編寫教案需要根據(jù)學(xué)科特點和學(xué)生的實際情況,結(jié)合教材和教學(xué)大綱進行綜合考慮。教案的編寫需要根據(jù)學(xué)科特點和教學(xué)內(nèi)容的重難點進行重點突破和設(shè)計。以下是小編為大家收集的教案范文,僅供參考,大家一起來看看吧。
倍數(shù)和因數(shù)的教案篇一
課本第15頁,練習(xí)二第一題前半題15的因數(shù)有哪些?,第二題,第4題前半題填在書上。
設(shè)計意圖:本節(jié)課主要的學(xué)習(xí)目標(biāo)一是使生明白因數(shù)和倍數(shù)的意義,二是讓生掌握求一個數(shù)因數(shù)的方法,作業(yè)中鞏固了學(xué)生今天的數(shù)學(xué)技能。
倍數(shù)和因數(shù)的教案篇二
一、引入新課。
1、出示主題圖,讓學(xué)生各列一道乘法算式。
2、師:看你能不能讀懂下面的算式?
出示:因為2×6=12。
所以2是12的因數(shù),6也是12的因數(shù);
12是2的倍數(shù),12也是6的倍數(shù)。
3、師:你能不能用同樣的方法說說另一道算式?
(指名生說一說)。
師:你有沒有明白因數(shù)和倍數(shù)的關(guān)系了?
那你還能找出12的其他因數(shù)嗎?
4、你能不能寫一個算式來考考同桌?學(xué)生寫算式。
師:誰來出一個算式考考全班同學(xué)?
5、師:今天我們就來學(xué)習(xí)因數(shù)和倍數(shù)。(出示課題:因數(shù)倍數(shù))。
齊讀p12的注意。
二、新授:
(一)找因數(shù):
1、出示例1:18的因數(shù)有哪幾個?
學(xué)生嘗試完成:匯報。
(18的因數(shù)有:1,2,3,6,9,18)。
師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。
師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數(shù)有那些?
匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36。
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)。
師:這樣寫可以嗎?為什么?(不可以,因為重復(fù)的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。
仔細(xì)看看,36的因數(shù)中,最小的是幾,最大的是幾?
看來,任何一個數(shù)的因數(shù),最小的一定是(),而最大的一定是()。
3、你還想找哪個數(shù)的因數(shù)?(18、5、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。
4、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示:如。
18的因數(shù)。
小結(jié):我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?
從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
(二)找倍數(shù):
1、我們一起找到了18的因數(shù),那2的倍數(shù)你能找出來嗎?
匯報:2、4、6、8、10、16、……。
師:為什么找不完?
你是怎么找到這些倍數(shù)的?(生:只要用2去乘1、乘2、乘3、乘4、…)。
那么2的倍數(shù)最小是幾?最大的你能找到嗎?
2、讓學(xué)生完成做一做1、2小題:找3和5的倍數(shù)。
匯報3的倍數(shù)有:3,6,9,12。
師:這樣寫可以嗎?為什么?應(yīng)該怎么改呢?
改寫成:3的倍數(shù)有:3,6,9,12,……。
你是怎么找的?(用3分別乘以1,2,3,……倍)。
5的倍數(shù)有:5,10,15,20,……。
師:表示一個數(shù)的倍數(shù)情況,除了用這種文字?jǐn)⑹龅姆椒ㄍ猓€可以用集合來表示。
2的倍數(shù)3的倍數(shù)5的倍數(shù)。
師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢?
(一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù))。
三、課堂小結(jié):
我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?
四、獨立作業(yè):
完成練習(xí)二1~4題。
倍數(shù)和因數(shù)的教案篇三
一個數(shù)因數(shù)的求法和一個數(shù)倍數(shù)的求法(教材第6頁例2、例3,教材第7~8頁練習(xí)二第2~8題)。
1.通過學(xué)習(xí)使學(xué)生掌握找一個數(shù)的因數(shù),倍數(shù)的方法;
2.學(xué)生能了解一個數(shù)的因數(shù)是有限的,倍數(shù)是無限的;
3.能熟練地找一個數(shù)的因數(shù)和倍數(shù);
4.在解決問題的過程中,培養(yǎng)學(xué)生思維的有序性、條理性,增強學(xué)生的探究意識和求索精神。
掌握找一個數(shù)的因數(shù)和倍數(shù)的方法,能熟練地找一個數(shù)的因數(shù)和倍數(shù)。
說出下列各式中誰是誰的因數(shù)?誰是誰的倍數(shù)?20÷4=56×3=18。
在上面的算式中,6和3都是18的因數(shù),你知道還有哪些數(shù)是18的因數(shù)嗎?18是3的倍數(shù),你知道還有哪些數(shù)是3的倍數(shù)嗎?這節(jié)課我們就來學(xué)習(xí)如何找一個數(shù)的因數(shù)和倍數(shù)。
(一)找因數(shù):
1.出示例1:18的因數(shù)有哪幾個?
一個數(shù)的因數(shù)還不止一個,我們一起找找18的因數(shù)有哪些?
學(xué)生嘗試完成后匯報。
(18的因數(shù)有:1,2,3,6,9,18)教師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。
教師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
2.用這樣的方法,請你再找一找36的因數(shù)有哪些?
舉錯例(1,2,3,4,6,6,9,12,18,36)。
教師:這樣寫可以嗎?為什么?(不可以,因為重復(fù)的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。
仔細(xì)看看,36的因數(shù)中,最小的是幾,最大的是幾?
教師板書:一個數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。
3.你還想找哪個數(shù)的因數(shù)?(18、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。
從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
(二)找倍數(shù):
教師:這樣寫可以嗎?為什么?應(yīng)該怎么改呢?
教師:表示一個數(shù)的倍數(shù)情況,除了用這種文字?jǐn)⑹龅姆椒ㄍ?,還可以用集合來表示2的倍數(shù),3的`倍數(shù),5的倍數(shù)。
教師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢?
(一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù))。
1.完成課本第7頁練習(xí)二第2~5題。
2.完成教材第8頁練習(xí)二第6~8題。
我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?
一個數(shù)的因數(shù)的個數(shù)是有限的,最小的是1,最大的是它本身。一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。
本節(jié)課是在學(xué)生認(rèn)識因數(shù)和倍數(shù)的基礎(chǔ)上進行教學(xué)的,在找一個數(shù)的因數(shù)時,如何做到既不重復(fù)又不遺漏,對于剛剛對因數(shù)和倍數(shù)有感性認(rèn)識的學(xué)生來說有一定的困難,教學(xué)時充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢,在小組交流的過程中,學(xué)生對自己的方法進行反思,吸取同伴的好方法,很好的體現(xiàn)了自主探索和合作交流的教學(xué)理念。
倍數(shù)和因數(shù)的教案篇四
1.我能理解什么是質(zhì)數(shù)和合數(shù),掌握了判斷質(zhì)數(shù)、合數(shù)的方法。
2.我知道100以內(nèi)的質(zhì)數(shù),記住了20以內(nèi)的質(zhì)數(shù)。
3.我能在自主探究中獨立思考,合作探究時暢所欲言。
能理解質(zhì)數(shù)、合數(shù)的意義,正確判斷一個數(shù)是質(zhì)數(shù)還是合數(shù)。
用恰當(dāng)?shù)姆椒ㄕ页?00以內(nèi)的質(zhì)數(shù);會給自然數(shù)分類。
一、導(dǎo)入新課。
二、檢查獨學(xué)。
1.互動分享收獲。
2.質(zhì)疑探討。
3.試試身手:第23頁做一做。
三、合作探究。
1.小組合作,利用課本24頁的表格,用恰當(dāng)?shù)姆椒ㄕ页?00以內(nèi)的質(zhì)數(shù),做一個質(zhì)數(shù)表。
2.展示、交流:你們是怎樣找出100以內(nèi)質(zhì)數(shù)的?
3.小組討論:
(1)有沒有最大的質(zhì)數(shù)或合數(shù)?
(2)根據(jù)因數(shù)的個數(shù),可把非零自然數(shù)分成哪幾類?
4.我能很快熟記20以內(nèi)的質(zhì)數(shù)。
5.獨立思考:
(1)是不是所有的`質(zhì)數(shù)都是奇數(shù)?
(2)是不是所有的奇數(shù)都是質(zhì)數(shù)?
(3)是不是所有的合數(shù)都是偶數(shù)?
(4)是不是所有的偶數(shù)都是合數(shù)?
6.組內(nèi)交流。
倍數(shù)和因數(shù)的教案篇五
:p70~72的例題及相應(yīng)的試一試、想想做做中的1—3題。
1、使學(xué)生初步理解倍數(shù)和因數(shù)的含義,知道倍數(shù)和因數(shù)相互依存的關(guān)系。
2、使學(xué)生依據(jù)倍數(shù)和因數(shù)的含義以及已有乘除法知識,通過嘗試、交流等活動,探索并掌握找一個數(shù)倍數(shù)和因數(shù)的方法,能在1—100的自然數(shù)中找出10以內(nèi)某個數(shù)的所有倍數(shù),找出100以內(nèi)某個數(shù)的所有因數(shù)。
3、使學(xué)生在認(rèn)識倍數(shù)和因數(shù)以及找一個數(shù)的倍數(shù)和因數(shù)的過程中進一步感受數(shù)學(xué)知識的內(nèi)在聯(lián)系,提高數(shù)學(xué)思考的水平。
:理解因數(shù)和倍數(shù)的含義,知道它們的關(guān)系是相互依存的。
探索并掌握找一個數(shù)的因數(shù)的方法。
:12個小正方形片、每個學(xué)生的學(xué)號紙。
1、操作活動。
(1)明確操作要求:用12個同樣大的正方形拼成一個長方形。每排擺幾個?擺了幾排?用乘法算式把自己的擺法記錄下來。
(2)整理、交流,分別板書4×3=1212×1=126×2=12。
2、通過剛才的學(xué)習(xí),我們發(fā)現(xiàn)用12個同樣的小正方形可以擺出3種不同的長方形,由此,還得出3道不一樣的乘法算式。4×3=12可以說12是4的倍數(shù),12也是3的倍數(shù);反過來,4和3都是12的因數(shù)。
(1)那其它兩道算式,你能說出誰是誰的倍數(shù)嗎?你能說出誰是誰的因數(shù)嗎?
指名回答后,教師追問:如果說12是倍數(shù),2是因數(shù),是否可以?為什么?
小結(jié):倍數(shù)和因數(shù)是指兩個數(shù)之間的關(guān)系,他們是相互依存的。
指出:為了方便,我們在研究倍數(shù)和因數(shù)時,所說的數(shù)都是指不是0的自然數(shù)。
二、探索找一個數(shù)倍數(shù)的方法。
1、從4×3=12中,知道12是3的倍數(shù)。3的倍數(shù)還有哪些?從小到大,你能找到幾個?同桌交流自己的思考方法。
3、議一議:你發(fā)現(xiàn)找3的倍數(shù)有什么小竅門?
