教案的編寫是教師基本功之一,也是體現(xiàn)教師教學(xué)能力和專業(yè)素養(yǎng)的重要手段之一。在編寫教案時,要注意語言的簡潔明了和邏輯的嚴(yán)密性,避免表達(dá)的含糊和信息的混亂。以下是小編為大家整理的一些教案范文,希望可以給大家一些啟示和參考。這些教案包含了教學(xué)目標(biāo)、教學(xué)內(nèi)容、教學(xué)步驟、教具使用等詳細(xì)信息,可以幫助教師更好地進(jìn)行教學(xué)準(zhǔn)備和教學(xué)實(shí)施。大家一起來看看吧,相信對你的教案編寫會有所幫助。
高二下數(shù)學(xué)教案篇一
本節(jié)是繼直線和圓的方程之后,用坐標(biāo)法研究曲線和方程的又一次實(shí)際演練。橢圓的學(xué)習(xí)可以為后面研究雙曲線、拋物線提供基本模式和理論基礎(chǔ)。因此這節(jié)課有承前啟后的作用,是本章和本節(jié)的重點(diǎn)內(nèi)容之一。
(二)教學(xué)重點(diǎn)、難點(diǎn)。
1.教學(xué)重點(diǎn):橢圓的定義及其標(biāo)準(zhǔn)方程。
2.教學(xué)難點(diǎn):橢圓標(biāo)準(zhǔn)方程的推導(dǎo)。
(三)三維目標(biāo)。
1.知識與技能:掌握橢圓的定義和標(biāo)準(zhǔn)方程,明確焦點(diǎn)、焦距的概念,理解橢圓標(biāo)準(zhǔn)方程的推導(dǎo)。
3.情感、態(tài)度、價值觀:通過主動探究、合作學(xué)習(xí),相互交流,對知識的歸納總結(jié),讓學(xué)生感受探索的樂趣與成功的喜悅,增強(qiáng)學(xué)生學(xué)習(xí)的信心。
采用啟發(fā)式教學(xué),在課堂教學(xué)中堅(jiān)持以教師為主導(dǎo),學(xué)生為主體,思維訓(xùn)練為主線,能力培養(yǎng)為主攻的原則。
“授人以魚,不如授人以漁。”要求學(xué)生動手實(shí)驗(yàn),自主探究,合作交流,抽象出橢圓定義,并用坐標(biāo)法探究橢圓的標(biāo)準(zhǔn)方程,使學(xué)生的學(xué)習(xí)過程成為在教師引導(dǎo)下的“再創(chuàng)造”過程。
三、教學(xué)程序。
1.創(chuàng)設(shè)情境,認(rèn)識橢圓:通過實(shí)驗(yàn)探究,認(rèn)識橢圓,引出本節(jié)課的教學(xué)內(nèi)容,激發(fā)了學(xué)生的求知欲。
2.畫橢圓:通過畫圖給學(xué)生一個動手操作,合作學(xué)習(xí)的機(jī)會,從而調(diào)動學(xué)生的學(xué)習(xí)興趣。
3.教師演示:通過多媒體演示,再加上數(shù)據(jù)的變化,使學(xué)生更能理性地理解橢圓的形成過程。
4.橢圓定義:注意定義中的三個條件,使學(xué)生更好地把握定義。
5.推導(dǎo)方程:教師引導(dǎo)學(xué)生化簡,突破難點(diǎn),得到焦點(diǎn)在x軸上的橢圓的標(biāo)準(zhǔn)方程,利用學(xué)生手中的圖形得到焦點(diǎn)在y軸上的橢圓的標(biāo)準(zhǔn)方程,并且對橢圓的標(biāo)準(zhǔn)方程進(jìn)行了再認(rèn)識。
6.例題講解:通過例題規(guī)范學(xué)生的解題過程。
7.鞏固練習(xí):以多種題型鞏固本節(jié)課的教學(xué)內(nèi)容。
8.歸納小結(jié):通過小結(jié),使學(xué)生對所學(xué)的知識有一個完整的體系,突出重點(diǎn),抓住關(guān)鍵,培養(yǎng)學(xué)生的概括能力。
9.課后作業(yè):面對不同層次的學(xué)生,設(shè)計(jì)了必做題與選做題。
10.板書設(shè)計(jì):目的是為了勾勒出全教材的主線,呈現(xiàn)完整的知識結(jié)構(gòu)體系并突出重點(diǎn),用彩色增加信息的強(qiáng)度,便于掌握。
四、教學(xué)評價。
本節(jié)課貫徹了新課程理念,以學(xué)生為本,從學(xué)生的思維訓(xùn)練出發(fā),通過學(xué)習(xí)橢圓的定義及其標(biāo)準(zhǔn)方程,激活了學(xué)生原有的認(rèn)知規(guī)律,并為知識結(jié)構(gòu)優(yōu)化奠定了基礎(chǔ)。
高二下數(shù)學(xué)教案篇二
1.理解平面直角坐標(biāo)系的意義;掌握在平面直角坐標(biāo)系中刻畫點(diǎn)的位置的方法。
2.掌握坐標(biāo)法解決幾何問題的步驟;體會坐標(biāo)系的作用。
體會直角坐標(biāo)系的作用。
能夠建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問題。
新授課。
啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué).
多媒體、實(shí)物投影儀。
一、復(fù)習(xí)引入:
情境1:為了確保宇宙飛船在預(yù)定的軌道上運(yùn)行,并在按計(jì)劃完成科學(xué)考察任務(wù)后,安全、準(zhǔn)確的返回地球,從火箭升空的時刻開始,需要隨時測定飛船在空中的位置機(jī)器運(yùn)動的軌跡。
情境2:運(yùn)動會的開幕式上常常有大型團(tuán)體操的表演,其中不斷變化的背景圖案是由看臺上座位排列整齊的人群不斷翻動手中的一本畫布構(gòu)成的。要出現(xiàn)正確的背景圖案,需要缺點(diǎn)不同的畫布所在的位置。
問題1:如何刻畫一個幾何圖形的位置?
問題2:如何創(chuàng)建坐標(biāo)系?
二、學(xué)生活動。
學(xué)生回顧。
刻畫一個幾何圖形的位置,需要設(shè)定一個參照系。
1、數(shù)軸它使直線上任一點(diǎn)p都可以由惟一的實(shí)數(shù)x確定。
2、平面直角坐標(biāo)系。
在平面上,當(dāng)取定兩條互相垂直的直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點(diǎn)p都可以由惟一的實(shí)數(shù)對(x,y)確定。
3、空間直角坐標(biāo)系。
在空間中,選擇兩兩垂直且交于一點(diǎn)的三條直線,當(dāng)取定這三條直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這三條直線方向,就建立了空間直角坐標(biāo)系。它使空間上任一點(diǎn)p都可以由惟一的實(shí)數(shù)對(x,y,z)確定。
三、講解新課:
1、建立坐標(biāo)系是為了確定點(diǎn)的位置,因此,在所建的坐標(biāo)系中應(yīng)滿足:
任意一點(diǎn)都有確定的坐標(biāo)與其對應(yīng);反之,依據(jù)一個點(diǎn)的坐標(biāo)就能確定這個點(diǎn)的位置。
2、確定點(diǎn)的位置就是求出這個點(diǎn)在設(shè)定的坐標(biāo)系中的坐標(biāo)。
四、數(shù)學(xué)運(yùn)用。
例1選擇適當(dāng)?shù)?平面直角坐標(biāo)系,表示邊長為1的正六邊形的頂點(diǎn)。
變式訓(xùn)練。
變式訓(xùn)練。
2在面積為1的中,,建立適當(dāng)?shù)淖鴺?biāo)系,求以m,n為焦點(diǎn)并過點(diǎn)p的橢圓方程。
例3已知q(a,b),分別按下列條件求出p的坐標(biāo)。
(1)p是點(diǎn)q關(guān)于點(diǎn)m(m,n)的對稱點(diǎn)。
(2)p是點(diǎn)q關(guān)于直線l:x-y+4=0的對稱點(diǎn)(q不在直線1上)。
變式訓(xùn)練。
用兩種以上的方法證明:三角形的三條高線交于一點(diǎn)。
思考。
通過平面變換可以把曲線變?yōu)橹行脑谠c(diǎn)的單位圓,請求出該復(fù)合變換?
