冀教版七年級數(shù)學教案(實用16篇)

格式:DOC 上傳日期:2023-11-16 06:11:09
冀教版七年級數(shù)學教案(實用16篇)
時間:2023-11-16 06:11:09     小編:筆硯

教案的編寫可以幫助教師合理安排時間,保證教學進程的順利進行。那么,如何編寫一份高質(zhì)量的教案呢?首先,要明確教學目標,確保教學的針對性和指導性;其次,要合理安排教學內(nèi)容和教學順序,使學生學習過程有條不紊;還要精心選擇教學方法,使學生能積極參與,培養(yǎng)他們的學習興趣和能力;此外,教案中的評估方式也需要合理設置,以便及時了解學生的學習情況。綜上所述,寫一份完善的教案需要注意以上幾個方面。教案的優(yōu)秀范文積累對于教學經(jīng)驗的積累和教師的職業(yè)成長都有著非常重要的作用。

冀教版七年級數(shù)學教案篇一

3,體驗數(shù)形結合的思想。

教學難點歸納相反數(shù)在數(shù)軸上表示的點的特征。

知識重點相反數(shù)的概念。

教學過程(師生活動)設計理念。

設置情境。

引入課題問題1:請將下列4個數(shù)分成兩類,并說出為什么要這樣分類。

4,-2,-5,+2。

允許學生有不同的分法,只要能說出道理,都要難予鼓勵,但教師要做適當?shù)囊龑?,逐漸得出5和-5,+2和-2分別歸類是具有較特征的分法。

(引導學生觀察與原點的距離)。

思考結論:教科書第13頁的思考。

再換2個類似的數(shù)試一試。

培養(yǎng)學生的觀察與歸納能力,滲透數(shù)形思想。

深化主題提煉定義給出相反數(shù)的定義。

學生思考討論交流,教師歸納總結。

規(guī)律:一般地,數(shù)a的相反數(shù)可以表示為-a。

思考:數(shù)軸上表示相反數(shù)的兩個點和原點有什么關系?

練一練:教科書第14頁第一個練習體驗對稱的圖形的特點,為相反數(shù)在數(shù)軸上的特征做準備。

深化相反數(shù)的概念;“零的相反數(shù)是零”是相反數(shù)定義的一部分。

強化互為相反數(shù)的數(shù)在數(shù)軸上表示的點的幾何意義。

給出規(guī)律。

解決問題問題3:-(+5)和-(-5)分別表示什么意思?你能化簡它們嗎?

學生交流。

分別表示+5和-5的相反數(shù)是-5和+5。

練一練:教科書第14頁第二個練習利用相反數(shù)的概念得出求一個數(shù)的相反數(shù)的方法。

小結與作業(yè)。

課堂小結1,相反數(shù)的定義。

2,互為相反數(shù)的數(shù)在數(shù)軸上表示的點的特征。

3,怎樣求一個數(shù)的相反數(shù)?怎樣表示一個數(shù)的相反數(shù)?

本課作業(yè)1,必做題教科書第18頁習題1.2第3題。

2,選做題教師自行安排。

本課教育評注(課堂設計理念,實際教學效果及改進設想)。

1,相反數(shù)的概念使有理數(shù)的各個運算法則容易表述,也揭示了兩個特殊數(shù)的特征.這兩個特殊數(shù)在數(shù)量上具有相同的絕對值,它們的和為零,在數(shù)軸上表示時,離開原點的距離相等等性質(zhì)均有廣泛的應用.所以本教學設計圍繞數(shù)量和幾何意義展開,滲透數(shù)形結合的思想.

2,教學引人以開放式的問題人手,培養(yǎng)學生的分類和發(fā)散思維的能力;把數(shù)在數(shù)軸上表示出來并觀察它們的特征,在復習數(shù)軸知識的同時,滲透了數(shù)形結合的數(shù)學方法,數(shù)與形的相互轉化也能加深對相反數(shù)概念的理解;問題2能幫助學生準確把握相反數(shù)的概念;問題3實際上給出了求一個數(shù)的相反數(shù)的方法.

3,本教學設計體現(xiàn)了新課標的教學理念,學生在教師的引導下進行自主學習,自主探究,觀察歸納,重視學生的思維過程,并給學生留有發(fā)揮的余地.

冀教版七年級數(shù)學教案篇二

一、選擇題:(本題共24分,每小題3分)。

在下列各題的四個備選答案中,只有一個答案是正確的,請你把正確答案前的字母填寫在相應的括號中.

1.若一個數(shù)的倒數(shù)是7,則這個數(shù)是().

a.-7b.7c.d.

2.如果兩個等角互余,那么其中一個角的度數(shù)為().

a.30°b.45°c.60°d.不確定。

3.如果去年某廠生產(chǎn)的一種產(chǎn)品的產(chǎn)量為100a件,今年比去年增產(chǎn)了20%,那么今年的產(chǎn)量為()件.

a.20ab.80ac.100ad.120a。

4.下列各式中結果為負數(shù)的是().

a.b.c.d.

5.如圖,已知點c是線段ab的中點,點d是cb的中點,那么下列結論中錯誤的是().

a.ac=cbb.bc=2cdc.ad=2cdd.

6.下列變形中,根據(jù)等式的性質(zhì)變形正確的是().

a.由,得x=2。

b.由,得x=4。

c.由,得x=3。

d.由,得。

7.如圖,這是一個馬路上的人行橫道線,即斑馬線的示意圖,請你根據(jù)圖示判斷,在過馬路時三條線路ac、ab、ad中最短的是().

a.acb.abc.add.不確定。

8.如圖,有一塊表面刷了紅漆的立方體,長為4厘米,寬為5厘米,高為3厘米,現(xiàn)在把它切分為邊長為1厘米的小正方形,能夠切出兩面刷了紅漆的正方體有()個.

a.48b.36c.24d.12。

二、填空題:(本題共12分,每空3分)。

9.人的大腦約有100000000000個神經(jīng)元,用科學記數(shù)法表示為.

10.在鐘表的表盤上四點整時,時針與分針之間的夾角約為度.

11.一個角的補角與這個角的余角的差等于度.

