高中數(shù)學(xué)必修教案人教版(專業(yè)15篇)

格式:DOC 上傳日期:2023-11-10 17:57:06
高中數(shù)學(xué)必修教案人教版(專業(yè)15篇)
時間:2023-11-10 17:57:06     小編:雁落霞

教案的編寫需要綜合考慮課程標準、教材要求和教學(xué)實際,以保證教學(xué)的連貫性和有效性。教案的目標要明確具體,能夠量化和評估。下面是一份范例教案,供您參考,希望對您有所幫助。

高中數(shù)學(xué)必修教案人教版篇一

對重點內(nèi)容應(yīng)重點復(fù)習(xí).首先擬出主要內(nèi)容,然后有目的有針對性地做相關(guān)內(nèi)容的題目,著重收集主要題型和技巧解法,像小論文式地重組知識,不要盲目地做題,要有針對性地選題,回味練習(xí).

高考數(shù)學(xué)命題除了著重考查基礎(chǔ)知識外,還十分重視對數(shù)學(xué)方法的考查,如配方法、換元法、分離常數(shù)法等操作性較強的數(shù)學(xué)方法.同學(xué)們在復(fù)習(xí)時應(yīng)對每一種方法的實質(zhì),它所適應(yīng)的題型,包括解題步驟都熟練掌握.其次應(yīng)重視對數(shù)學(xué)思想的理解及運用,如函數(shù)思想、數(shù)形結(jié)合思想.

應(yīng)注意實際問題的解決和探索性試題的研究。

現(xiàn)在各地風(fēng)行素質(zhì)教育,呼吁改革考試命題.增強運用數(shù)學(xué)知識解決實際問題的試題,在其他省市的高考命題中已經(jīng)體現(xiàn),而且難度較大,這一部分尤其是探索性命題在平時學(xué)習(xí)中較少涉及,希望同學(xué)們把近幾年其他省、市高考試題中有關(guān)此內(nèi)容的題目集中研究一下,有備無患.這一階段,重點是提高學(xué)生的綜合解題能力,訓(xùn)練學(xué)生的解題策略,加強解題指導(dǎo),提高應(yīng)試能力.

高中數(shù)學(xué)必修教案人教版篇二

集合這部分的主要內(nèi)容是集合的概念、表示方法和集合之間的關(guān)系和運算。縱觀近幾年高考題,集合的考查以選擇題、填空題為主要題型。集合的概念和基本運算是本章的重點內(nèi)容,也是高考的必考內(nèi)容。復(fù)習(xí)中首先要把握基礎(chǔ)知識,深刻理解本章的基礎(chǔ)知識點,重點掌握集合的概念和運算。本章常用的數(shù)學(xué)思想方法主要有:數(shù)形結(jié)合的思想,如常借助于維恩圖、數(shù)軸解決問題;分類討論的思想,如一元二次方程根的討論、集合的包含關(guān)系等。復(fù)習(xí)時要重視對基本思想方法的滲透,逐步培養(yǎng)用數(shù)學(xué)思想方法來分析問題、解決問題的能力。

(二)規(guī)律方法總結(jié)。

1、集合中元素的互異性是集合概念的重點考查內(nèi)容。一般給出兩個集合,并告知兩個集合之間的關(guān)系,求集合中某個參數(shù)的范圍或值的時候,要特別驗證是否符合元素之間互異性。2、考查集合的運算和包含關(guān)系,解題中常用到分類討論思想,分類時注意不重不漏,尤其注意討論集合為空集的情況。3、新定義的集合運算問題是以已知的集合或運算為背景,引出新的集合概念或運算,仔細審題,弄清新定義的意義才是關(guān)鍵。

基本初等函數(shù)。

基本初等函數(shù)的內(nèi)容是函數(shù)的基礎(chǔ),也是研究其他較復(fù)雜函數(shù)的轉(zhuǎn)化目標,掌握基本初等函數(shù)的圖象和性質(zhì)是學(xué)習(xí)函數(shù)知識的必要的一步。與指數(shù)函數(shù)、對數(shù)函數(shù)有關(guān)的試題,大多以考查基本初等函數(shù)的性質(zhì)為依托,結(jié)合運算推理來解題。所以這部分內(nèi)容更注重通過函數(shù)圖象讀取各種信息,從而研究函數(shù)的性質(zhì),熟練掌握函數(shù)圖象的各種變換方式,培養(yǎng)運用數(shù)形結(jié)合思想來解題的能力。

(二)規(guī)律方法總結(jié)。

1、指數(shù)函數(shù)多與一次函數(shù)、二次函數(shù)、反比例函數(shù)等知識結(jié)合考查綜合應(yīng)用知識解決函數(shù)問題的能力。指數(shù)方程的求解常利用換元法轉(zhuǎn)化為一元二次方程求解。由指數(shù)函數(shù)和二次函數(shù)、反比例函數(shù)結(jié)合成的函數(shù)的單調(diào)性的判定注意底數(shù)與1的關(guān)系的判定。

2、解對數(shù)方程(或不等式)就是將對數(shù)方程(或不等式)化為有理方程(或不等式)。要注意轉(zhuǎn)化必須是等價的,特別要考慮到對數(shù)函數(shù)定義域。

高中數(shù)學(xué)必修教案人教版篇三

一)、培養(yǎng)良好的學(xué)習(xí)興趣。

1、課前預(yù)習(xí),對所學(xué)知識產(chǎn)生疑問,產(chǎn)生好奇心。

2、聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預(yù)習(xí)中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養(yǎng)思考與老師同步性,提高精神,把老師對你的提問的評價,變?yōu)楸薏邔W(xué)習(xí)的動力。

