最新《幾何原本》讀書心得600字(三篇)

格式:DOC 上傳日期:2023-01-29 08:22:07
最新《幾何原本》讀書心得600字(三篇)
時(shí)間:2023-01-29 08:22:07     小編:zdfb

在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過(guò)文章可以把我們那些零零散散的思想,聚集在一塊。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?這里我整理了一些優(yōu)秀的范文,希望對(duì)大家有所幫助,下面我們就來(lái)了解一下吧。

《幾何原本》讀書心得600字篇一

《原本》的兩個(gè)理論支柱——比例論和窮竭法。為了論述相似形的理論,歐幾里得安排了比例論,引用了歐多克索斯的比例論。這個(gè)理論是無(wú)比的成功,它避開了無(wú)理數(shù),而建立了可公度與不可公度的正確的比例論,因而順利地建立了相似形的理論。在幾何發(fā)展的歷史上,解決曲邊圍成的面積和曲面圍成的體積等問題,一直是人們關(guān)注的重要課題。這也是微積分最初涉及的問題。它的解決依賴于極限理論,這已是17世紀(jì)的事了。然而在古希臘于公元前三四世紀(jì)對(duì)一些重要的面積、體積問題的證明卻沒有明顯的極限過(guò)程,他們解決這些問題的理念和方法是如此的超前,并且深刻地影響著數(shù)學(xué)的發(fā)展。

化圓為方問題是古希臘數(shù)學(xué)家歐多克索斯提出的,后來(lái)以“窮竭法”而得名的方法?!案F竭法”的依據(jù)是阿基米得公理和反證法。在《幾何原本》中歐幾里得利用“窮竭法”證明了許多命題,如圓與圓的面積之比等于直徑平方比。兩球體積之比等于它們的直徑的立方比。阿基米德應(yīng)用“窮竭法”更加熟練,而且技巧很高。并且用它解決了一批重要的面積和體積命題。當(dāng)然,利用“窮竭法”證明命題,首先要知道命題的結(jié)論,而結(jié)論往往是由推測(cè)、判斷等確定的。阿基米德在此做了重要的工作,他在《方法》一文中闡述了發(fā)現(xiàn)結(jié)論的一般方法,這實(shí)際又包含了積分的思想。他在數(shù)學(xué)上的貢獻(xiàn),奠定了他在數(shù)學(xué)史上的突出地位。

作圖問題的研究與終結(jié)。歐幾里得在《原本》中談了正三角形、正方形、正五邊形、正六邊形、正十五邊形的作圖,未提及其他正多邊形的作法??梢娝褔L試著作過(guò)其他正多邊形,碰到了“不能”作出的情形。但當(dāng)時(shí)還無(wú)法判斷真正的“不能作”,還是暫時(shí)找不到作圖方法。

高斯并未滿足于尋求個(gè)別正多邊形的作圖方法,他希望能找到一種判別準(zhǔn)則,哪些正多邊形用直尺和圓規(guī)可以作出、哪些正多邊形不能作出。也就是說(shuō),他已經(jīng)意識(shí)到直尺和圓規(guī)的“效能”不是萬(wàn)能的,可能對(duì)某些正多邊形不能作出,而不是人們找不到作圖方法。1801年,他發(fā)現(xiàn)了新的研究結(jié)果,這個(gè)結(jié)果可以判斷一個(gè)正多邊形“能作”或“不能作”的準(zhǔn)則。判斷這個(gè)問題是否可作,首先把問題化為代數(shù)方程。