12.瑞士的教師巴爾末從測量光譜的數(shù)據(jù),,,…中得到了巴爾末公式,請你按這種規(guī)律寫出第七個數(shù)據(jù),這個數(shù)據(jù)為.

三、解答題:(本題共30分,每小題5分)。

13.用計算器計算:(結果保留3個有效數(shù)字)。

14.化簡:

15.解方程。

16.如示意圖,工廠a與工廠b想在公路m旁修建一座共用的倉庫o,并且要求o到a與o到b的距離之和最短,請你在m上確定倉庫應修建的o點位置,同時說明你選擇該點的理由.

拓展知識。

冀教版七年級數(shù)學教案篇三

幾何圖形大?。洪L度、面積、體積等。

位置:相交、垂直、平行等。

2幾何體也簡稱體。包圍著體的是面。

3常見的立體圖形:柱體、椎體、球體等各部分不都在一個平面內(nèi)。

4平面圖形:在一個平面內(nèi)的圖形就是平面圖形。

5展開圖:識記一些常用的展開圖。圓柱/圓錐的側面展開圖;。

6點線面體:是組成幾何圖形的基本元素。

7直線、射線、線段。

線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。

連接兩點間的線段的長度,叫做這兩點的距離。

經(jīng)過兩點有一條直線,并且只有一條直線。兩點確定一條直線。

8角。

9角的比較與運算。

角的平分線:從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線,叫做這個角的平分線。

余角:如果兩個角的和等于90度(直角),就說這兩個叫互為余角,即其中每一個角是另一個角的余角。

補角:如果兩個角的和等于180度(平角),就說這兩個叫互為補角,即其中每一個角是另一個角的補角。

性質(zhì):等角(同角)的補角相等。等角(同角)的余角相等。

冀教版七年級數(shù)學教案篇四

表達解決問題的方法;通過用絕對值或數(shù)軸對兩個負數(shù)大小的比較,讓學生學會嘗試評價兩種不同方法之間的差異。

3、情感態(tài)度與價值觀:

借助數(shù)軸解決數(shù)學問題,有意識地形成“腦中有圖,心中有數(shù)”的數(shù)形結合思想。通過“做一做“議一議”“試一試”問題的思考及回答,培養(yǎng)學生積極參與數(shù)學活動,并在數(shù)學活動中體驗成功,鍛煉學生克服困難的意志,建立自信心,發(fā)展學生清晰地闡述自己觀點的能力以及培養(yǎng)學生合作探索、合作交流、合作學習的新型學習方式。

二、教學重點和難點。

理解絕對值的概念;求一個數(shù)的絕對值;比較兩個負數(shù)的大小。

三、教學過程:

1、教師檢查組長學案學習情況,組長檢查組員學案學習情況。(約5分鐘)2.在組長的組織下進行討論、交流。(約5分鐘)3、小組分任務展示。(約25分鐘)4、達標檢測。(約5分鐘)5、總結(約5分鐘)。

四、小組對學案進行分任務展示。

(一)、溫故知新:。

(二)小組合作交流,探究新知。

1、觀察下圖,回答問題:(五組完成)。

大象距原點多遠?兩只小狗分別距原點多遠?

歸納:在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做這個數(shù)的。一個數(shù)a的絕對值記作:.

4的絕對值記作,它表示在上與的距離,所以|4|=。

2、做一做:

(1)、求下列各數(shù)的絕對值:(四組完成)-1.5,0,-7,2(2)、求下列各組數(shù)的絕對值:(一組完成)。

(1)4,-4;(2)0.8,-0.8;。

從上面的結果你發(fā)現(xiàn)了什么?

3、議一議:(八組完成)。

(1)|+2|=,

你能從中發(fā)現(xiàn)什么規(guī)律?

小結:正數(shù)的絕對值是它,負數(shù)的絕對值是它的,0的絕對值是。

4、試一試:(二組完成)。

若字母a表示一個有理數(shù),你知道a的絕對值等于什么嗎?

(通過上題例子,學生歸納總結出一個數(shù)的絕對值與這個數(shù)的關系。)。

5:做一做:(三組完成)。

1、(1)在數(shù)軸上表示下列各數(shù),并比較它們的大?。?/p>

-3,-1。

(2)求出(1)中各數(shù)的絕對值,并比較它們的大小。

(3)你發(fā)現(xiàn)了什么?

2、比較下列每組數(shù)的大小。

(1)-1和–5;(五組完成)(2)?

(3)-8和-3(七組完成)。

5和-2.7(六組完成)6五、達標檢測:

1:填空:

絕對值是10的數(shù)有()。

|+15|=()|–4|=()。

|0|=()|4|=()2:判斷(1)、絕對值最小的數(shù)是0。()(2)、一個數(shù)的絕對值一定是正數(shù)。()(3)、一個數(shù)的絕對值不可能是負數(shù)。()。

(4)、互為相反數(shù)的兩個數(shù),它們的絕對值一定相等。()(5)、一個數(shù)的絕對值越大,表示它的點在數(shù)軸上離原點越近。()。

六、總結:

1絕對值:在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值.

2.絕對值的性質(zhì):正數(shù)的絕對值是它本身;。

負數(shù)的絕對值是它的相反數(shù);0的絕對值是0.

3、會利用絕對值比較兩個負數(shù)的大?。簝蓚€負數(shù)比較大小,絕對值大的反而小.

七、布置作業(yè)。

p50頁,知識技能第1,2題.