五、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.平面直角坐標(biāo)系的意義。
2.利用平面直角坐標(biāo)系解決相應(yīng)的數(shù)學(xué)問題。
六、課后作業(yè):
高二下數(shù)學(xué)教案篇三
教學(xué)目的:
1.掌握常用基本不等式,并能用之證明不等式和求最值;。
2.掌握含絕對值的不等式的性質(zhì);。
教學(xué)過程:
一、復(fù)習(xí)引入:本章知識點(diǎn)。
二、講解范例:幾類常見的問題。
(一)含參數(shù)的不等式的解法。
例1解關(guān)于x的不等式.
例2解關(guān)于x的不等式.
例3解關(guān)于x的不等式.
例4解關(guān)于x的不等式。
例5滿足的x的集合為a;滿足的x。
的集合為b1若ab求a的取值范圍2若ab求a的取值范圍3若ab為僅含一個元素的集合,求a的值.
(二)函數(shù)的最值與值域。
例6求函數(shù)的最大值,下列解法是否正確?為什么?
解一:,
解二:當(dāng)即時,
例7若,求的最值。
例8已知x,y為正實(shí)數(shù),且成等差數(shù)列,成等比數(shù)列,求的取值范圍.
例9設(shè)且,求的最大值。
例10函數(shù)的最大值為9,最小值為1,求a,b的值。
三、作業(yè):
1.
2.,若,求a的取值范圍。
3.
4.
5.當(dāng)a在什么范圍內(nèi)方程:有兩個不同的負(fù)根。
6.若方程的兩根都對于2,求實(shí)數(shù)m的范圍。
7.求下列函數(shù)的最值:
1
2
8.1時求的最小值,的最小值。
2設(shè),求的最大值。
3若,求的最大值。
4若且,求的最小值。
9.若,求證:的最小值為3。
10.制作一個容積為的圓柱形容器(有底有蓋),問圓柱底半徑和。
高各取多少時,用料最省?(不計(jì)加工時的損耗及接縫用料)。
高二下數(shù)學(xué)教案篇四
本章知識點(diǎn)
幾類常見的問題
(一) 含參數(shù)的不等式的解法
例1解關(guān)于x的不等式 .
例2解關(guān)于x的不等式 .
例3解關(guān)于x的不等式 .
例4解關(guān)于x的不等式
例5 滿足 的x的集合為a;滿足 的x
的集合為b 1 若ab 求a的取值范圍 2 若ab 求a的取值范圍 3 若ab為僅含一個元素的集合,求a的值.
(二)函數(shù)的最值與值域
例6 求函數(shù) 的最大值,下列解法是否正確?為什么?
解一: ,
解二: 當(dāng) 即 時,
例7 若 ,求 的最值。
例8 已知x , y為正實(shí)數(shù),且 成等差數(shù)列, 成等比數(shù)列,求 的取值范圍.
例9 設(shè) 且 ,求 的最大值
例10 函數(shù) 的最大值為9,最小值為1,求a,b的值。
1.
2. , 若 ,求a的取值范圍
3.
4.
5.當(dāng)a在什么范圍內(nèi)方程: 有兩個不同的負(fù)根
6.若方程 的兩根都對于2,求實(shí)數(shù)m的范圍
7.求下列函數(shù)的最值:
1
2
8.1 時求 的最小值, 的最小值
2設(shè) ,求 的最大值
3若 , 求 的最大值
4若 且 ,求 的最小值
9.若 ,求證: 的最小值為3
10.制作一個容積為 的圓柱形容器(有底有蓋),問圓柱底半徑和
高各取多少時,用料最省?(不計(jì)加工時的損耗及接縫用料)
高二下數(shù)學(xué)教案篇五
教學(xué)目標(biāo):
1、進(jìn)一步理解和掌握數(shù)列的有關(guān)概念和性質(zhì);
2、在對一個數(shù)列的探究過程中,提高提出問題、分析問題和解決問題的能力;
3、進(jìn)一步提高問題探究意識、知識應(yīng)用意識和同伴合作意識。
教學(xué)重點(diǎn):
問題的提出與解決。
教學(xué)難點(diǎn):
如何進(jìn)行問題的探究。
啟發(fā)探究式。
教學(xué)過程:
研究方向提示:
1、數(shù)列{an}是一個等比數(shù)列,可以從等比數(shù)列角度來進(jìn)行研究;
2、研究所給數(shù)列的項(xiàng)之間的關(guān)系;
3、研究所給數(shù)列的子數(shù)列;
4、研究所給數(shù)列能構(gòu)造的新數(shù)列;
5、數(shù)列是一種特殊的函數(shù),可以從函數(shù)性質(zhì)角度來進(jìn)行研究;
6、研究所給數(shù)列與其它知識的聯(lián)系(組合數(shù)、復(fù)數(shù)、圖形、實(shí)際意義等)。
針對學(xué)生的研究情況,對所提問題進(jìn)行歸類,選擇部分類型問題共同進(jìn)行研究、分析與解決。
課堂小結(jié):
1、研究一個數(shù)列可以從哪些方面提出問題并進(jìn)行研究?
2、你最喜歡哪位同學(xué)的研究?為什么?
