高三數(shù)學(xué)教案文案大全(20篇)

格式:DOC 上傳日期:2023-11-15 15:08:12
高三數(shù)學(xué)教案文案大全(20篇)
時間:2023-11-15 15:08:12     小編:筆硯

教案是教師為備課和教學(xué)設(shè)計而制定的一種教學(xué)計劃。教案中應(yīng)該包含適當(dāng)?shù)脑u估和反思環(huán)節(jié),幫助學(xué)生鞏固知識和提高能力。以下是小編為大家收集的教案范例,供大家參考和借鑒。

高三數(shù)學(xué)教案文案篇一

1.板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進(jìn)程,能簡明扼要反映知識結(jié)構(gòu)及其相互聯(lián)系;能指導(dǎo)教師的教學(xué)進(jìn)程、引導(dǎo)學(xué)生探索知識;同時不完全按課本上的呈現(xiàn)方式來編排板書。即體現(xiàn)系統(tǒng)性、程序性、概括性、指導(dǎo)性、啟發(fā)性、創(chuàng)造性的原則;(原則性)。

2.使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進(jìn)程更加連貫。(靈活性)。

高三數(shù)學(xué)教案文案篇二

(3)使學(xué)生初步了解有限集、無限集、空集的意義。

重點難點】。

教學(xué)重點:集合的基本概念及表示方法。

教學(xué)難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合。

授課類型:新授課。

課時安排:1課時。

教具:多媒體、實物投影儀。

內(nèi)容分析】。

高三數(shù)學(xué)教案文案篇三

我發(fā)現(xiàn),許多學(xué)生的學(xué)習(xí)方法是:直接記住函數(shù)性質(zhì),在解題中套用結(jié)論,對結(jié)論的來源不理解,知其然不知其所以然,應(yīng)用中不能變通和遷移。

本節(jié)的學(xué)習(xí)方法對后續(xù)內(nèi)容的學(xué)習(xí)具有指導(dǎo)意義。為了培養(yǎng)學(xué)法,充分關(guān)注學(xué)生的可持續(xù)發(fā)展,教師要轉(zhuǎn)換角色,站在初學(xué)者的位置上,和學(xué)生共同探索新知,共同體驗數(shù)形結(jié)合的研究方法,體驗周期函數(shù)的研究思路;幫助學(xué)生實現(xiàn)知識的意義建構(gòu),幫助學(xué)生發(fā)現(xiàn)和總結(jié)學(xué)習(xí)方法,使教師成為學(xué)生學(xué)習(xí)的高級合作伙伴。

教師要做到:

授之以漁,與之合作而漁,使學(xué)生享受漁之樂趣。因此。

1.本節(jié)要教給學(xué)生看圖象、找規(guī)律、思考提問、交流協(xié)作、探索歸納的學(xué)習(xí)方法。

2.通過本課的探索過程,培養(yǎng)學(xué)生觀察、分析、交流、合作、類比、歸納的學(xué)習(xí)能力及數(shù)形結(jié)合(看圖說話)的意識和能力。

高三數(shù)學(xué)教案文案篇四

理解數(shù)列的概念,掌握數(shù)列的`運用。

【知識點精講】。

1、數(shù)列:按照一定次序排列的一列數(shù)(與順序有關(guān))。

2、通項公式:數(shù)列的第n項an與n之間的函數(shù)關(guān)系用一個公式來表示an=f(n)。

(通項公式不)。

3、數(shù)列的表示:

(1)列舉法:如1,3,5,7,9……;。

(2)圖解法:由(n,an)點構(gòu)成;

(3)解析法:用通項公式表示,如an=2n+1。

5、任意數(shù)列{an}的前n項和的性質(zhì)。

高三數(shù)學(xué)教案文案篇五

復(fù)習(xí):

1、(課本p28a13)填空:

(1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數(shù)是;

(2)要從5件不同的禮物中選出3件分送3為同學(xué),不同方法的種數(shù)是;

(3)5名工人要在3天中各自選擇1天休息,不同方法的種數(shù)是;

探究新知(復(fù)習(xí)教材p14~p25,找出疑惑之處)。

問題1:判斷下列問題哪個是排列問題,哪個是組合問題:

(1)從4個風(fēng)景點中選出2個安排游覽,有多少種不同的方法?

(2)從4個風(fēng)景點中選出2個,并確定這2個風(fēng)景點的游覽順序,有多少種不同的方法?

應(yīng)用示例。

例2、7位同學(xué)站成一排,分別求出符合下列要求的不同排法的種數(shù)、

(1)甲站在中間;

(2)甲、乙必須相鄰;

(3)甲在乙的左邊(但不一定相鄰);

(4)甲、乙必須相鄰,且丙不能站在排頭和排尾;

(5)甲、乙、丙相鄰;

(6)甲、乙不相鄰;

(7)甲、乙、丙兩兩不相鄰。

反饋練習(xí)。

當(dāng)堂檢測。

1、某班新年聯(lián)歡會原定的5個節(jié)目已排成節(jié)目單,開演前又增加了兩個新節(jié)目、如果將這兩個節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為()。

a、42b、30c、20d、12。

課后作業(yè)。

高三數(shù)學(xué)教案文案篇六

結(jié)合已學(xué)過的數(shù)學(xué)實例和生活中的實例,體會演繹推理的重要性,掌握演繹推理的基本模式,并能運用它們進(jìn)行一些簡單推理。

掌握演繹推理的基本模式,并能運用它們進(jìn)行一些簡單推理。

一、復(fù)習(xí)。

二、引入新課。

1.假言推理。

假言推理是以假言判斷為前提的演繹推理。假言推理分為充分條件假言推理和必要條件假言推理兩種。

(1)充分條件假言推理的基本原則是:小前提肯定大前提的前件,結(jié)論就肯定大前提的后件;小前提否定大前提的后件,結(jié)論就否定大前提的前件。

(2)必要條件假言推理的基本原則是:小前提肯定大前提的后件,結(jié)論就要肯定大前提的前件;小前提否定大前提的前件,結(jié)論就要否定大前提的后件。

2.三段論。

三段論是指由兩個簡單判斷作前提和一個簡單判斷作結(jié)論組成的演繹推理。三段論中三個簡單判斷只包含三個不同的概念,每個概念都重復(fù)出現(xiàn)一次。這三個概念都有專門名稱:結(jié)論中的賓詞叫“大詞”,結(jié)論中的主詞叫“小詞”,結(jié)論不出現(xiàn)的那個概念叫“中詞”,在兩個前提中,包含大詞的叫“大前提”,包含小詞的'叫“小前提”。