明確:可以按從小到大的順序,依次用1、2、3……與3相乘,乘得的積就是3的倍數(shù)。
4、試一試:你能用學(xué)會的竅門很快地寫出2和5的倍數(shù)嗎?
生獨立完成,集體交流。注意用……表示結(jié)果。
5、觀察上面的3個例子,你發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點?
根據(jù)學(xué)生的交流歸納:一個數(shù)的倍數(shù)中,最小的是它本身,沒有最大的倍數(shù),一個數(shù)倍數(shù)的個數(shù)是無限的。
6、做“想想做做”第2題。
1、學(xué)會了找一個數(shù)倍數(shù)的方法,再來研究求一個數(shù)的因數(shù)。
你能找出36的所有因數(shù)嗎?
2、小組合作,把36的所有因數(shù)一個不漏的寫出來,看看哪個組挑戰(zhàn)成功。并盡可能把找的方法寫出來。教師巡視,發(fā)現(xiàn)不同的找法。
3、出示一份作業(yè):對照自己找出的36的因數(shù),你想對他說點什么?
4、交流整理找36因數(shù)的方法,明確:哪兩個數(shù)相乘的積等于36,那么這兩個數(shù)就是36的因數(shù)。(一對一對地找,又要按次序排列)。
板書:(有序、全面)。正因為思考的有序,才會有答案的全面。
5、試一試:請你用有序的思考找一找15和16的因數(shù)。
指名寫在黑板上。
一個數(shù)的因數(shù)最小是1,最大是它本身,一個數(shù)因數(shù)的個數(shù)是有限的。
7、“想想做做”第3題。
生獨立填寫,交流。觀察表格,表中的排數(shù)和每排人數(shù)與24有怎樣的關(guān)系。
四、課堂總結(jié):學(xué)到這兒,你有哪些收獲?
五、游戲:“看誰反應(yīng)快”。
規(guī)則:學(xué)號符合下面要求的請站起來,并舉起學(xué)號紙。
(1、)學(xué)號是5的倍數(shù)的。
(2、)誰的學(xué)號是24的因數(shù)。
(4、)誰的學(xué)號是1的倍數(shù)。
2、在得出這些乘法算式以后,先根據(jù)4×3=12說明12是3和4的倍數(shù),3和4都是12的因數(shù),使學(xué)生初步體會倍數(shù)和因數(shù)的含義。在學(xué)生初步理解的基礎(chǔ)上,再讓他們舉一反三,結(jié)合另兩道乘法算式說一說。在這一個環(huán)節(jié)中,我設(shè)計了一個練習(xí)。即“根據(jù)下面的算式,同桌互相說說誰是誰的倍數(shù),誰是誰的因數(shù)”第一個是20×3=60,根據(jù)學(xué)生回答后質(zhì)疑“能不能說3是因數(shù),60是倍數(shù)”,從而強調(diào)倍數(shù)和因數(shù)是相互依存的。第二個是36÷4=9,讓學(xué)生根據(jù)除法算式說出誰是誰的因數(shù),誰是誰的倍數(shù),并追問:你是怎么想的?使學(xué)生知道把它轉(zhuǎn)化為乘法算式去說。
在學(xué)生有了倍數(shù)、因數(shù)的初步感受后,再向?qū)W生說明:我們在研究倍數(shù)和因數(shù)時,所說的數(shù)一般指不是0的自然數(shù),明確了因數(shù)和倍數(shù)的研究范圍。
3、p71例一:找3的倍數(shù),先讓學(xué)生獨立思考,“你還能再寫出幾個3的倍數(shù)?你是怎樣想的?”在學(xué)生交流的基礎(chǔ)上,適時提出:什么樣的數(shù)就是3的倍數(shù)?你能按照從小到大的順序有條理地說出3的倍數(shù)嗎?使學(xué)生明確:找3的倍數(shù)時,可以按從到大的`順序,依次用1、2、3……與3相乘,而每次乘得的積都是3的倍數(shù)。在此基礎(chǔ)上,引導(dǎo)學(xué)生進一步思考:你能把3的倍數(shù)全都說完嗎?從而使學(xué)生學(xué)會規(guī)范地表示一個數(shù)的所有倍數(shù),并初步體會到一個數(shù)的個數(shù)是無限的。隨后,讓學(xué)生試著找出2和5的倍數(shù),并正確表達2和5的所有倍數(shù)。最后引導(dǎo)學(xué)生觀察寫出的3、2和5的所有倍數(shù),發(fā)現(xiàn)一個數(shù)的倍數(shù)的特點,即:一個數(shù)的最小的倍數(shù)是它本身,沒有最大的倍數(shù)。一個數(shù)的倍數(shù)的個數(shù)是無限的。
4、例二:找36的所有因數(shù),準(zhǔn)備讓學(xué)生獨立嘗試,但這部分內(nèi)容對學(xué)生來說是個難點,所以我采用了四人小組合作的方式讓學(xué)生試著找出36的所有因數(shù)。在找36的因數(shù)時,無論想乘法算式還是想除法算式,學(xué)生一般都從無序到有序,從有重復(fù)或遺漏到不重復(fù)不遺漏。所以,我在教學(xué)時允許他們經(jīng)歷這樣的過程。先按自己的思路、用自己的方法寫36的因數(shù),能寫幾個就寫幾個,是什么順序就什么順序。然后在交流中互相評價,讓他們知道一組一組地找比較方便,可以利用乘法算式,按一個因數(shù)從小到大的順序,同時又讓他們掌握按次序地書寫。此外,結(jié)合例題和試一試,通過比較和歸納,使學(xué)生明確:一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的因數(shù)中最小的是1,最大的是它本身。
5、教材p72第2題讓學(xué)生解決實際問題在表里填數(shù),把4依次乘1、2、3、……得出“應(yīng)付元數(shù)”,然后思考下面的問題,可以使學(xué)生進一步認(rèn)識把4依次乘1,2,3,……所得的積,就是4的倍數(shù),進一步理解找倍數(shù)的方法。第3題也是解決實際問題填寫表里的數(shù),并提出問題讓學(xué)生思考,使學(xué)生明確兩個相乘的數(shù)都是它們積的因數(shù),求一個數(shù)的所有因數(shù),可以想乘法一對一對地找出來,理解找一個數(shù)的因數(shù)的方法。
為了提高學(xué)生學(xué)習(xí)興趣,鞏固所學(xué)的知識。最后安排了一個游戲,讓學(xué)生在游戲中進一步練習(xí)找一個數(shù)倍數(shù)或因數(shù)的方法。
倍數(shù)和因數(shù)的教案篇六
教材第6頁例3及練習(xí)二第3~8題及思考題。
1.通過學(xué)習(xí),使學(xué)生能自主探究,找出求一個數(shù)的倍數(shù)的方法。
2.結(jié)合具體情境,使學(xué)生進一步認(rèn)識自然數(shù)之間存在因數(shù)和倍數(shù)的關(guān)系,掌握求一個數(shù)的因數(shù)和倍數(shù)的方法。
3.初步學(xué)會從數(shù)學(xué)的角度提出問題、理解問題,并能用所學(xué)知識解決問題。在解決問題的過程中,培養(yǎng)學(xué)生概括、分析和比較的能力,使學(xué)生體會數(shù)學(xué)知識的內(nèi)在聯(lián)系。
重點:掌握求一個數(shù)的倍數(shù)的方法。
難點:理解因數(shù)和倍數(shù)兩者之間的關(guān)系。
1、探索找倍數(shù)的方法。(教學(xué)例3)。
出示例3:2的倍數(shù)有哪些?
師:你會找2的倍數(shù)嗎?給你們1分鐘的時間,看誰寫得又對、又快、又多!準(zhǔn)備好了嗎?開始!
師:時間到,你寫了多少個2的倍數(shù)?生1:15個。生2:24個。
師:大家都是用的什么方法呢?
生1:我是用乘法口訣,一二得二,二二得四……這樣寫下去的。
生2:我也是用乘法,用2去乘1、乘2……。
師:哪些同學(xué)也是用乘法做的?
師:你們都是用2去乘一個數(shù),所得的積就是2的倍數(shù)。還有不同的方法嗎?
生3:我用的'是除法,用2÷2=1,4÷2=2,6÷2=3,……依次除下去。
師:很好!如果給你更長的時間,你能把2的倍數(shù)全部寫出來嗎?(不能)。
師:為什么?(因為2的倍數(shù)有無數(shù)個)。
師:怎么辦?(用省略號)。
師:通過交流,你有什么發(fā)現(xiàn)?
引導(dǎo)學(xué)生初步體會2的倍數(shù)的個數(shù)是無限的。
追問:你能用集合圖表示2的倍數(shù)嗎?
學(xué)生填完后,教師組織學(xué)生進行核對。
(4)即時練習(xí)。讓學(xué)生找出3的倍數(shù)和5的倍數(shù),并組織交流。學(xué)生舉例時可能會產(chǎn)生錯誤,教師要引導(dǎo)學(xué)生根據(jù)錯例進行適時剖析。
2、反思提煉。師:從前面找因數(shù)和倍數(shù)的過程中,你有什么發(fā)現(xiàn)?
先讓學(xué)生在小組內(nèi)交流,再組織全班集體交流,通過全班交流,引導(dǎo)學(xué)生認(rèn)識以下三點:
(1)一個數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。
(2)一個數(shù)的最小倍數(shù)是它本身,沒有最大倍數(shù)。
(3)一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。
1、指導(dǎo)學(xué)生完成教材第7~8頁練習(xí)二第3~8題及思考題。
學(xué)生獨立完成全部練習(xí)后教師組織學(xué)生進行集體訂正。
集體訂正時,教師著重引導(dǎo)學(xué)生認(rèn)識以下幾點:
(1)第4題“15的因數(shù)有哪些?”和“15是哪些數(shù)的倍數(shù)”答案是一樣的。
(2)第5題中的第(2)小題是錯的,因為一個數(shù)的倍數(shù)的個數(shù)是無限的,第(4)小題也是錯的,因為在研究因數(shù)和倍數(shù)時,我們所說的數(shù)指的是自然數(shù),不含小數(shù)。
(3)思考題:兩數(shù)如果都是7(或9)倍數(shù),它們的和也一定是7(或9)的倍數(shù),即如果兩數(shù)都是n的倍數(shù),它的和也是n的倍數(shù)。
2、利用求倍數(shù)的方法解決生活中的實際問題。
理解題意,分析解答。
教師提示“2個2個地數(shù),正好數(shù)完,說明西瓜的個數(shù)是2的倍數(shù),5個5個地數(shù),也正好數(shù)完,說明西瓜的個數(shù)是5的倍數(shù),所以西瓜的個數(shù)同時是2和5的倍數(shù)。
交流匯報:2的倍數(shù)有2,4,6,8,10,12,14,16,18,20,…。
5的倍數(shù)有5,10,15,20,25,30,…。
2和5共同的倍數(shù)有10,20,…所以2和5共同的倍數(shù)最小的是10。
答:這些西瓜最少有10個。
1、師:通過本節(jié)課的學(xué)習(xí),你有什么收獲?(學(xué)生交流)。
2、讓學(xué)生自學(xué)“你知道嗎?”