高二下數(shù)學(xué)教案篇六
正弦定理是高中新教材人教a版必修五第一章1.1.1的內(nèi)容,是學(xué)生在已有知識的基礎(chǔ)上,通過對三角形邊角關(guān)系的研究,發(fā)現(xiàn)并掌握三角形的邊長與角度之間的數(shù)量關(guān)系。提出兩個實(shí)際問題,并指出解決問題的關(guān)鍵在于研究三角形的邊、角關(guān)系,從而引導(dǎo)學(xué)生產(chǎn)生探索愿望,激發(fā)學(xué)生的學(xué)習(xí)興趣。在教學(xué)過程中,要引導(dǎo)學(xué)生自主探究三角形的邊角關(guān)系,先由特殊情況發(fā)現(xiàn)結(jié)論,再對一般三角形進(jìn)行推導(dǎo),并引導(dǎo)學(xué)生分析正弦定理可以解決兩類關(guān)于解三角形的問題:
(1)已知兩角和一邊,解三角形;。
(2)已知兩邊和其中一邊的對角,解三角形。
本節(jié)授課對象是高二學(xué)生,是在學(xué)生學(xué)習(xí)了必修四基本初等函數(shù)和三角恒等變換的基礎(chǔ)上,由實(shí)際問題出發(fā)探索研究三角形邊角關(guān)系,得出正弦定理。高二學(xué)生對生產(chǎn)生活問題比較感興趣,由實(shí)際問題出發(fā)可以激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生產(chǎn)生探索研究的愿望。
【知識與技能目標(biāo)】。
能準(zhǔn)確寫出正弦定理的符號表達(dá)式,能夠運(yùn)用正弦定理理解三角形、初步解決某些測量和幾何計(jì)算有關(guān)的簡單的實(shí)際問題。
【過程與方法目標(biāo)】。
通過對定理的證明和應(yīng)用,鍛煉獨(dú)立解決問題的能力和體會分類討論和數(shù)形結(jié)合的思想方法。
【情感態(tài)度價值觀目標(biāo)】。
通過對三角形邊角關(guān)系的探究學(xué)習(xí),經(jīng)歷數(shù)學(xué)探究活動的過程,體會由特殊到一般再由一般到特殊的認(rèn)識事物規(guī)律,培養(yǎng)探索精神和創(chuàng)新意識。
【重點(diǎn)】。
正弦定理及其推導(dǎo)。
【難點(diǎn)】。
正弦定理的推導(dǎo)與正弦定理的運(yùn)用。
運(yùn)用“發(fā)現(xiàn)問題——自主探究——嘗試指導(dǎo)——合作交流”的教學(xué)方式,整堂課圍繞“一切為了學(xué)生發(fā)展”的教學(xué)原則,突出:師生互動、共同探索,教師指導(dǎo)、循序漸進(jìn)。
新課引入——提出問題,激發(fā)學(xué)生的求知欲。掌握正弦定理的推導(dǎo)證明——分類討論,數(shù)形結(jié)合動腦思考,由一般到特殊,組織學(xué)生自主探索,獲得正弦定理及證明過程。
例題處理——始終由問題出發(fā),層層設(shè)疑,讓他們在探索中得到知識。鞏固練習(xí)——深化對正弦定理的理解。
(一)導(dǎo)入新課。
我采用的是設(shè)疑導(dǎo)入,進(jìn)行口頭提問:
設(shè)計(jì)意圖:通過生活中的知識引入,激發(fā)學(xué)生學(xué)習(xí)需要和學(xué)習(xí)期待,以問題引起學(xué)生學(xué)習(xí)熱情和探索新知的欲望。讓學(xué)生積極主動的參與到課堂里面來,更好的調(diào)動學(xué)習(xí)氛圍。
(二)新課教學(xué)。
帶動學(xué)生回憶以前學(xué)過的知識,并設(shè)置如下問題引導(dǎo)學(xué)生思考,減少學(xué)生對新知識的陌生感。
高二下數(shù)學(xué)教案篇七
重點(diǎn)與難點(diǎn)分析:
本節(jié)課教學(xué)方法主要是“自學(xué)輔導(dǎo)與發(fā)現(xiàn)探究法”。力求體現(xiàn)知識結(jié)構(gòu)完整、知識理解完整;注重學(xué)生的參與度,在師生共同參與下,探索問題、動手試驗(yàn)、發(fā)現(xiàn)規(guī)律、做出歸納。讓學(xué)生直接參加課堂活動,將教與學(xué)融為一體。具體說明如下:
(1)由“先教后學(xué)”轉(zhuǎn)向“先學(xué)后教。
本節(jié)課開始,讓同學(xué)們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們?nèi)鹊姆椒ㄓ心男┠?學(xué)生展開討論,初步形成意見,然后由教師答疑。這樣促進(jìn)了學(xué)生學(xué)習(xí),體現(xiàn)了以“學(xué)生為主體”的教育思想。
(2)在層次教學(xué)中培養(yǎng)學(xué)生的思維能力。
本節(jié)課的層次主要表現(xiàn)為兩個方面:一是對公理的多層次理解;二是綜合練習(xí)的多層次變化。
公理的多層次理解包括:明確公理的條件及結(jié)論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強(qiáng)調(diào)三個方面:1、特殊三角形的特殊性;2、歸納總結(jié)判定直角三角形全等的方法。
綜合練習(xí)的多層次變化:首先給出直接應(yīng)用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應(yīng)用題目。這里注意兩點(diǎn):一是給出題目后先讓學(xué)生獨(dú)立思考,并按教材的形式嚴(yán)格書寫。二是給出的綜合題目有一定的難度,教學(xué)時,要注意引導(dǎo)學(xué)生分析問題解決問題的思考方法。
教法建議:
由“先教后學(xué)”轉(zhuǎn)向“先學(xué)后教”
本節(jié)課開始,讓同學(xué)們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們?nèi)鹊姆椒ㄓ心男┠?學(xué)生展開討論,初步形成意見,然后由教師答疑。這樣促進(jìn)了學(xué)生學(xué)習(xí),體現(xiàn)了以“學(xué)生為主體”的教育思想。
(2)在層次教學(xué)中培養(yǎng)學(xué)生的思維能力。
本節(jié)課的層次主要表現(xiàn)為兩個方面:一是對公理的多層次理解;二是綜合練習(xí)的多層次變化。
公理的多層次理解包括:明確公理的條件及結(jié)論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強(qiáng)調(diào)三個方面:1、特殊三角形的特殊性;2、歸納總結(jié)判定直角三角形全等的方法。
綜合練習(xí)的.多層次變化:首先給出直接應(yīng)用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應(yīng)用題目。
這里注意兩點(diǎn):
一是給出題目后先讓學(xué)生獨(dú)立思考,并按教材的形式嚴(yán)格書寫。
二是給出的綜合題目有一定的難度,教學(xué)時,要注意引導(dǎo)學(xué)生分析問題解決問題的思考方法。
高二下數(shù)學(xué)教案篇八
(1)了解周期現(xiàn)象在現(xiàn)實(shí)中廣泛存在;(2)感受周期現(xiàn)象對實(shí)際工作的意義;(3)理解周期函數(shù)的概念;(4)能熟練地判斷簡單的實(shí)際問題的周期;(5)能利用周期函數(shù)定義進(jìn)行簡單運(yùn)用。
2、過程與方法。
通過創(chuàng)設(shè)情境:單擺運(yùn)動、時鐘的圓周運(yùn)動、潮汐、波浪、四季變化等,讓學(xué)生感知周期現(xiàn)象;從數(shù)學(xué)的角度分析這種現(xiàn)象,就可以得到周期函數(shù)的定義;根據(jù)周期性的定義,再在實(shí)踐中加以應(yīng)用。
3、情感態(tài)度與價值觀。
通過本節(jié)的學(xué)習(xí),使同學(xué)們對周期現(xiàn)象有一個初步的認(rèn)識,感受生活中處處有數(shù)學(xué),從而激發(fā)學(xué)生的學(xué)習(xí)積極性,培養(yǎng)學(xué)生學(xué)好數(shù)學(xué)的信心,學(xué)會運(yùn)用聯(lián)系的觀點(diǎn)認(rèn)識事物。
高二下數(shù)學(xué)教案篇九
教學(xué)目標(biāo):
(1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.
(2)理解直線與二元一次方程的關(guān)系及其證明。
(3)培養(yǎng)學(xué)生抽象概括能力、分類討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一的觀點(diǎn).
教學(xué)重點(diǎn)、難點(diǎn):直線方程的一般式.直線與二元一次方程(、不同時為0)的對應(yīng)關(guān)系及其證明.
教學(xué)用具:計(jì)算機(jī)。
教學(xué)方法:啟發(fā)引導(dǎo)法,討論法。
教學(xué)過程:
下面給出教學(xué)實(shí)施過程設(shè)計(jì)的簡要思路:
教學(xué)設(shè)計(jì)思路:
(一)引入的設(shè)計(jì)。
前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問題:
問:說出過點(diǎn)(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個,它們的次數(shù)為一次.
肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個問題:
問:求出過點(diǎn),的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是(或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個,它們的次數(shù)為一次.
肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個,它們的次數(shù)為一次”.
啟發(fā):你在想什么(或你想到了什么)?誰來談?wù)?各小組可以討論討論.
學(xué)生紛紛談出自己的想法,教師邊評價邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識統(tǒng)一到如下問題:
【問題1】“任意直線的方程都是二元一次方程嗎?”
(二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計(jì)。
這是本節(jié)課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.
學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo).
經(jīng)過一定時間的研究,教師組織開展集體討論.首先讓學(xué)生陳述解決思路或解決方案:
思路一:…。
思路二:…。
……。
教師組織評價,確定方案(其它待課下研究)如下:
按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在.