3、思考問題注意歸納,挖掘你學(xué)習(xí)的潛力。

5、把概念回歸自然。所有學(xué)科都是從實際問題中產(chǎn)生歸納的,數(shù)學(xué)概念也回歸于現(xiàn)實生活,如角的概念、直角坐標系的產(chǎn)生、極坐標系的產(chǎn)生都是從實際生活中抽象出來的。只有回歸現(xiàn)實才能對概念的理解切實可靠,在應(yīng)用概念判斷、推理時會準確。

二)、建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣。

習(xí)慣是經(jīng)過重復(fù)練習(xí)而鞏固下來的穩(wěn)重持久的條件反射和自然需要。建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動手、重歸納、注意應(yīng)用。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣還包括課前自學(xué)、專心上課、及時復(fù)習(xí)、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學(xué)時間,以便加寬知識面和培養(yǎng)自己再學(xué)習(xí)能力。

三)、有意識培養(yǎng)自己的各方面能力。

數(shù)學(xué)能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數(shù)學(xué)學(xué)習(xí)環(huán)境中得到培養(yǎng)的。在平時學(xué)習(xí)中要注意開發(fā)不同的學(xué)習(xí)場所,參與一切有益的學(xué)習(xí)實踐活動,如數(shù)學(xué)第二課堂、數(shù)學(xué)競賽、智力競賽等活動。平時注意觀察,比如,空間想象能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,并在大腦中進行分析推理。其它能力的培養(yǎng)都必須學(xué)習(xí)、理解、訓(xùn)練、應(yīng)用中得到發(fā)展。特別是,教師為了培養(yǎng)這些能力,會精心設(shè)計“智力課”和“智力問題”比如對習(xí)題的解答時的一題多解、舉一反三的訓(xùn)練歸類,應(yīng)用模型、電腦等多媒體教學(xué)等,都是為數(shù)學(xué)能力的培養(yǎng)開設(shè)的好課型,在這些課型中,學(xué)生務(wù)必要用全身心投入、全方位智力參與,最終達到自己各方面能力的全面發(fā)展。

高中數(shù)學(xué)必修教案人教版篇四

曾經(jīng)有同學(xué)問我,你是怎么學(xué)數(shù)學(xué)的,也沒見你做多少的練習(xí)題,可數(shù)學(xué)的成績不錯。我覺得課堂的學(xué)習(xí)是關(guān)鍵,要緊緊抓住課堂的45分鐘的時間。在這有限的時間內(nèi),是教師與學(xué)生的交流,這時候,作為學(xué)生你的思維要跟得上老師的變化,這個知識點的關(guān)鍵點在那兒,前后的聯(lián)系是什么,在聽課的過程中不能分心、走神,提高聽課的效率。為此,在每一堂課前,我都要做好以下幾項工作。

1、課前預(yù)習(xí)是關(guān)鍵。

相信我們學(xué)生都聽到過老師對我們的要求,要進行課前預(yù)習(xí),不論什么課,這是所有的老師都會提的一個要求,可真正進行課前預(yù)習(xí)的學(xué)生有多少呢,班里面我們也沒有統(tǒng)計過,不過我覺得有一半的學(xué)生預(yù)習(xí)了,就是不錯的了,另外,既使有的學(xué)生也預(yù)習(xí)了,只是走馬觀花的看一下書,那效果可想而知。

預(yù)習(xí)也要講究方法,在預(yù)習(xí)中發(fā)現(xiàn)了難點,出現(xiàn)了自己解決不了的問題,這個就是聽課中的重點,要做好標記;通過預(yù)習(xí)還能發(fā)現(xiàn)自己沒有掌握住的舊知識,起到溫故而知新的作用,可以對知識起到查漏補缺的效果;另外,預(yù)習(xí)的過程也是一個自學(xué)的過程,有助于提高自己分析問題、解決問題的能力,將自己在預(yù)習(xí)中的理解和老師講解的進行對照,不斷進行改進,可以起到提高自己思維水平的作用。

2、科學(xué)聽課是保障。

所謂科學(xué)聽課也就是說在教師授課的過程中學(xué)生的表現(xiàn),是不是為這節(jié)課做好了準備工作。在聽課的過程中要調(diào)動眼、耳、心、口、手等各個器官,全身心的投入到課堂學(xué)習(xí)中去,在聽課的過程中遇到重要的知識點同時又要做好筆記,但是不能因為筆記的原因而影響到聽課,所以,這里面有一個科學(xué)合理安排聽課時間的問題。聽課的過程中是一個高度集中注意力的過程,但同時也是有張有弛;聽課的過程中也的聽的技巧,聽教師如何分析?如何歸納總結(jié)?如何突破難點,結(jié)合自己在預(yù)習(xí)時又是如何理解的,相互比較,同時要用心思考,跟上教師的教學(xué)思路,能在教師的啟發(fā)和點撥下有所得,這是這一堂課最根本的關(guān)節(jié)所在。

3、做一定量的習(xí)題。

在數(shù)學(xué)的學(xué)習(xí)過程中,對于做多少習(xí)題并沒有確切的數(shù)據(jù),但有兩種傾向:一種是做大量的習(xí)題;另一種是做適當(dāng)?shù)牧?xí)題。做大量的習(xí)題的做法來源于題海戰(zhàn)術(shù),曾經(jīng)有一種說法,做題吧,在做題的過程中你就掌握了知識點,誠然,多做題對于掌握知識是有好處的,但并不是題做的越多越好。在高中的學(xué)習(xí)過程中,時間非常緊,在有限的時間內(nèi)要學(xué)習(xí)好幾門知識,你數(shù)學(xué)題做的多了,難免會在其他科目上用時不夠,會對其他科目的學(xué)習(xí)造成影響。因此,大量的做題是不可取的。