冀教版七年級數(shù)學教案篇五

一:教材分析:

1:教材所處的地位和作用:

以及對他們進行思想教育方面有獨特的意義,同時,對后續(xù)教學內(nèi)容起到奠基作用。

2:教育教學目標:

(1)知識目標:

(a)通過教學使學生了解應用題的一個重要步驟是根據(jù)題意找出相等關系,然后列出方程,關鍵在于分析已知未知量之間關系及尋找相等關系。

(b)通過和;差;倍;分的量與量之間的分析以及公式中有一個字母表示未知數(shù),其余字母表示已知數(shù)的情況下,列出一元一次方程解簡單的應用題。

(2)能力目標:通過教學初步培養(yǎng)學生分析問題,解決實際問題,綜合歸納整理的能力,以及理論聯(lián)系實際的能力。

(3)思想目標:

通過對一元一次方程應用題的教學,讓學生初步認識體會到代數(shù)方法的優(yōu)越性,同時滲透把未知轉化為已知的辯證思想,介紹我國古代數(shù)學家對一元一次方程的研究成果,激發(fā)學生熱愛中國共產(chǎn)黨,熱愛社會主義,決心為實現(xiàn)社會主義四個現(xiàn)代化而學好數(shù)學的思想;同時,通過理論聯(lián)系實際的方式,通過知識的應用,培養(yǎng)學生唯物主義的思想觀點。

3:重點,難點以及確定的依據(jù):

根據(jù)題意尋找和;差;倍;分問題的相等關系是本課的重點,根據(jù)題意列出一元一次方程是本課的難點,其理論依據(jù)是關鍵讓學生找出相等關系克服列出一元一次方程解應用題這一難點,但由于學生年齡小,解決實際問題能力弱,對理論聯(lián)系實際的問題的理解難度大。

二:學情分析:(說學法)。

1:學生初學列方程解應用題時,往往弄不清解題步驟,不設未知數(shù)就直接進行列方程或在設未知數(shù)時,有單位卻忘記寫單位等。

2:學生在列方程解應用題時,可能存在三個方面的困難:

(1)抓不準相等關系;

(2)找出相等關系后不會列方程;

(3)習慣于用小學算術解法,得用代數(shù)方法分析應用題不適應,不知道要抓怎樣的相等關系。

3:學生在列方程解應用題時可能還會存在分析問題時思路不同,列出方程也可能不同,這樣一來部分學生可能認為存在錯誤,實際不是,作為教師應鼓勵學生開拓思路,只要思路正確,所列方程合理,都是正確的,讓學生選擇合理的思路,使得方程盡可能簡單明了。

4:學生在學習中可能習慣于用算術方法分析已知數(shù)與未知數(shù),未知數(shù)與已知數(shù)之間的關系,對于較為復雜的應用題無法找出等量關系,隨便行事,亂列式子。

5:學生在學習過程中可能不重視分析等量關系,而習慣于套題型,找解題模式。

三:教學策略:(說教法)。

如何突出重點,突破難點,從而實現(xiàn)教學目標。我在教學過程中擬計劃進行如下操作:

1:“讀(看)——議——講”結合法。

2:圖表分析法。

3:教學過程中堅持啟發(fā)式教學的原則。

教學的理論依據(jù)是:

1:必須先明確根據(jù)應用題題意列方程是重點,同時也是難點的觀點,在教學過程中幫助學生抓住關鍵,克服難點,正確列方程弄清楚題意,找出能夠表示應用題全部含義的一個相等關系,并列出代數(shù)式表示這相等關系的左邊和右邊。為此,在教學過程中要讓學生明確知曉解題步驟,通過例1可以讓學生大致了解列出一元一次方程解應用題的方法。

2:在教學過程中要求學生仔細審題,認真閱讀例題的內(nèi)容提要,弄清題意,找出能夠表示應用題全部含義的一個相等關系,分析的過程可以讓學生只寫在草稿上,在寫解的過程中,要求學生先設未知數(shù),再根據(jù)相等關系列出需要的代數(shù)式,再把相等關系表示成方程形式,然后解這個方程,并寫出答案,在設未知數(shù)時,如有單位,必須讓學生寫在字母后,如例1中,不能把“設原來有_千克面粉”寫成“設原來有_”。另外,在列方程中,各代數(shù)式的單位應該是相同的,如例1中,代數(shù)式“_字串7”“—15%_”“42500”的單位都是千克。在本例教學中,關鍵在于找出這個相等關系,將其中涉及待求的某個數(shù)設為未知數(shù),其余的數(shù)用已知數(shù)或含有已知數(shù)與未知數(shù)的代數(shù)式表示,從而列出方程。在例1中的相等關系比較簡單明顯,可通過啟發(fā)式讓學生自己找出來。在例1教學中同時讓學生鞏固解一元一次方程應用題的五個步驟,特別是第2步是關鍵步驟。

3:針對學生在列方程解應用題中可能存在的三個方面的困難,在教學過程中有意識加以解決,特別是學生抓不準相等關系這方面,可以讓學生通過表格,圖表等形式幫助學生找出相等關系表示成方程。如例1在分析過程中通過表格讓學生明了清楚直觀解決列方程的難點。

4:通過圖表對比使學生更直觀,理解更深刻,同時,降低了理論教學的難度和分量,提高課堂教學效益(教學手段)。

5:在課后習題的安排上適當讓學生通過模仿例題的思想方法,加深學生解應用題的能力,這主要由于學生剛剛入門,多進行模仿,習慣以后,再做與例題不一樣的習題,可以提高運用知識能力,同時讓學生進行一題多解,找出共同點,區(qū)別或最佳列法,以開闊學生的思路。

四:教學程序:

(一):課堂結構:復習提問,導入講授新課,課堂練習,鞏固新課,布置作業(yè)五個部分。

(二):教學簡要過程:

1:復習提問:

(1):什么叫做等式?

(2):等式與方程之間有哪些關系?

(3):求_的15%的代數(shù)式。

(4):敘述代數(shù)式與方程的區(qū)別。

(理由是:通過復習加深學生對等式,方程,代數(shù)式之間關系的理解,有利于學生熟練正確根據(jù)題意列出一元一次方程,從而有利降低本節(jié)的難度。)。

2:導入講授新課:

(1):教具:

一塊小黑板,抄212例1題目及相對應的空表格。

左邊右邊。

(2):新課引述:

(3):講述課文212例1:

(目的是:要求學生認真讀懂題目,尋找反映題目的全部含義的相等關系,必須根據(jù)題目關系,切勿盲目性)通過理解啟發(fā)學生尋找出以下關系:原來重量—運出重量=剩余重量(a)(在指導學生分析尋找題意相等關系時,可能存在學生分析問題思路不同,會找出如下關系:原來重量=運出重量+剩余重量,原來重量—剩余重量=運出重量的相等關系來,這主要由于學生思路不同,得出的關系表面不同,但思路是正確的,應加以鼓勵培養(yǎng)學生這種發(fā)散思維能力。)。