當(dāng)存在時,直線的截距也一定存在,直線的方程可表示為,它是二元一次方程.
當(dāng)不存在時,直線的方程可表示為形式的方程,它是二元一次方程嗎?
學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時教師引導(dǎo)學(xué)生,逐步認(rèn)識到把它看成二元一次方程的合理性:
平面直角坐標(biāo)系中直線上點(diǎn)的坐標(biāo)形式,與其它直線上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.
綜合兩種情況,我們得出如下結(jié)論:
在平面直角坐標(biāo)系中,對于任何一條直線,都有一條表示這條直線的關(guān)于、的二元一次方程.
至此,我們的問題1就解決了.簡單點(diǎn)說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成或的形式,準(zhǔn)確地說應(yīng)該是“要么形如這樣,要么形如這樣的方程”.
同學(xué)們注意:這樣表達(dá)起來是不是很啰嗦,能不能有一個更好的表達(dá)?
學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式.
這樣上邊的結(jié)論可以表述如下:
在平面直角坐標(biāo)系中,對于任何一條直線,都有一條表示這條直線的形如(其中、不同時為0)的二元一次方程.
啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關(guān)的問題呢?
【問題2】任何形如(其中、不同時為0)的二元一次方程都表示一條直線嗎?
師生共同討論,評價不同思路,達(dá)成共識:
(1)當(dāng)時,方程可化為。
這是表示斜率為、在軸上的截距為的直線.
(2)當(dāng)時,由于、不同時為0,必有,方程可化為。
這表示一條與軸垂直的直線.
因此,得到結(jié)論:
在平面直角坐標(biāo)系中,任何形如(其中、不同時為0)的二元一次方程都表示一條直線.
為方便,我們把(其中、不同時為0)稱作直線方程的一般式是合理的.
【動畫演示】。
演示“”文件,體會任何二元一次方程都表示一條直線.
至此,我們的第二個問題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個問題其實(shí)是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應(yīng)關(guān)系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉(zhuǎn)化關(guān)系.
(三)練習(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計(jì)在此從略。
高二下數(shù)學(xué)教案篇十
這是一個特殊的線性規(guī)劃問題,再來研究它的解法。
c.改變這個例子的個別條件,再來研究它的解法。
將這個例子中方木料存有量改為,其他條件不變,則。
作出可行域,如圖陰影部分,且過可行域內(nèi)點(diǎn)m(100,400)而平行于的直線離原點(diǎn)的距離最大,所以最優(yōu)解為(100,400),這時(元)。
故生產(chǎn)書桌100、書櫥400張,可獲最大利潤56000元。
總結(jié)、擴(kuò)展。
1.線性規(guī)劃問題的數(shù)字模型。
2.線性規(guī)劃在兩類問題中的應(yīng)用。
布置作業(yè)。
到附近的工廠、鄉(xiāng)鎮(zhèn)企業(yè)、商店、學(xué)校等作調(diào)查研究,了解線性規(guī)劃在實(shí)際中的應(yīng)用,或提出能用線性規(guī)劃的知識提高生產(chǎn)效率的實(shí)際問題,并作出解答。把實(shí)習(xí)和研究活動的成果寫成實(shí)習(xí)報告、研究報告或小論文,并互相交流。
探究活動。
如何確定水電站的位置。
由,,得b(300,700).于是直線的方程為。
即
高二下數(shù)學(xué)教案篇十一
《小二黑結(jié)婚》教案(人教版高二選修)。
一、教學(xué)目的及要求。
趙樹理的章回小說所體現(xiàn)的民族文化特色。
二、講授的內(nèi)容提要。
1、人物形象分析。
2、思想意蘊(yùn)。
三、重點(diǎn)、難點(diǎn)。
重點(diǎn):民族化、大眾化特色。
難點(diǎn):思想意蘊(yùn)。
四、教學(xué)過程。
教學(xué)課時:2課時。
第一課時。
分析二諸葛、三仙姑的同中有異的性格。
兩人都具有封建思想,都反對兒女自由戀愛,想以家長身份主宰兒女婚姻;兩人都封建迷信,陰陽八卦、黃道黑道,規(guī)矩頗多。
但兩人也有不同。二諸葛是虔誠的迷信,迷信成了他認(rèn)識生活、對待生活的唯一標(biāo)尺;三仙姑是虛假的迷信,迷信成了她欺騙別人、害人利己的法術(shù)。二諸葛既是一個封建家長制的維護(hù)者,同時他又是一個善良、厚道的父親;三仙姑則是一個無情的母親,為了滿足自己的欲望,她不惜犧牲女兒的前程。
思想意蘊(yùn)。
趙樹理曾說:'我在作群眾工作的過程中,遇到了非解決不可而又不是輕易能解決了的問題,往往就變成了所要寫的主題。'《小二黑結(jié)婚》便是作者在太行山區(qū)工作時,面對現(xiàn)實(shí)困惑而作的藝術(shù)思考。小說描寫的是在解放區(qū)新的歷史條件下一對青年男女沖破封建傳統(tǒng)爭取婚姻自主的故事。小說抨擊了農(nóng)村中的封建殘余勢力,批判了人民群眾中的封建思想,歌頌了新的人物、新的時代風(fēng)尚。作品完滿的結(jié)局說明了人民政權(quán)是人民實(shí)現(xiàn)自主婚姻的最可靠的保證。它表明,在解放區(qū),不僅政治和經(jīng)濟(jì)領(lǐng)域有了變革。而且在愛情、婚姻、家庭和道德領(lǐng)域也發(fā)生了天翻地覆的變化。小二黑和小芹的斗爭,已經(jīng)成為解放區(qū)人民反霸除暴的民主改革的一個組成部分。充滿自信,敢于斗爭的新一代農(nóng)民的成長,標(biāo)志著一個深刻的社會變化已經(jīng)興起,并且正在深入發(fā)展。
第二課時。
分析作品的民族化、大眾化特色。
主題和題材:趙樹理小說總是選取那些現(xiàn)實(shí)生活中迫切需要解決的具有重要社會意義的主題,但在選材上卻并不追求轟轟烈烈,而是從普通的日常生活現(xiàn)象入手,以小見大。如《小二黑結(jié)婚》以解放區(qū)仍然存在包辦婚姻的行為做突破口,通過人們司空見慣的生活現(xiàn)象,揭示出反封建思想斗爭的重要性和長期性問題,具有極其重要的現(xiàn)實(shí)意義。
人物形象塑造:趙樹理小說的突出貢獻(xiàn)就是成功地描寫了各類不同思想性格的農(nóng)民形象。他一面熱情謳歌了二黑和小芹這樣的新型農(nóng)民的'典型代表,贊美他們的新思想、新品質(zhì),同時又著力刻畫了像二諸葛、三仙姑這樣一些暫時還愚昧落后但已經(jīng)開始走向轉(zhuǎn)變的農(nóng)民代表。深入挖掘農(nóng)民內(nèi)在的美好品德是趙樹理小說的主要出發(fā)點(diǎn),于是往往寓批評于詼諧幽默之中,善意的諷刺與熱情的歌頌結(jié)合在一起。
具體的藝術(shù)表現(xiàn)手法:在藝術(shù)結(jié)構(gòu)上,他借鑒了傳統(tǒng)評書、章回小說的結(jié)構(gòu)特點(diǎn),采用單線條發(fā)展的手法,注重故事的連貫與完整,故事性強(qiáng),適應(yīng)我們民族特別是廣大農(nóng)民的欣賞習(xí)慣。在三組人物刻畫上,運(yùn)用白描手法和注重細(xì)節(jié)、動作的描寫,并常給人物起綽號來加強(qiáng)其性格的鮮明性,如二諸葛、三仙姑等。語言樸實(shí)生動、幽默風(fēng)趣,大量使用經(jīng)過提煉加工的地方農(nóng)民的方言口語,表現(xiàn)力強(qiáng),真正做到了語言的大眾化。
五、作業(yè)。
追憶。
高二下數(shù)學(xué)教案篇十二
1.理解平面直角坐標(biāo)系的意義;掌握在平面直角坐標(biāo)系中刻畫點(diǎn)的位置的方法。
2.掌握坐標(biāo)法解決幾何問題的步驟;體會坐標(biāo)系的作用。
體會直角坐標(biāo)系的作用。
能夠建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問題。
新授課。
啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué)。
多媒體、實(shí)物投影儀。
一、復(fù)習(xí)引入:
情境1:為了確保宇宙飛船在預(yù)定的軌道上運(yùn)行,并在按計(jì)劃完成科學(xué)考察任務(wù)后,安全、準(zhǔn)確的返回地球,從火箭升空的時刻開始,需要隨時測定飛船在空中的位置機(jī)器運(yùn)動的軌跡。
情境2:運(yùn)動會的開幕式上常常有大型團(tuán)體操的表演,其中不斷變化的背景圖案是由看臺上座位排列整齊的人群不斷翻動手中的一本畫布構(gòu)成的。要出現(xiàn)正確的背景圖案,需要缺點(diǎn)不同的畫布所在的位置。
問題1:如何刻畫一個幾何圖形的位置?