3.關(guān)系推理指前提中至少有一個是關(guān)系判斷的推理,它是根據(jù)關(guān)系的邏輯性質(zhì)進(jìn)行推演的??煞譃榧冴P(guān)系推理和混合關(guān)系推理。純關(guān)系推理就是前提和結(jié)論都是關(guān)系判斷的推理,包括對稱性關(guān)系推理、反對稱性關(guān)系推理、傳遞性關(guān)系推理和反傳遞性關(guān)系推理。

(1)對稱性關(guān)系推理是根據(jù)關(guān)系的對稱性進(jìn)行的推理。

(2)反對稱性關(guān)系推理是根據(jù)關(guān)系的反對稱性進(jìn)行的推理。

(3)傳遞性關(guān)系推理是根據(jù)關(guān)系的傳遞性進(jìn)行的推理。

(4)反傳遞性關(guān)系推理是根據(jù)關(guān)系的反傳遞性進(jìn)行的推理。

4.完全歸納推理是這樣一種歸納推理:根據(jù)對某類事物的全部個別對象的考察,已知它們都具有某種性質(zhì),由此得出結(jié)論說:該類事物都具有某種性質(zhì)。

オネ耆歸納推理可用公式表示如下:

オs1具有(或不具有)性質(zhì)p。

オs2具有(或不具有)性質(zhì)p……。

オsn具有(或不具有)性質(zhì)p。

オ(s1s2……sn是s類的所有個別對象)。

オニ以,所有s都具有(或不具有)性質(zhì)p。

オタ杉,完全歸納推理的基本特點在于:前提中所考察的個別對象,必須是該類事物的全部個別對象。否則,只要其中有一個個別對象沒有考察,這樣的歸納推理就不能稱做完全歸納推理。完全歸納推理的結(jié)論所斷定的范圍,并未超出前提所斷定的范圍。所以,結(jié)論是由前提必然得出的。應(yīng)用完全歸納推理,只要遵循以下兩點,那末結(jié)論就必然是真實的:(1)對于個別對象的斷定都是真實的;(2)被斷定的個別對象是該類的全部個別對象。

小結(jié):本節(jié)課學(xué)習(xí)了演繹推理的基本模式。

高三數(shù)學(xué)教案文案篇七

(一)教法說明教法的確定基于如下考慮:

(1)心理學(xué)的研究表明:只有內(nèi)化的東西才能充分外顯,只有學(xué)生自己獲取的知識,他才能靈活應(yīng)用,所以要注重學(xué)生的自主探索。

(2)本節(jié)目的是讓學(xué)生學(xué)會如何探索、理解正、余弦函數(shù)的性質(zhì)。教師始終要注意的是引導(dǎo)學(xué)生探索,而不是自己探索、學(xué)生觀看,所以教師要引導(dǎo),而且只能引導(dǎo)不能代辦,否則不但沒有教給學(xué)習(xí)方法,而且會讓學(xué)生產(chǎn)生依賴和倦怠。

(3)本節(jié)內(nèi)容屬于本源性知識,一般采用觀察、實驗、歸納、總結(jié)為主的方法,以培養(yǎng)學(xué)生自學(xué)能力。

所以,根據(jù)以人為本,以學(xué)定教的原則,我采取以問題為解決為中心、啟發(fā)為主的教學(xué)方法,形成教師點撥引導(dǎo)、學(xué)生積極參與、師生共同探討的課堂結(jié)構(gòu)形式,營造一種民主和諧的課堂氛圍。

(二)教學(xué)手段說明:

為完成本節(jié)課的教學(xué)目標(biāo),突出重點、克服難點,我采取了以下三個教學(xué)手段:

(1)精心設(shè)計課堂提問,整個課堂以問題為線索,帶著問題探索新知,因為沒有問題就沒有發(fā)現(xiàn)。

(3)為節(jié)省課堂時間,制作幻燈片演示正、余弦函數(shù)圖象和性質(zhì),也可以使教學(xué)更生動形象和連貫。

高三數(shù)學(xué)教案文案篇八

函數(shù)是中學(xué)數(shù)學(xué)的重要內(nèi)容,中學(xué)數(shù)學(xué)對函數(shù)的研究大致分成了三個階段。

三角函數(shù)是最具代表性的一種基本初等函數(shù)。4.8節(jié)是第二章《函數(shù)》學(xué)習(xí)的延伸,也是第四章《三角函數(shù)》的核心內(nèi)容,是在前面已經(jīng)學(xué)習(xí)過正、余弦函數(shù)的圖象、三角函數(shù)的有關(guān)概念和公式基礎(chǔ)上進(jìn)行的,其知識和方法將為后續(xù)內(nèi)容的學(xué)習(xí)打下基礎(chǔ),有承上啟下的作用。

本節(jié)課是數(shù)形結(jié)合思想方法的良好素材。數(shù)形結(jié)合是數(shù)學(xué)研究中的重要思想方法和解題方法。

本節(jié)通過對數(shù)形結(jié)合的進(jìn)一步認(rèn)識,可以改進(jìn)學(xué)習(xí)方法,增強學(xué)習(xí)數(shù)學(xué)的自信心和興趣。另外,三角函數(shù)的曲線性質(zhì)也體現(xiàn)了數(shù)學(xué)的對稱之美、和諧之美。

因此,本節(jié)課在教材中的知識作用和思想地位是相當(dāng)重要的。

(二)課時安排。

4.8節(jié)教材安排為4課時,我計劃用5課時。

(三)目標(biāo)和重、難點。

1.教學(xué)目標(biāo)。

教學(xué)目標(biāo)的確定,考慮了以下幾點:

(2)本班學(xué)生對數(shù)學(xué)科特別是函數(shù)內(nèi)容的學(xué)習(xí)有畏難情緒,所以在內(nèi)容上要降低深難度。

(3)學(xué)會方法比獲得知識更重要,本節(jié)課著眼于新知識的探索過程與方法,鞏固應(yīng)用主要放在后面的三節(jié)課進(jìn)行。

由此,我確定了以下三個層面的教學(xué)目標(biāo):

(3)情感層面:通過運用數(shù)形結(jié)合思想方法,讓學(xué)生體會(數(shù)學(xué))問題從抽象到形象的轉(zhuǎn)化過程,體會數(shù)學(xué)之美,從而激發(fā)學(xué)習(xí)數(shù)學(xué)的信心和興趣。

2.重、難點。

由以上教學(xué)目標(biāo)可知,本節(jié)重點是師生共同探索,正、余函數(shù)的性質(zhì),在探索中體會數(shù)形結(jié)合思想方法。

難點是:函數(shù)周期定義、正弦函數(shù)的單調(diào)區(qū)間和對稱性的理解。

為什么這樣確定呢?