2×1=22÷2=1。
2×2=44÷2=2。
2×3=66÷2=3。
2×4=88÷2=4。
2的倍數(shù)有2,4,6,……。
一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。
倍數(shù)和因數(shù)的教案篇七
蘇教版義務(wù)教育教科書《數(shù)學(xué)》五年級下冊第30~32頁例1、例2和試一試、例3和試一試練一練,第35頁練習(xí)五第1~4題。
1.使學(xué)生認(rèn)識倍數(shù)和因數(shù),能判斷兩個自然數(shù)間的因數(shù)和倍數(shù)關(guān)系;學(xué)會找一個數(shù)的因數(shù)和倍數(shù)的方法,能按順序找出100以內(nèi)自然數(shù)的所有因數(shù),10以內(nèi)自然數(shù)的所有倍數(shù);了解一個數(shù)的因數(shù)、倍數(shù)的特點。
2.使學(xué)生經(jīng)歷探索求一個數(shù)的因數(shù)或倍數(shù)的方法、一個數(shù)的因數(shù)和倍數(shù)特點的過程,體會數(shù)學(xué)知識、方法的內(nèi)在聯(lián)系,能有條理地展開思考,培養(yǎng)觀察、比較,以及分析、推理和抽象、概括等思維能力,發(fā)展數(shù)感。
3.使學(xué)生主動參與操作、思考、探索等活動,獲得解決問題的成功感受,樹立學(xué)好數(shù)學(xué)的信心,養(yǎng)成樂于思考、勇于探究等良好品質(zhì)。
認(rèn)識因數(shù)和倍數(shù)。
求一個數(shù)的因數(shù)、倍數(shù)的方法。
小黑板、準(zhǔn)備12個同樣大的正方形學(xué)具。
一、操作引入,認(rèn)識意義
1.操作交流。
引導(dǎo):你能用12個小正方形拼成一個長方形嗎?請同桌兩人合作拼一拼,看看每排擺幾個,擺了幾排,想想有幾種拼法,用算式把你的拼法表示出來。 學(xué)生操作,用算式表示,教師巡視。
交流:你有哪些拼法?請你說一說,并交流你表示的算式。
結(jié)合學(xué)生交流,呈現(xiàn)不同拼法,分別板書出積是12的三道乘法算式(包括可以板書除法算式)。
2.認(rèn)識意義。
(2)啟發(fā):現(xiàn)在讓你看另外兩個算式,你能說一說哪個是哪個的因數(shù),哪個是哪個的'倍數(shù)嗎?同桌互相說說看。
(3) 小結(jié):從上面可以看出,在整數(shù)乘法算式里,兩個乘數(shù)都是積的因數(shù),積是兩個乘數(shù)的倍數(shù)。它們之間的關(guān)系是相互依存的。這就是我們今天學(xué)習(xí)的新內(nèi)容:因數(shù)和倍數(shù)。(板書課題)在研究因數(shù)和倍數(shù)時,所說的數(shù)一般指不是o的自然數(shù)。
倍數(shù)和因數(shù)的教案篇八
1.理解因數(shù)和倍數(shù)的意義以及兩者之間相互依存的關(guān)系,掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
2.在探究的過程中體會數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,在解決問題的過程中培養(yǎng)學(xué)生思維的有序性和條理性。
3.培養(yǎng)學(xué)生的探索意識以及熱愛數(shù)學(xué)學(xué)習(xí)的情感。
1.理解因數(shù)和倍數(shù)的意義以及兩者之間相互依存的關(guān)系。
2.掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
教學(xué)課件。
(一)創(chuàng)設(shè)情境,引入新課。
人與人之間存在著許多種關(guān)系,你們和爸爸(媽媽)的關(guān)系是?
(父子、母子、母女關(guān)系)我和你們的關(guān)系是?(師生關(guān)系)。
在數(shù)學(xué)中,數(shù)與數(shù)之間也存在著多種關(guān)系,這節(jié)課,我們一起研究兩數(shù)之間的因數(shù)與倍數(shù)關(guān)系。
(二)探究新知-理解因數(shù)和倍數(shù)的意義。
教學(xué)例1:
1.觀察算式的特點,進行分類。
(1)仔細(xì)觀察算式的特點,你能把這些算式分類嗎?
(2)交流學(xué)生的分類情況。(預(yù)設(shè):學(xué)生會根據(jù)算式的計算結(jié)果分成兩類)。
第一類是被除數(shù)、除數(shù)、商都是整數(shù);第二類是被除數(shù)、除數(shù)都是整數(shù),而商不是整數(shù)。
2.明確因數(shù)和倍數(shù)的意義。
(1)同學(xué)們,在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們就說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。例如,12÷2=6,我們就說12是2的倍數(shù),2是12的因數(shù)。12÷6=2,我們就說12是6的倍數(shù),6是12的因數(shù)。
(2)在第一類算式中找一個算式,說一說,誰是誰的因數(shù)?誰是誰的倍數(shù)?
(3)強調(diào)一點:為了方便,在研究倍數(shù)與因數(shù)的時候,我們所說的數(shù)指的是自然數(shù)(一般不包括0)。
3.理解因數(shù)和倍數(shù)的依存關(guān)系。
(1)獨立完成教材第5頁“做一做”。
(2)我們能不能說“4是因數(shù)”“24是倍數(shù)”呢?表述時應(yīng)該注意什么?
4.理解一個數(shù)的“因數(shù)”和乘法算式中的“因數(shù)”的區(qū)別以及一個數(shù)的“倍數(shù)”與“倍”的區(qū)別。
(1)今天學(xué)的一個數(shù)的“因數(shù)”與以前乘法算式中的“因數(shù)”有什么區(qū)別呢?
課件出示:
乘法算式中的“因數(shù)”是相對于“積”而言的,可以是整數(shù),也可以是小數(shù)、分?jǐn)?shù);而一個數(shù)的“因數(shù)”是相對于“倍數(shù)”而言的,它只能是整數(shù)。
(2)今天學(xué)的“倍數(shù)”與以前的“倍”又有什么不同呢?
“倍數(shù)”是相對于“因數(shù)”而言的,只適用于整數(shù);而“倍”適用于小數(shù)、分?jǐn)?shù)、整數(shù)。
(3)交流匯報。
(三)探究新知-找一個數(shù)的因數(shù)。
教學(xué)例2:
1.探究找18的因數(shù)的方法。
(1)18的因數(shù)有哪些?你是怎么找的?
(2)交流方法。
預(yù)設(shè):方法一:根據(jù)因數(shù)和倍數(shù)的意義,通過除法算式找18的因數(shù)。
因為18÷1=18,所以1和18是18的因數(shù)。
因為18÷2=9,所以2和9是18的因數(shù)。
因為18÷3=6,所以3和6是18的因數(shù)。
方法二:根據(jù)尋找哪兩個整數(shù)相乘的積是18,尋找18的因數(shù)。
因為1×18=18,所以1和18是18的因數(shù)。
因為2×9=18,所以2和9是18的因數(shù)。
因為3×6=18,所以3和6是18的因數(shù)。
2.明確18的因數(shù)的表示方法。
(1)我們怎樣來表示18的因數(shù)有哪些呢?怎樣表示簡潔明了?
(2)交流方法。
預(yù)設(shè):列舉法,18的因數(shù)有:1,2,3,6,9,18。
集合圖的方法(如下圖所示)。
3.練習(xí)找一個數(shù)的因數(shù)。
(1)你能找出30的因數(shù)有哪些嗎?36的因數(shù)呢?
(2)怎樣找才能不遺漏、不重復(fù)地找出一個數(shù)的所有因數(shù)?
(四)探究新知-找一個數(shù)的倍數(shù)。
教學(xué)例3:
1.探究找2的倍數(shù)的方法。
(1)2的倍數(shù)有哪些?你是怎么找的?
(2)想方法:利用乘法算式找2的倍數(shù)。
因為2×1=2,所以2是2的倍數(shù)。
因為2×2=4,所以4是2的倍數(shù)。
因為2×3=6,所以6是2的倍數(shù)?!?。
(3)2的倍數(shù)能寫完嗎?你能繼續(xù)找嗎?寫不完怎么辦?
(4)根據(jù)前面的經(jīng)驗,試著表示出2的倍數(shù)有哪些?(預(yù)設(shè):列舉法、集合圖的方法)。
2.練習(xí)找一個數(shù)的倍數(shù)。
你能找出3的倍數(shù)有哪些嗎?5的倍數(shù)呢?
(五)我的發(fā)現(xiàn)-因數(shù)與倍數(shù)的特征。
舉例子,找規(guī)律,勾畫知識點,讀一讀。
預(yù)設(shè):一個數(shù)的因數(shù)的個數(shù)是有限的`,最小的因數(shù)是1,最大的因數(shù)是它本身;一個數(shù)的倍數(shù)的個數(shù)是無限的,沒有最大的倍數(shù),最小的倍數(shù)是它本身。1是所有非零自然數(shù)的因數(shù)。
(六)智慧樂園。
1.在練習(xí)本上完成下列填空題。(獨立完成后,師訂正答案)。
一個數(shù)的最大因數(shù)是17,這個數(shù)是(),它的最小的因數(shù)是()。
一個數(shù)的最小倍數(shù)是17,這個數(shù)是(),它()最大的倍數(shù),17的倍數(shù)的個數(shù)是().
一個數(shù)既是12的因數(shù),又是12的倍數(shù),這個數(shù)是()。
2.在練習(xí)本上完成下列判斷題。(獨立完成后,師訂正答案)。
(1)在算式6×4=24中,6是因數(shù),24是倍數(shù)。()。
(2)15的倍數(shù)一定大于15。()。
(3)1是除0以外所有自然數(shù)的因數(shù)。()。
(4)40以內(nèi)6的倍數(shù)有12、18、24、30、36這5個。()。
(5)34的最小倍數(shù)是34;34的最小因數(shù)是17。()。
(6)1.2是3的倍數(shù)。()。
(七)全課總結(jié),交流收獲。
這節(jié)課我們學(xué)了哪些知識?你有什么收獲?