在學(xué)習(xí)的過程中,我崇尚做適當(dāng)?shù)牧?xí)題,而且在實際的學(xué)習(xí)過程中我也是這樣做的。做題的過程中是一個舉一反三的過程,做會這一道題就掌握了這一類題目的做法,關(guān)鍵的問題是在做完這道題后的分析總結(jié),數(shù)學(xué)的題目太多了,你是不可能做完所有的題的,因此,我們在掌握知識點的時候是一類一類的掌握,所謂的舉一反三,觸類旁通。每當(dāng)做完一道題后尤其是難度大的題目,我會靜下心來再從頭看一遍,把其中的關(guān)鍵點再熟悉一遍,雖然當(dāng)時看起來是費了一點時間,但那收獲是很大的。以后再遇到這類題目的時候,解決起來就相對容易的多。

高中數(shù)學(xué)必修教案人教版篇五

函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進一步認識,也是學(xué)生認識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。

本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。

二、重難點分析。

根據(jù)對上述對教材的分析及新課程標準的要求,確定函數(shù)的概念既是本節(jié)課的重點,也應(yīng)該是本章的難點。

三、學(xué)情分析。

1、有利因素:一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。

2、不利因素:函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度。

四、目標分析。

1、理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。

2、通過對實際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。

3、通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。

五、教法學(xué)法。

本節(jié)課的教學(xué)以學(xué)生為主體、教師是數(shù)學(xué)課堂活動的組織者、引導(dǎo)者和參與者,我一方面精心設(shè)計問題情景,引導(dǎo)學(xué)生主動探索。另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點,以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認知過程。

學(xué)法方面,學(xué)生通過對新舊兩種函數(shù)定義的對比,在集合論的觀點下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。

2、設(shè)計理念。

3、教學(xué)目標。

情感態(tài)度與價值觀目標:引導(dǎo)學(xué)生學(xué)會閱讀數(shù)學(xué)教材,學(xué)會發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、

4、重點難點。

重點:任意角三角函數(shù)的定義、

難點:任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、

5、學(xué)情分析。

6、教法分析。

7、學(xué)法分析。

本課時先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學(xué)生形成新的認識結(jié)構(gòu),達成教學(xué)目標。

高中數(shù)學(xué)必修教案人教版篇六

函數(shù)思想在解題中的應(yīng)用主要表現(xiàn)在兩個方面:一是借助有關(guān)初等函數(shù)的性質(zhì),解有關(guān)求值、解(證)不等式、解方程以及討論參數(shù)的取值范圍等問題:二是在問題的研究中,通過建立函數(shù)關(guān)系式或構(gòu)造中間函數(shù),把所研究的問題轉(zhuǎn)化為討論函數(shù)的有關(guān)性質(zhì),達到化難為易,化繁為簡的目的。函數(shù)與方程的思想是中學(xué)數(shù)學(xué)的基本思想,也是歷年高考的重點。

1.函數(shù)的思想,是用運動和變化的觀點,分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù),運用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題,從而使問題獲得解決。

3.函數(shù)方程思想的幾種重要形式。

(1)函數(shù)和方程是密切相關(guān)的,對于函數(shù)y=f(x),當(dāng)y=0時,就轉(zhuǎn)化為方程f(x)=0,也可以把函數(shù)式y(tǒng)=f(x)看做二元方程y-f(x)=0。

(6)立體幾何中有關(guān)線段、角、面積、體積的計算,經(jīng)常需要運用布列方程或建立函數(shù)表達式的方法加以解決。

高中數(shù)學(xué)必修教案人教版篇七

集合這部分的主要內(nèi)容是集合的概念、表示方法和集合之間的關(guān)系和運算??v觀近幾年高考題,集合的考查以選擇題、填空題為主要題型。集合的概念和基本運算是本章的重點內(nèi)容,也是高考的必考內(nèi)容。復(fù)習(xí)中首先要把握基礎(chǔ)知識,深刻理解本章的基礎(chǔ)知識點,重點掌握集合的概念和運算。

本章常用的數(shù)學(xué)思想方法主要有:數(shù)形結(jié)合的思想,如常借助于維恩圖、數(shù)軸解決問題;分類討論的思想,如一元二次方程根的討論、集合的包含關(guān)系等。復(fù)習(xí)時要重視對基本思想方法的滲透,逐步培養(yǎng)用數(shù)學(xué)思想方法來分析問題、解決問題的能力。

函數(shù)。

函數(shù)是高中數(shù)學(xué)的核心內(nèi)容,函數(shù)的思想方法貫穿了高中數(shù)學(xué)的始終。近幾年高考試題函數(shù)熱點之一是考查函數(shù)的定義域、值域、單調(diào)性、奇偶性以及函數(shù)的圖象。函數(shù)、方程、不等式關(guān)系密切,要學(xué)會對具體問題抽象概括、分析探索、透徹理解,從而構(gòu)造函數(shù),借助方程、不等式的知識,最終解決問題。實現(xiàn)函數(shù)、方程、不等式的溝通與轉(zhuǎn)化,是高考的又一熱點。考查函數(shù)內(nèi)容的同時,用函數(shù)的思想觀點研究問題,以及數(shù)形結(jié)合思想、分類討論思想的靈活熟練應(yīng)用,也是高考的一個重點。