指導學生設原來重量為_千克。這里分析等式左邊:原來重量為_千克,運出重量為15%_千克,把以上填入表格左邊。字串7分析等式右邊:剩余重量為42500千克,填入表格右邊。

(目的是:通過分析使學生易看出,先弄懂題意,找出相等關系,再按照相等關系來設未知數(shù)和列代數(shù)式,有利于降低列方程解應用題的難度)。

把以上左邊和右邊的代數(shù)式分別代入(a)中,同時要求學生注意方程的左邊和右邊的單位要一致,就可以列出方程。

同時要求學生在解答過程中勿漏寫“答”和“設”,且都不要漏寫單位。

結合解題過程向?qū)W生介紹一元一次應用題解法的一般步驟:

課本215黑體字。

3:課堂練習:

課文216練習1,2題。

(目的是:讓學生通過適當?shù)哪7吕}的解題思想方法從而加深對本課的內(nèi)容的理解掌握。)。

4:新課鞏固:

學生對本節(jié)內(nèi)容進行要小結:

列方程解應用題著重于分析,抓住尋找相等關系。解一元一次應用題的一般步驟及注意事項。

(目的:讓學生加深對應用題的解法的認識和該注意事項的重視。)。

5:作業(yè)布置:

課文221習題4-4(1)a組1,2,3題。

(目的:在于檢驗學生對本節(jié)內(nèi)容的理解和運用程度,以及實際接受情況,并促使學生進一步鞏固和掌握所學的內(nèi)容。)。

五:板書設計:

4_4一元一次方程的應用:

例題:小黑板出示例1題目解:設原來有_千克面粉,那么運。

相等關系:原來重量—運出重量=剩余重量出了15%_千克,依題意,得。

等式左邊:等式右邊:_—15%_=42500。

原來重量為_千克,剩余重量為42500千克。解這個方程:

運出重量為15%_千克。85/100__=42500。

解一元一次方程的一般步驟:_=50000(千克)。

小黑板出示課文215黑體字內(nèi)容提要答:原來有50000千克面粉。

冀教版七年級數(shù)學教案篇六

2.會用上的點表示有理數(shù),會利用比較有理數(shù)的大小;。

3.使學生初步了解數(shù)形結合的思想方法,培養(yǎng)學生相互聯(lián)系的觀點。

教學建議。

一、重點、難點分析。

本節(jié)的重點是初步理解數(shù)形結合的思想方法,正確掌握畫法和用上的點表示有理數(shù),并會比較有理數(shù)的大小.難點是正確理解有理數(shù)與上點的對應關系。的概念包含兩個內(nèi)容,一是的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規(guī)定的。另外應該明確的是,所有的有理數(shù)都可用上的點表示,但上的點所表示的數(shù)并不都是有理數(shù)。通過學習,使學生初步掌握用解決問題的方法,為今后充分利用“”這個工具打下基礎.

二、知識結構。

有了,數(shù)和形得到了初步結合,這有利于對數(shù)學問題的研究,數(shù)形結合是理解數(shù)學、學好數(shù)學的重要思想方法,本課知識要點如下表:

定義。

三要素。

應用。

數(shù)形結合。

規(guī)定了原點、正方向、單位長度的直線叫。

原點。

正方向。

單位長度。

幫助理解有理數(shù)的概念,每個有理數(shù)都可用上的點表示,但上的點并非都是有理數(shù)。

比較有理數(shù)大小,上右邊的數(shù)總比左邊的數(shù)要大。

在理解并掌握概念的基礎之上,要會畫出,能將已知數(shù)在上表示出來,能說出上已知點所表示的數(shù),要知道所有的有理數(shù)都可以用上的點表示,會利用比較有理數(shù)的大小。

三、教法建議。

小學里曾學過利用射線上的點來表示數(shù),為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數(shù)?伴以溫度計為模型,引出的概念.是一條具有三個要素(原點、正方向、單位長度)的直線,這三個要素是判斷一條直線是不是的根本依據(jù)。與它所在的位置無關,但為了教學上需要,一般水平放置的,規(guī)定從原點向右為正方向。要注意原點位置選擇的任意性。

關于有理數(shù)與上的點的對應關系,應該明確的是有理數(shù)可以用上的點表示,但上的點與有理數(shù)并不存在一一對應的關系。根據(jù)幾個有理數(shù)在上所對應的點的相互位置關系,應該能夠判斷它們之間的大小關系。通過點與有理數(shù)的對應關系及其應用,逐步滲透數(shù)形結合的思想。

四、的相關知識點。

1.的概念。

(1)規(guī)定了原點、正方向和單位長度的直線叫做.

這里包含兩個內(nèi)容:一是的三要素:原點、正方向、單位長度缺一不可.二是這三個要素都是規(guī)定的.

(2)能形象地表示數(shù),所有的有理數(shù)都可用上的點表示,但上的點所表示的數(shù)并不都是有理數(shù).

以是理解有理數(shù)概念與運算的重要工具.有了,數(shù)和形得到初步結合,數(shù)與表示數(shù)的圖形(如)相結合的思想是學習數(shù)學的重要思想.另外,能直觀地解釋相反數(shù),幫助理解絕對值的意義,還可以比較有理數(shù)的大小.因此,應重視對的學習.

2.的畫法。

(1)畫直線(一般畫成水平的)、定原點,標出原點“o”.

(2)取原點向右方向為正方向,并標出箭頭.

(3)選適當?shù)拈L度作為單位長度,并標出…,-3,-2,-1,1,2,3…各點。具體如下圖。

(4)標注數(shù)字時,負數(shù)的次序不能寫錯,如下圖。

3.用比較有理數(shù)的大小。

(1)在上表示的兩數(shù),右邊的數(shù)總比左邊的數(shù)大。

(2)由正、負數(shù)在上的位置可知:正數(shù)都有大于0,負數(shù)都小于0,正數(shù)大于一切負數(shù)。

(3)比較大小時,用不等號順次連接三個數(shù)要防止出現(xiàn)“”的寫法,正確應寫成“”。

五、定義的理解。

1.規(guī)定了原點、正方向和單位長度的直線叫做,如圖1所示.