因為周期概念是學(xué)生第一次接觸,理解上易錯;單調(diào)區(qū)間從圖上容易看出,但用一個區(qū)間形式表示出來,學(xué)生感到困難。

如何克服難點呢?

其一,抓住周期函數(shù)定義中的關(guān)鍵字眼,舉反例說明;。

高三數(shù)學(xué)教案文案篇九

§3.1.1數(shù)列、數(shù)列的通項公式目的:要求學(xué)生理解數(shù)列的概念及其幾何表示,理解什么叫數(shù)列的通項公式,給出一些數(shù)列能夠?qū)懗銎渫椆?,已知通項公式能夠求?shù)列的項。

重點:1數(shù)列的概念。按一定次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做數(shù)列的項,數(shù)列的第n項an叫做數(shù)列的通項(或一般項)。由數(shù)列定義知:數(shù)列中的數(shù)是有序的,數(shù)列中的數(shù)可以重復(fù)出現(xiàn),這與數(shù)集中的數(shù)的無序性、互異性是不同的。

3.4.-1的正整數(shù)次冪:-1,1,-1,1,…。

5.無窮多個數(shù)排成一列數(shù):1,1,1,1,…。

二、提出課題:數(shù)列。

1.數(shù)列的定義:按一定次序排列的一列數(shù)(數(shù)列的有序性)。

2.名稱:項,序號,一般公式,表示法。

3.通項公式:與之間的函數(shù)關(guān)系式如數(shù)列1:數(shù)列2:數(shù)列4:

4.分類:遞增數(shù)列、遞減數(shù)列;常數(shù)列;擺動數(shù)列;有窮數(shù)列、無窮數(shù)列。

5.實質(zhì):從映射、函數(shù)的觀點看,數(shù)列可以看作是一個定義域為正整數(shù)集n-(或它的有限子集{1,2,…,n})的函數(shù),當(dāng)自變量從小到大依次取值時對應(yīng)的一列函數(shù)值,通項公式即相應(yīng)的函數(shù)解析式。

6.用圖象表示:—是一群孤立的點例一(p111例一略)。

三、關(guān)于數(shù)列的通項公式1.不是每一個數(shù)列都能寫出其通項公式(如數(shù)列3)。

2.數(shù)列的通項公式不唯一如:數(shù)列4可寫成和。

3.已知通項公式可寫出數(shù)列的任一項,因此通項公式十分重要例二(p111例二)略。

五、小結(jié):1.數(shù)列的有關(guān)概念2.觀察法求數(shù)列的通項公式。

六、作業(yè):練習(xí)p112習(xí)題3.1(p114)1、2。

2.寫出下面數(shù)列的一個通項公式,使它的前4項分別是下列各數(shù):(1)1、、、;(2)、、、;(3)、、、;(4)、、、。

3.求數(shù)列1,2,2,4,3,8,4,16,5,…的一個通項公式。

6.在數(shù)列{an}中a1=2,a17=66,通項公式或序號n的一次函數(shù),求通項公式。

7.設(shè)函數(shù)(),數(shù)列{an}滿足(1)求數(shù)列{an}的通項公式;(2)判斷數(shù)列{an}的單調(diào)性。

7.(1)an=(2)。

高三數(shù)學(xué)教案文案篇十

2結(jié)合的圖象及函數(shù)周期性的定義了解三角函數(shù)的周期性,及最小正周期。

3會用代數(shù)方法求等函數(shù)的周期。

4理解周期性的幾何意義。

周期函數(shù)的概念,周期的求解。

1、是周期函數(shù)是指對定義域中所有都有。

即應(yīng)是恒等式。

2、周期函數(shù)一定會有周期,但不一定存在最小正周期。

例1、若鐘擺的高度與時間之間的函數(shù)關(guān)系如圖所示。

(1)求該函數(shù)的周期;

(2)求時鐘擺的高度。

例2、求下列函數(shù)的周期。

(1)(2)。

總結(jié):(1)函數(shù)(其中均為常數(shù),且。

的周期t=。

(2)函數(shù)(其中均為常數(shù),且。

的周期t=。

例3、求證:的周期為。

例4、(1)研究和函數(shù)的圖象,分析其周期性。

(2)求證:的周期為(其中均為常數(shù),

總結(jié):函數(shù)(其中均為常數(shù),且。

的周期t=。

例5、(1)求的周期。

(2)已知滿足,求證:是周期函數(shù)。

課后思考:能否利用單位圓作函數(shù)的圖象。

六、作業(yè):

七、自主體驗與運用。

1、函數(shù)的周期為()。

a、b、c、d、

2、函數(shù)的`最小正周期是()。

a、b、c、d、

3、函數(shù)的最小正周期是()。

a、b、c、d、

4、函數(shù)的周期是()。

a、b、c、d、

5、設(shè)是定義域為r,最小正周期為的函數(shù),

若,則的值等于()。

a、1b、c、0d、

6、函數(shù)的最小正周期是,則。

7、已知函數(shù)的最小正周期不大于2,則正整數(shù)。

的最小值是。

8、求函數(shù)的最小正周期為t,且,則正整數(shù)。

的最大值是。

9、已知函數(shù)是周期為6的奇函數(shù),且則。

10、若函數(shù),則。

11、用周期的定義分析的周期。

12、已知函數(shù),如果使的周期在內(nèi),求。

正整數(shù)的值。

13、一機械振動中,某質(zhì)子離開平衡位置的位移與時間之間的。

函數(shù)關(guān)系如圖所示:

(1)求該函數(shù)的周期;

(2)求時,該質(zhì)點離開平衡位置的位移。

14、已知是定義在r上的函數(shù),且對任意有。

成立,

(1)證明:是周期函數(shù);

(2)若求的值。

高三數(shù)學(xué)教案文案篇十一

數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進(jìn)一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。