規(guī)律方法總結(jié)。

求函數(shù)解析式時,針對條件的特點可選用換元法、待定系數(shù)法、湊項法、列方程組法等進行求解。其中換元法是常用的方法,但要特別注意正確確定中間變量的取值范圍,否則就不能正確確定函數(shù)的定義域。判斷函數(shù)單調(diào)性主要的方法有定義法、導(dǎo)數(shù)法、圖象法。

高中數(shù)學(xué)必修教案人教版篇八

數(shù)學(xué)教學(xué)的宗旨是讓學(xué)生在主動參與中學(xué)會學(xué)習(xí)。中學(xué)生的身體、心理發(fā)展正趨于成熟期,對事物充滿著好奇,又有自己的想法,有時想表達自己的想法但又不愿在公開場合表達。根據(jù)這些特點,教師應(yīng)設(shè)置有效的三維目標激發(fā)提升,設(shè)置貼近學(xué)生的情境激發(fā)興趣,設(shè)置有懸念的問題激發(fā)參與,設(shè)置開放的問題激發(fā)討論,設(shè)置有挑戰(zhàn)的問題激發(fā)獨立思考,設(shè)置抽象的問題激發(fā)理解。

進行這些設(shè)置,教師必須了解學(xué)生的現(xiàn)有水平和可能的發(fā)展水平,準確定位有效的教學(xué)目標;精心設(shè)置導(dǎo)入,在盡量短的時間內(nèi)吸引學(xué)生的注意力;正確把握問題的難度、坡度和密度,讓學(xué)生努力后能接近或達成目標;以適當(dāng)?shù)恼{(diào)控營造和諧的課堂氣氛,提高學(xué)生參與的積極性。

利用信息技術(shù)拓寬學(xué)習(xí)資源。

并善于獨立思考,學(xué)會分析問題和創(chuàng)造性地解決問題”。例如,筆者在講解解析幾何內(nèi)容時,就通過課件“奇妙的坐標系”向?qū)W生展示了坐標系的誕生、完善及應(yīng)用過程,使數(shù)學(xué)教學(xué)成為了再創(chuàng)造、再發(fā)現(xiàn)的教學(xué)。

高中數(shù)學(xué)必修教案人教版篇九

各位老師大家好!

我說課的內(nèi)容是人教版a版必修2第三章第一節(jié)直線的傾斜角與斜率第一課時。

(一)教材分析。

本節(jié)課選自必修2第三章(解析幾何的第一章)第一節(jié)直線的傾斜角與斜率第一課時,直線的傾斜角和斜率解析幾何的重要概念;是刻畫直線傾斜程度的幾何要素與代數(shù)表示;學(xué)生在原有的對直線的有關(guān)性質(zhì)及平面向量的相關(guān)知識理解的基礎(chǔ)上,重新以解析法的方式來研究直線相關(guān)性質(zhì),而本節(jié)課直線的傾斜角與斜率,是直線的重要的幾何性質(zhì),是研究直線的方程形式,直線的位置關(guān)系等的思維的起點;另外,本節(jié)課也初步向?qū)W生滲透解析幾何的基本思想和基本方法。因此,本課有著開啟全章、滲透方法,承前啟后的作用。

(二)學(xué)情分析。

本節(jié)課的教學(xué)對象是高二學(xué)生,這個年齡段的學(xué)生天性活潑,求知欲強,并且學(xué)習(xí)主動,在知識儲備上知道兩點確定一條直線,知道點與坐標的關(guān)系,實現(xiàn)了最簡單的形與數(shù)的轉(zhuǎn)化;了解刻畫傾斜程度可用角和正切值;具備了一定的數(shù)形結(jié)合的能力和分類討論的思想。但根據(jù)學(xué)生的認知規(guī)律,還沒有形成自覺地把數(shù)學(xué)問題抽象化的能力。所以在教學(xué)設(shè)計時需從學(xué)生的最近發(fā)展區(qū)進行探究學(xué)習(xí),盡量讓不同層次的學(xué)生都經(jīng)歷概念的形成、鞏固和應(yīng)用過程。

(三)教學(xué)目標。

1.理解直線的傾斜角和斜率的概念,理解直線的傾斜角的唯一性和斜率的存在性;。

2.掌握過兩點的直線斜率的計算公式;。

3.通過經(jīng)歷從具體實例抽象出數(shù)學(xué)概念的過程,培養(yǎng)學(xué)生觀察、分析和概括能力;。

生嚴謹求簡的數(shù)學(xué)精神。

重點:斜率的概念,用代數(shù)方法刻畫直線斜率的過程,過兩點的直線斜率的計算公式。

難點:直線的傾斜角與斜率的概念的形成,斜率公式的構(gòu)建。

(四)教法和學(xué)法。

課堂教學(xué)應(yīng)有利于學(xué)生的數(shù)學(xué)素質(zhì)的形成與發(fā)展,即在課堂教學(xué)過程中,創(chuàng)設(shè)問題的情景,激發(fā)學(xué)生主動的發(fā)現(xiàn)問題解決問題,充分調(diào)動學(xué)生學(xué)習(xí)的主動性、積極性;有效的滲透數(shù)學(xué)思想方法,發(fā)展學(xué)生個性思維品質(zhì),這是本節(jié)課的教學(xué)原則。根據(jù)這樣的教學(xué)原則,考慮到學(xué)生首次接觸解析幾何的內(nèi)容及研究方法,所以我采用設(shè)置問題串的形式,啟發(fā)引導(dǎo)學(xué)生類比、聯(lián)想,產(chǎn)生知識遷移;通過幾何畫板演示實驗、探索交流相結(jié)合的教學(xué)方法激發(fā)學(xué)生觀察、實驗,體驗知識的形成過程;由此循序漸進,使學(xué)生很自然達到本節(jié)課的學(xué)習(xí)目標。