(八)布置作業(yè)。
完成課時練第3、4頁,提交家校本。
倍數(shù)和因數(shù)的教案篇九
1、理解倍數(shù)和因數(shù)之間的關(guān)系是相互依存的。
2、根據(jù)具體的問題情景,能正確確定某個非零自然數(shù)的所有因數(shù)。
3、使學(xué)生體味數(shù)學(xué)的趣味性,激發(fā)學(xué)生對數(shù)學(xué)的探究熱情。
理解倍數(shù)和因數(shù)之間的關(guān)系是相互依存的,能正確求一個數(shù)的倍數(shù)和因數(shù)。
能正確有序求一個數(shù)的倍數(shù)和因數(shù)。
師:同學(xué)們,在我們的日常生活中,人與人之間存在著許多相互依存的關(guān)系,如:丁爸是丁丁的爸爸,丁丁是丁爸的兒子。丁哥是丁丁的哥哥,丁丁是丁哥的弟弟。其實在我們的數(shù)學(xué)王國里,數(shù)與數(shù)之間也存在著這種相互依存的關(guān)系,請看大屏幕,認(rèn)識這些數(shù)嗎?(課件出示:0,1,2,3,4,5)。
生:自然數(shù)。
(課件去“0”)。
(研究范圍:非零自然數(shù)中)。
(一)找一個數(shù)的因數(shù)。
1、(課件出示例1情境圖)。
師:請看大屏幕,這是36人列隊操練,每排人數(shù)要一樣多,可以怎樣排列?同學(xué)們可以先同桌討論,作好記錄,再匯報。(引導(dǎo)生說:可以站幾排,每排站幾個。)。
根據(jù)這些信息我們能列出哪些乘法算是呢?
板書:1×36=362×18=363×12=364×9=366×6=361。
師:在4×9=36這個算式中,4和9叫什么?(因數(shù))36是?(積),這是我們以前學(xué)的乘法各部分名稱。其實,在整數(shù)乘法中,因數(shù)和積之間還存在一種相互依存的關(guān)系,也就是說4是36的因數(shù),36是4的倍數(shù)。,同樣,在這個算式中,我們還可以說9是36的?(因數(shù)),36是9的?(倍數(shù))。
2、誰能像老師這樣,說一說3×12=36他們之間的關(guān)系。(先請一個學(xué)生站起來說一說)。
4、你能根據(jù)左邊的乘法算式寫出相應(yīng)的除法算式嗎?(師根據(jù)生的回答板書)。
我們現(xiàn)在就以36÷4=9為例,你能從這個除法算式中說一說誰是誰的倍數(shù),誰是誰的因數(shù)?(說好后再讓學(xué)生逐個說出除法算式中的關(guān)系)。
5、剛才同學(xué)們都說4是36的因數(shù),那能單獨說4是因數(shù)嗎?(生發(fā)表意見)。
到底可以不可以這樣說,請看大屏幕,(課件出示:4×9=362×2=4),請你說說4是倍數(shù)還是因數(shù)?(課件著重強調(diào)數(shù)字“4”)。
引導(dǎo)學(xué)生說:第一個式子中,4是36的因數(shù),第二個式子中4是2的'倍數(shù)。(課件出示結(jié)果)。
師:從剛才的回答中你明白了什么?(引導(dǎo)生知道:因數(shù)和倍數(shù)是相互依存的,不能單獨存在)。
6、師:下面,請同學(xué)們看這個式子,說一說誰是誰的倍數(shù),誰是誰的因數(shù)。(課件出示:4×5=2014÷3=53+6=96-4=20.3×2=0.6)。
生回答后,引導(dǎo)生知道:通過后三個算式使生進一步理解,倍數(shù)和因數(shù)都是建立在乘法或除法的基礎(chǔ)之上的,他們的研究范圍在非零自然數(shù)中。
7、你能根據(jù)上面所寫的乘法算式或除法算式說出36的所有因數(shù)嗎?
師;那么你知道怎樣找一個數(shù)的所有因數(shù)呢?(同桌商討后,指名回答,課件出示。)。
找一個數(shù)的所有因數(shù)時,可以先寫出用這個數(shù)作積的所有乘法算式,或者寫出用這個數(shù)作被除數(shù)的所有除法算式,再寫出它的所有因數(shù)。注意,最好按照順序從小到大來寫,這樣不容易遺漏。
8、師:現(xiàn)在,我們來練習(xí)一下。同學(xué)們分組有序的找出15、16、24、25的所有因數(shù)嗎?打開練習(xí)本,快速的寫出來,開始。(師巡視指導(dǎo)困難學(xué)生)。
寫完后生匯報,并說出你是怎樣找出它們的因數(shù)的,課件出示。
9、引導(dǎo)歸納概括一個數(shù)的因數(shù)的特點。
師:看來同學(xué)們已經(jīng)充分掌握了找一個數(shù)因數(shù)的方法,觀察剛才我們找的這些數(shù)的因數(shù),你有什么發(fā)現(xiàn)嗎?(出示合作學(xué)習(xí)要求和目的)下面請小組合作,仔細(xì)觀察、比較我們找出的這些數(shù)的因數(shù),你從這幾個例子中發(fā)現(xiàn)了什么?請把你的發(fā)現(xiàn)和小組的成員說一說,注意:當(dāng)一個同學(xué)在說的時候,其他成員一定要認(rèn)真聽,不要打斷別人的發(fā)言,開始。
(二)找一個數(shù)的倍數(shù)。
1、師:找了這么多數(shù)的因數(shù),現(xiàn)在我們來找一個數(shù)的倍數(shù),好不好?
(課件出示例2)。
生寫,師巡視。
2、指明匯報后,并說出你是如何找一個數(shù)的倍數(shù)的?
歸納(出示找一個數(shù)的倍數(shù)的方法):找一個數(shù)的倍數(shù)從它本身開始,用非零自然數(shù)1,2,3···去乘,就可以得到。
那請大家觀察這些數(shù)的倍數(shù),你又能發(fā)現(xiàn)什么呢?同桌兩個先互相說一說,開始吧。
生發(fā)言。
4、引導(dǎo)學(xué)生發(fā)現(xiàn):一個數(shù)的倍數(shù)個數(shù)是無限的,其中最小的倍數(shù)是它本身,沒有最大的倍數(shù)。(課件出示)。
師;同學(xué)們認(rèn)識了倍數(shù)和因數(shù),探索了因數(shù)和倍數(shù)的特點,并且能正確求一個數(shù)因數(shù)和倍數(shù)的,其實,這些這些知識就在課本125、126頁,打開書本,看一看書上的老師是如何說的,并把需要填寫的部分填寫以下。
這節(jié)課同學(xué)們通過自己的努力又發(fā)現(xiàn)了數(shù)學(xué)海洋里的新知識,真讓老師感到開心,在我們今后的學(xué)習(xí)中希望大家繼續(xù)帶著這些熱情和精神去探索、去發(fā)現(xiàn)。
書本127頁練習(xí)二十1、2、3題(課件出示)。
(非零自然數(shù)中)。
1×36=3636÷1=3636÷36=1。
2×18=3636÷2=1836÷18=2。
3×12=3636÷3=1236÷12=3。
4×9=3636÷4=936÷9=4。
6×6=3636÷6=6。
36的因數(shù)有:1、2、3、4、6、9、12、18、36.
倍數(shù)和因數(shù)的教案篇十
教學(xué)內(nèi)容:
蘇教版義務(wù)教育教科書《數(shù)學(xué)五年級下冊第47~48頁整理與練習(xí)“回顧與整理”和“練習(xí)與應(yīng)用”第1~7題。
教學(xué)目標(biāo):
1.使學(xué)生加深認(rèn)識因數(shù)和倍數(shù),能找一個數(shù)的因數(shù)或倍數(shù),進一步認(rèn)識質(zhì)數(shù)和合數(shù);掌握2、5、3的倍數(shù)的特征,進一步認(rèn)識偶數(shù)和奇數(shù);加深理解質(zhì)因數(shù),能正確分解質(zhì)因數(shù)。
2.使學(xué)生能整理因數(shù)和倍數(shù)的知識內(nèi)容,感受知識之間的內(nèi)在聯(lián)系;能應(yīng)用相關(guān)概念進行分析、判斷、推理,進一步掌握思考、解決數(shù)學(xué)問題的方法,積累數(shù)學(xué)思維的初步經(jīng)驗,提高分析、推理、判斷等思維能力;加深對數(shù)的認(rèn)識,進一步發(fā)展數(shù)感。
3.使學(xué)生主動參與回顧、整理知識和分析、解決問題等活動,培養(yǎng)樂于思考的品質(zhì)和與同伴互相交流、傾聽等合作意識和能力;感受數(shù)學(xué)方面的知識積累和進步,提高學(xué)好數(shù)學(xué)的自信心。
教學(xué)重點:
教學(xué)難點:
應(yīng)用概念正確判斷、推理。
教學(xué)過程:
一、揭示課題。
談話:最近的數(shù)學(xué)課,我們學(xué)習(xí)了哪方面的內(nèi)容?回憶一下,都學(xué)到了哪些知識?
揭題:我們已經(jīng)學(xué)完了因數(shù)和倍數(shù)這一單元的內(nèi)容,今天開始主要整理與練習(xí)這一單元內(nèi)容。(板書課題)通過整理與練習(xí),我們要進一多認(rèn)識因數(shù)與倍數(shù),2.5.3的倍數(shù)的特征,能熟練掌握找一個數(shù)的因數(shù)或倍數(shù)的方法;能判斷偶數(shù)和奇數(shù)、質(zhì)數(shù)和合數(shù),了解這些概念之間的聯(lián)系與區(qū)別,能正確分解質(zhì)因數(shù),提高對數(shù)的特征的認(rèn)識,加深對數(shù)的認(rèn)識。
二、回顧與整理。
1.回顧討論。
出示討論題:
(1)你是怎樣理解因數(shù)和倍數(shù)的?舉例說明你的認(rèn)識。
(2)2、5、3的倍數(shù)有什么特征?我們是怎樣發(fā)現(xiàn)的?
(3)自然數(shù)可以怎樣分類,各能分成哪幾類?舉例說說什么是質(zhì)因數(shù)和分解質(zhì)因數(shù)。
(4)什么是兩個數(shù)的公因數(shù)和最大公因數(shù),公倍數(shù)和最小公倍數(shù)?
讓學(xué)生在小組里討論,結(jié)合討論適當(dāng)記錄自己的認(rèn)識或例子。
2.交流整理。
圍繞討論題,引導(dǎo)學(xué)生展開交流,結(jié)合交流板書主要內(nèi)容。
(1)提問:能說說什么是因數(shù)和倍數(shù)嗎?可以用例子說明。(結(jié)合交流板書一兩個乘法或除法算式)。
(指名學(xué)生說一說,再集體說一說)。
你能找出6的因數(shù)嗎?(板書因數(shù))6的倍數(shù)呢?(板書倍數(shù))。
能說說找一個數(shù)的因數(shù)或倍數(shù)的方法嗎?
說明:一個數(shù)的因數(shù)可以從小到大一對一對地找,到中間兩個因數(shù)之間沒有因數(shù)為止;一個數(shù)的倍數(shù)可以用依次乘1、2、3……這樣的方法找,注意一個數(shù)的倍數(shù)是無限的,寫一個數(shù)的倍數(shù)要注意用省略號。
(2)提問:2、5、3的倍數(shù)各有什么特征?我們是怎樣發(fā)現(xiàn)的?
自然數(shù)可以怎樣分類,各可以分成哪幾類?