然后,用代數(shù)方法來(lái)判斷。判斷的準(zhǔn)則是:“對(duì)一個(gè)幾何量用直尺和圓規(guī)能作出的充分必要條件是:這個(gè)幾何量所對(duì)應(yīng)的數(shù)能由已知量所對(duì)應(yīng)的數(shù),經(jīng)有限次的加、減、乘、除及開平方而得到?!?圓周率不可能如此得到,它是超越數(shù),還有e、劉維爾數(shù)都是超越數(shù),我們知道,實(shí)數(shù)是不可數(shù)的,實(shí)數(shù)分為有理數(shù)和無(wú)理數(shù),其中有理數(shù)和一部分無(wú)理數(shù),比如根號(hào)2,是代數(shù)數(shù),而代數(shù)數(shù)是可數(shù)的,因此實(shí)數(shù)中不可數(shù)是因?yàn)槌綌?shù)的存在。雖然超越數(shù)比較多,但要判定一個(gè)數(shù)是否為超越數(shù)卻不是那么的簡(jiǎn)單。)至此,“三大難題”即“化圓為方、三等分角、二倍立方體”問題是用尺規(guī)不能作出的作圖題。正十七邊形可作,但其作法不易給出。高斯(gauss)在1796年19歲時(shí),給出了正十七邊形的尺規(guī)作圖法,并作了詳盡的討論。為了表彰他的這一發(fā)現(xiàn),他去世后,在他的故鄉(xiāng)不倫瑞克建立的紀(jì)念碑上面刻了一個(gè)正十七邊形。

幾何中連續(xù)公理的引入。由歐氏公設(shè)、公理不能推出作圖題中“交點(diǎn)”存在。因?yàn)椋渲袥]有連續(xù)性(公理)概念。這就需要給歐氏的公理系統(tǒng)中添加新的公理——連續(xù)性公理。雖然19世紀(jì)之前費(fèi)馬與笛卡爾已經(jīng)發(fā)現(xiàn)解析幾何,代數(shù)有了長(zhǎng)驅(qū)直入的進(jìn)展,微積分進(jìn)入了大學(xué)課堂,拓?fù)鋵W(xué)和射影幾何已經(jīng)出現(xiàn)。但是,數(shù)學(xué)家對(duì)數(shù)系理論基礎(chǔ)仍然是模糊的,沒有引起重視。直觀地承認(rèn)了實(shí)數(shù)與直線上的點(diǎn)都是連續(xù)的,且一一對(duì)應(yīng)。直到19世紀(jì)末葉才完滿地解決了這一重大問題。從事這一工作的學(xué)者有康托(cantor)、戴德金(dedekind)、皮亞諾(peano)、希爾伯特(hilbert)等人。

當(dāng)時(shí),康托希望用基本序列建立實(shí)數(shù)理論,代德金也深入地研究了無(wú)理數(shù)理念,他的一篇論文發(fā)表在1872年。在此之前的1858年,他給學(xué)生開設(shè)微積分時(shí),知道實(shí)數(shù)系還沒有邏輯基礎(chǔ)的保證。因此,當(dāng)他要證明“單調(diào)遞增有界變量序列趨向于一個(gè)極限”時(shí),只得借助于幾何的直觀性。

實(shí)際上,“直線上全體點(diǎn)是連續(xù)統(tǒng)”也是沒有邏輯基礎(chǔ)的。更沒有明確全體實(shí)數(shù)和直線全體點(diǎn)是一一對(duì)應(yīng)這一重大關(guān)系。如,數(shù)學(xué)家波爾查奴(bolzano)把兩個(gè)數(shù)之間至少存在一個(gè)數(shù),認(rèn)為是數(shù)的連續(xù)性。實(shí)際上,這是誤解。因?yàn)?,任何兩個(gè)有理數(shù)之間一定能求到一個(gè)有理數(shù)。但是,有理數(shù)并不是數(shù)的全體。有了戴德金分割之后,人們認(rèn)識(shí)至波爾查奴的說(shuō)法只是數(shù)的稠密性,而不是連續(xù)性。由無(wú)理數(shù)引發(fā)的數(shù)學(xué)危機(jī)一直延續(xù)到19世紀(jì)。直到1872年,德國(guó)數(shù)學(xué)家戴德金從連續(xù)性的要求出發(fā),用有理數(shù)的“分割”來(lái)定義無(wú)理數(shù),并把實(shí)數(shù)理論建立在嚴(yán)格的科學(xué)基礎(chǔ)上,才結(jié)束了無(wú)理數(shù)被認(rèn)為“無(wú)理”的時(shí)代,也結(jié)束了持續(xù)2000多年的數(shù)學(xué)史上的第一次大危機(jī)。