(五)教學(xué)過程。

環(huán)節(jié)1.指明研究方向(3min)。

簡介17世紀法國數(shù)學(xué)家笛卡爾和費馬的數(shù)學(xué)史。

高中數(shù)學(xué)必修教案人教版篇十

1.把握寫景抒情散文情景交融的特點,提高對情景交融意境的鑒賞能力。

2.學(xué)習(xí)作者運用語言的技巧:比喻、通感的巧妙運用,動詞、疊詞的精心選用。

3.訓(xùn)練整體感知、揣摩語言的能力。

過程與方法。

1.本文語言精美,寫景狀物傳神,應(yīng)加強朗讀訓(xùn)練,讓學(xué)生自然地受到感染,體會文章的韻味。

2.理解關(guān)鍵語句,提高對作者在文中表達的思想感情的領(lǐng)悟能力。

情感態(tài)度與價值觀。

1.引導(dǎo)學(xué)生關(guān)注社會,追求理想。

2.培養(yǎng)學(xué)生健康的審美情趣。教學(xué)重點體味作品寫景語言精練、優(yōu)美的特點及其表達效果。教學(xué)難點品味、領(lǐng)悟課文情景交融,“景語”“情語”渾然一體的寫作特點。

教學(xué)方法誦讀法、感知法、品味法。

教具準備課文錄音帶、多媒體課件。

教學(xué)時間安排二個課時。

第一課時。

一、導(dǎo)語設(shè)計。

李白在《月下獨酌》里說:“花間一壺酒,獨酌無相親。舉杯邀明月,對影成三人?!薄谶@里,“月”成了詩人排遣內(nèi)心深處孤獨寂寞的一種載體。

二、文本解讀。

(一)知識積累。

1、朱自清的生平和創(chuàng)作。朱自清,原名自華,字佩弦,號秋實。祖籍浙江紹興,1898年生于江蘇東海。1903年隨家定居揚州。1916年中學(xué)畢業(yè)后,考入北京大學(xué)預(yù)科班,次年更名“自清”,考入本科哲學(xué)系。畢業(yè)后在江蘇、浙江等地的中學(xué)任教。上大學(xué)時,朱自清開始創(chuàng)作新詩,1923年發(fā)表的長詩《毀滅》,震動了當(dāng)時的詩壇。1924年出版詩與散文集《蹤跡》,1925年任清華大學(xué)教授,創(chuàng)作轉(zhuǎn)向散文,同時開始研究古典。1928年出版散文集《背影》,成了著名的散文家。1948年8月病逝于北京。他是詩人、散文家、學(xué)者,又是民主戰(zhàn)士、愛國知識分子。毛澤東稱他“表現(xiàn)了我們民族的英雄氣概”。著作有《朱自清全集》。

3、借助注解和詞典讀懂《采蓮賦》。

(二)信息篩選播放錄音(或教師朗讀)。

1、學(xué)生邊聽邊思考如何劃分層次,并歸納大意。

明確:全文分三部分:

第一部分(1):月夜漫步荷塘的緣由。(點明題旨)。

第二部分(2-6):荷塘月色的恬靜迷人。(主體)。

第三部分(7-10):荷塘月色的美景引動鄉(xiāng)思。(偏重抒情)。

(三)合作探究。

師生共同解析第四段,看作者是怎樣從多角度來描摹荷塘美景的?明確:先寫滿眼茂密的荷葉,次寫多姿多態(tài)的荷花、荷香,最后寫葉子和花的一絲顫動以及流水。層次井然,形象精確。——這是按觀察的角度,視線由近及遠、由上而下的空間順序來寫的。以上是順序特點,細分析,還可以看出作者的匠心:a.抓靜態(tài)與動態(tài)的結(jié)合,把荷塘寫“活”。而且,作者筆下的景物都是“動”的,“靜”不過是“動”的瞬間表現(xiàn),揚靜而情動。

b.抓可見與可想的結(jié)合,寫出了散文的神韻。所謂“可想”,是指由“可見”引起的合理聯(lián)想,把不可見的景物寫得很有風(fēng)采。

(四)能力提升。

學(xué)生自己閱讀第五段,合作討論作者在這里是如何描寫月色的。

明確:作者把荷葉和荷花放在月光下面,一個“瀉”字,給人一種乳白色而又鮮艷欲滴的實感;一個“浮”字又表現(xiàn)出月光下荷葉、荷花那種縹緲輕柔的姿容。文章似乎仍在寫荷葉、荷花,其實不然,作者是通過寫葉、花的安謐、恬靜,襯托出月色的朦朧柔和。又如文章寫“黑影”和“倩影”,也是寫月色,因為影是月光照射在物體上產(chǎn)生的。樹影明暗掩映,錯落有致,反襯月光輕盈蕩漾。月色本是難以描摹的',所以作者透過不同的景物,從不同的角度去寫月色,使難狀之景如在眼前。

(五)分析鑒賞。

1、第五段“酣眠”“小睡”各指什么?有無深層含義?