(二)學(xué)情分析。

(1)學(xué)生已熟練掌握_________________。

(2)學(xué)生的知識經(jīng)驗較為豐富,具備了教強的抽象思維能力和演繹推理能力。

(3)學(xué)生思維活潑,積極性高,已初步形成對數(shù)學(xué)問題的合作探究能力。

(4)學(xué)生層次參次不齊,個體差異比較明顯。

二、目標(biāo)分析。

新課標(biāo)指出“三維目標(biāo)”是一個密切聯(lián)系的有機整體,應(yīng)該以獲得知識與技能的過程,同時成為學(xué)會學(xué)習(xí)和正確價值觀。這要求我們在教學(xué)中以知識技能的培養(yǎng)為主線,透情感態(tài)度與價值觀,并把這兩者充分體現(xiàn)在教學(xué)過程中,新課標(biāo)指出教學(xué)的主體是學(xué)生,因此目標(biāo)的制定和設(shè)計必須從學(xué)生的角度出發(fā),根據(jù)____在教材內(nèi)容中的地位與作用,結(jié)合學(xué)情分析,本節(jié)課教學(xué)應(yīng)實現(xiàn)如下教學(xué)目標(biāo):

(一)教學(xué)目標(biāo)。

(1)知識與技能。

使學(xué)生理解函數(shù)單調(diào)性的概念,初步掌握判別函數(shù)單調(diào)性的方法;。

(2)過程與方法。

引導(dǎo)學(xué)生通過觀察、歸納、抽象、概括,自主建構(gòu)單調(diào)增函數(shù)、單調(diào)減函數(shù)等概念;能運用函數(shù)單調(diào)性概念解決簡單的問題;使學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。

(3)情感態(tài)度與價值觀。

在函數(shù)單調(diào)性的學(xué)習(xí)過程中,使學(xué)生體驗數(shù)學(xué)的科學(xué)價值和應(yīng)用價值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。

(二)重點難點。

本節(jié)課的教學(xué)重點是________________________,教學(xué)難點是_____________________。

三、教法、學(xué)法分析。

(一)教法。

基于本節(jié)課的內(nèi)容特點和高二學(xué)生的年齡特征,按照臨沂市高中數(shù)學(xué)“三五四”課堂教學(xué)策略,采用探究――體驗教學(xué)法為主來完成教學(xué),為了實現(xiàn)本節(jié)課的教學(xué)目標(biāo),在教法上我采取了:

1、通過學(xué)生熟悉的實際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實的距離,激發(fā)學(xué)生求知欲,調(diào)動學(xué)生主體參與的積極性.

2、在形成概念的過程中,緊扣概念中的關(guān)鍵語句,通過學(xué)生的主體參與,正確地形成概念.

3、在鼓勵學(xué)生主體參與的同時,不可忽視教師的主導(dǎo)作用,要教會學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评?,并順利地完成書面表達(dá).

(二)學(xué)法。

在學(xué)法上我重視了:

1、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識到理性思維的質(zhì)的飛躍。

2、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。

四、教學(xué)過程分析。

(一)教學(xué)過程設(shè)計。

教學(xué)是一個教師的“導(dǎo)”,學(xué)生的“學(xué)”以及教學(xué)過程中的“悟”構(gòu)成的和諧整體。教師的“導(dǎo)”也就是教師啟發(fā)、誘導(dǎo)、激勵、評價等為學(xué)生的學(xué)習(xí)搭建支架,把學(xué)習(xí)的任務(wù)轉(zhuǎn)移給學(xué)生,學(xué)生就是接受任務(wù),探究問題、完成任務(wù)。如果在教學(xué)過程中把“教與學(xué)”完美的結(jié)合也就是以“問題”為核心,通過對知識的發(fā)生、發(fā)展和運用過程的演繹、解釋和探究來組織和推動教學(xué)。

(1)創(chuàng)設(shè)情境,提出問題。

新課標(biāo)指出:“應(yīng)該讓學(xué)生在具體生動的情境中學(xué)習(xí)數(shù)學(xué)”。在本節(jié)課的教學(xué)中,從我們熟悉的生活情境中提出問題,問題的設(shè)計改變了傳統(tǒng)目的明確的設(shè)計方式,給學(xué)生的思考空間,充分體現(xiàn)學(xué)生主體地位。

(2)引導(dǎo)探究,建構(gòu)概念。

數(shù)學(xué)概念的形成來自解決實際問題和數(shù)學(xué)自身發(fā)展的需要.但概念的高度抽象,造成了難懂、難教和難學(xué),這就需要讓學(xué)生置身于符合自身實際的學(xué)習(xí)活動中去,從自己的經(jīng)驗和已有的知識基礎(chǔ)出發(fā),經(jīng)歷“數(shù)學(xué)化”、“再創(chuàng)造”的活動過過程.

(3)自我嘗試,初步應(yīng)用。

有效的數(shù)學(xué)學(xué)習(xí)過程,不能單純的模仿與記憶,數(shù)學(xué)思想的領(lǐng)悟和學(xué)習(xí)過程更是如此。讓學(xué)生在解題過程中親身經(jīng)歷和實踐體驗,師生互動學(xué)習(xí),生生合作交流,共同探究.

(4)當(dāng)堂訓(xùn)練,鞏固深化。

通過學(xué)生的主體參與,使學(xué)生深切體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對知識識的再次深化。

(5)小結(jié)歸納,回顧反思。

小結(jié)歸納不僅是對知識的簡單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進(jìn)行總結(jié)。我設(shè)計了三個問題:

(1)通過本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識?

(2)通過本節(jié)課的學(xué)習(xí),你的體驗是什么?

(3)通過本節(jié)課的學(xué)習(xí),你掌握了哪些技能?

(二)作業(yè)設(shè)計。

作業(yè)分為必做題和選做題,必做題對本節(jié)課學(xué)生知識水平的反饋,選做題是對本節(jié)課內(nèi)容的延伸與,注重知識的延伸與連貫,強調(diào)學(xué)以致用。通過作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成.

高三數(shù)學(xué)教案文案篇十二

圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實踐后的高度抽象。恰當(dāng)?shù)乩枚x來解題,許多時候能以簡馭繁。因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強調(diào)定義,學(xué)會利用圓錐曲線定義來熟練的解題”。

二、學(xué)生學(xué)習(xí)情況分析。

我所任教班級的學(xué)生參與課堂教學(xué)活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達(dá)能力也略顯不足。

三、設(shè)計思想。

由于這部分知識較為抽象,如果離開感性認(rèn)識,容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情。在教學(xué)時,借助多媒體動畫,引導(dǎo)學(xué)生主動發(fā)現(xiàn)問題、解決問題,主動參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率。

四、教學(xué)目標(biāo)。

1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應(yīng)用定義__問題;熟練掌握焦點坐標(biāo)、頂點坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識求解圓錐曲線的方程。

2、通過對練習(xí),強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。

3、借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

五、教學(xué)重點與難點:

教學(xué)重點。

1、對圓錐曲線定義的理解。

2、利用圓錐曲線的定義求“最值”