原本還研究了其它許多問題,如求兩數(shù)(可推廣至任意有限數(shù))最大公因數(shù),數(shù)論中的素?cái)?shù)的個(gè)數(shù)無(wú)窮多等。

《幾何原本》讀書心得600字篇二

“古希臘”這個(gè)詞,我們耳熟能詳,很多人卻不了解它。

如果《幾何原本》的作者歐幾里得能夠代表整個(gè)古希臘人民,那么我可以說(shuō),古希臘是古代文化中最燦爛的一支——因?yàn)楣畔ED的數(shù)學(xué)中,所包含的不僅僅是數(shù)學(xué),還有著難得的邏輯,更有著耐人尋味的哲學(xué)。

《幾何原本》這本數(shù)學(xué)著作,以幾個(gè)顯而易見、眾所周知的定義、公設(shè)和公理,互相搭橋,展開了一系列的命題:由簡(jiǎn)單到復(fù)雜,相輔而成。其邏輯的嚴(yán)密,不能不令我們佩服。

就我目前拜訪的幾個(gè)命題來(lái)看,歐幾里得證明關(guān)于線段“一樣長(zhǎng)”的題,最常用、也是最基本的,便是畫圓:因?yàn)?,一個(gè)圓的所有半徑都相等。一般的數(shù)學(xué)思想,都是很復(fù)雜的,這邊剛講一點(diǎn),就又跑到那邊去了;而《幾何原本》非常容易就被我接受,其原因大概就在于歐幾里得反復(fù)運(yùn)用一種思想、使讀者不斷接受的緣故吧。

不過(guò),我要著重講的,是他的哲學(xué)。

書中有這樣幾個(gè)命題:如,“等腰三角形的兩底角相等,將腰延長(zhǎng),與底邊形成的兩個(gè)補(bǔ)角亦相等”,再如,“如果在一個(gè)三角形里,有兩個(gè)角相等,那么也有兩條邊相等”。這些命題,我在讀時(shí),內(nèi)心一直承受著幾何外的震撼。

我們七年級(jí)已經(jīng)學(xué)了幾何。想想那時(shí)做這類證明題,需要證明一個(gè)三角形中的兩個(gè)角相等的時(shí)候,我們總是會(huì)這么寫:“因?yàn)樗且粋€(gè)等腰三角形,所以兩底角相等”——我們總是習(xí)慣性的認(rèn)為,等腰三角形的兩個(gè)底角就是相等的;而看《幾何原本》,他思考的是“等腰三角形的兩個(gè)底角為什么相等”。想想看吧,一個(gè)思想習(xí)以為常,一個(gè)思想在思考為什么,這難道還不夠說(shuō)明現(xiàn)代人的問題嗎?

大多數(shù)現(xiàn)代人,好奇心似乎已經(jīng)泯滅了。這里所說(shuō)的好奇心不單單是指那種對(duì)新奇的事物感興趣,同樣指對(duì)平常的事物感興趣。比如說(shuō),許多人會(huì)問“宇航員在空中為什么會(huì)飄起來(lái)”,但也許不會(huì)問“我們?yōu)槭裁茨軌蛘驹诘厣隙粫?huì)飄起來(lái)”;許多人會(huì)問“吃什么東西能減肥”,但也許不會(huì)問“羊?yàn)槭裁闯圆荻怀匀狻薄?/p>

我們對(duì)身邊的事物太習(xí)以為常了,以致不會(huì)對(duì)許多“平?!钡氖挛锔信d趣,進(jìn)而去琢磨透它。牛頓為什么會(huì)發(fā)現(xiàn)萬(wàn)有引力?很大一部分原因,就在于他有好奇心。

如果僅把《幾何原本》當(dāng)做數(shù)學(xué)書看,那可就大錯(cuò)特錯(cuò)了:因?yàn)楣畔ED的數(shù)學(xué)滲透著哲學(xué),學(xué)數(shù)學(xué),就是學(xué)哲學(xué)。

哲學(xué)第一課:人要建立好奇心,不僅探索新奇的事物,更要探索身邊的平常事,這就是我讀《幾何原本》意外的收獲吧!