你能舉出偶數(shù)和奇數(shù)、質(zhì)數(shù)和合數(shù)的一些例子嗎?(學(xué)生舉出各類數(shù)的例子)。
說明:按是不是2的倍數(shù)可以把自然數(shù)分成偶數(shù)和奇數(shù)兩類,是2的倍數(shù)的是偶數(shù),不是2的倍數(shù)的是奇數(shù);按因數(shù)的個數(shù)可以把自然數(shù)分成1和質(zhì)數(shù)、合數(shù)三類,只有兩個因數(shù)的是質(zhì)數(shù),有兩個以上因數(shù)的是合數(shù),1既不是質(zhì)數(shù)也不是合數(shù)。
什么是質(zhì)因數(shù)和分解質(zhì)因數(shù)?6有哪些質(zhì)因數(shù)?怎樣把6分解質(zhì)因數(shù)?(板書式子,并說明其中的質(zhì)因數(shù))。
(3)提問:什么是公因數(shù)和最大公因數(shù),什么是公倍數(shù)和最小公倍數(shù)?
說明:兩個數(shù)公有的因數(shù)叫公因數(shù),其中最大的叫最大公因數(shù);兩個數(shù)公有的倍數(shù)叫公倍數(shù),其中最小的叫最小公倍數(shù)。
結(jié)合交流內(nèi)容,逐步板書成:
l
質(zhì)數(shù)質(zhì)因數(shù)。
合數(shù)分解質(zhì)因數(shù)。
(互相依存)。
2、5、3的倍數(shù)的特征。
偶數(shù)。
奇數(shù)。
(4)引導(dǎo):請同學(xué)們現(xiàn)在觀察我們整理的這一單元學(xué)過的內(nèi)容,了解知識之間的聯(lián)系,同桌互相說說知識是怎樣發(fā)展的。
學(xué)生互相交流,教師巡視、傾聽。
交流:哪位同學(xué)能看黑板上整理的內(nèi)容,說說我們怎樣逐步認(rèn)識這些知識的,知識是怎樣發(fā)展起來的。
三、練習(xí)與應(yīng)用。
1.做“練習(xí)與應(yīng)用”第1題。
指名學(xué)生交流,說說每組里因數(shù)和倍數(shù)關(guān)系。
提問:3和7有沒有因數(shù)和倍數(shù)關(guān)系?為什么沒有?
2.做“練習(xí)與應(yīng)用”第2題。
(1)讓學(xué)生獨立寫出前四個數(shù)的所有因數(shù),指名兩人板演。
交流:你是怎樣找它們的因數(shù)的?(檢查板演題)。
(2)口答后三個數(shù)的因數(shù)。
引導(dǎo):能說出后面每個數(shù)的全部因數(shù)嗎?(學(xué)生口答,教師板書)。
提問:一個數(shù)的因數(shù)有什么特點?
說明:一個數(shù)因數(shù)的個數(shù)是有限的,最小的是1.最大的是它本身。
3.分別說出下面各數(shù)的倍數(shù)。
581217。
分別指名學(xué)生說出各數(shù)的倍數(shù),教師板書。
提問:為什么要寫省略號?一個數(shù)的倍數(shù)有什么特點?
說明:一個數(shù)倍數(shù)的個數(shù)是無限的,最小的是它本身,沒有最大的倍數(shù)。
4.做“練習(xí)與應(yīng)用”第3題。
(1)讓學(xué)生獨立完成填數(shù)。
交流:題里各是怎樣填的?(呈現(xiàn)結(jié)果)填數(shù)時怎樣想的?
提問:哪些數(shù)既是3的倍數(shù),又是5的倍數(shù)?你是怎樣想的?
哪些數(shù)既是2的倍數(shù),又是5和3的倍數(shù)?說說你的判斷方法。
(2)這里哪些數(shù)是偶數(shù)?奇數(shù)呢?
你是怎樣判斷偶數(shù)和奇數(shù)的?
5.做“練習(xí)與應(yīng)用”第4題。
要求學(xué)生獨立思考,自己選出兩張卡片,按各題的要求分別組成兩位數(shù),把能組成的數(shù)記錄下來。
交流:同時是5和3的倍數(shù)的數(shù)有哪些?(板書:30)如果是三位數(shù)呢?
(板書:180810)。
組成的兩位數(shù)中最大的偶數(shù)是多少?(板書:80)最小的奇數(shù)呢?(板書:13)。
6.做“練習(xí)與應(yīng)用”第5題。
讓學(xué)生把質(zhì)數(shù)圈出來,在合數(shù)下面畫線。
交流:哪些是質(zhì)數(shù),哪些是合數(shù)?(板書成兩類)質(zhì)數(shù)和合數(shù)是按什么分的?
說明:質(zhì)數(shù)只有2個因數(shù),合數(shù)至少有3個因數(shù)。
7.做“練習(xí)與應(yīng)用’’第6題。
交流、呈現(xiàn)結(jié)果。
提問:觀察表里選出的質(zhì)數(shù)和偶數(shù),所有的質(zhì)數(shù)都是奇數(shù)嗎?請舉出一個具體例子。
所有的合數(shù)都是偶數(shù)嗎?你能舉例子說明嗎?
指出:如果要說明一個結(jié)論是錯誤的,只要舉一個反例。比如,要判斷質(zhì)數(shù)都是奇數(shù)的說法是錯的,只要舉出質(zhì)數(shù)2是偶數(shù)這個例子。這里質(zhì)數(shù)2是偶數(shù)就是一個反例。要判斷合數(shù)都是偶數(shù)是錯的,也只要舉一個反例,比如合數(shù)9就是奇數(shù)。
8.下面的說法正確嗎?
(1)大于0的自然數(shù)不是奇數(shù)就是偶數(shù)。
(2)大于0的自然數(shù)不是質(zhì)數(shù)就是合數(shù)。
(3)奇數(shù)都是質(zhì)數(shù),偶數(shù)都是合數(shù)。
(4)自然數(shù)中最小的偶數(shù)是2,最小的合數(shù)是4。
(5)一個數(shù)本身既是它的因數(shù),又是它的倍數(shù)。
9.做“練習(xí)與應(yīng)用”第7題。
(1)讓學(xué)生填空,指名板演。交流并確認(rèn)結(jié)果。
提問:這里填寫的質(zhì)數(shù)都叫積的什么數(shù)?為什么稱它是積的質(zhì)因數(shù)?
說明:這里把合數(shù)寫成這種質(zhì)數(shù)相乘的形式,叫什么?
(2)把30、42分別分解質(zhì)因數(shù)。
學(xué)生完成,交流板書,檢查訂正。
四、全課總結(jié)。
提問:這節(jié)課主要復(fù)習(xí)的哪些內(nèi)容?你有哪些收獲?
將本文的word文檔下載到電腦,方便收藏和打印。
倍數(shù)和因數(shù)的教案篇十一
2、學(xué)生能了解一個數(shù)的因數(shù)是有限的,倍數(shù)是無限的;
4、培養(yǎng)學(xué)生的觀察能力。
1、出示主題圖,讓學(xué)生各列一道乘法算式。
2、師:看你能不能讀懂下面的算式?
出示:因為2×6=12。
所以2是12的因數(shù),6也是12的因數(shù);
12是2的倍數(shù),12也是6的倍數(shù)。
3、師:你能不能用同樣的方法說說另一道算式?
(指名生說一說)。
師:你有沒有明白因數(shù)和倍數(shù)的關(guān)系了?
那你還能找出12的其他因數(shù)嗎?
4、你能不能寫一個算式來考考同桌?學(xué)生寫算式。
師:誰來出一個算式考考全班同學(xué)?
5、師:今天我們就來學(xué)習(xí)因數(shù)和倍數(shù)。(出示課題:因數(shù)倍數(shù))。
齊讀p12的注意。
(一)找因數(shù):
1、出示例1:18的因數(shù)有哪幾個?
學(xué)生嘗試完成:匯報。
(18的因數(shù)有:1,2,3,6,9,18)。
師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。
師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數(shù)有那些?
匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36。
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)。
師:這樣寫可以嗎?為什么?(不可以,因為重復(fù)的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。
仔細(xì)看看,36的因數(shù)中,最小的'是幾,最大的是幾?
看來,任何一個數(shù)的因數(shù),最小的一定是(),而最大的一定是()。
3、你還想找哪個數(shù)的因數(shù)?(18、5、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。
4、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示:如。
18的因數(shù)。
小結(jié):我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?
從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
(二)找倍數(shù):
1、我們一起找到了18的因數(shù),那2的倍數(shù)你能找出來嗎?
匯報:2、4、6、8、10、16、……。
師:為什么找不完?
你是怎么找到這些倍數(shù)的?(生:只要用2去乘1、乘2、乘3、乘4、…)。
那么2的倍數(shù)最小是幾?最大的你能找到嗎?
2、讓學(xué)生完成做一做1、2小題:找3和5的倍數(shù)。
匯報3的倍數(shù)有:3,6,9,12。
師:這樣寫可以嗎?為什么?應(yīng)該怎么改呢?
改寫成:3的倍數(shù)有:3,6,9,12,……。
你是怎么找的?(用3分別乘以1,2,3,……倍)。
5的倍數(shù)有:5,10,15,20,……。
師:表示一個數(shù)的倍數(shù)情況,除了用這種文字?jǐn)⑹龅姆椒ㄍ猓€可以用集合來表示。
2的倍數(shù)3的倍數(shù)5的倍數(shù)。
師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢?
(一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù))。
我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?
完成練習(xí)二1~4題。
倍數(shù)和因數(shù)的教案篇十二
1.使學(xué)生初步掌握2、5的倍數(shù)的特征。
2.使學(xué)生知道奇數(shù)、偶數(shù)的概念。
能力目標(biāo)。
1.會判斷一個數(shù)是否能被2、5整除。
2.會判斷奇數(shù)、偶數(shù)。
3.培養(yǎng)類推能力及主動獲取知識的能力。
情感目標(biāo)。
激發(fā)學(xué)生的學(xué)習(xí)興趣。
倍數(shù)和因數(shù)的教案篇十三
由于學(xué)生對辨析、理清除盡和整除的關(guān)系、整除的兩種讀法等易混淆的概念,使學(xué)生明確一個數(shù)是否是另一個數(shù)的倍數(shù)或因數(shù)時,必須是以整除為前提,因數(shù)和倍數(shù)是相互依存的概念,不能獨立存在。所以本節(jié)課的教學(xué)我把重點定位于理解因數(shù)和倍數(shù)的含義。
倍數(shù)和因數(shù)的教案篇十四
(父子、母子、母女關(guān)系)我和你們的關(guān)系是?(師生關(guān)系)。
在數(shù)學(xué)中,數(shù)與數(shù)之間也存在著多種關(guān)系,這節(jié)課,我們一起研究兩數(shù)之間的因數(shù)與倍數(shù)關(guān)系。
(二)探究新知-理解因數(shù)和倍數(shù)的意義。
教學(xué)例1:
1.觀察算式的特點,進行分類。
(1)仔細(xì)觀察算式的特點,你能把這些算式分類嗎?