明確:“酣眠”比喻朗照,“小睡”比喻被一層淡淡的云遮住的月光。至于它的深層含義應(yīng)該聯(lián)系作者的心態(tài)來看,他不希望過于激烈的行為,他喜歡一種平和的心態(tài),正如我們前面分析的那樣,他做不到投筆從戎,他要尋找安寧平和的生活。對景物的喜好折射出作者的心態(tài)。

2、課文第五段,寫月光用“瀉”不用“照”“鋪”,其好處是什么?(解答這個問題,不妨請學(xué)生把“照”和“鋪”字代入句中讀一遍,學(xué)生就知道了。

明確:“瀉”是承上面比喻句“如流水一般”而來的,“瀉”字有向下傾的勢態(tài)?!罢铡弊趾汀颁仭弊志蜎]有這個效果。

3、作者為什么會由光和影聯(lián)想到名曲?

明確:這是使用通感的修辭手法,光與影是視覺形象,作者卻用聽覺形象來比喻,這就是通感的一種,其相似點就是和諧。第四段寫荷花的縷縷清香,微風(fēng)傳送,像遠方飄來歌聲一樣動人心懷,這幽雅淡遠的感受也只有在月夜獨處時才會有,這也是通感,把嗅覺形象轉(zhuǎn)化為聽覺形象,它們之間的相似點就是似有似無、時斷時續(xù)、捉摸不定。

三、課堂小結(jié)。

所謂“意境”,指的是外界的人事景物(客觀)與人的思想感情(主觀)相融合而形成的一種天人合一、情景交融的境界。這種天人合一、情景交融越是天衣無縫、水乳交融,散文就越具有美感?!逗商猎律纷龅搅诉@一點,所以它具有一種意境美。

四、作業(yè)設(shè)計。

背誦第四、五、六段。

第二課時。

一、導(dǎo)語設(shè)計。

二、文本解讀。

(一)合作探究指導(dǎo)學(xué)生理解“通感”的特點及其作用。明確:通感:就是人的各種感覺之間的交流、溝通、轉(zhuǎn)移。錢鐘書先生說過,“在日常經(jīng)驗里,視覺、聽覺、觸覺、嗅覺、味覺往往可以彼此打通或交通,眼、耳、舌、鼻、身,各個官能的領(lǐng)域可以不分界限。顏色似乎會有溫度,聲音似乎會有形象,冷暖似乎會有重量,氣味似乎會有鋒芒……”(《通感》。)例如:“微風(fēng)過處,送來縷縷清香,仿佛遠處高樓上渺茫的歌聲似的?!?/p>

a.本體——花香(嗅覺)喻體——渺茫的歌聲(聽覺)b.作用:把花香的特點寫清了,生動形象。

c.相似點:立于微風(fēng)中嗅馨香(時有時無)——聽遠處高樓傳來的歌聲(時斷時續(xù))再如:“但光與影有著和諧的旋律,如梵婀玲上奏著的名曲。”

(二)能力提升。

1、文章抒情的語句主要有哪些?

明確:第一段:這幾天心里頗不寧靜。

第二段:沒有月光的晚上,這路上陰森森的,有些怕人。今晚卻很好,雖然月光也還是淡淡的。

第三段:我也像超出了平常的自己,到了另一世界里。我愛熱鬧,也愛冷靜;愛群居,也愛獨處……便覺是個自由的人。……我且受用這無邊的荷香月色好了。

第六段:但熱鬧是它們的,我什么也沒有。

第八段:這真是有趣的事,可惜我們現(xiàn)在早已無福消受了。

第十段:這令我到底惦著江南了。

2、作者的思想感情在文中是怎樣變化的?

明確:因為這幾天心里頗不寧靜,忽然想起日日走過的荷塘,在滿月的光里,總該另有一番樣子,于是就想去看看,沿荷塘的路平常是有些怕人的,但今晚卻很好,我可以享受這無邊的荷香月色。荷塘月色的確很美,月光下的荷塘美景清幽淡雅,荷塘上的迷人月色朦朧和諧,令人心醉。荷塘四周非常幽靜,只有樹上的蟬聲和水里的蛙聲最熱鬧,而我什么也沒有。忽然又想起采蓮的事情來了,那真是有趣的事,可惜我們現(xiàn)在早已無福消受了。采蓮令我惦著江南了,這樣想著回到了家里。有人把這篇文章所表現(xiàn)的思想感情概括為“淡淡的喜悅,淡淡的哀愁”,是很貼切的,但作者的感情底色是“不寧靜”。

(三)分析鑒賞。

1、第六段寫“熱鬧是它們的,我什么也沒有”,作者為什么會如此傷感?

明確:作者想尋找美景,使自己寧靜,平息自己矛盾的心情而不得,當(dāng)然傷感。

2、第七段采蓮與文章主體有什么關(guān)系?為什么會想起采蓮的事情?

明確:以采蓮的熱鬧襯托自己的孤寂,且荷蓮?fù)?,作者又是揚州人,對江南習(xí)俗很了解。

明確:一方面有照應(yīng)文章開頭的作用,但主要目的還是以靜寫動,以靜來反襯自己心里的極不寧靜。心里的不寧靜,是社會現(xiàn)實的劇烈動蕩在作者心中引起的波瀾。全篇充滿著動與靜的對立統(tǒng)一:社會的動蕩與荷塘一隅的寂靜,內(nèi)心的動蕩與內(nèi)心的寧靜形成對立統(tǒng)一,文章開頭心里不寧靜,在月夜荷塘幽美的景色的感染下趨于心靜,走出荷塘又回到不寧靜的現(xiàn)實中來,也形成對立、轉(zhuǎn)化。

三、課堂小結(jié)。

這篇作品獲得人們特別贊賞的原因,就在于它寫景特別工細。朱自清在表現(xiàn)月色下的荷塘和荷塘上的月色這兩個組成部分的時候,還進一步作更精細的分解剖析,把這兩個部分再分解剖析成許多更小的部分,然后逐一描寫并且從景物觀賞者的視覺、嗅覺、聽覺,以及景物的靜態(tài)、動態(tài)等角度,寫出它們的種種性狀,從而把景物表現(xiàn)得格外細膩。

四、作業(yè)設(shè)計。

研究性學(xué)習(xí)參考論題。請你就以下論題中的一個或另擬論題,從網(wǎng)絡(luò)上尋找有關(guān)資料,寫出你的研究結(jié)果。

1、走近朱自清。

2、朱自清為什么“不寧靜”?