2.所有的有理數(shù),都可以用上的點表示.例如:在上畫出表示下列各數(shù)的點(如圖2).

a點表示-4;b點表示-1.5;。

o點表示0;c點表示3.5;。

d點表示6.

從上面的例子不難看出,在上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大,又從正數(shù)和負數(shù)在上的位置,可以知道:

正數(shù)都大于0,負數(shù)都小于0,正數(shù)大于一切負數(shù).

因為正數(shù)都大于0,反過來,大于0的數(shù)都是正數(shù),所以,我們可以用,表示是正數(shù);反之,知道是正數(shù)也可以表示為。

同理,,表示是負數(shù);反之是負數(shù)也可以表示為。

3.正常見幾種錯誤。

1)沒有方向。

2)沒有原點。

3)單位長度不統(tǒng)一。

冀教版七年級數(shù)學教案篇七

多質(zhì)疑、勤思考、好動手、重歸納、注意應用。學生在學習數(shù)學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學習數(shù)學習慣包括課前自學、專心上課、及時復習、獨立作業(yè)、解決疑難、系統(tǒng)小結和課外學習幾個方面。

及時了解、掌握常用的數(shù)學思想和方法。

中學數(shù)學學習要重點掌握的的數(shù)學思想有以上幾個:集合與對應思想,分類討論思想,數(shù)形結合思想,運動思想,轉化思想,變換思想。

冀教版七年級數(shù)學教案篇八

3、在教學中適當滲透分類討論思想。

重點:有理數(shù)的加法法則。

重點:異號兩數(shù)相加的法則。

教學過程:

二、講授新課。

1、同號兩數(shù)相加的法則。

學生回答:兩次運動后物體從起點向右運動了8m。寫成算式就是5+3=8(m)。

教師:如果物體先向左運動5m,再向左運動3m,那么兩次運動后總的結果是多少?

學生回答:兩次運動后物體從起點向左運動了8m。寫成算式就是(-5)+(-3)=-8(m)。

師生共同歸納法則:同號兩數(shù)相加,取與加數(shù)相同的符號,并把絕對值相加。

2、異號兩數(shù)相加的法則。

學生回答:兩次運動后物體從起點向右運動了2m。寫成算式就是5+(-3)=2(m)。

師生借此結論引導學生歸納異號兩數(shù)相加的法則:異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。

3、互為相反數(shù)的兩個數(shù)相加得零。

教師:如果物體先向右運動5m,再向左運動5m,那么兩次運動后總的結果是多少?

學生回答:經(jīng)過兩次運動后,物體又回到了原點。也就是物體運動了0m。

師生共同歸納出:互為相反數(shù)的兩個數(shù)相加得零。

教師:你能用加法法則來解釋這個法則嗎?

學生回答:可用異號兩數(shù)相加的法則來解釋。

一般地,還有一個數(shù)同0相加,仍得這個數(shù)。

三、鞏固知識。

課本p18例1,例2、課本p118練習1、2題。

四、總結。

運算的關鍵:先分類,再按法則運算;。

運算的步驟:先確定符號,再計算絕對值。

注意:要借用數(shù)軸來進一步驗證有理數(shù)的加法法則;異號兩數(shù)相加,首先要確定符號,再把絕對值相加。

五、布置作業(yè)。

課本p24習題1.3第1、7題。

冀教版七年級數(shù)學教案篇九

一、指導思想:

人教版七年級數(shù)學上冊教學計劃,本班學生剛剛完成小學六年的學習,升入初一,也就是我們現(xiàn)在所說的七年級。通過調(diào)閱小六畢業(yè)會考成績冊和試卷,發(fā)現(xiàn)本班學生的數(shù)學成績不甚理想。從學生作答來看,基礎知識不扎實,計算能力較差,思路不靈活,缺乏創(chuàng)新思維能力,尤其是解難題的能力低下。總體上來看,低分很多,兩極分化較為嚴重。

二、情況分析:

學生情況分析:

全面貫徹黨的十七大教育方針,以七年能數(shù)學教學大綱為標準,堅決完成《初中數(shù)學新課程標準》提出的各項基本教學目標。制定人教版七年級數(shù)學上冊教學計劃,根據(jù)學生的實際情況,從生活入手,結合教材內(nèi)容,精心設計教學方案。通過本學期數(shù)學課堂教學,夯實學生的基礎,提高學生的基本技能,培養(yǎng)學生學習數(shù)學知識和運用數(shù)學知識的能力,幫助學生初步建立數(shù)學思維模式。最終圓滿完成七年級上冊數(shù)學教學任務。

三、教學目標。

人教版七年級數(shù)學上冊教學計劃知識與技能目標:認識有理數(shù)和代數(shù)式,掌握有理數(shù)的各種性質(zhì)和運算法則,初步學會使用代數(shù)式探究數(shù)量之間的關系。認識基本幾何圖形,掌握基本基本作圖能力和的技巧。過程與方法目標:學會抽取實際問題中的數(shù)學信息,發(fā)展幾何思維模式。培養(yǎng)學生的觀察和思維能力,尤其是自主探索的能力。情感與態(tài)度目標:培養(yǎng)學生學習數(shù)學的興趣,認識數(shù)學源自生活實踐,最終回歸生活。班級教學目標:優(yōu)秀率:15%,合格率80%。

四、教材分析。

第一章、有理數(shù):本章主要學習有理數(shù)的基本性質(zhì)及運算。本章重點內(nèi)容是有理數(shù)的概念,性質(zhì)和運算。本章的難點在于理解有理數(shù)的基本性質(zhì)、運算法則,并將它們應用到解決實際問題和計算中。

第二章、整式的加減:本章主要是學習單項式和多項式的加減運算。本章重點內(nèi)容是單項式、多項式、同類項的概念;合并同類項及去括號的法則及整式的加減運算。本章難點在于理解合并同類項和去括號的法則。

第三章、一元一次方程:本章主要學習一元一次方程的概念、等式的基本性質(zhì)、一元一次方程的解法及應用。本章重點內(nèi)容是理解等式的基本性質(zhì);掌握解一元一次方程的一般步驟;列方程解決實際問題的基本思路。本章難點在于解一元一次方程,并利用一元一次方程解決簡單的實際問題。