3、“定義法”求軌跡方程。

教學(xué)難點:

巧用圓錐曲線定義__。

高三數(shù)學(xué)教案文案篇十三

數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué),是師生交往、互動、共同發(fā)展的過程。有效的數(shù)學(xué)教學(xué)應(yīng)當(dāng)從學(xué)生的生活經(jīng)驗和已有的知識水平出發(fā),向他們提供充分地從事數(shù)學(xué)活動的機會,在活動中激發(fā)學(xué)生的學(xué)習(xí)潛能,促使學(xué)生在自主探索與合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識、技能和思想方法。提高解決問題的能力,并進(jìn)一步使學(xué)生在意志力、自信心、理性精神等情感、態(tài)度方面都得到良好的發(fā)展。

二.對教學(xué)內(nèi)容的認(rèn)識。

1.教材的地位和作用。

本節(jié)課是在學(xué)生學(xué)習(xí)過“一百萬有多大”之后,繼續(xù)研究日常生活中所存在的較小的數(shù),進(jìn)一步發(fā)展學(xué)生的數(shù)感,并在學(xué)完負(fù)整數(shù)指數(shù)冪的運算性質(zhì)的基礎(chǔ)上,嘗試用科學(xué)記數(shù)法來表示百萬分之一等較小的數(shù)。學(xué)生具備良好的數(shù)感,不僅對于其正確理解數(shù)據(jù)所要表達(dá)的信息具有重要意義,而且對于發(fā)展學(xué)生的統(tǒng)計觀念也具有重要的價值。

2.教材處理。

基于設(shè)計理念,我在尊重教材的基礎(chǔ)上,適時添加了“銀河系的直徑”這一問題,以向?qū)W生滲透辯證的研究問題的思想方法,幫助學(xué)生正確認(rèn)識百萬分之一。

通過本節(jié)課的教學(xué),我力爭達(dá)到以下教學(xué)目標(biāo):

3.教學(xué)目標(biāo)。

(1)知識技能:

借助自身熟悉的事物,從不同角度來感受百萬分之一,發(fā)展學(xué)生的數(shù)感。能運用科學(xué)記數(shù)法來表示百萬分之一等較小的數(shù)。

(2)數(shù)學(xué)思考:

通過對較小的數(shù)的問題的學(xué)習(xí),尋求科學(xué)的記數(shù)方法。

(3)解決問題:

能解決與科學(xué)記數(shù)有關(guān)的實際問題。

(4)情感、態(tài)度、價值觀:

使學(xué)生體會科學(xué)記數(shù)法的科學(xué)性和辯證的研究問題的思想方法。培養(yǎng)學(xué)生的合作交流意識與探究精神。

4.教學(xué)重點與難點。

根據(jù)教學(xué)目標(biāo),我確定本節(jié)課的重點、難點如下:

重點:對較小數(shù)據(jù)的信息做合理的解釋和推斷,會用科學(xué)記數(shù)法來表示絕對值較小的數(shù)。

難點:感受較小的數(shù),發(fā)展數(shù)感。

三.教法、學(xué)法與教學(xué)手段。

1.教法、學(xué)法:

本節(jié)課的教學(xué)對象是七年級的學(xué)生,這一年級的學(xué)生對于周圍世界和社會環(huán)境中的實際問題具有越來越強烈的興趣。他們對于日常生活中一些常見的數(shù)據(jù)都想嘗試著來加以分析和說明,但又缺乏必要的感知較大數(shù)據(jù)或較小數(shù)據(jù)的方法及感知這些數(shù)據(jù)的活動經(jīng)驗。

因此根據(jù)本節(jié)課的教學(xué)目標(biāo)、教學(xué)內(nèi)容,及學(xué)生的認(rèn)知特點,教學(xué)上以“問題情境——設(shè)疑誘導(dǎo)——引導(dǎo)發(fā)現(xiàn)——合作交流——形成結(jié)論和認(rèn)識”為主線,采用“引導(dǎo)探究式”的教學(xué)方法。學(xué)生將主要采用“動手實踐——自主探索——合作交流”的學(xué)習(xí)方法,使學(xué)生在直觀情境的觀察和自主的實踐活動中獲取知識,并通過合作交流來深化對知識的理解和認(rèn)識。

2.教學(xué)手段:

1.采用現(xiàn)代化的教學(xué)手段——多媒體教學(xué),能直觀、生動地反映問題情境,充分調(diào)動學(xué)生學(xué)習(xí)的積極性。

2.以常見的生活物品為直觀教具,豐富了學(xué)生感知認(rèn)識對象的途徑,使學(xué)生對百萬分之一的認(rèn)識更貼近生活。

四.教學(xué)過程。

(一).復(fù)習(xí)舊知,鋪墊新知。

問題1:光的速度為300000km/s。

問題2:地球的半徑約為6400km。

問題3:中國的人口約為1300000000人。

(十).教學(xué)設(shè)計說明。

本節(jié)課我以貼近學(xué)生生活的數(shù)據(jù)及問題背景為依托,使學(xué)生學(xué)會用數(shù)學(xué)的方法來認(rèn)識百萬分之一,豐富了學(xué)生對數(shù)學(xué)的認(rèn)識,提高了學(xué)生應(yīng)用數(shù)學(xué)的能力,并為培養(yǎng)學(xué)生的終身學(xué)習(xí)奠定了基礎(chǔ)。在授課時相信會有一些預(yù)見不到的情況,我將在課堂上根據(jù)學(xué)生的實際情況做相應(yīng)的處理。

高三數(shù)學(xué)教案文案篇十四

引出數(shù)形結(jié)合思想方法,強調(diào)其含義和重要性,告訴學(xué)生,本節(jié)課將利用數(shù)形結(jié)合方法來研究,會使學(xué)習(xí)變得輕松有趣。

采用這樣的引入方法,目的是打消學(xué)生對函數(shù)學(xué)習(xí)的畏難情緒,引起學(xué)生注意,也激起學(xué)生好奇和興趣。

(二)新知探索主要環(huán)節(jié),分為兩個部分。

教學(xué)過程如下:

第一部分————師生共同研究得出正弦函數(shù)的性質(zhì)。

1.定義域、值域2.周期性。

3.單調(diào)性(重難點內(nèi)容)。

為了突出重點、克服難點,采用以下手段和方法:

(1)利用多媒體動態(tài)演示函數(shù)性質(zhì),充分體現(xiàn)數(shù)形結(jié)合的重要作用;。

(2)以層層深入,環(huán)環(huán)相扣的課堂提問,啟發(fā)學(xué)生思維,反饋課堂信息,使問題成為探索新知的線索和動力,隨著問題的解決,學(xué)生的積極性將被調(diào)動起來。

(3)單調(diào)區(qū)間的探索過程是:

先在靠近原點的一個單調(diào)周期內(nèi)找出正弦函數(shù)的一個增區(qū)間,由此表示出所有的增區(qū)間,體現(xiàn)從特殊到一般的知識認(rèn)識過程。

**教師結(jié)合圖象幫助學(xué)生理解并強調(diào)“距離”(“長度”)是周期的多少倍。

為什么要這樣強調(diào)呢?

