(xué)生逐層深入,多方位、多角度地思考問題,加強(qiáng)知識(shí)的綜合運(yùn)用,尊重個(gè)體差異,幫助學(xué)生在自主探索與合作交流的過程中獲得數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),提高靈活解決實(shí)際問題的能力。
教學(xué)內(nèi)容分析。
本節(jié)課是人民教育出版社的義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書《數(shù)學(xué)》七年級(jí)上第二章第四節(jié)。列一元一次方程解決生產(chǎn)生活中的一些實(shí)際問題,是初中階段應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問題的開端,同時(shí)也是今后學(xué)習(xí)列其它方程或方程組解決實(shí)際問題的基礎(chǔ)。
教學(xué)對(duì)象分析。
學(xué)生在小學(xué)學(xué)習(xí)時(shí)就已接觸過有關(guān)實(shí)際問題中的盈虧問題和省錢問題,掌握了盈虧問題和省錢問題的基本關(guān)系,并會(huì)解決一些簡(jiǎn)單問題,同時(shí),在本章前階段的學(xué)習(xí)中學(xué)習(xí)了一元一次方程的解法及列一元一次方程解實(shí)際問題建模的思想,但由于學(xué)生的認(rèn)知起點(diǎn)和學(xué)習(xí)能力存在差異,部分學(xué)生對(duì)于抽象數(shù)學(xué)模型可能感到困難,因此,教學(xué)時(shí)要注意學(xué)生的學(xué)習(xí)傾向,挖掘積極因素,力求不同的學(xué)生獲得不同的發(fā)展。
知識(shí)與技能目標(biāo)。
進(jìn)一步掌握生活中實(shí)際問題的方程解法,能找出實(shí)際問題中已知數(shù)、未知數(shù)和全部的等量關(guān)系,列一元一次方程加以解決。
過程與方法目標(biāo)。
主動(dòng)參與數(shù)學(xué)活動(dòng),通過問題的`對(duì)比體會(huì)數(shù)學(xué)建模思想,形成良好的思維習(xí)慣。
情感、態(tài)度和價(jià)值觀目標(biāo)。
經(jīng)歷從生活中發(fā)現(xiàn)數(shù)學(xué)和應(yīng)用數(shù)學(xué)解決實(shí)際問題的過程,樹立多種方法解決問題的創(chuàng)新意識(shí),品嘗成功的喜悅,激發(fā)應(yīng)用數(shù)學(xué)的熱情。
教學(xué)重點(diǎn):1.體驗(yàn)用多種方法解決實(shí)際問題的過程。
教學(xué)難點(diǎn):體會(huì)實(shí)際問題的生活情節(jié),將數(shù)量關(guān)系抽象概括成為方程模型。
教學(xué)關(guān)鍵:調(diào)動(dòng)全體學(xué)生的積極性,讓學(xué)生參與實(shí)踐,在實(shí)踐中提問、交流、合作、探索,正確地列出方程,解決問題。
利用多媒體課件引入問題,讓學(xué)生在實(shí)際背景下發(fā)現(xiàn)和理解數(shù)學(xué)問題。
問題1:銷售中的盈虧:
分析:兩件衣服共賣了120(=60x2)元,是盈是虧要看這家商店買進(jìn)這兩件衣服時(shí)花了多少錢,如果進(jìn)價(jià)大于售價(jià)就虧損,反之就盈利。
小組討論:
問題2:用那種燈省錢。
分析:?jiǎn)栴}中有基本的等量關(guān)系。
費(fèi)用=燈的售價(jià)+電費(fèi)。
【本文地址:http://www.mlvmservice.com/zuowen/13451007.html】