《幾何原本》讀書心得600字篇三

《幾何原本》的作者歐幾里得能夠代表整個(gè)古希臘人民,那么我可以說(shuō),古希臘是古代文化中最燦爛的一支——因?yàn)楣畔ED的數(shù)學(xué)中,所包含的不僅僅是數(shù)學(xué),還有著難得的邏輯,更有著耐人尋味的哲學(xué)。

《幾何原本》這本數(shù)學(xué)著作,以幾個(gè)顯而易見、眾所周知的定義、公設(shè)和公理,互相搭橋,展開了一系列的命題:由簡(jiǎn)單到復(fù)雜,相輔而成。其邏輯的嚴(yán)密,不能不令我們佩服。

就我目前拜訪的幾個(gè)命題來(lái)看,歐幾里得證明關(guān)于線段“一樣長(zhǎng)”的題,最常用、也是最基本的,便是畫圓:因?yàn)?,一個(gè)圓的所有半徑都相等。一般的數(shù)學(xué)思想,都是很復(fù)雜的,這邊剛講一點(diǎn),就又跑到那邊去了;而《幾何原本》非常容易就被我接受,其原因大概就在于歐幾里得反復(fù)運(yùn)用一種思想、使讀者不斷接受的緣故吧。

不過(guò),我要著重講的,是他的哲學(xué)。

書中有這樣幾個(gè)命題:如,“等腰三角形的兩底角相等,將腰延長(zhǎng),與底邊形成的兩個(gè)補(bǔ)角亦相等”,再如,“如果在一個(gè)三角形里,有兩個(gè)角相等,那么也有兩條邊相等”。這些命題,我在讀時(shí),內(nèi)心一直承受著幾何外的震撼。

我們七年級(jí)已經(jīng)學(xué)了幾何。想想那時(shí)做這類證明題,需要證明一個(gè)三角形中的兩個(gè)角相等的時(shí)候,我們總是會(huì)這么寫:“因?yàn)樗且粋€(gè)等腰三角形,所以兩底角相等”——我們總是習(xí)慣性的認(rèn)為,等腰三角形的兩個(gè)底角就是相等的;而看《幾何原本》,他思考的是“等腰三角形的兩個(gè)底角為什么相等”。想想看吧,一個(gè)思想習(xí)以為常,一個(gè)思想在思考為什么,這難道還不夠說(shuō)明現(xiàn)代人的問題嗎?

大多數(shù)現(xiàn)代人,好奇心似乎已經(jīng)泯滅了。這里所說(shuō)的好奇心不單單是指那種對(duì)新奇的事物感興趣,同樣指對(duì)平常的事物感興趣。比如說(shuō),許多人會(huì)問“宇航員在空中為什么會(huì)飄起來(lái)”,但也許不會(huì)問“我們?yōu)槭裁茨軌蛘驹诘厣隙粫?huì)飄起來(lái)”;許多人會(huì)問“吃什么東西能減肥”,但也許不會(huì)問“羊?yàn)槭裁闯圆荻怀匀狻薄?/p>

我們對(duì)身邊的事物太習(xí)以為常了,以致不會(huì)對(duì)許多“平?!钡氖挛锔信d趣,進(jìn)而去琢磨透它。牛頓為什么會(huì)發(fā)現(xiàn)萬(wàn)有引力?很大一部分原因,就在于他有好奇心。

如果僅把《幾何原本》當(dāng)做數(shù)學(xué)書看,那可就大錯(cuò)特錯(cuò)了:因?yàn)楣畔ED的數(shù)學(xué)滲透著哲學(xué),學(xué)數(shù)學(xué),就是學(xué)哲學(xué)。

哲學(xué)第一課:人要建立好奇心,不僅探索新奇的事物,更要探索身邊的平常事,這就是我讀《幾何原本》意外的收獲吧!

【本文地址:http://www.mlvmservice.com/zuowen/1201485.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