因為這是對知識的一種意義建構(gòu),有助于以后理解記憶正弦型函數(shù)的相關(guān)性質(zhì)。

4.對稱性。

設(shè)計意圖:

(1)因為奇偶性是特殊的對稱性,掌握了對稱性,容易得出奇偶性,所以著重講清對稱性。體現(xiàn)了從一般到特殊的知識再現(xiàn)過程。

(2)從正弦函數(shù)的對稱性看到了數(shù)學(xué)的對稱之美、和諧之美,體現(xiàn)了數(shù)學(xué)的審美功能。

5.最值點和零值點。

有了對稱性的理解,容易得出此性質(zhì)。

第二部分————學(xué)習(xí)任務(wù)轉(zhuǎn)移給學(xué)生。

設(shè)計意圖:

(3)通過課堂教學(xué)結(jié)構(gòu)的改革,提高課堂教學(xué)效率,最終使學(xué)生成為獨立的學(xué)習(xí)者,這也符合建構(gòu)主義的教學(xué)原則。

(三)鞏固練習(xí)。

補充和選作題體現(xiàn)了課堂要求的差異性。

(四)結(jié)課。

高三數(shù)學(xué)教案文案篇十五

(2)使學(xué)生初步了解“屬于”關(guān)系的意義。

(3)使學(xué)生初步了解有限集、無限集、空集的意義。

【重點難點】。

教學(xué)重點:集合的基本概念及表示方法。

教學(xué)難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合。

授課類型:新授課。

課時安排:1課時。

教具:多媒體、實物投影儀。

【內(nèi)容分析】。

高三數(shù)學(xué)教案文案篇十六

近年來的高考數(shù)學(xué)試題逐步做到科學(xué)化、規(guī)范化,堅持了穩(wěn)中求改、穩(wěn)中創(chuàng)新的原則??荚囶}不但堅持了考查全面,比例適當(dāng),布局合理的特點,也突出體現(xiàn)了變知識立意為能力立意這一舉措。更加注重考查考生進(jìn)入高校學(xué)習(xí)所需的基本素養(yǎng),這些問題應(yīng)引起我們在教學(xué)中的關(guān)注和重視。

20__年是湖南省新課標(biāo)命題的第二年,數(shù)學(xué)試卷充分發(fā)揮數(shù)學(xué)作為基礎(chǔ)學(xué)科的作用,既重視考查中學(xué)數(shù)學(xué)基礎(chǔ)知識的掌握程度,又注意考查進(jìn)入高校繼續(xù)學(xué)習(xí)的潛能。在前二年命題工作的基礎(chǔ)上做到了總體保持穩(wěn)定,深化能力立意,積極改革創(chuàng)新,兼顧了數(shù)學(xué)基礎(chǔ)、思想方法、思維、應(yīng)用和潛能等多方面的考查,融入課程改革的理念,拓寬題材,選材多樣化,寬角度、多視點地考查數(shù)學(xué)素養(yǎng),多層次地考查思想能力,充分體現(xiàn)出湖南卷的特色:

1、試題題型平穩(wěn)突出對主干知識的考查重視對新增內(nèi)容的考查。

2、充分考慮文、理科考生的思維水平與不同的學(xué)習(xí)要求,體現(xiàn)出良好的層次性。

3、重視對數(shù)學(xué)思想方法的考查。

4、深化能力立意,考查考生的學(xué)習(xí)潛能。

5、重視基礎(chǔ),以教材為本。

6、重視應(yīng)用題設(shè)計,考查考生數(shù)學(xué)應(yīng)用意識。

二、教學(xué)計劃與要求。

新課已授完,高三將進(jìn)入全面復(fù)習(xí)階段,全年復(fù)習(xí)分兩輪進(jìn)行。

第一輪為系統(tǒng)復(fù)習(xí)(第一學(xué)期),此輪要求突出知識結(jié)構(gòu),扎實打好基礎(chǔ)知識,全面落實考點,要做到每個知識點,方法點,能力點無一遺漏。在此基礎(chǔ)上,注意各部分知識點在各自發(fā)展過程中的縱向聯(lián)系,以及各個部分之間的橫向聯(lián)系,理清脈絡(luò),抓住知識主干,構(gòu)建知識網(wǎng)絡(luò)。在教學(xué)中重點抓好各中通性、通法以及常規(guī)方法的復(fù)習(xí),是學(xué)生形成一些最基本的數(shù)學(xué)意識,掌握一些最基本的數(shù)學(xué)方法。同時有意識進(jìn)行一定的綜合訓(xùn)練,先小綜合再大綜合,逐步提高學(xué)生解題能力。

三、具體方法措施。

1、認(rèn)真學(xué)習(xí)《考試說明》,研究高考試題,提高復(fù)習(xí)課的效率。

《考試說明》是命題的依據(jù),復(fù)習(xí)的依據(jù)、高考試題是《考試說明》的具體體現(xiàn)。只有研究近年來的考試試題,才能加深對《考試說明》的理解,找到我們與命題專家在認(rèn)識《考試說明》上的差距。并力求在復(fù)習(xí)中縮小這一差距,更好地指導(dǎo)我們的復(fù)習(xí)。

2、高質(zhì)量備課,

參考網(wǎng)上的課件資料,結(jié)合我校學(xué)生實際,高度重視基礎(chǔ)知識,基本技能和基本方法的復(fù)習(xí)。充分發(fā)揮全組老師的集體智慧,確保每節(jié)課件都是高質(zhì)量的。統(tǒng)一的教案、統(tǒng)一的課件。

3、高效率的上好每節(jié)課,

重視通性、通法的落實。要把復(fù)習(xí)的重點放在教材中典型例題、習(xí)題上;放在體現(xiàn)通性、通法的例題、習(xí)題上;放在各部分知識網(wǎng)絡(luò)之間的內(nèi)在聯(lián)系上抓好課堂教學(xué)質(zhì)量,定出實施方法和評價方案。