(2)交流學(xué)生的分類情況。(預(yù)設(shè):學(xué)生會根據(jù)算式的計算結(jié)果分成兩類)。
第一類是被除數(shù)、除數(shù)、商都是整數(shù);第二類是被除數(shù)、除數(shù)都是整數(shù),而商不是整數(shù)。
2.明確因數(shù)和倍數(shù)的意義。
(1)同學(xué)們,在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們就說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。例如,12÷2=6,我們就說12是2的倍數(shù),2是12的因數(shù)。12÷6=2,我們就說12是6的倍數(shù),6是12的因數(shù)。
(2)在第一類算式中找一個算式,說一說,誰是誰的因數(shù)?誰是誰的倍數(shù)?
(3)強調(diào)一點:為了方便,在研究倍數(shù)與因數(shù)的時候,我們所說的數(shù)指的是自然數(shù)(一般不包括0)。
3.理解因數(shù)和倍數(shù)的依存關(guān)系。
(1)獨立完成教材第5頁“做一做”。
(2)我們能不能說“4是因數(shù)”“24是倍數(shù)”呢?表述時應(yīng)該注意什么?
4.理解一個數(shù)的“因數(shù)”和乘法算式中的“因數(shù)”的區(qū)別以及一個數(shù)的“倍數(shù)”與“倍”的區(qū)別。
(1)今天學(xué)的一個數(shù)的“因數(shù)”與以前乘法算式中的“因數(shù)”有什么區(qū)別呢?
課件出示:
乘法算式中的“因數(shù)”是相對于“積”而言的,可以是整數(shù),也可以是小數(shù)、分?jǐn)?shù);而一個數(shù)的“因數(shù)”是相對于“倍數(shù)”而言的,它只能是整數(shù)。
(2)今天學(xué)的“倍數(shù)”與以前的“倍”又有什么不同呢?
“倍數(shù)”是相對于“因數(shù)”而言的,只適用于整數(shù);而“倍”適用于小數(shù)、分?jǐn)?shù)、整數(shù)。
(3)交流匯報。
(三)探究新知-找一個數(shù)的因數(shù)。
教學(xué)例2:
1.探究找18的因數(shù)的方法。
(1)18的因數(shù)有哪些?你是怎么找的?
(2)交流方法。
預(yù)設(shè):方法一:根據(jù)因數(shù)和倍數(shù)的意義,通過除法算式找18的因數(shù)。
因為18÷1=18,所以1和18是18的因數(shù)。
因為18÷2=9,所以2和9是18的因數(shù)。
因為18÷3=6,所以3和6是18的.因數(shù)。
方法二:根據(jù)尋找哪兩個整數(shù)相乘的積是18,尋找18的因數(shù)。
因為1×18=18,所以1和18是18的因數(shù)。
因為2×9=18,所以2和9是18的因數(shù)。
因為3×6=18,所以3和6是18的因數(shù)。
2.明確18的因數(shù)的表示方法。
(1)我們怎樣來表示18的因數(shù)有哪些呢?怎樣表示簡潔明了?
(2)交流方法。
預(yù)設(shè):列舉法,18的因數(shù)有:1,2,3,6,9,18。
集合圖的方法(如下圖所示)。
3.練習(xí)找一個數(shù)的因數(shù)。
(1)你能找出30的因數(shù)有哪些嗎?36的因數(shù)呢?
(2)怎樣找才能不遺漏、不重復(fù)地找出一個數(shù)的所有因數(shù)?
(四)探究新知-找一個數(shù)的倍數(shù)。
教學(xué)例3:
1.探究找2的倍數(shù)的方法。
(1)2的倍數(shù)有哪些?你是怎么找的?
(2)想方法:利用乘法算式找2的倍數(shù)。
因為2×1=2,所以2是2的倍數(shù)。
因為2×2=4,所以4是2的倍數(shù)。
因為2×3=6,所以6是2的倍數(shù)。……。
(3)2的倍數(shù)能寫完嗎?你能繼續(xù)找嗎?寫不完怎么辦?
(4)根據(jù)前面的經(jīng)驗,試著表示出2的倍數(shù)有哪些?(預(yù)設(shè):列舉法、集合圖的方法)。
2.練習(xí)找一個數(shù)的倍數(shù)。
你能找出3的倍數(shù)有哪些嗎?5的倍數(shù)呢?
(五)我的發(fā)現(xiàn)-因數(shù)與倍數(shù)的特征。
舉例子,找規(guī)律,勾畫知識點,讀一讀。
預(yù)設(shè):一個數(shù)的因數(shù)的個數(shù)是有限的,最小的因數(shù)是1,最大的因數(shù)是它本身;一個數(shù)的倍數(shù)的個數(shù)是無限的,沒有最大的倍數(shù),最小的倍數(shù)是它本身。1是所有非零自然數(shù)的因數(shù)。
(六)智慧樂園。
1.在練習(xí)本上完成下列填空題。(獨立完成后,師訂正答案)。
一個數(shù)的最大因數(shù)是17,這個數(shù)是(),它的最小的因數(shù)是()。
一個數(shù)的最小倍數(shù)是17,這個數(shù)是(),它()最大的倍數(shù),17的倍數(shù)的個數(shù)是().
一個數(shù)既是12的因數(shù),又是12的倍數(shù),這個數(shù)是()。
2.在練習(xí)本上完成下列判斷題。(獨立完成后,師訂正答案)。
(1)在算式6×4=24中,6是因數(shù),24是倍數(shù)。()。
(2)15的倍數(shù)一定大于15。()。
(3)1是除0以外所有自然數(shù)的因數(shù)。()。
(4)40以內(nèi)6的倍數(shù)有12、18、24、30、36這5個。()。
(5)34的最小倍數(shù)是34;34的最小因數(shù)是17。()。
(6)1.2是3的倍數(shù)。()。
(七)全課總結(jié),交流收獲。
這節(jié)課我們學(xué)了哪些知識?你有什么收獲?
(八)布置作業(yè)。
完成課時練第3、4頁,提交家校本。
倍數(shù)和因數(shù)的教案篇十五
【知識點】:
1、認(rèn)識自然數(shù)和整數(shù),聯(lián)系乘法認(rèn)識倍數(shù)與因數(shù)。
像0,1,2,3,4,5,6,…這樣的數(shù)是自然數(shù)。
像-3,-2,-1,0,1,2,3,…這樣的數(shù)是整數(shù)。
2、我們只在自然數(shù)(零除外)范圍內(nèi)研究倍數(shù)和因數(shù)。
3、倍數(shù)與因數(shù)是相互依存的關(guān)系,要說清誰是誰的倍數(shù),誰是誰的因數(shù)。
補充【知識點】:
一個數(shù)的倍數(shù)的個數(shù)是無限的。
探索活動(一)2,5的倍數(shù)的特征。
【知識點】:
1、2的倍數(shù)的特征。
個位上是0,2,4,6,8的數(shù)是2的倍數(shù)。
2、5的倍數(shù)的特征。
個位上是0或5的數(shù)是5的倍數(shù)。
3、偶數(shù)和奇數(shù)的定義。
是2的倍數(shù)的數(shù)叫偶數(shù),不是2的倍數(shù)的數(shù)叫奇數(shù)。
4、能判斷一個數(shù)是不是2或5的倍數(shù)。能判斷一個非零自然數(shù)是奇數(shù)或偶數(shù)。
補充【知識點】:
既是2的倍數(shù),又是5的倍數(shù)的特征。個位上是0的數(shù)既是2的倍數(shù),又是5的倍數(shù)。
探索活動(二)3的倍數(shù)的特征。
【知識點】:
1、3的倍數(shù)的特征。
一個數(shù)各個數(shù)位上的數(shù)字的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。
2、能判斷一個數(shù)是不是3的倍數(shù)。
補充【知識點】:
1、同時是2和3的倍數(shù)的特征。
個位上的數(shù)是0,2,4,6,8,并且各個數(shù)位上的數(shù)字的和是3的倍數(shù)的數(shù),既是2的倍數(shù),又是3的倍數(shù)。
2、同時是3和5的倍數(shù)的特征。
個位上的數(shù)是0或5,并且各個數(shù)位上的數(shù)字的和是3的倍數(shù)的數(shù),既是3的倍數(shù),又是5的倍數(shù)。
3、同時是2,3和5的倍數(shù)的特征。
個位上的數(shù)是0,并且各個數(shù)位上的數(shù)字的和是3的倍數(shù)的數(shù),既是2和5的倍數(shù),又是3的倍數(shù)。
找因數(shù)。
【知識點】:
在1~100的自然數(shù)中,找出某個自然數(shù)的所有因數(shù)。方法:運用乘法算式,思考:哪兩個數(shù)相乘等于這個自然數(shù)。
補充【知識點】:
一個數(shù)的因數(shù)的個數(shù)是有限的。其中最小的因數(shù)是1,最大的因數(shù)是它本身。
找質(zhì)數(shù)。
【知識點】:
一個數(shù)只有1和它本身兩個因數(shù),這個數(shù)叫作質(zhì)數(shù)。
一個數(shù)除了1和它本身以外還有別的因數(shù),這個數(shù)叫作合數(shù)。
3、判斷一個數(shù)是質(zhì)數(shù)還是合數(shù)的方法:
一般來說,首先可以用“2,5,3的倍數(shù)的特征”判斷這個數(shù)是否有因數(shù)2,5,3;如果還無法判斷,則可以用7,11等比較小的質(zhì)數(shù)去試除,看有沒有因數(shù)7,11等。只要找到一個1和它本身以外的因數(shù),就能肯定這個數(shù)是合數(shù)。如果除了1和它本身找不到其他因數(shù),這個數(shù)就是質(zhì)數(shù)。
數(shù)的奇偶性。
【知識點】:
1、運用“列表”“畫示意圖”等方法發(fā)現(xiàn)規(guī)律:
小船最初在南岸,從南岸駛向北岸,再從北岸駛回南岸,不斷往返。通過“列表”“畫示意圖”的方法會發(fā)現(xiàn)“奇數(shù)次在北岸,偶數(shù)次在南岸”的規(guī)律。
2、能夠運用上面發(fā)現(xiàn)的數(shù)的奇偶性解決生活中的一些簡單問題。
3、通過計算發(fā)現(xiàn)奇數(shù)、偶數(shù)相加奇偶性變化的規(guī)律:
偶數(shù)+偶數(shù)=偶數(shù)奇數(shù)+奇數(shù)=偶數(shù)。
倍數(shù)和因數(shù)的教案篇十六
(非零自然數(shù)中)。
1×36=3636÷1=3636÷36=1。
2×18=3636÷2=1836÷18=2。
3×12=3636÷3=1236÷12=3。
4×9=3636÷4=936÷9=4。
6×6=3636÷6=6。
36的因數(shù)有:1、2、3、4、6、9、12、18、36.