問題2:如何創(chuàng)建坐標(biāo)系?
二、學(xué)生活動。
學(xué)生回顧。
刻畫一個幾何圖形的位置,需要設(shè)定一個參照系。
1、數(shù)軸它使直線上任一點(diǎn)p都可以由惟一的實(shí)數(shù)x確定。
2、平面直角坐標(biāo)系。
在平面上,當(dāng)取定兩條互相垂直的直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點(diǎn)p都可以由惟一的實(shí)數(shù)對(x,y)確定。
3、空間直角坐標(biāo)系。
在空間中,選擇兩兩垂直且交于一點(diǎn)的三條直線,當(dāng)取定這三條直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這三條直線方向,就建立了空間直角坐標(biāo)系。它使空間上任一點(diǎn)p都可以由惟一的實(shí)數(shù)對(x,y,z)確定。
三、講解新課:
1、建立坐標(biāo)系是為了確定點(diǎn)的位置,因此,在所建的坐標(biāo)系中應(yīng)滿足:
任意一點(diǎn)都有確定的坐標(biāo)與其對應(yīng);反之,依據(jù)一個點(diǎn)的'坐標(biāo)就能確定這個點(diǎn)的位置。
2、確定點(diǎn)的位置就是求出這個點(diǎn)在設(shè)定的坐標(biāo)系中的坐標(biāo)。
四、數(shù)學(xué)運(yùn)用。
例1選擇適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,表示邊長為1的正六邊形的頂點(diǎn)。
變式訓(xùn)練。
變式訓(xùn)練。
2、在面積為1的中,建立適當(dāng)?shù)淖鴺?biāo)系,求以m,n為焦點(diǎn)并過點(diǎn)p的橢圓方程。
例3已知q(a,b),分別按下列條件求出p的坐標(biāo)。
(1)p是點(diǎn)q關(guān)于點(diǎn)m(m,n)的對稱點(diǎn)。
(2)p是點(diǎn)q關(guān)于直線l:x-y+4=0的對稱點(diǎn)(q不在直線1上)。
變式訓(xùn)練。
用兩種以上的方法證明:三角形的三條高線交于一點(diǎn)。
思考。
通過平面變換可以把曲線變?yōu)橹行脑谠c(diǎn)的單位圓,請求出該復(fù)合變換?
五、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.平面直角坐標(biāo)系的意義。
2.利用平面直角坐標(biāo)系解決相應(yīng)的數(shù)學(xué)問題。
高二下數(shù)學(xué)教案篇十三
1.掌握二項(xiàng)式定理和性質(zhì)以及推導(dǎo)過程。
2.利用二項(xiàng)式定理求二項(xiàng)展開式中的項(xiàng)的系數(shù)及相關(guān)問題。
3.使學(xué)生能把握數(shù)學(xué)問題中的整體與局部的關(guān)系,掌握分析與綜合,特殊和一般的數(shù)學(xué)思想。
教學(xué)重點(diǎn);二項(xiàng)展開式中項(xiàng)的系數(shù)的計(jì)算。
1、復(fù)習(xí)引入:
1.的展開式,項(xiàng)數(shù),通項(xiàng);
2.二項(xiàng)式系數(shù)的四個性質(zhì)。
2、例題。
1.二項(xiàng)式定理及二項(xiàng)式系數(shù)性質(zhì)的簡單應(yīng)用:
例1(1)除以9的余數(shù)是_____________________。
(2)=_______________。
a.b.c.d.
(3)已知。
則____________________。
(4)如果展開式中奇數(shù)項(xiàng)的系數(shù)和為512,則這個展開式的第8項(xiàng)是()。
a.b.c.d.
(5)若則等于()。
a.b.c.d.
小結(jié)1.(1)注意二項(xiàng)式定理的正逆運(yùn)用;
(2)注意二項(xiàng)式系數(shù)的四個性質(zhì)的運(yùn)用。
2.二項(xiàng)展開式中項(xiàng)的系數(shù)計(jì)算:
例2(1)展開式中常數(shù)項(xiàng)等于_____________.
(2)在的展開式中x的系數(shù)為()。
a.160b.240c.360d.800。
(3)已知求:
小結(jié)2.(1)局部問題抓通項(xiàng);
(2)整體系數(shù)賦值法。
三、課堂練習(xí)。
(1)展開式中,各系數(shù)之和是()。
a.0b.1c.d.。
(2)已知的.展開式中的系數(shù)為,常數(shù)的值是_________。
(3)的展開式中的系數(shù)為______________-(用數(shù)字作答)。
(4)若,則。
a.1b.0c.2d.。
四、課堂小結(jié)。
五、作業(yè)。
高二下數(shù)學(xué)教案篇十四
1、地位、作用和特點(diǎn):
《xx》是高中數(shù)學(xué)課本第xx冊(x修)的第xx章“xx”的第xx節(jié)內(nèi)容。
本節(jié)是在學(xué)習(xí)了之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對的知識進(jìn)一步鞏固和深化,又可以為后面學(xué)習(xí)打下基礎(chǔ),所以是本章的重要內(nèi)容。此外,《xx》的知識與我們?nèi)粘I睢⑸a(chǎn)、科學(xué)研究有著密切的聯(lián)系,因此學(xué)習(xí)這部分有著廣泛的現(xiàn)實(shí)意義。本節(jié)的特點(diǎn)之一是xx;特點(diǎn)之二是:xx。
教學(xué)目標(biāo):
根據(jù)《教學(xué)大綱》的要求和學(xué)生已有的知識基礎(chǔ)和認(rèn)知能力,確定以下教學(xué)目標(biāo):
(1)知識目標(biāo):a、b、c。
(2)能力目標(biāo):a、b、c。
(3)德育目標(biāo):a、b。
教學(xué)的重點(diǎn)和難點(diǎn):
(1)教學(xué)重點(diǎn):
(2)教學(xué)難點(diǎn):
基于上面的教材分析,我根據(jù)自己對研究性學(xué)習(xí)“啟發(fā)式”教學(xué)模式和新課程改革的理論認(rèn)識,結(jié)合本校學(xué)生實(shí)際,主要突出了幾個方面:一是創(chuàng)設(shè)問題情景,充分調(diào)動學(xué)生求知欲,并以此來激發(fā)學(xué)生的探究心理。二是運(yùn)用啟發(fā)式教學(xué)方法,就是把教和學(xué)的各種方法綜合起來統(tǒng)一組織運(yùn)用于教學(xué)過程,以求獲得效果。另外還注意獲得和交換信息渠道的綜合、教學(xué)手段的綜合和課堂內(nèi)外的綜合。并且在整個教學(xué)設(shè)計(jì)盡量做到注意學(xué)生的心理特點(diǎn)和認(rèn)知規(guī)律,觸發(fā)學(xué)生的思維,使教學(xué)xx真正成為學(xué)生的學(xué)習(xí)過程,以思維教學(xué)代替單純的記憶教學(xué)。三是注重滲透數(shù)學(xué)思考方法(聯(lián)想法、類比法、數(shù)形結(jié)合等一般科學(xué)方法)。讓學(xué)生在探索學(xué)習(xí)知識的過程中,領(lǐng)會常見數(shù)學(xué)思想方法,培養(yǎng)學(xué)生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問題時留給學(xué)生充分的時間,以利于開放學(xué)生的思維。當(dāng)然這就應(yīng)在處理教學(xué)內(nèi)容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設(shè)計(jì)如下教學(xué)程序:
導(dǎo)入新課新課教學(xué)反饋發(fā)展。
學(xué)生學(xué)習(xí)的過程實(shí)際上就是學(xué)生主動獲取、整理、貯存、運(yùn)用知識和獲得學(xué)習(xí)能力的過程,因此,我覺得在教學(xué)中,指導(dǎo)學(xué)生學(xué)習(xí)時,應(yīng)盡量避免單純地、直露地向?qū)W生灌輸某種學(xué)習(xí)方法。有效的'能被學(xué)生接受的學(xué)法指導(dǎo)應(yīng)是滲透在教學(xué)過程中進(jìn)行的,是通過優(yōu)化教學(xué)程序來增強(qiáng)學(xué)法指導(dǎo)的目的性和實(shí)效性。在本節(jié)課的教學(xué)中主要滲透以下幾個方面的學(xué)法指導(dǎo)。
1、培養(yǎng)學(xué)生學(xué)會通過自學(xué)、觀察、實(shí)驗(yàn)等方法獲取相關(guān)知識,使學(xué)生在探索研究過程中分析、歸納、推理能力得到提高。
本節(jié)教師通過列舉具體事例來進(jìn)行分析,歸納出,并依據(jù)此知識與具體事例結(jié)合、推導(dǎo)出,這正是一個分析和推理的全過程。
2、讓學(xué)生親自經(jīng)歷運(yùn)用科學(xué)方法探索的過程。主要是努力創(chuàng)設(shè)應(yīng)用科學(xué)方法探索、解決問題情境,讓學(xué)生在探索中體會科學(xué)方法,如在講授時,可通過演示,創(chuàng)設(shè)探索規(guī)律的情境,引導(dǎo)學(xué)生以可靠的事實(shí)為基礎(chǔ),經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學(xué)生領(lǐng)悟到把可靠的事實(shí)和深刻的理論思維結(jié)合起來的特點(diǎn)。
3、讓學(xué)生在探索性實(shí)驗(yàn)中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學(xué)生的發(fā)散思維和收斂思維能力,激發(fā)學(xué)生的創(chuàng)造動力。在實(shí)踐中要盡可能讓學(xué)生多動腦、多動手、多觀察、多交流、多分析;老師要給學(xué)生多點(diǎn)撥、多啟發(fā)、多激勵,不斷地尋找學(xué)生思維和操作上的閃光點(diǎn),及時總結(jié)和推廣。
4、在指導(dǎo)學(xué)生解決問題時,引導(dǎo)學(xué)生通過比較、猜測、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進(jìn)知識的正向遷移。如教師引導(dǎo)學(xué)生對比中,蘊(yùn)含的本質(zhì)差異,從而擺脫知識遷移的負(fù)面影響。這樣,既有利于學(xué)生養(yǎng)成認(rèn)真分析過程、善于比較的好習(xí)慣,又有利于培養(yǎng)學(xué)生通過現(xiàn)象發(fā)掘知識內(nèi)在本質(zhì)的能力。
(一)、課題引入:
教師創(chuàng)設(shè)問題情景(創(chuàng)設(shè)情景:a、教師演示實(shí)驗(yàn)。b、使用多媒體模擬一些比較有趣、與生活實(shí)踐比較有關(guān)的事例。c、講述數(shù)學(xué)科學(xué)的有關(guān)情況。)激發(fā)學(xué)生的探究xx,引導(dǎo)學(xué)生提出接下去要研究的問題。
(二)、新課教學(xué):
1、針對上面提出的問題,設(shè)計(jì)學(xué)生動手實(shí)踐,讓學(xué)生通過動手探索有關(guān)的知識,并引導(dǎo)學(xué)生進(jìn)行交流、討論得出新知,并進(jìn)一步提出下面的問題。
2、組織學(xué)生進(jìn)行新問題的實(shí)驗(yàn)方法設(shè)計(jì)—這時在設(shè)計(jì)上是有對比性、數(shù)學(xué)方法性的設(shè)計(jì)實(shí)驗(yàn),指導(dǎo)學(xué)生實(shí)驗(yàn)、通過多媒體的輔助,顯示學(xué)生的實(shí)驗(yàn)數(shù)據(jù),模擬強(qiáng)化出實(shí)驗(yàn)情況,由學(xué)生分析比較,歸納總結(jié)出知識的結(jié)構(gòu)。
(三)、實(shí)施反饋:
1、課堂反饋,遷移知識(遷移到與生活有關(guān)的例子)。讓學(xué)生分析有關(guān)的問題,實(shí)現(xiàn)知識的升華、實(shí)現(xiàn)學(xué)生的再次創(chuàng)新。
2、課后反饋,延續(xù)創(chuàng)新。通過課后練習(xí),學(xué)生互改作業(yè),課后研實(shí)驗(yàn),實(shí)現(xiàn)課堂內(nèi)外的綜合,實(shí)現(xiàn)創(chuàng)新精神的延續(xù)。
在教學(xué)中我把黑板分為三部分,把知識要點(diǎn)寫在左側(cè),中間知識推導(dǎo)過程,右邊實(shí)例應(yīng)用。
以上是我對《xx》這節(jié)教材的認(rèn)識和對教學(xué)過程的設(shè)計(jì)。在整個課堂中,我引導(dǎo)學(xué)生回顧前面學(xué)過的知識,并把它運(yùn)用到對的認(rèn)識,使學(xué)生的認(rèn)知活動逐步深化,既掌握了知識,又學(xué)會了方法。
總之,對課堂的設(shè)計(jì),我始終在努力貫徹以教師為主導(dǎo),以學(xué)生為主體,以問題為基礎(chǔ),以能力、方法為主線,有計(jì)劃培養(yǎng)學(xué)生的自學(xué)能力、觀察和實(shí)踐能力、思維能力、應(yīng)用知識解決實(shí)際問題的能力和創(chuàng)造能力為指導(dǎo)思想。并且能從各種實(shí)際出發(fā),充分利用各種教學(xué)手段來激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)了對學(xué)生創(chuàng)新意識的培養(yǎng)。
高二下數(shù)學(xué)教案篇十五
理解并掌握分式的乘除法法則,能進(jìn)行簡單的分式乘除法運(yùn)算,能解決一些與分式乘除有關(guān)的實(shí)際問題。
(2)技能目標(biāo)。
經(jīng)歷從分?jǐn)?shù)的乘除法運(yùn)算到分式的乘除法運(yùn)算的過程,培養(yǎng)學(xué)生類比的探究能力,加深對從特殊到一般數(shù)學(xué)的思想認(rèn)識。
(3)情感態(tài)度與價值觀。
教學(xué)中讓學(xué)生在主動探究,合作交流中滲透類比轉(zhuǎn)化的思想,使學(xué)生在學(xué)知識的同時感受探索的樂趣和成功的體驗(yàn)。
重點(diǎn):運(yùn)用分式的乘除法法則進(jìn)行運(yùn)算。
難點(diǎn):分子、分母為多項(xiàng)式的分式乘除運(yùn)算。
(一)提出問題,引入課題。
俗話說:“好的開端是成功的一半”同樣,好的引入能激發(fā)學(xué)生興趣和求知欲。因此我用實(shí)際出發(fā)提出現(xiàn)實(shí)生活中的問題:
問題1:求容積的高是,(引出分式乘法的學(xué)習(xí)需要)。
問題2:求大拖拉機(jī)的工作效率是小拖拉機(jī)的工作效率的倍,(引出分式除法的學(xué)習(xí)需要)。
從實(shí)際出發(fā),引出分式的乘除的實(shí)在存在意義,讓學(xué)生感知學(xué)習(xí)分式的'乘法和除法的實(shí)際需要,從而激發(fā)學(xué)生興趣和求知欲。
(二)類比聯(lián)想,探究新知。
從學(xué)生熟悉的分?jǐn)?shù)的乘除法出發(fā),引發(fā)學(xué)生的學(xué)習(xí)興趣。
解后總結(jié)概括:
(1)式是什么運(yùn)算?依據(jù)是什么?