第四章、圖形認識初步:本章主要學習線段和角有關的性質(zhì)。本章的重點是區(qū)別直線、射線、線段,角的有關性質(zhì)和計算;理解互為余角、互為補角的性質(zhì)及應用。本章的難點在于線段和角的有關計算。

五、教學措施。

1、人教版七年級數(shù)學上冊教學計劃,認真研讀新課程標準,潛心鉆研教材,根據(jù)新課程標準,結合學生實際情況,進行針對性的備課,精心設置課堂教學內(nèi)容和模式。上好每一堂課,閱好每一份試卷,搞好每一節(jié)輔導,組織好每一次測驗。

2、開展豐富多彩的課外活動,課外調(diào)查,向?qū)W生介紹數(shù)學家、數(shù)學史、數(shù)學趣題,喻教于樂,激發(fā)學生的學習興趣,挖掘?qū)W生的潛能,培養(yǎng)數(shù)學特長生。

3、開展分層教學實驗,使不同的學生學到不同的知識,使人人能學到有用的知識,使不同的人得到不同的發(fā)展,獲得成功感,使優(yōu)生更優(yōu),差生逐漸趕上。

冀教版七年級數(shù)學教案篇十

以十八大精神為指針,全面貫徹黨的教育方針,積極進行數(shù)學知識的學習,強化學生的學習能力,培養(yǎng)創(chuàng)新思維,從而讓學生整體素質(zhì)得到提升。作為科任教師,更要幫助學生們了解學習技巧、方法,做一個合格的中學生。

二、學情分析。

經(jīng)過七年級第一學期的教學,發(fā)現(xiàn)班內(nèi)部分學生數(shù)學基礎較差,兩極分化現(xiàn)象嚴重,尤其是后進生的數(shù)學成績普遍偏差。部分學生在解題時比較粗心,不能很好的發(fā)揮出自己應有的水平。但通過上學期的學習,不少學生掌握了一定的數(shù)學學習方法和解題技巧,對于所學知識能較好地應用到解題和日常生活中去。

三、教學內(nèi)容。

本學期教學章節(jié)的內(nèi)容:

第六章:一元一次方程。本章主要學習一元一次方程及其解的概念和解法與應用。

本章重點:一元一次方程的解法及實際應用。

本章難點:列一元一次方程解決實際問題。

第七章:二元一次方程。本章主要學習二元一次方程(組)及其解的概念和解法與應用。

本章重點:二元一次方程組的解法及實際應用。

本章難點:列二元一次方程組解決實際問題。

第八章:不等式與不等式組。本章主要內(nèi)容是一元一次不等式(組)的解法及簡單應用。

本章重點:不等式的基本性質(zhì)與一元一次不等式(組)的解法與簡單應用。

本章難點:不等式基本性質(zhì)的理解與應用、列一元一次不等式(組)解決簡單的實際問題。

第九章:多邊形。本章主要學習與三角形有關的線段、角及多邊形的內(nèi)角和等內(nèi)容。

本章重點:三角形有關線段、角及多邊形的內(nèi)角和的性質(zhì)與應用。

本章難點:正確理解三角形的高、中線及角平分線的性質(zhì)并能作圖,三角形內(nèi)角和的證明與多邊形內(nèi)角和的探究。

第十章:軸對稱、平移與旋轉。

四、教學目標。

通過本期教學,學生應掌握必要的基本知識和基本技能,形成相應的數(shù)學思想,積累豐富的數(shù)學活動經(jīng)驗,能運用數(shù)學知識解決生活中的實際問題,形成一定的數(shù)學素養(yǎng),為今后繼續(xù)學習數(shù)學打下良好的基礎。繼續(xù)做好培優(yōu)工作,并做好配套工作。能掌握科學的學習方法,形成良好學風,養(yǎng)成良好的數(shù)學學習習慣,構建融洽的師生關系,使學生在德、智、體各方面全面發(fā)展。

五、教學措施。

1、認真研讀新課程標準,鉆研教材,精選習題,精心備課,做好教案,上好新課。

同時仔細批改作業(yè),作好輔導,發(fā)現(xiàn)問題及時解決作認真總結成功與失敗的經(jīng)驗和原因。

2、充分利用先進教學媒體進行教學,設置教學情境,結合日常生活,由淺入深,循序漸進。

引導學生主動加入課堂學習和討論,積極參與知識的探究與規(guī)律的總結。

3、營造和諧、自主的學習氛圍,引導學生進行合作探究、交流和分享發(fā)現(xiàn)的快樂。

讓學生體會到學習的樂趣,激發(fā)學生的學習熱情。

4、精心設計探究主題,引導學生學會發(fā)散思維,培養(yǎng)學生創(chuàng)造性思維能力,實現(xiàn)一題多解,舉一反三,觸類旁通。

5、繼續(xù)堅持課改,開展分層教學,成立互助學習小組,以優(yōu)帶良,以優(yōu)促后。

同時狠抓中等生,輔導后進生,實現(xiàn)共同進步。

六、教學進度。

冀教版七年級數(shù)學教案篇十一

從簡單的轉盤游戲開始,使學生在生活經(jīng)驗和試驗的基礎上,進一步體驗不確定事件的特點及事件發(fā)生的可能性大小。

能用實驗對數(shù)學猜想做出檢驗,從而增加猜想的可信度。 解決問題

在轉盤游戲過程中,經(jīng)歷猜測結果,實驗驗證,分析試驗結果等數(shù)學活動,增加數(shù)學活動經(jīng)驗。

情感態(tài)度與價值觀

在合作與交流過程中,體驗小組合作更有利于探究數(shù)學知識,敢于發(fā)表自己觀點,提高個人認識。

在實驗中,體會不確定事件的特點及事件發(fā)生可能性大小;使每個學生都能積極認真參與課堂設計中的實驗,真正在實驗中獲得知識上的認識。

創(chuàng)設情境,切入標題

請同學們猜測,當我自由轉動轉盤時,指針會落在什么顏域呢?