4、狠抓作業(yè)批改、講評,教材作業(yè)、練習(xí)課內(nèi)完成,課外作業(yè)認(rèn)真批改、講評。一題多思多解,提煉思想方法,提升學(xué)生解題能力。

5、認(rèn)真落實月考,考前作好指導(dǎo)復(fù)習(xí),試卷講評起到補缺長智的作用。

6、結(jié)合實際,了解學(xué)生,分類指導(dǎo)。

高考復(fù)習(xí)要結(jié)合高考的實際,也要結(jié)合學(xué)生的實際,要了解學(xué)生的全面情況,實行綜合指導(dǎo)??赡苡械膶W(xué)生應(yīng)專攻薄弱環(huán)節(jié),而另一些學(xué)生則應(yīng)揚長避短。了解學(xué)生要加強量的分析,建立檔案、了解學(xué)生,才有利于個別輔導(dǎo),因材施教,對于好的學(xué)生,重在提高;對于差的學(xué)生,重在補缺。

四、復(fù)習(xí)參考資料。

1、20__年數(shù)學(xué)科《考試說明》(全國)及湖南省《補充說明》。

2、《創(chuàng)新設(shè)計》高考第一輪總復(fù)習(xí)數(shù)學(xué)及《學(xué)海導(dǎo)航》高考第一輪總復(fù)習(xí)數(shù)學(xué)。

五、教學(xué)參考進(jìn)度。

第一輪的復(fù)習(xí)要以基礎(chǔ)知識、基本技能、基本方法為主,為高三數(shù)學(xué)會考做好準(zhǔn)備。

高三數(shù)學(xué)教案文案篇十七

本節(jié)課是xxx大版高中數(shù)學(xué)必修x中第x章第x節(jié)的內(nèi)容。主要是二元均值不等式。它是在系統(tǒng)地學(xué)習(xí)了不等關(guān)系和不等式性質(zhì),掌握了不等式性質(zhì)的基礎(chǔ)上展開的,作為重要的基本不等式之一,為后續(xù)的學(xué)習(xí)奠定基礎(chǔ)。要進(jìn)一步了解不等式的性質(zhì)及運用,研究最值問題,此時基本不等式是必不可缺的?;静坏仁皆谥R體系中起了承上啟下的作用,同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,因此它也是對學(xué)生進(jìn)行情感價值觀教育的優(yōu)良素材,所以基本不等式應(yīng)重點研究。

教學(xué)中注意用新課程理念處理教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動不僅要接受、記憶、模仿和練習(xí),而且要自主探究、動手實踐、合作交流、閱讀自學(xué),師生互動,教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過程。

就知識的應(yīng)用價值上來看,基本不等式是從大量數(shù)學(xué)問題和現(xiàn)實問題中抽象出來的一個模型,在公式推導(dǎo)中所蘊涵的`數(shù)學(xué)思想方法如數(shù)形結(jié)合、抽象歸納、演繹推理、分析法證明等在各種不等式的研究中均有著廣泛的應(yīng)用;另外,在解決函數(shù)最值問題中,基本不等式也起著重要的作用。

就內(nèi)容的人文價值上來看,基本不等式的探究與推導(dǎo)需要學(xué)生觀察、分析、歸納,有助于培養(yǎng)學(xué)生創(chuàng)新思維和探索精神,是培養(yǎng)學(xué)生數(shù)形結(jié)合意識和提高數(shù)學(xué)能力的良好載體。

教學(xué)目標(biāo):了解基本不等式的幾何背景,能在教師的引導(dǎo)下探究基本不等式的證明過程,理解基本不等式的幾何解釋,并能解決簡單的最值問題;借助于信息技術(shù)強化數(shù)形結(jié)合的思想方法。

在教師的逐步引導(dǎo)下,能從較為熟悉的幾何圖形中抽象出基本不等式,實現(xiàn)對基本不等式幾何背景的初步了解。

學(xué)生已經(jīng)學(xué)習(xí)了不等式的基本性質(zhì),可以運用作差法給出基本不等式的證明,同時,介紹并滲透分析法證明的思想方法,從而完成基本不等式的代數(shù)證明。

進(jìn)一步通過探究幾何圖形,給出基本不等式的幾何解釋,加強學(xué)生數(shù)形結(jié)合的意識。

在認(rèn)知上,學(xué)生已經(jīng)掌握了不等式的基本性質(zhì),并能夠根據(jù)不等式的性質(zhì)進(jìn)行數(shù)、式的大小比較,也具備了一定的平面幾何的基本知識。但是,倘若教師不加以引導(dǎo),學(xué)生并不能自覺地通過已有的知識、記憶去發(fā)展和構(gòu)建幾何圖形中的相等或不等關(guān)系,這就需要教師逐步地引導(dǎo),并選用合理的手段去激活學(xué)生的思維,增強數(shù)形結(jié)合的思想意識。

另外,盡可能引領(lǐng)學(xué)生充分理解兩個基本不等式等號成立的條件,為利用基本不等式解決簡單的最值問題做好鋪墊。在用基本不等式解決最值時,學(xué)生往往容易忽視基本不等式,使用的前提條件a,b0同時又要注意區(qū)別基本不等式的使用條件為,因此,在教學(xué)過程中,借助例題落實學(xué)生領(lǐng)會基本不等式成立的三個限制條件(一正二定三相等)在解決最值問題中的作用。而對于“一正二定三相等”的進(jìn)一步強化和應(yīng)用,將放于下一個課時的內(nèi)容。

為了能很好地展示幾何圖形,體會基本不等式的幾何背景,教學(xué)中需要有具體的圖形來幫助學(xué)生理解基本不等式的生成,感受數(shù)形結(jié)合的數(shù)學(xué)思想,所以,借助于幾何畫板軟件來加強幾何直觀十分必要,同時演示動畫幫助學(xué)生驗證基本不等式等號取到的情況,并用電腦3d技術(shù)展示基本不等式的又一幾何背景,加深對基本不等式的理解,增強教學(xué)效果。

教學(xué)過程的設(shè)計從實際的問題情境出發(fā),以基本不等式的幾何背景為著手點,以探究活動為主線,探求基本不等式的結(jié)構(gòu)形式,并進(jìn)一步給出幾何解釋,深化對基本不等式的理解。通過典型例題的講解,明確利用基本不等式解決簡單最值問題的應(yīng)用價值。數(shù)形結(jié)合的思想貫穿于整個教學(xué)過程,并時刻體現(xiàn)在教學(xué)活動之中。