(2)式又是什么運(yùn)算?依據(jù)是什么?能說出具體內(nèi)容嗎?(如果有困難教師應(yīng)給于引導(dǎo),學(xué)生應(yīng)該能說出依據(jù)的是:分?jǐn)?shù)的乘法和除法法則)教師加以肯定,并指出與分?jǐn)?shù)的乘除法法則類似,引導(dǎo)學(xué)生類比分?jǐn)?shù)的乘除法則,猜想出分式的乘除法則。
(分式的乘除法法則)。
乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母。
除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
(三)例題分析,應(yīng)用新知。
師生活動:教師參與并指導(dǎo),學(xué)生獨(dú)立思考,并嘗試完成例題。
p11的例1,在例題分析過程中,為了突出重點(diǎn),應(yīng)多次回顧分式的乘除法法則,使學(xué)生耳熟能詳。p11例2是分子、分母為多單項(xiàng)式的分式乘除法則的運(yùn)用,為了突破本節(jié)課的難點(diǎn)我采取板演的形式,和學(xué)生一起詳細(xì)分析,提醒學(xué)生關(guān)注易錯易漏的環(huán)節(jié),學(xué)會解題的方法。
(四)練習(xí)鞏固,培養(yǎng)能力。
p13練習(xí)第2題的(1)、(3)、(4)與第3題的(2)。
師生活動:教師出示問題,學(xué)生獨(dú)立思考解答,并讓學(xué)生板演或投影展示學(xué)生的解題過程。
通過這一環(huán)節(jié),主要是為了通過課堂跟蹤反饋,達(dá)到鞏固提高的目的,進(jìn)一步熟練解題的思路,也遵循了鞏固與發(fā)展相結(jié)合的原則。讓學(xué)生板演,一是為了暴露問題,二是為了規(guī)范解題格式和結(jié)果。
(五)課堂小結(jié),回扣目標(biāo)。
引導(dǎo)學(xué)生自主進(jìn)行課堂小結(jié):
1、本節(jié)課我們學(xué)習(xí)了哪些知識?
2、在知識應(yīng)用過程中需要注意什么?
3、你有什么收獲呢?
師生活動:學(xué)生反思,提出疑問,集體交流。
(六)布置作業(yè)。
教科書習(xí)題6.2第1、2(必做)練習(xí)冊p(選做),我設(shè)計(jì)了必做題和選做題,必做題是對本節(jié)課內(nèi)容的一個反饋,選做題是對本節(jié)課知識的一個延伸。
高二下數(shù)學(xué)教案篇十六
1.函數(shù)單調(diào)性的定義:
(1)一般地,設(shè)函數(shù)的定義域?yàn)閍,區(qū)間.
如果對于區(qū)間i內(nèi)的任意兩個值,當(dāng)時,都有_______________,那么就說在區(qū)間i上是單調(diào)增函數(shù),i稱為的___________________.
如果對于區(qū)間i內(nèi)的任意兩個值,當(dāng)時,都有_______________,那么就說在區(qū)間i上是單調(diào)減函數(shù),i稱為的___________________.
(2)如果函數(shù)在區(qū)間i上是單調(diào)增函數(shù)或單調(diào)減函數(shù),那么就說在區(qū)間i上具有___________性,單調(diào)增區(qū)間或單調(diào)減區(qū)間統(tǒng)稱為____________________.
2.復(fù)合函數(shù)的單調(diào)性:
對于函數(shù)如果當(dāng)在區(qū)間上和在區(qū)間上同時具有單調(diào)性,則復(fù)合函數(shù)在區(qū)間上具有__________,并且具有這樣的規(guī)律:___________________________.
3.求函數(shù)單調(diào)區(qū)間或證明函數(shù)單調(diào)性的方法:
(1)______________;(2)____________________;(3)__________________.
【自我檢測】。
1.函數(shù)在r上是減函數(shù),則的取值范圍是___________.
2.函數(shù)在上是_____函數(shù)(填增或減).
3.函數(shù)的單調(diào)區(qū)間是_____________________.
4.函數(shù)在定義域r上是單調(diào)減函數(shù),且,則實(shí)數(shù)a的取值范圍是________________________.
5.已知函數(shù)在區(qū)間上是增函數(shù),則的大小關(guān)系是_______.
6.函數(shù)的單調(diào)減區(qū)間是___________________.
【例1】填空題:
(1)若函數(shù)的單調(diào)增區(qū)間是,則的遞增區(qū)間是_________.
(2)函數(shù)的單調(diào)減區(qū)間是________________.
(3)若上是增函數(shù),則a的取值范圍是_____________.
(4)若是r上的減函數(shù),則a的取值范圍是_________.
【例2】求證:函數(shù)在區(qū)間上是減函數(shù).
【例3】已知函數(shù)對任意的,都有,且當(dāng)時,.
(1)求證:是r上的增函數(shù);。
(2)若,解不等式.
1.函數(shù)單調(diào)減區(qū)間是_________________.
2.若函數(shù)在區(qū)間上具有單調(diào)性,則實(shí)數(shù)a的取值范圍是______.
3.已知函數(shù)是定義在上的'增函數(shù),且,則實(shí)數(shù)x的取值范圍是_________________________.
4.已知在內(nèi)是減函數(shù),,且,設(shè),,則a,b的大小關(guān)系是_________________.
5.若函數(shù)上都是減函數(shù),則上是______.(填增函數(shù)或減函數(shù))。
6.函數(shù)的遞減區(qū)間是________________.
7.已知函數(shù)上單調(diào)遞減,則a的取值范圍是_________.
8.已知函數(shù)滿足對任意的,都有成立,則a的取值范圍是_________.
9.確定函數(shù)的單調(diào)性.
10.已知函數(shù)是定義在上的減函數(shù),且滿足,,若,求的取值范圍.
錯題卡題號錯題原因分析。
高二數(shù)學(xué)教案:數(shù)的單調(diào)性教案(答案)。
一、課前準(zhǔn)備:
1.(1),單調(diào)增區(qū)間,,單調(diào)減區(qū)間,
(2)單調(diào),單調(diào)區(qū)間。
2.單調(diào)性,同則增異則減。
3.(1)定義法(2)圖象法(3)導(dǎo)函數(shù)法。
【自我檢測】。
1.2.增3.和4.
5.6.
二、課堂活動:
【例1】。
(1)(2)(3)(4)。
【例2】證明:設(shè)。
【例3】(1)證明:
(2)解:
三、課后作業(yè)。
1.2.3.4.
5.減函數(shù)6.7.8.