倍數(shù)和因數(shù)的教案篇十七
第四課時。
:1、經(jīng)歷探索3的倍數(shù)特征的過程,理解3的倍數(shù)的特征,能正確判斷一個數(shù)是不是3的倍數(shù)。
2、在觀察、猜測和小組合作學(xué)習(xí)討論的過程中,提高探究問題的能力。
:1、經(jīng)歷探索3的倍數(shù)特征的過程,理解3的倍數(shù)的特征,能正確判斷一個數(shù)是不是3的倍數(shù)。
2、在觀察、猜測和小組合作學(xué)習(xí)討論的過程中,提高探究問題的能力。
:圖片。
師:看來只觀察個位不能確定是不是3的倍數(shù),那么3的倍數(shù)到底有什么特征呢?今天我們共同來研究。(揭示課題)。
師:先請在下表中找出3的倍數(shù),并做上記號。(教師出示百以內(nèi)數(shù)表,學(xué)生人手一張。在學(xué)生的活動后,教師組織學(xué)生進行交流,并呈現(xiàn)學(xué)生已圈出3的倍數(shù)的百以內(nèi)的數(shù)表。)(如下圖)。
師:請觀察這個表格,你發(fā)現(xiàn)3的倍數(shù)什么特征呢,把你的發(fā)現(xiàn)與同桌交流一下。
學(xué)生同桌交流后,再組織全班交流。
生1:我發(fā)現(xiàn)10以內(nèi)的數(shù)只有3、6、9能被3整除。
生2:我發(fā)現(xiàn)不管橫的看或豎的看,3的倍數(shù)都是隔兩個數(shù)出現(xiàn)一次。
生3:我全部看了一下,剛才前面這位同學(xué)的猜想是不對的,3的倍數(shù)個位上0~9這十個數(shù)字都有可能。
師:個位上的數(shù)字沒有什么規(guī)律,那么十位上的數(shù)有規(guī)律嗎?
生:也沒有規(guī)律,1~9這些數(shù)字都出現(xiàn)了。
師:其他同學(xué)還有什么發(fā)現(xiàn)嗎?
生:我發(fā)現(xiàn)3的倍數(shù)按一條一條斜線排列很有規(guī)律。
師:你觀察的角度與其他同學(xué)不同,那么每條斜線上的數(shù)有規(guī)律嗎?
生:從上往下觀察,連續(xù)兩數(shù)都是十位數(shù)增加1,而個位數(shù)減少1。
師:十位數(shù)加1、個位數(shù)減1組成的數(shù)與原來的數(shù)有什么相同的地方?
生:我發(fā)現(xiàn)“3”的那條斜線,另外兩個數(shù)12和21的十位和個位上的數(shù)字加起來都等于3。
師:這是一個重大發(fā)現(xiàn),其他斜線呢?
生1:我發(fā)現(xiàn)“6”的那條斜線上的數(shù),兩個數(shù)字加起來的和都等于6。
生2:“9”的那條斜線上的數(shù),兩個數(shù)字加起來的和都等于9。
生3:我發(fā)現(xiàn)另外幾列,除了邊上的30、60、90兩個數(shù)字的和是3、6、9,另外的數(shù)兩個數(shù)字的和是12、15、18。
師:現(xiàn)在誰能歸納一下3的倍數(shù)有什么特征呢?
生:一個數(shù)各個數(shù)位上數(shù)字之和等于3、6、9、12、15、18等,這個數(shù)就一定是3的倍數(shù)。
生:一個數(shù)各個數(shù)位上數(shù)字之和是3的倍數(shù),這個數(shù)就一定是3的倍數(shù)。
師:剛才是從100以內(nèi)數(shù)中發(fā)現(xiàn)了規(guī)律,得出了3的倍數(shù)的特征,如果是三位數(shù)甚至更大的數(shù),3的倍數(shù)的特征是否也相同呢?請大家再找?guī)讉€數(shù)來驗證一下。
學(xué)生先自己寫數(shù)并驗證,然后小組交流,得出了同樣的結(jié)論。
練習(xí):第7頁的1、2題。
個性化教學(xué)思路。
:學(xué)生的判斷方法就很多樣了,學(xué)生對后面的這種方法接受很快,也很樂意運用。但在實際作業(yè)中,我感到學(xué)生對3的特征的運用不是很主動,不象2和5的特征來得快,似乎有些想不到。因此,要加強練習(xí)。
倍數(shù)和因數(shù)的教案篇十八
1.理解因數(shù)和倍數(shù)的意義以及兩者之間相互依存的關(guān)系,掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
2.在探究的過程中體會數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,在解決問題的過程中培養(yǎng)學(xué)生思維的有序性和條理性。
3.培養(yǎng)學(xué)生的探索意識以及熱愛數(shù)學(xué)學(xué)習(xí)的情感。
倍數(shù)和因數(shù)的教案篇十九
[教學(xué)內(nèi)容]。
數(shù)的世界。
[教學(xué)目標(biāo)]。
1、結(jié)合具體情境,認(rèn)識自然數(shù)和整數(shù),聯(lián)系乘法認(rèn)識倍數(shù)和因數(shù)。??。
2、探索找一個數(shù)的倍數(shù)的方法,能在1-100的自然數(shù)中,找出10以內(nèi)某個自然數(shù)的所有倍數(shù).
3.培養(yǎng)學(xué)生綜合應(yīng)用的能力。
教具準(zhǔn)備。
多媒體課件、圖片。
[教學(xué)重、難點]。
探索找一個數(shù)的倍數(shù)的方法,能在1-100的自然數(shù)中,找出10以內(nèi)某個自然數(shù)的所有倍數(shù)。
[教學(xué)過程]。
創(chuàng)設(shè)“水果店”的情境,呈現(xiàn)了生活中的數(shù)有自然數(shù)、負(fù)數(shù)、小數(shù)。在比較中認(rèn)識自然數(shù)、整數(shù),使對數(shù)的認(rèn)識進一步系統(tǒng)化。
先讓學(xué)生觀察情境圖,說說圖中有哪些數(shù),并給它們分類。
學(xué)生匯報觀察結(jié)果,通過比較認(rèn)識自然數(shù)、整數(shù),使學(xué)生對數(shù)的認(rèn)識進一步系統(tǒng)化。
1、在解決書上提出的問題的過程中引出算式。
5×4=20(元)。
以這個乘法算式為例說明倍數(shù)和因數(shù)的含義,即20是4的倍數(shù),20也是5的倍數(shù),4是20的因數(shù),5也是20的因數(shù)。引導(dǎo)學(xué)生認(rèn)識倍數(shù)與因數(shù),體會倍數(shù)與因數(shù)的含義。
在利用乘法算式說明倍數(shù)和因數(shù)的含義的基礎(chǔ)上,出示一個除法算式,如:18÷6=3啟發(fā)學(xué)生思考:根據(jù)整數(shù)除法算式能不能確定兩個數(shù)之間的倍數(shù)關(guān)系。
說明:在研究倍數(shù)和因數(shù),范圍限制為不是零的自然數(shù)。
2、你寫我說。
讓學(xué)生同桌間互相寫算式,再說一說。算式可以是乘法算式,也可以是除法算式。
三、找一找。
1、判斷題目中給的數(shù)是不是7的倍數(shù)。
先讓學(xué)生用自己的方法判斷,再組織學(xué)生交流,使學(xué)生逐步體會可以通過想乘法算式或除法算式的方法來判斷。
2、找7的倍數(shù):
四、練一練:
第2題:先讓學(xué)生自己找一找4的倍數(shù)和6的倍數(shù),并用不同的符號做好記號。然后組織學(xué)生交流,并讓學(xué)生說說找倍數(shù)的方法。最后,說說哪幾個數(shù)既是???4的倍數(shù)有是6的倍數(shù)。
第3題:先讓學(xué)生獨立寫一寫,再組織學(xué)生交流各自的方法,并在交流比較的過程中體會怎樣做到不重復(fù)、不遺漏。體會到像這樣找一個數(shù)的倍數(shù),一般用乘法想比較方便。
[板書設(shè)計]。
像0、1、2、3、4、5、…這樣的數(shù)是自然數(shù)。
像-3、-2、-1、0、1、2、…這樣的數(shù)是整數(shù)。
5×4=20(元)??????20是4和5的倍數(shù)。
第2課時。
[教學(xué)內(nèi)容]。
2、5的倍數(shù)特征。
[教學(xué)目標(biāo)]。
1、經(jīng)歷探索2、5倍數(shù)的特征的過程,理解2、5倍數(shù)的特征,能判斷一個數(shù)是不是2或5的倍數(shù)。
2、知道奇數(shù)、偶數(shù)的含義,能判斷一個數(shù)是奇數(shù)或是偶數(shù)。
3、在觀察、猜測和討論過程中,提高探究問題的能力。
[教學(xué)重、難點]。
探索2,5的倍數(shù)的特征。
[教學(xué)準(zhǔn)備]。
多媒體課件1到100的數(shù)字表格。
[教學(xué)過程]。
一、5的倍數(shù)的特征的探究。
讓學(xué)生在100以內(nèi)的數(shù)表中找出5的倍數(shù),用自己的方式做記號,并觀察、思考5的倍數(shù)有什么特征。在此基礎(chǔ)上組織學(xué)生交流。
引導(dǎo)學(xué)生歸納。
5的倍數(shù)的特征:個位上是0或5的數(shù)是5的倍數(shù)。
試一試:
嘗試用5的倍數(shù)特征來判斷一個數(shù)是不是5的倍數(shù)。
二、2的倍數(shù)的特征的探究。
讓學(xué)生在100以內(nèi)的數(shù)表中找出2的倍數(shù),用自己的方式做記號,并觀察、思考2的倍數(shù)有什么特征。在此基礎(chǔ)上組織學(xué)生交流。
引導(dǎo)學(xué)生歸納2的倍數(shù)的特征:
個位上是0、2、4、6、8的數(shù)是2的倍數(shù)。
在學(xué)生理解2的倍數(shù)的特征后再揭示偶數(shù)、奇數(shù)的含義,并進行你問我答的。
判斷練習(xí)。
偶數(shù):是2的倍數(shù)的數(shù)叫做偶數(shù)。
奇數(shù):不是2的倍數(shù)的數(shù)叫做奇數(shù)。
四、練一練:
第2題:引導(dǎo)學(xué)生先獨立思考,然后組織學(xué)生交流自己的思考方法。在引導(dǎo)學(xué)生判斷時,應(yīng)根據(jù)2、5的倍數(shù)特征說明理由。如“因為85不是2的倍數(shù),所以不能正好裝完”;又如:“因為85是5的倍數(shù),所以能正好裝完?!?/p>
五、數(shù)學(xué)游戲:
這是圍繞“2、5的倍數(shù)的特征”設(shè)計的數(shù)學(xué)游戲,通過游戲加深學(xué)生對2、5的倍數(shù)的特征的理解。
[板書設(shè)計]。
2、5的倍數(shù)的特征。
5的倍數(shù)的特征:個位上是0或5的數(shù)是5的倍數(shù)。
2的倍數(shù)的特征:個位上是0、2、4、6、8的數(shù)是2的倍數(shù)。
是2的倍數(shù)的數(shù)叫偶數(shù)。