3、談《荷塘月色》的寫景藝術(shù)。

4、談《荷塘月色》的感情線索。

高中數(shù)學(xué)必修教案人教版篇十一

(二)倍角公式。

2cos2α=1+cos2α2sin2α=1-cos2α。

注意:倍角公式揭示了具有倍數(shù)關(guān)系的兩個角的三角函數(shù)的運算規(guī)律,可實現(xiàn)函數(shù)式的降冪的變化。

注:(1)兩角和與差的三角函數(shù)公式能夠解答的三類基本題型:求值題,化簡題,證明題。

(2)對公式會“正用”,“逆用”,“變形使用”;。

(3)掌握“角的演變”規(guī)律,

(4)將公式和其它知識銜接起來使用。

重點難點。

重點:幾組三角恒等式的應(yīng)用。

難點:靈活應(yīng)用和、差、倍角等公式進行三角式化簡、求值、證明恒等式。

高中數(shù)學(xué)必修教案人教版篇十二

掌握三角函數(shù)模型應(yīng)用基本步驟:。

(1)根據(jù)圖象建立解析式;。

(2)根據(jù)解析式作出圖象;。

(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.

教學(xué)重難點。

利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。

教學(xué)過程。

一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。

(精確到0.001).

米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?

本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關(guān)于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。

練習(xí):教材p65面3題。

三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:。

(1)根據(jù)圖象建立解析式;。

(2)根據(jù)解析式作出圖象;。

(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.

2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型.

四、作業(yè)《習(xí)案》作業(yè)十四及十五。

高中數(shù)學(xué)必修教案人教版篇十三

2.教學(xué)重點。

函數(shù)單調(diào)性的概念,判斷和證明簡單函數(shù)的單調(diào)性.。

3.教學(xué)難點。

函數(shù)單調(diào)性概念的生成,證明單調(diào)性的代數(shù)推理論證.。

1.教學(xué)有利因素。

2.教學(xué)不利因素。

1.理解函數(shù)單調(diào)性的相關(guān)概念.掌握證明簡單函數(shù)單調(diào)性的方法.。

為達成課堂教學(xué)目標,突出重點,突破難點,我們主要采取以下形式組織學(xué)習(xí)材料:

(一)創(chuàng)設(shè)情境,引入課題。

問題1:觀察下列函數(shù)圖象,請你說說這些函數(shù)有什么變化趨勢?

設(shè)函數(shù)的定義域為,區(qū)間.在區(qū)間上,若函數(shù)的圖象(從左向右)總是上升的,即隨的增大而增大,則稱函數(shù)在區(qū)間上是遞增的,區(qū)間稱為函數(shù)的單調(diào)增區(qū)間(學(xué)生類比定義“遞減”,接著推出下圖,讓學(xué)生準確回答單調(diào)性.)。

(二)引導(dǎo)探索,生成概念。

問題2:(1)下圖是函數(shù)的圖象(以為例),它在定義域r上是遞增的嗎?

(2)函數(shù)在區(qū)間上有何單調(diào)性?

預(yù)設(shè):學(xué)生會不置可否,或者憑感覺猜測,可追問判定依據(jù).。

問題3:(1)如何用數(shù)學(xué)符號描述函數(shù)圖象的“上升”特征,即“隨的增大而增大”?

(2)已知,若有.能保證函數(shù)在區(qū)間上遞增嗎?

拖動“拖動點”改變函數(shù)在區(qū)間上的圖象,可以遞增,可以先增后減,也可以先減后增.。

(3)已知,若有,能保證函數(shù)在區(qū)間上遞增嗎?

拖動“拖動點”,觀察函數(shù)在區(qū)間上的圖象變化.。

(4)已知,若有。

能保證函數(shù)在區(qū)間上遞增嗎?

設(shè)計說明:可先請持贊同觀點的同學(xué)說明理由,再請持反對意見的學(xué)生畫出反駁,然后追問:無數(shù)個也不能保證函數(shù)遞增,那該怎么辦呢?若學(xué)生回答全部取完或任取,追問“總不能一個一個驗證吧?”

問題4:如何用數(shù)學(xué)語言準確刻畫函數(shù)在區(qū)間上遞增呢?