請各小組分別派一名代表,看哪組能轉出紅色。

結果,8小組有6組轉出了紅色。

為什么會出現(xiàn)這樣的結果呢?

因為,在這個轉盤中,紅域的面積大,白域的面積小,因此,當轉盤停上轉動時,指針落到紅域的可能性大。

大家同意這種看法嗎?下面我們親自動手感受一下。

學生按照題目要求進行實驗。

請各組組長把你組的實驗數(shù)據(jù)匯報一下(教師把數(shù)據(jù)填寫在表格里) 實驗結果:六個小組每組實驗16次,全班共實驗96次,指針落在紅域的次數(shù)分別如下9,6,10,5,8,12。共計50次。

請同學們對我們的實驗結果進行分析交流,談談你在試驗中有哪些心得。

根據(jù)觀察,轉盤上紅域的面積為總面積的一半,指針落在紅域的可能性也應該是一半。通過對我們?nèi)嗟膶嶒灲Y果分析,指針落在紅域的比例是50∶96,結果接近百分之五十。

在小組內(nèi)實驗結果不明顯,實驗次數(shù)越多越能說明問題。

通過實驗,我們確定感受到,轉盤游戲中各區(qū)域的面積的可能性大小與指針落在什么區(qū)域的可能性大小有直接關系。以后在生活中再遇到轉盤游戲問題可要想想今天的實驗結論。

下面我們利用轉盤做一下數(shù)學游戲(出示幻燈片),學生按教學設計中要求進行游戲,教師巡回指導。

每組每人游戲一次,全班共游戲48次。其游戲結果是,平均數(shù)增大1的,共35次,平均數(shù)減小1的,共13次。

請同學們對下列問題進行交流(幻燈片出示教材206頁4個問題)。 這個轉盤轉到“平均數(shù)增大1”區(qū)域的可能性大,從面積大小就可以看出。

如果平均數(shù)增大1,我是在卡片上增加一個數(shù),這個數(shù)等于卡片上數(shù)字的個數(shù)加1,如果是平均數(shù)減小1,我就在每個數(shù)上都減去1。

同學們說出很多種方法,不一一列舉。

“平均數(shù)增大1”的次數(shù)占總次數(shù)的百分之七十三,“平均數(shù)減小1”占百分之二十七。

如果將這個實驗繼續(xù)做下去,卡片上所有數(shù)的平均數(shù)會增大。

同學們說的都很好,課后能不能自己也利用轉盤設計一個新的游戲,感興趣的同學可以在課下與我交流。

以下過程同教學設計,略去。

指導學生完成教材第206頁習題。

學生可從各個方面加以小結。 布置作業(yè)

仿照課堂游戲,自編一個新的游戲。 能否利用撲克牌設計本節(jié)轉盤游戲。

冀教版七年級數(shù)學教案篇十二

2.初步培養(yǎng)學生觀察、分析及概括的能力;。

3.通過本節(jié)課的教學,使學生初步了解公式來源于實踐又反作用于實踐。

教學建議。

一、教學重點、難點。

重點:通過具體例子了解公式、應用公式.

難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。

二、重點、難點分析。

人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。

三、知識結構。

本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。

四、教法建議。

1.對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創(chuàng)設情境,引導學生清晰地認識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。

2.在教學過程中,應使學生認識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學生自己嘗試探求數(shù)量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。

3.在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。

教學設計示例。

公式。

五、教具學具準備。

投影儀,自制膠片。

六、師生互動活動設計。

教者投影顯示推導梯形面積計算公式的圖形,學生思考,師生共同完成例1解答;教者啟發(fā)學生求圖形的面積,師生總結求圖形面積的公式.

冀教版七年級數(shù)學教案篇十三

學習目標:

1.會用正.負數(shù)表示具有相反意義的量.

2.通過正.負數(shù)學習,培養(yǎng)學生應用數(shù)學知識的意識.

3.通過探究,滲透對立統(tǒng)一的辨證思想。

學習重點:

用正.負數(shù)表示具有相反意義的量。

學習難點:

實際問題中的數(shù)量關系。

教學方法:

講練相結合。

教學過程。

一.學前準備。

通過上節(jié)課的學習,我們知道在實際生產(chǎn)和生活中存在著兩種不同意義的量,為了區(qū)分它們,我們用正數(shù)和負數(shù)來分別表示它們.

問題1:“零”為什么即不是正數(shù)也不是負數(shù)呢?

引導學生思考討論,借助舉例說明.

參考例子:溫度表示中的零上,零下和零度.

二.探究理解解決問題。

問題2:(教科書第4頁例題)。

先引導學生分析,再讓學生獨立完成。

(2)20xx年下列國家的商品進出口總額比上一年的變化情況是:

美國減少6.4%,德國增長1.3%,

法國減少2.4%,英國減少3.5%,

意大利增長0.2%,中國增長7.5%.

寫出這些國家20xx年商品進出口總額的增長率.

解:(1)這個月小明體重增長2kg,小華體重增長―1kg,小強體重增長0kg.

(2)六個國家20xx年商品進出口總額的增長率:

美國―6.4%,德國1.3%,

法國―2.4%,英國―3.5%,

意大利0.2%,中國7.5%.

三.鞏固練習。

從0表示一個也沒有,是正數(shù)和負數(shù)的分界的角度引導學生理解.

在學生的討論中簡單介紹分類的數(shù)學思想先不要給出有理數(shù)的概念.

在例題中,讓學生通過閱讀題中的含義,找出具有相反意義的量,決定哪個用正數(shù)表示,哪個用負數(shù)表示.

通過問題(2)提醒學生審題時要注意要求,題中求的是增長率,不是增長值.

四.閱讀思考1頁。

(教科書第8頁)用正負數(shù)表示加工允許誤差.

問題:1.直徑為30.032mm和直徑為29.97的零件是否合格?

2.你知道還有那些事件可以用正負數(shù)表示允許誤差嗎?請舉例.

五.小結。

1.本節(jié)課你有那些收獲?

2.還有沒解決的問題嗎?

六.應用與拓展。

1.必做題:

教科書5頁習題4.5.:6.7.8題。

2.選做題。

1).甲冷庫的溫度是―12°c,乙冷庫的溫度比甲冷酷低5°c,則乙冷庫的溫度是.