不是2的倍數(shù)的數(shù)叫奇數(shù)。
第3課時。
[教學(xué)內(nèi)容]。
[教學(xué)目標(biāo)]。
1、經(jīng)歷探索3倍數(shù)的特征的過程,理解3倍數(shù)的特征,能判斷一個數(shù)是不是3的倍數(shù)。
2、發(fā)展分析、比較、猜測、驗證的能力。
3、滲透集合思想和不完全歸納法。
[教學(xué)重、難點]發(fā)展分析、比較、猜測、驗證的能力。
[教具準(zhǔn)備]。
多媒體課件和1到100的數(shù)字表格。
[教學(xué)過程]。
一、3的倍數(shù)的特征的猜想。
我們研究了2、5的倍數(shù)的特征,那么3的倍數(shù)有什么特征呢?引導(dǎo)學(xué)生提出猜想。學(xué)生可能會猜想:個位上能被3整除的數(shù)能被3整除等,老師引導(dǎo)學(xué)生進行討論、研究。
二、3的倍數(shù)的特征的探究。
3的倍數(shù)的特征每個數(shù)位的各個數(shù)字加起來是3的倍數(shù)。
試一試:
嘗試用3的倍數(shù)特征來判斷一個數(shù)是不是3的倍數(shù)。
三、練一練:
第2題:
讓學(xué)生準(zhǔn)備幾張卡片:3、0、4、5邊擺邊想,再交流討論思考的過程。
(1)30、45、54(2)30、54?(3)30、45?(4)30。
四、實踐活動:
[板書設(shè)計]。
3的倍數(shù)的特征:這個數(shù)各位數(shù)字之和是3的倍數(shù)。
第4課時。
[教學(xué)目標(biāo)]。
1、用小正方形拼長方形的活動中,體會找一個數(shù)的因數(shù)的方法,提高有條理思考的習(xí)慣和能力。
2、在1-100的自然數(shù)中,能找到某個自然數(shù)的所有因數(shù)。
3、培養(yǎng)學(xué)生的分析能力和不完全歸納的數(shù)學(xué)思想。
[教學(xué)重、難點]。
用小正方形拼長方形的活動中,體會找一個數(shù)的因數(shù)的方法,提高有條理思考的習(xí)慣和能力。
[教學(xué)準(zhǔn)備]。
多媒體課件和邊長是1厘米的小正方形紙片。
[教學(xué)過程]。
1。動手拼長方形。
用12個小正方形拼成長方形有幾種拼法。讓學(xué)生自己先嘗試著拼一拼,再交流不同的拼法。
學(xué)生一般會用乘法思路思考:哪兩個數(shù)相乘等于12?然后找出:
1×12、2×6、3×4。這種思路就是找一個數(shù)的因數(shù)的基本方法,要引導(dǎo)學(xué)生關(guān)注有序思考,并體會一個數(shù)的因數(shù)個數(shù)是有限的。
2。試一試。
找因數(shù)的基本練習(xí):找9和15的因數(shù)。讓學(xué)生獨立完成,注意引導(dǎo)學(xué)生有序思考。
3.練一練。
第2題:先讓學(xué)生自己找一找18的因數(shù)和21的因數(shù),并用不同的符號做好記號,然后讓學(xué)生說說找因數(shù)的方法。最后,說說哪幾個數(shù)既是18的因數(shù),又是21的因數(shù)。
第3題;
利用數(shù)形結(jié)合,進一步體會找因數(shù)的方法。
第5題:可以引導(dǎo)學(xué)生用找因數(shù)的方法進行思考,鼓勵學(xué)生將想到的排列方法列出來,在交流的基礎(chǔ)上,使學(xué)生經(jīng)歷有條理的思考過程。48=1×48=2×24=3×16=4×12=6×8,48有10個因數(shù),就有10種排法。如每行12人,排4行;每行4人,排12行等。37只有兩個因數(shù),只有兩種排法。
【板書設(shè)計】。
找因數(shù)。
面積是12的長方形有:6種圖形????????1×12=12。
2×6=12。
3×4=12。
第5課時。
[教學(xué)內(nèi)容]找質(zhì)數(shù)。
[教學(xué)目標(biāo)]。
1、用小正方形拼長方形的活動中,經(jīng)歷探索質(zhì)數(shù)與合數(shù)的過程,理解質(zhì)數(shù)和合數(shù)的意義。
2、能正確判斷質(zhì)數(shù)和合數(shù)。
3、在研究質(zhì)數(shù)的過程中豐富對數(shù)學(xué)發(fā)展的認(rèn)識,感受數(shù)學(xué)文化的魅力。
[教學(xué)重、難點]。
1、用小正方形拼長方形的活動中,經(jīng)歷探索質(zhì)數(shù)與合數(shù)的過程,理解質(zhì)數(shù)和合數(shù)的意義。
[教學(xué)準(zhǔn)備]。
多媒體課件和邊長是1厘米的小正方形紙片。
[教學(xué)過程]。
一、動手拼長方形,揭示質(zhì)數(shù)、合數(shù)的意義。
1、用小正方形拼成長方形有幾種拼法。讓學(xué)生自己先嘗試著拼一拼,邊拼邊填寫書上的表格。
2、引導(dǎo)學(xué)生觀察并提出問題:“這些小正方形有的只能拼成一種長方形,有的能拼成兩種或兩種以上的長方形,為什么?”
3、揭示質(zhì)數(shù)、合數(shù)的意義。
組織學(xué)生觀察、比較、分析逐步發(fā)現(xiàn)特征,并把幾個自然數(shù)分類,揭示質(zhì)數(shù)和合數(shù)的意義。
從概念出發(fā)理解“1既不是質(zhì)數(shù),也不是合數(shù)。”
二、討論判斷質(zhì)數(shù)、合數(shù)的方法。
1、嘗試判斷:2、8、9、13、51、37、91、52是質(zhì)數(shù)還是合數(shù)。
先讓學(xué)生獨立判斷,再組織交流“怎樣判斷一個數(shù)是質(zhì)數(shù)還是合數(shù)”
2、歸納方法:
只要找到一個1和本身以外的因數(shù),這個數(shù)就是合數(shù)。如果除了1和它本身找不到其他的因數(shù),這個數(shù)就是質(zhì)數(shù)。
三、探索活動:
第1題:
用“篩法”找100以內(nèi)的質(zhì)數(shù)。引導(dǎo)學(xué)生有步驟、有目的地操作、觀察和交流,找出100以內(nèi)的質(zhì)數(shù)。
介紹這種方法是兩千多年前希臘數(shù)學(xué)家提出的研究質(zhì)數(shù)的方法,稱為“篩法”?,F(xiàn)在隨著計算機的發(fā)展,這種操作方法可以編成程序讓計算機進行操作。這樣,可以使學(xué)生了解數(shù)學(xué)發(fā)展的歷史,感受到數(shù)學(xué)文化的魅力,豐富學(xué)生對數(shù)學(xué)發(fā)展的認(rèn)識,激起學(xué)生探究知識的欲望和興趣。
第2題:
本題引導(dǎo)學(xué)生通過操作、觀察,探索規(guī)律。
第(1)、(2)題,學(xué)生會發(fā)現(xiàn)這些質(zhì)數(shù)都分布在第1列和第5列,為什么?
[板書設(shè)計]。
找質(zhì)數(shù)。
一個數(shù)除了1和它本身以外還有別的因數(shù),這個數(shù)就叫合數(shù)。?????????????????????????????一個數(shù)只有1和它本身兩個因數(shù),這個數(shù)叫做質(zhì)數(shù)。
1既不是質(zhì)數(shù),也不是合數(shù)。
第6課時。
[教學(xué)內(nèi)容]數(shù)的奇偶性。
[教學(xué)目標(biāo)]。
1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。
2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。
[教學(xué)重、難點]。
1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。
2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。
[教學(xué)過程]。
活動1:利用數(shù)的奇偶性解決一些簡單的實際問題。
讓學(xué)生嘗試解決問題,尋找解決問題的策略,利用解決問題的策略發(fā)現(xiàn)規(guī)律,教師適當(dāng)進行“列表”“畫示意圖”等解決問題策略的指導(dǎo)。
試一試:
本題是讓學(xué)生應(yīng)用上述活動中解決問題的策略嘗試自己解決問題,最后的結(jié)果是:翻動10次,杯口朝上;翻動19次,杯口朝下。解決問題后,讓學(xué)生以“硬幣”為題材,自己提出問題、解決問題,還可以開展游戲活動。
活動2:探索奇數(shù)、偶數(shù)相加的規(guī)律。
[
[板書設(shè)計]。
數(shù)的奇偶性。
例子:???????????????????結(jié)論:
倍數(shù)和因數(shù)的教案篇二十
在教完本單元,并測試聯(lián)系后,我發(fā)現(xiàn)"倍數(shù)和因數(shù)"這一內(nèi)容與原來教材比有了很大的不同,也出現(xiàn)了很多教學(xué)的困惑.老教材中是先建立整除的概念,在此基礎(chǔ)上認(rèn)識因數(shù)倍數(shù)。
本單元主要采用的小組或同桌進行交流,合作學(xué)習(xí)。在教學(xué)過程中教師的引導(dǎo)起著很關(guān)鍵的作用,因為對學(xué)生來說,這是一個完全陌生的知識,而且是比較抽象的概念性知識,有些知識就必須由教師來教學(xué),很直白的告訴學(xué)生,這是不可避免的。而能讓學(xué)生去探索發(fā)現(xiàn)的,教師的引導(dǎo)很重要,在讓學(xué)生去交流時一定要明確要求,在學(xué)習(xí)過程中,找一個數(shù)的所有因數(shù)很困難,因為很多學(xué)生都會無序的去找,這樣就造成遺漏。
一、“自然數(shù)的定義”讓我困惑。
老教材里只說像1,2,3,4,5,6......這樣的數(shù)叫自然數(shù),而新教材則把0也放進去了,接下去又說研究(零除外的)自然數(shù)的倍數(shù)和因數(shù)。讓我有點搞不清楚.又如書上什么地方都沒出現(xiàn)素數(shù)的說法了,試卷聯(lián)系上卻有了,要不是新老教材都教過,對什么是素數(shù)可要去大查一番了.
二、為什么本冊書上在講“倍數(shù)與因數(shù)”的時候不提整除。
我的頭腦也許還受以前書的影響,我認(rèn)為說到“倍數(shù)與因數(shù)”必須要談到整除,似乎只有談到了整除,才有資格說到“倍數(shù)與因數(shù)”,但是我在實際上課的過程中,也沒體會到書上在這里不提整除到底好處在哪兒,而作業(yè)中卻出現(xiàn)了,到底是教呢,還是不教。真感到困惑。
五年級上冊第一單元"倍數(shù)與因數(shù)"教學(xué)反思來自本站。
【本文地址:http://www.mlvmservice.com/zuowen/10543881.html】