問題5:請你試著用數(shù)學(xué)語言定義函數(shù)在區(qū)間上是遞減的.。

(三)學(xué)以致用,理解感悟。

判斷題:你認為下列說法是否正確,請說明理由.(舉例或者畫圖)。

(1)設(shè)函數(shù)的定義域為,若對任意,都有,則在區(qū)間上遞增;

(2)設(shè)函數(shù)的定義域為r,若對任意,且,都有,則是遞增的;

(3)反比例函數(shù)的單調(diào)遞減區(qū)間是.。

例題:判斷并證明函數(shù)的單調(diào)性.。

高中數(shù)學(xué)必修教案人教版篇十四

3、情感態(tài)度與價值觀目標:感受代數(shù)與幾何問題的相互轉(zhuǎn)換。體會品面直角坐標系在解決實際問題的作用,培養(yǎng)數(shù)學(xué)學(xué)習(xí)興趣。

重點:理解平面直角坐標中點與數(shù)的一一對應(yīng)關(guān)系;

難點:根據(jù)坐標描出點的位置,以及坐標軸上的點的坐標特點。

教師準備四張大的紙質(zhì)坐標格子。

一、溫故知新,導(dǎo)入新課。

游戲?qū)耄荷弦还?jié)課我們學(xué)習(xí)了有序數(shù)對,大家學(xué)習(xí)積極性很高,今天老師先考考你們, 看你們掌握了多少。

我們將教室里的座位分為八列七排。a排b號記做有序數(shù)對(a,b),同學(xué)們先找準自己的數(shù)對號。聽老師報數(shù)對,若是你自己的數(shù)對號,就快速站起來。反應(yīng)太慢和站錯了都算失敗,扣一分;反之加一分。最后以組為單位,比比哪組得分最高。

我們可以發(fā)現(xiàn),通過教室平面內(nèi)的有序數(shù)對,可以唯一的確定與之對應(yīng)的同學(xué)。

二、新課教學(xué)

課本例子:我們知道數(shù)軸上的點可以用一個數(shù)來表示,這個數(shù)叫做這個點的坐標。例如點a數(shù)軸上的坐標是-4,點b數(shù)軸上的坐標是2;我們說坐標是3.5的點,也可以在數(shù)軸上唯一確定。

學(xué)生活動:小a說可以像教室座位一樣給任意點編一個橫排縱排的號,小

b說我們可以每個點列一個數(shù)軸???

教師活動:引導(dǎo)學(xué)生思考,怎么才能用同一標準,方便的確定每一點的位置?

結(jié)合橫縱排編號以及數(shù)軸,我們可以綜合考慮,引出一個橫縱的數(shù)軸?

得出結(jié)論:我們可以在平面內(nèi)畫兩條相互垂直、原點重合的數(shù)軸,組成平面直角坐標系,水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;豎直的數(shù)軸稱為y軸或縱軸,取向上為正方向;兩坐標軸的交點為平面直角坐標系的原點。

那有了這樣的平面直角坐標系,平面內(nèi)的點就可以用之前學(xué)的有序數(shù)對來表示了。例如:由a分別向x軸和y軸作垂線。垂足m在x軸上的`坐標是3,垂足n在y軸上的坐標是4,我們說a的坐標是3,縱坐標是4,有序數(shù)對(3,4)就叫做a的坐標,記作a(3,4)

教師提問2:同學(xué)們按照這種做法,在坐標紙上標出b、c、d的坐標。

教師活動:走下講臺,關(guān)注學(xué)生的匯坐標過程方法,指出學(xué)生出現(xiàn)問題的地方,并予以改正。

教師提問3:在橫縱坐標軸上各標一點e、f,問:坐標原點以及這兩點的坐標是什么?

教師活動:引導(dǎo)學(xué)生思考歸納坐標軸上的點的坐標的特點。

得出結(jié)論:原點的坐標是(0,0),x軸上的點的坐標的縱坐標為0;y軸上的點的坐標的橫坐標為0。

三、課程鞏固

師生互動:與學(xué)生一起回憶平面直角坐標系的各部分的意義,平面內(nèi)的點怎么對應(yīng)坐標,以及坐標軸上的點的坐標特點。

“練一練”:

在黑板上貼出四張事先準備好的紙質(zhì)坐標格子,在上面標出任意的abcdefg等點,每組我點一個按坐標序列對,對應(yīng)的同學(xué)上黑板,來描出各點的坐標。對一個加一分,錯一個扣一分,得分相同的看用時,時間短者勝,過程中下面的學(xué)生不能提示,提示一次扣2分。比賽看哪組學(xué)生代表得分最多。

(1,2)、(3,4)、(5,6)、(7,8)四位同學(xué)上黑板來描點。

教師活動:規(guī)范課堂氣氛,公平的評判,對于表現(xiàn)好的小組代表予以表揚,表現(xiàn)稍遜的學(xué)生不要氣餒,給予鼓勵,爭取下一次可以獲勝。

四、小結(jié)作業(yè):

思考平面直角坐標系中坐標與點的對應(yīng)關(guān)系,如何由坐標值確定點的位置。下節(jié)課我們會探討這個問題。

平面直角坐標系:平面內(nèi)畫兩條相互垂直、原點重合的數(shù)軸組成

水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;

豎直的數(shù)軸稱為y軸或縱軸,取向上為正方向;

兩坐標軸的交點為平面直角坐標系的原點。

高中數(shù)學(xué)必修教案人教版篇十五

掌握三角函數(shù)模型應(yīng)用基本步驟:。

(1)根據(jù)圖象建立解析式;。

(2)根據(jù)解析式作出圖象;。

(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.

教學(xué)重難點。

利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。

教學(xué)過程。

一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。

(精確到0.001).

米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?

本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關(guān)于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。

練習(xí):教材p65面3題。

三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:。

(1)根據(jù)圖象建立解析式;。

(2)根據(jù)解析式作出圖象;。

(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.

2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型.

四、作業(yè)《習(xí)案》作業(yè)十四及十五。

將本文的word文檔下載到電腦,方便收藏和打印。

【本文地址:http://www.mlvmservice.com/zuowen/10339428.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