本節(jié)課通過6個教學(xué)環(huán)節(jié),強調(diào)過程教學(xué),在教師的引導(dǎo)下,啟動觀察、分析、感知、歸納、探究等思維活動,從各個層面認(rèn)識基本不等式,并理解其幾何背景。課堂教學(xué)以學(xué)生為主體,基本不等式為主線,在學(xué)生原有的認(rèn)知基本上,充分展示基本不等式這一知識的發(fā)生、發(fā)展及再創(chuàng)造的過程。

同時,以多媒體課件作為教學(xué)輔助手段,賦予學(xué)生直觀感受,便于觀察,從而把一個生疏的、內(nèi)在的知識,變成一個可認(rèn)知的、可交流的對象,提高了課堂效率。

會用基本不等式解決簡單的最大(?。┲祮栴}并注意等號取到的條件。在教學(xué)過程中始終圍繞教學(xué)目標(biāo)進(jìn)行評價,師生互動,在教學(xué)過程的不同環(huán)節(jié)中及時獲取教學(xué)反饋信息,以學(xué)生為主體,及時調(diào)節(jié)教學(xué)措施,完成教學(xué)目標(biāo),從而達(dá)到較為理想的教學(xué)效果。

高三數(shù)學(xué)教案文案篇十八

1.針對本班學(xué)生情況對課本進(jìn)行了適當(dāng)改編、細(xì)化,有利于難點克服和學(xué)生主體性的調(diào)動。

2.根據(jù)課堂上師生的雙邊活動,作出適時調(diào)整、補充(反饋評價);根據(jù)學(xué)生課后作業(yè)、提問等情況,反復(fù)修改并指導(dǎo)下節(jié)課的設(shè)計(反復(fù)評價)。

3.本節(jié)課充分體現(xiàn)了面向全體學(xué)生、以問題解決為中心、注重知識的建構(gòu)過程與方法、重視學(xué)生思想與情感的'設(shè)計理念,積極地探索和實踐我校的科研課題——努力推進(jìn)課堂教學(xué)結(jié)構(gòu)改革。

通過這樣的探索過程,相信學(xué)生能從中有所體會,對后續(xù)內(nèi)容的學(xué)習(xí)和學(xué)生的可持續(xù)發(fā)展會有一定的幫助。希望很久以后留在學(xué)生記憶中的不是知識本身,而是方法與思想,是學(xué)習(xí)的習(xí)慣和熱情,這正是我們教育工作者追求的結(jié)果。

高三數(shù)學(xué)教案文案篇十九

一、教學(xué)目標(biāo):

掌握向量的概念、坐標(biāo)表示、運算性質(zhì),做到融會貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。

二、教學(xué)重點:

向量的性質(zhì)及相關(guān)知識的綜合應(yīng)用。

三、教學(xué)過程:

(一)主要知識:

1、掌握向量的概念、坐標(biāo)表示、運算性質(zhì),做到融會貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。

(二)例題分析:略。

四、小結(jié):

1、進(jìn)一步熟練有關(guān)向量的運算和證明;能運用解三角形的知識解決有關(guān)應(yīng)用問題,

2、滲透數(shù)學(xué)建模的思想,切實培養(yǎng)分析和解決問題的能力。

高三數(shù)學(xué)教案文案篇二十

教學(xué)目標(biāo):

結(jié)合已學(xué)過的數(shù)學(xué)實例和生活中的實例,體會演繹推理的重要性,掌握演繹推理的基本模式,并能運用它們進(jìn)行一些簡單推理。

教學(xué)重點:

掌握演繹推理的基本模式,并能運用它們進(jìn)行一些簡單推理。

教學(xué)過程。

一、復(fù)習(xí)。

二、引入新課。

1.假言推理。

假言推理是以假言判斷為前提的演繹推理。假言推理分為充分條件假言推理和必要條件假言推理兩種。

(1)充分條件假言推理的基本原則是:小前提肯定大前提的前件,結(jié)論就肯定大前提的后件;小前提否定大前提的后件,結(jié)論就否定大前提的前件。

(2)必要條件假言推理的基本原則是:小前提肯定大前提的后件,結(jié)論就要肯定大前提的前件;小前提否定大前提的前件,結(jié)論就要否定大前提的后件。

2.三段論。

三段論是指由兩個簡單判斷作前提和一個簡單判斷作結(jié)論組成的演繹推理。三段論中三個簡單判斷只包含三個不同的概念,每個概念都重復(fù)出現(xiàn)一次。這三個概念都有專門名稱:結(jié)論中的賓詞叫“大詞”,結(jié)論中的主詞叫“小詞”,結(jié)論不出現(xiàn)的那個概念叫“中詞”,在兩個前提中,包含大詞的叫“大前提”,包含小詞的叫“小前提”。

3.關(guān)系推理指前提中至少有一個是關(guān)系判斷的推理,它是根據(jù)關(guān)系的邏輯性質(zhì)進(jìn)行推演的??煞譃榧冴P(guān)系推理和混合關(guān)系推理。純關(guān)系推理就是前提和結(jié)論都是關(guān)系判斷的推理,包括對稱性關(guān)系推理、反對稱性關(guān)系推理、傳遞性關(guān)系推理和反傳遞性關(guān)系推理。

(1)對稱性關(guān)系推理是根據(jù)關(guān)系的對稱性進(jìn)行的推理。

(2)反對稱性關(guān)系推理是根據(jù)關(guān)系的反對稱性進(jìn)行的推理。

(3)傳遞性關(guān)系推理是根據(jù)關(guān)系的傳遞性進(jìn)行的推理。

(4)反傳遞性關(guān)系推理是根據(jù)關(guān)系的反傳遞性進(jìn)行的推理。

4.完全歸納推理是這樣一種歸納推理:根據(jù)對某類事物的全部個別對象的考察,已知它們都具有某種性質(zhì),由此得出結(jié)論說:該類事物都具有某種性質(zhì)。

完全歸納推理的基本特點在于:前提中所考察的個別對象,必須是該類事物的全部個別對象。否則,只要其中有一個個別對象沒有考察,這樣的歸納推理就不能稱做完全歸納推理。完全歸納推理的結(jié)論所斷定的范圍,并未超出前提所斷定的范圍。所以,結(jié)論是由前提必然得出的。應(yīng)用完全歸納推理,只要遵循以下兩點,那末結(jié)論就必然是真實的:(1)對于個別對象的斷定都是真實的;(2)被斷定的個別對象是該類的全部個別對象。

【本文地址:http://www.mlvmservice.com/zuowen/12254758.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