9.解:定義域?yàn)?,任取,且?/p>
10.解:
高二下數(shù)學(xué)教案篇十七
1.理解平面直角坐標(biāo)系的意義;掌握在平面直角坐標(biāo)系中刻畫點(diǎn)的位置的方法。
2.掌握坐標(biāo)法解決幾何問題的步驟;體會坐標(biāo)系的作用。
體會直角坐標(biāo)系的作用。
能夠建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問題。
新授課
啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué).
多媒體、實(shí)物投影儀
一、復(fù)習(xí)引入:
情境1:為了確保宇宙飛船在預(yù)定的軌道上運(yùn)行,并在按計(jì)劃完成科學(xué)考察任務(wù)后,安全、準(zhǔn)確的返回地球,從火箭升空的時刻開始,需要隨時測定飛船在空中的位置機(jī)器運(yùn)動的軌跡。
情境2:運(yùn)動會的開幕式上常常有大型團(tuán)體操的表演,其中不斷變化的背景圖案是由看臺上座位排列整齊的人群不斷翻動手中的一本畫布構(gòu)成的。要出現(xiàn)正確的背景圖案,需要缺點(diǎn)不同的畫布所在的位置。
問題1:如何刻畫一個幾何圖形的位置?
問題2:如何創(chuàng)建坐標(biāo)系?
二、學(xué)生活動
學(xué)生回顧
刻畫一個幾何圖形的位置,需要設(shè)定一個參照系
1、數(shù)軸 它使直線上任一點(diǎn)p都可以由惟一的實(shí)數(shù)x確定
2、平面直角坐標(biāo)系
在平面上,當(dāng)取定兩條互相垂直的直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點(diǎn)p都可以由惟一的實(shí)數(shù)對(x,y)確定。
3、空間直角坐標(biāo)系
在空間中,選擇兩兩垂直且交于一點(diǎn)的三條直線,當(dāng)取定這三條直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這三條直線方向,就建立了空間直角坐標(biāo)系。它使空間上任一點(diǎn)p都可以由惟一的實(shí)數(shù)對(x,y,z)確定。
三、講解新課:
1、建立坐標(biāo)系是為了確定點(diǎn)的位置,因此,在所建的坐標(biāo)系中應(yīng)滿足:
任意一點(diǎn)都有確定的坐標(biāo)與其對應(yīng);反之,依據(jù)一個點(diǎn)的坐標(biāo)就能確定這個點(diǎn)的位置
2、確定點(diǎn)的位置就是求出這個點(diǎn)在設(shè)定的坐標(biāo)系中的坐標(biāo)
四、數(shù)學(xué)運(yùn)用
例1 選擇適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,表示邊長為1的正六邊形的頂點(diǎn)。
變式訓(xùn)練
變式訓(xùn)練
2在面積為1的中,,建立適當(dāng)?shù)淖鴺?biāo)系,求以m,n為焦點(diǎn)并過點(diǎn)p的橢圓方程
例3 已知q(a,b),分別按下列條件求出p 的坐標(biāo)
(1)p是點(diǎn)q 關(guān)于點(diǎn)m(m,n)的對稱點(diǎn)
(2)p是點(diǎn)q 關(guān)于直線l:x-y+4=0的對稱點(diǎn)(q不在直線1上)
變式訓(xùn)練
用兩種以上的方法證明:三角形的三條高線交于一點(diǎn)。
思考
通過平面變換可以把曲線變?yōu)橹行脑谠c(diǎn)的單位圓,請求出該復(fù)合變換?
五、小 結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.平面直角坐標(biāo)系的意義。
2. 利用平面直角坐標(biāo)系解決相應(yīng)的數(shù)學(xué)問題。
六、課后作業(yè):
高二下數(shù)學(xué)教案篇十八
學(xué)習(xí)目標(biāo):
1、了解本章的學(xué)習(xí)的內(nèi)容以及學(xué)習(xí)思想方法。
2、能敘述隨機(jī)變量的定義。
3、能說出隨機(jī)變量與函數(shù)的關(guān)系,
4、能夠把一個隨機(jī)試驗(yàn)結(jié)果用隨機(jī)變量表示。
重點(diǎn):能夠把一個隨機(jī)試驗(yàn)結(jié)果用隨機(jī)變量表示。
難點(diǎn):隨機(jī)事件概念的透徹理解及對隨機(jī)變量引入目的的認(rèn)識:
環(huán)節(jié)一:隨機(jī)變量的定義。
1.通過生活中的一些隨機(jī)現(xiàn)象,能夠概括出隨機(jī)變量的定義。
2能敘述隨機(jī)變量的定義。
3能說出隨機(jī)變量與函數(shù)的區(qū)別與聯(lián)系。
一、閱讀課本33頁問題提出和分析理解,回答下列問題?
1、了解一個隨機(jī)現(xiàn)象的規(guī)律具體指的是什么?
2、分析理解中的兩個隨機(jī)現(xiàn)象的隨機(jī)試驗(yàn)結(jié)果有什么不同?建立了什么樣的對應(yīng)關(guān)系?
總結(jié):
3、隨機(jī)變量。
(1)定義:
這種對應(yīng)稱為一個隨機(jī)變量。即隨機(jī)變量是從隨機(jī)試驗(yàn)每一個可能的結(jié)果所組成的。
到的映射。
(2)表示:隨機(jī)變量常用大寫字母.等表示.
(3)隨機(jī)變量與函數(shù)的區(qū)別與聯(lián)系。
函數(shù)隨機(jī)變量。
自變量。
因變量。
因變量的范圍。
相同點(diǎn)都是映射都是映射。
環(huán)節(jié)二隨機(jī)變量的應(yīng)用。
1、能正確寫出隨機(jī)現(xiàn)象所有可能出現(xiàn)的結(jié)果2、能用隨機(jī)變量的描述隨機(jī)事件。
例1:已知在10件產(chǎn)品中有2件不合格品?,F(xiàn)從這10件產(chǎn)品中任取3件,其中含有的次品數(shù)為隨機(jī)變量的學(xué)案.這是一個隨機(jī)現(xiàn)象。(1)寫成該隨機(jī)現(xiàn)象所有可能出現(xiàn)的結(jié)果;(2)試用隨機(jī)變量來描述上述結(jié)果。
例2連續(xù)投擲一枚均勻的硬幣兩次,用x表示這兩次正面朝上的次數(shù),則x是一個隨機(jī)變。
量,分別說明下列集合所代表的隨機(jī)事件:
(1){x=0}(2){x=1}。
(3){x2}(4){x0}。
變式:連續(xù)投擲一枚均勻的硬幣三次,用x表示這三次正面朝上的次數(shù),則x是一個隨機(jī)變量,x的可能取值是?并說明這些值所表示的隨機(jī)試驗(yàn)的結(jié)果.
練習(xí):寫出下列隨機(jī)變量可能取的值,并說明隨機(jī)變量所取的值表示的隨機(jī)變量的結(jié)果。
(1)從學(xué)?;丶乙?jīng)過5個紅綠燈路口,可能遇到紅燈的次數(shù);。
小結(jié)(對標(biāo))。
高二下數(shù)學(xué)教案篇十九
【知識點(diǎn)精講】。
三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形。
三角函數(shù)式的求值的類型一般可分為:。
(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。
注意點(diǎn):靈活角的變形和公式的變形重視角的范圍對三角函數(shù)值的影響,對角的范圍要討論。
【課堂小結(jié)】。
三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形。
三角函數(shù)式的求值的類型一般可分為:。
(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。
三角函數(shù)式常用化簡方法:切割化弦、高次化低次。
注意點(diǎn):靈活角的變形和公式的變形。
重視角的范圍對三角函數(shù)值的影響,對角的范圍要討論。
【本文地址:http://www.mlvmservice.com/zuowen/12624492.html】