冀教版七年級數(shù)學教案篇十四

2.使學生掌握求一個已知數(shù)的;。

3.培養(yǎng)學生的觀察、歸納與概括的能力.

重點:理解的意義,理解的代數(shù)定義與幾何定義的一致性.

難點:多重符號的化簡.

一、從學生原有的認知結構提出問題。

二、師生共同研究的定義。

特點?

引導學生回答:符號不同,一正一負;數(shù)字相同.

像這樣,只有符號不同的兩個數(shù),我們說它們互為,如+5與。

應點有什么特點?

引導學生回答:分別在原點的兩側;到原點的距離相等.

這樣我們也可以說,在數(shù)軸上的原點兩旁,離開原點距離相等的兩個點所表示的數(shù)互為.這個概念很重要,它幫助我們直觀地看出的意義,所以有的書上又稱它為的幾何意義.

3.0的是0.

這是因為0既不是正數(shù),也不是負數(shù),它到原點的距離就是0.這是等于它本身的的數(shù).

三、運用舉例變式練習。

例1(1)分別寫出9與-7的;。

例1由學生完成.

在學習有理數(shù)時我們就指出字母可以表示一切有理數(shù),那么數(shù)a的如何表示?

引導學生觀察例1,自己得出結論:

數(shù)a的是-a,即在一個數(shù)前面加上一個負號即是它的。

1.當a=7時,-a=-7,7的是-7;。

2.當-5時,-a=-(-5),讀作“-5的”,-5的是5,因此,-(-5)=5.

3.當a=0時,-a=-0,0的是0,因此,-0=0.

么意思?引導學生回答:-(-8)表示-8的;-(+4)表示+4的`;。

例2簡化-(+3),-(-4),+(-6),+(+5)的符號.

能自己總結出簡化符號的規(guī)律嗎?

括號外的符號與括號內(nèi)的符號同號,則簡化符號后的數(shù)是正數(shù);括號內(nèi)、外的符號是異號,則簡化符號后的數(shù)是負數(shù).

課堂練習。

1.填空:

(1)+1.3的是______;(2)-3的是______;。

(5)-(+4)是______的;(6)-(-7)是______的。

2.簡化下列各數(shù)的符號:

-(+8),+(-9),-(-6),-(+7),+(+5).

3.下列兩對數(shù)中,哪些是相等的數(shù)?哪對互為?

-(-8)與+(-8);-(+8)與+(-8).

四、小結。

指導學生閱讀教材,并總結本節(jié)課學習的主要內(nèi)容:一是理解的定義——代數(shù)定義與幾何定義;二是求a的;三是簡化多重符號的問題.

五、作業(yè)。

1.分別寫出下列各數(shù)的:

2.在數(shù)軸上標出2,-4.5,0各數(shù)與它們的。

3.填空:

(1)-1.6是______的,______的是-0.2.

4.化簡下列各數(shù):

5.填空:

(3)如果-x=-6,那么x=______;(4)如果-x=9,那么x=______.

教學過程是以《教學大綱》中“重視基礎知識的教學、基本技能的訓練和能力的培養(yǎng)”,“數(shù)學教學中,發(fā)展思維能力是培養(yǎng)能力的核心”,“堅持啟發(fā)式,反對注入式”等規(guī)定的精神,結合教材特點,以及學生的學習基礎和學習特征而設計的由于內(nèi)容較為簡單,經(jīng)過教師適當引導,便可使學生充分參與認知過程.由于“新”知識與有關的“舊”知識的聯(lián)系較為直接,在教學中則著力引導觀察、歸納和概括的過程.

探究活動。

有理數(shù)a、b在數(shù)軸上的位置如圖:

將a,-a,b,-b,1,-1用“”號排列出來.

分析:由圖看出,a1,-1。

解:在數(shù)軸上畫出表示-a、-b的點:

由圖看出:-a-1。

點評:通過數(shù)軸,運用數(shù)形結合的方法排列三個以上數(shù)的大小順序,經(jīng)常是解這一類問題的最快捷,準確的方法.

冀教版七年級數(shù)學教案篇十五

1、教學方法:引導發(fā)現(xiàn)法、探究法、講練法、

(一)重點

準確掌握積的乘方的運算性質(zhì)、

(二)難點

用數(shù)學語言概括運算性質(zhì)、

(三)解決辦法

增強對三種運算性質(zhì)的理解,并運用對比的方法強化訓練以達到準確地區(qū)分、

一課時、

投影儀或電腦、自制膠片、

3、通過舉例來說明積的乘方性質(zhì)應如何正確使用,師生共練以達到熟練掌握、

4、多種題型的設計,讓學生能從不同的角度全面準確地理解和運用該性質(zhì)、

(一)明確目標

本節(jié)課重點學習積的乘方的運算性質(zhì)及其較靈活地運用、

(二)整體感知

(三)教學過程

1、創(chuàng)設情境,復習導入

前面我們學習了同底數(shù)冪的乘法、冪的乘方這兩個寨的運算性質(zhì),請同學們通過完成一組練習,來回顧一下這兩個性質(zhì):

填空:

冀教版七年級數(shù)學教案篇十六

1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關的實際問題;。

3、體驗數(shù)學學習的樂趣,感受一元一次不等式組在解決實際問題中的價值。

正確分析實際問題中的不等關系,列出不等式組。

建立不等式組解實際問題的數(shù)學模型。

出示教科書第145頁例2(略)。

問:(1)你是怎樣理解“不能完成任務”的數(shù)量含義的?

(2)你是怎樣理解“提前完成任務”的數(shù)量含義的?

(3)解決這個問題,你打算怎樣設未知數(shù)?列出怎樣的不等式?

師生一起討論解決例2.

1、教科書146頁“歸納”(略).

2、你覺得列一元一次不等式組解應用題與列二元一次方程組解應用題的步驟一樣嗎?

在討論或議論的基礎上老師揭示:

步法一致(設、列、解、答);本質(zhì)有區(qū)別.(見下表)一元一次不等式組應用題與二元一次方程組應用題解題步驟異同表。

【本文地址:http://www.mlvmservice.com/zuowen/12319083.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